Linear Algebra \& Geometry: Sheet 2

Set on Tuesday, October 16: Questions 1, 2, 4, 5, 7

1. Compute the following expressions, i.e., write them in the form $a+\mathrm{i} b$ with explicit numbers a and b,
(a) $(1+\mathrm{i})+(2-3 \mathrm{i})$
(b) $(1+\mathrm{i})(1+2 \mathrm{i})-3$
(c) $\frac{1}{1-\mathrm{i}}$
(d) $\frac{2+\mathrm{i}}{1+\mathrm{i}}$
(e) $\frac{(2-3 \mathrm{i})(3-2 \mathrm{i})}{1+\mathrm{i}}$
(f) $\frac{1}{(1+\mathrm{i})(2-\mathrm{i})}$
2. Recall that for a complex number $z=x+\mathrm{i} y$ we defined $\bar{z}:=x-\mathrm{i} y$ and $|z|=\sqrt{\bar{z} z}$. Show that for any $z, z_{1}, z_{2} \in \mathbb{C}$
(i)
(a) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
(b) $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$
(c) $\overline{\bar{z}}=z$
(d) $\overline{z_{1} / z_{2}}=\bar{z}_{1} / \bar{z}_{2}$
(ii)
(e) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(f) $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
3. (i) Find $x, y \in \mathbb{R}$ such that
(a) $\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}=x+\mathrm{i} y$
(b) $2 \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}=x+\mathrm{i} y$
and compare with Question 9 on Sheet 1.
(ii) Find $r \in \mathbb{R}^{+}, \varphi \in[0,2 \pi)$ such that
(a) $1+\mathrm{i}=r \mathrm{e}^{\mathrm{i} \varphi}$
(b) $-5 \mathrm{i}=r \mathrm{e}^{\mathrm{i} \varphi}$
and compare with Question 8 on Sheet 1.
4. Use Euler's identity $\mathrm{e}^{\mathrm{i} \varphi}=\cos \varphi+\mathrm{i} \sin \varphi$ to prove De Moivre's Theorem: for any $n \in \mathbb{N}$

$$
\cos (n \varphi)+\mathrm{i} \sin (n \varphi)=(\cos \varphi+\mathrm{i} \sin \varphi)^{n}
$$

Use this formula to derive the following relations

$$
\cos (3 \varphi)=4 \cos ^{3} \varphi-3 \cos \varphi \quad \sin (3 \varphi)=-4 \sin ^{3} \varphi+3 \sin \varphi .
$$

5. Use Euler's identity $\mathrm{e}^{\mathrm{i} \varphi}=\cos \varphi+\mathrm{i} \sin \varphi$ to show the following representations for trigonometric functions:

$$
\sin \varphi=\frac{\mathrm{e}^{\mathrm{i} \varphi}-\mathrm{e}^{-\mathrm{i} \varphi}}{2 \mathrm{i}}, \quad \cos \varphi=\frac{\mathrm{e}^{\mathrm{i} \varphi}+\mathrm{e}^{-\mathrm{i} \varphi}}{2}, \quad \tan \varphi=\frac{1}{\mathrm{i}} \frac{1-\mathrm{e}^{-\mathrm{i} 2 \varphi}}{1+\mathrm{e}^{-\mathrm{i} 2 \varphi}} .
$$

6. The following extension of the rational numbers is analogous to the construction of the complex numbers from the real numbers.
Consider numbers of the form $z=x+\sqrt{2} y$ where x and y are rational numbers. We call the set of all these numbers $\mathbb{Q}(\sqrt{2})$, i.e., $\mathbb{Q}(\sqrt{2})=\{x+\sqrt{2} y ; x, y \in \mathbb{Q}\}$. Show that if $z_{1}, z_{2} \in \mathbb{Q}(\sqrt{2})$ then
(i) $z_{1}+z_{2} \in \mathbb{Q}(\sqrt{2})$
(ii) $z_{1} z_{2} \in \mathbb{Q}(\sqrt{2})$
(iii) If $z_{1} \neq 0$ then $1 / z_{1} \in \mathbb{Q}(\sqrt{2})$ (hint: use the fact that $\sqrt{2}$ is irrational.)
(iv) If $z_{1} \neq 0$ then $z_{2} / z_{1} \in \mathbb{Q}(\sqrt{2})$
7. In this problem we use complex numbers as a tool to prove a geometric statement. Let $\mathbf{v}=\left(x_{1}, y_{1}\right)$ and $\mathbf{w}=\left(x_{2}, y_{2}\right)$ be two vectors in \mathbb{R}^{2} and let $A(\mathbf{v}, \mathbf{w})$ be the oriented area of the parallelogram spanned by \mathbf{v} and \mathbf{w}, i.e.,
$|A(\mathbf{v}, \mathbf{w})|$ is the area and $A(\mathbf{v}, \mathbf{w})>0$ if \mathbf{w} is to the left of \mathbf{v} and $A(\mathbf{v}, \mathbf{w})<0$ if \mathbf{w} is to the right of \mathbf{v}.

(i) Compute $A\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ and $A\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right)$ where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
(ii) Show that $A(\mathbf{v}, \mathbf{w})=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta)$, where $\theta \in[-\pi, \pi]$ is the angle between \mathbf{v} and w.

Hint: You can use without proof the fact that the area of a parallelogram is the length of the base times the height, $A=$ $a h$.

(iii) Show that

$$
A\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=x_{1} y_{2}-x_{2} y_{1}
$$

Hint: Consider $\operatorname{Im}\left(\overline{z_{1}} z_{2}\right)$ for $z_{1}=x_{1}+\mathrm{i} y_{1}=r_{1} \mathrm{e}^{\mathrm{i} \varphi_{1}}$ and $z_{2}=x_{2}+\mathrm{i} y_{2}=r_{2} \mathrm{e}^{\mathrm{i} \varphi_{2}}$.
8. Let n be a positive integer, a complex number z is called an n 'th root of unity if

$$
z^{n}=1
$$

(i) Show that if z is an n 'th root of unity, then $|z|=1$.
(ii) Find all roots of unity for $n=2$ and $n=3$ and plot their location in the complex plane.
(iiii) For an arbitrary $n \in \mathbb{N}$, show that there are exactly n different roots of unity and compute them.

Hint: Express z in polar form, and use that $\mathrm{e}^{\mathrm{i} \varphi}=1$ whenever $\varphi=2 \pi k$ for some $k \in \mathbb{Z}$.

