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These are Lecture Notes for the 1st year Linear Algebra and Geometry course in Bristol.
This is an evolving version of them, and it is very likely that they still contain many misprints.
Please report serious errors you find to me (roman.schubert@bristol.ac.uk) and I will post
an update on the Blackboard page of the course.

These notes cover the main material we will develop in the course, and they are meant
to be used parallel to the lectures. The lectures will follow roughly the content of the notes,
but sometimes in a different order and sometimes containing additional material. On the
other hand, we sometimes refer in the lectures to additional material which is covered in
the notes. Besides the lectures and the lecture notes, the homework on the problem sheets
is the third main ingredient in the course. Solving problems is the most efficient way of
learning mathematics, and experience shows that students who regularly hand in homework
do reasonably well in the exams.

These lecture notes do not replace a proper textbook in Linear Algebra. Since Linear
Algebra appears in almost every area in Mathematics a slightly more advanced textbook
which complements the lecture notes will be a good companion throughout your mathematics

courses. There is a wide choice of books in the library you can consult.
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Chapter 1

The Euclidean plane and complex
numbers

1.1 The Euclidean plane R?

To develop some familiarity with the basic concepts in linear algebra let us start by discussing

the Euclidean plane R?:
Definition 1.1. The set R? consists of ordered pairs (x,y) of real numbers x,y € R.

Remarks:

e In the lecture we will denote elements in R? often by underlined letters and arrange the

numbers x,y vertically

()

Other common notations for elements in R? are by boldface letters v, and this is the
notation we will use in these notes, or by an arrow above the letter . But often no

special notation is used at all and one writes v € R? and v = ().

e That the pair is ordered means that <$> #* (i) if x # .

e The two numbers x and y are called the xz-component, or first component, and the

y-component, or second component, respectively. For instance the vector

(2

has z-component 1 and y-component 2.

e We visualise a vector in R? as a point in the plane, with the z-component on the

horizontal axis and the y-component on the vertical axis.
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Figure 1.1: Left: An element v = (y,z) in R? represented by a vector in the plane. Right:
vector addition, v + w, and the negative —v.

We will define two operations on vectors. The first one is addition:

Definition 1.2. Let v = (21> ,W = <Zl> € R?, then we define the sum of v and w by
2 2

And the second operation is multiplication by real numbers:

U1

Definition 1.3. Let v = (v
2

> € R? and X € R, then we define the product of v by \ by

/\Ul
AV =
v </\v2>
Some typical quantities in nature which are described by vectors are velocities and forces.
The addition of vectors appears naturally for these, for example if a ship moves through the
water with velocity vg and there is a current in the water with velocity v, then the velocity
of the ship over ground is vg + v¢.

By combining these two relation we can form expressions like A\v + uw for v, w € R? and
A 1 € R, we call this a linear combination of v and w. For instance

1 0 5 0 )
o(4)+o0) = (5)+ ()= ()
We can as well consider linear combinations of k vectors vi,va, - - , v € R? with coefficients
)\17)‘2"' 7Ak G]R,
k
Avi+ Agve + - Apvy = Z Aivi
i=1
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1.1. THE EUCLIDEAN PLANE R? 7

Notice that Ov = (8) for any v € R? and we will in the following denote the vector

whose entries are both 0 by 0, so we have
v+0=0+v=v

for any v € R2. We will use as well the shorthand —v to denote (—1)v and w—v := w+(—1)v.
Notice that with this notation
v—v=0
for all v € R2.
The norm of a vector is defined by

U1

Definition 1.4. Let v = (v
2

) € R?, then the norm of v is defined by

VIl = /i + 03 .

By Pythagoras Theorem the norm is just the geometric length of the distance between
the point in the plane with coordinates (v1,v2) and the origin 0.
Furthermore ||v — w|| is the distance between the points v and w.

. 5 . .
For instance the norm of a vector of the form v = <0>, which has no y component, is

_31) we find ||w| =9+ 1 = +/10 and the distance between

vand wis |[v—w| =v4+1=1/5.
Let us now look how the norm relates to the structures we defined previously, namely
addition and scalar multiplication:

just ||[v|| = 5, whereas if w = (

Theorem 1.5. The norm satisfies
(i) ||[v|| >0 for all v € R? and ||v| = 0 if and only if v = 0.
(ii) |[Av]| = M|Vl for all X\ € R,v € R?

