Linear Algebra & Geometry: Sheet 2

Set on Tuesday, October 16: Questions 1, 2, 4, 5, 7

1. Compute the following expressions, i.e., write them in the form a + ib with explicit numbers a and b,

2. Recall that for a complex number z = x + iy we defined $\overline{z} := x - iy$ and $|z| = \sqrt{\overline{z}z}$. Show that for any $z, z_1, z_2 \in \mathbb{C}$

(i)

(a)
$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$$

(b) $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$
(c) $\overline{z} = z$
(d) $\overline{z_1/z_2} = \overline{z}_1/\overline{z}_2$

(ii)

(e)
$$|z_1 z_2| = |z_1| |z_2|$$
 (f) $|z_1 + z_2| \le |z_1| + |z_2|$

3. (i) Find $x, y \in \mathbb{R}$ such that

(a)
$$e^{i\frac{\pi}{3}} = x + iy$$
 (b) $2e^{i\frac{\pi}{2}} = x + iy$

and compare with Question 9 on Sheet 1.

(ii) Find $r \in \mathbb{R}^+$, $\varphi \in [0, 2\pi)$ such that

(a)
$$1 + \mathbf{i} = r \mathbf{e}^{\mathbf{i}\varphi}$$
 (b) $-5\mathbf{i} = r \mathbf{e}^{\mathbf{i}\varphi}$

and compare with Question 8 on Sheet 1.

4. Use Euler's identity $e^{i\varphi} = \cos \varphi + i \sin \varphi$ to prove *De Moivre's Theorem*: for any $n \in \mathbb{N}$

$$\cos(n\varphi) + \mathrm{i}\sin(n\varphi) = (\cos\varphi + \mathrm{i}\sin\varphi)^n$$

Use this formula to derive the following relations

$$\cos(3\varphi) = 4\cos^3\varphi - 3\cos\varphi \qquad \sin(3\varphi) = -4\sin^3\varphi + 3\sin\varphi \;.$$

5. Use Euler's identity $e^{i\varphi} = \cos \varphi + i \sin \varphi$ to show the following representations for trigonometric functions:

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i} , \quad \cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2} , \quad \tan \varphi = \frac{1}{i} \frac{1 - e^{-i2\varphi}}{1 + e^{-i2\varphi}} .$$

6. The following extension of the rational numbers is analogous to the construction of the complex numbers from the real numbers.

Consider numbers of the form $z = x + \sqrt{2}y$ where x and y are rational numbers. We call the set of all these numbers $\mathbb{Q}(\sqrt{2})$, i.e., $\mathbb{Q}(\sqrt{2}) = \{x + \sqrt{2}y; x, y \in \mathbb{Q}\}$. Show that if $z_1, z_2 \in \mathbb{Q}(\sqrt{2})$ then

- (i) $z_1 + z_2 \in \mathbb{Q}(\sqrt{2})$
- (ii) $z_1 z_2 \in \mathbb{Q}(\sqrt{2})$
- (iii) If $z_1 \neq 0$ then $1/z_1 \in \mathbb{Q}(\sqrt{2})$ (hint: use the fact that $\sqrt{2}$ is irrational.)
- (iv) If $z_1 \neq 0$ then $z_2/z_1 \in \mathbb{Q}(\sqrt{2})$
- 7. In this problem we use complex numbers as a tool to prove a geometric statement. Let $\mathbf{v} = (x_1, y_1)$ and $\mathbf{w} = (x_2, y_2)$ be two vectors in \mathbb{R}^2 and let $A(\mathbf{v}, \mathbf{w})$ be the *oriented area* of the parallelogram spanned by \mathbf{v} and \mathbf{w} , i.e.,

 $|A(\mathbf{v}, \mathbf{w})|$ is the area and $A(\mathbf{v}, \mathbf{w}) > 0$ if \mathbf{w} is to the left of \mathbf{v} and $A(\mathbf{v}, \mathbf{w}) < 0$ if \mathbf{w} is to the right of \mathbf{v} .

- (i) Compute $A(\mathbf{e}_1, \mathbf{e}_2)$ and $A(\mathbf{e}_2, \mathbf{e}_1)$ where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- (ii) Show that $A(\mathbf{v}, \mathbf{w}) = \|\mathbf{v}\| \|\mathbf{w}\| \sin(\theta)$, where $\theta \in [-\pi, \pi]$ is the angle between \mathbf{v} and \mathbf{w} .

Hint: You can use without proof the fact that the area of a parallelogram is the length of the base times the height, A = ah.

(iii) Show that

$$A(\mathbf{v}_1, \mathbf{v}_2) = x_1 y_2 - x_2 y_1$$

Hint: Consider Im $(\overline{z_1}z_2)$ for $z_1 = x_1 + iy_1 = r_1 e^{i\varphi_1}$ and $z_2 = x_2 + iy_2 = r_2 e^{i\varphi_2}$.

8. Let n be a positive integer, a complex number z is called an n'th root of unity if

$$z^n = 1 .$$

- (i) Show that if z is an n'th root of unity, then |z| = 1.
- (ii) Find all roots of unity for n = 2 and n = 3 and plot their location in the complex plane.
- (iiii) For an arbitrary $n \in \mathbb{N}$, show that there are exactly n different roots of unity and compute them.

Hint: Express z in polar form, and use that $e^{i\varphi} = 1$ whenever $\varphi = 2\pi k$ for some $k \in \mathbb{Z}$.