(iii) ||v +w|| < |[|v] + |[w| for all v,w € R

Proof. We will only prove the first two statements, the third statement, which is called the
triangle inequality will be proved in the exercises.

For the first statement we use the definition of the norm [|v|| = y/v{ + v3 > 0. It is clear
that [|0]| = 0, but if ||v|| = 0, then v? +v2 = 0, but this is a sum of two non-negative numbers,
so in order that they add up to 0 they must both be 0, hence vy =wv9 =0 and so v =10

The second statement follows from a direct computation:

IAVI = v/ Oon)? + ()2 = (/X2 (0] +03) = V2 i + 03 = P [Iv]] -

O]

We have represented a vector by its two components and interpreted them as Cartesian
coordinates of a point in R2. We could specify a point in R? as well by giving its distance \
to the origin and the angle between the line connecting the point to the origin and the z-axis.
We will develop this idea, which leads to polar coordinates in calculus, a bit more:
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Definition 1.6. A vector u € R? is called a unit vector if |[u|| = 1.

Remark: A unit vector has length one, hence all unit vectors lie on the circle of radius
one in R?, therefore a unit vector is determined by its angle § with the z-axis. By elementary
geometry we find that the unit vector with angle 0 to the z-axis is given by

u(6) = (COS 9) . (1.1)

sin 6
Theorem 1.7. For every v € R?, v # 0, there exist unique 0 € [0,27) and A € (0,00) with
v =2Au(f)

Figure 1.2: A vector v in R? represented by Cartesian coordinates (x,y) or by polar coordi-
nates \,0. We have x = Acosf, y = Asinf and A\ = /22 + y? and tan = y/x.

Proof. Given v = <Zl> # 0 we have to find A > 0 and 6 € [0, 27) such that
2

(1) =0 - (3220

Since [[Au(f)]| = Aju(f)|| = A (note that A > 0, hence |A| = \) we get immediately

A= v
To determine € we have to solve the two equations
COSGZE, sinﬂzg,
v Il

which is in principle easy, but we have to be a bit careful with the signs of vy,ve. If vo > 0
we can divide the first by the second equation and obtain cos €/ sin = vy /vy, hence

0 =cot™! L e (0,7) .
U2

Similarly if v; > 0 we obtain § = arctanvy/v1, and analogous relations hold if v; < 0 and
vy < 0. OJ
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The converse is of course as well true, given 6 € [0,27) and A > 0 we get a unique vector
with direction 6 and length A:

v=nu= (8)
1.2 The dot product and angles

Definition 1.8. Let v = <21> ,W = <w1> € R?, then we define the dot product of v and w
2

w2
by
VW= vjw] + vawsy .

Note that v - v = ||v|[%, hence ||[v] = /v - V.
The dot product is closely related to the angle, we have:

Theorem 1.9. Let 0 be the angle between v and w, then
v-w = ||v|||w]| cosf .
Proof. There are several ways to prove this result, let us present two.

(1) The first method uses the following trigonometric identity
cos @ cos @ + sin psin @ = cos(p — 0) (1.2)

We will give a proof of this identity in (1.9). We use the representation of vectors
by length and angle relative to the z-axis, see Theorem 1.7, i.e., v = ||v|u(fy) and
w = |w||u(fw), where 6y and 6, are the angles of v and w with the z-axis, respectively.
Using these we get

v-w = [[v[[[[w]u(by) - u(bw) -

So we have to compute u(fy) - u(fy) and using the trigonometric identity (1.2) we
obtain

u(fy) - u(fw) = cos by cos by, + sin by, sin by, = cos(fw — by) ,
and this completes the proof since 8 = 6y, — 6.

(ii) A different proof can be given using the law of cosines which was proved in the exercises.
The sides of the triangle spanned by the vectors v and w have length ||v||, |[w| and

|v — w|. Applying the law of cosines and ||v — w||? = ||v||? + [|w]||? — 2v - w gives the
result.
O
Remarks:

(i) If v and w are orthogonal, then v - w = 0.
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(ii) If we rewrite the result as
vV-w
coslf) = ——— | (1.3)
VITwl

if v,w # 0, then we see that we can compute the angle between vectors from the dot-
product. For instance if v = (—1,7) and w = (2,1), then we find v-w =5, ||v|| = V50
and ||w|| = v/5, hence cosf = 5/v/250 = 1//10.

(iii) Another consequence of the result above is that since |cos#] < 1 we have
v wl < villw] - (1.4)

This is called the Cauchy Schwarz inequality and we will prove a more general form of
it later.

1.3 Complex Numbers

One way of looking at complex numbers is to view them as elements in R? which can be
multiplied. This is a nice application of the theory of R? we have developed so far.

The basic idea underlying the introduction of complex numbers is to extend the set of
real numbers in a way that polynomial equations have solutions. The standard example is
the equation

z?=-1

which has no solution in R. We introduce then in a formal way a new number i with the
property i2 = —1 which is a solution to this equation. The set of complex numbers is the set
of linear combinations of multiples of i and real numbers:

C:={z+iy; v,y € R}

We will denote complex numbers by z = x + iy and call £ = Rez the real part of z and
y = Im z the imaginary part of z.

We define a addition and multiplication on this set by setting for z; = z; + iy; and
29 = X2 + iy2

21+ 29 =21 + x2 + i(y1 + y2)

2129 ==x122 — Y1y2 + i(T1y2 + T21)

Notice that the definition of multiplication just follows if we multiply 21 zo like normal numbers
and use i2 = —1:

2120 = (w1 + iy1) (22 + iya) = 2122 + iz1y2 + 172 + 129192 = 2122 — Y1y2 + (212 + T2y1)

A complex number is defined by a pair of real numbers, and so we can associate a vector in
R? with every complex number z = z + iy by v(z) = (z,y). Le., with every complex number
we associate a point in the plane, which we call then the complex plane. E.g., if z = x is real,
then the corresponding vector lies on the real axis. If z =i, then v(i) = (0, 1), and any purely
imaginary number z = iy lies on the y-axis.

The addition of vectors corresponds to addition of complex numbers as we have defined
it, i.e,,

v(z1 + 22) = v(z1) + v(22) .
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C

iy foommeeeeee- » Z=X+H1Yy

Figure 1.3: Complex numbers as points in the plane: with the complex number z = x + iy
we associate the point v(z) = (z,y) € R2.

But the multiplication is a new operation which had no correspondence for vectors. There-
fore we want to study the geometric interpretation of multiplication a bit more carefully. To
this end let us first introduce another operation on complex numbers, complex conjugation,
for z = x + iy we define

z=x—1y .
This corresponds to reflection at the x axis. Using complex conjugation we find
2 H2

2z = (z+iy)(z —iy) = 2° —izy +iyr + y* = 22 + 9 = ||v(2)

and we will denote the modulus of z by
2| := VZz = Va2 + 32 .
Complex conjugation is useful when dividing complex numbers, we have for z % 0

1 z z T Y

z Zz:W:xZ—kyz—'_le—kyz'

and so, e.g., ~
Z1 2921

Z9 ‘Zz|2 '

Examples:
o (24 3i)(4 —2i) =8 —6i2 + 121 — 4i = 14 + 8i

* 1 2-3i _2-3 _2 3.

2431 (2+30)(2—3)) 4+9 13 13

4-21  (4-20)(2-3) 2-10i 2 10,

= = = 1
2431 (2+31)(2—3)) 4+9 13 13
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It turns out that to discuss the geometric meaning of multiplication it is useful to switch
to the polar representation. Recall the exponential function e* wich is defined by the series

1 1 1 =1
z -2 - .3 = .4 - - n
e —1+z—|—2z +3!z —1—4!z+ Zn!z (1.5)
n=0
This definition can be extended to z € C, since we can compute powers 2" of z and we can
add complex numbers.? We will use that for arbitrary complex 21, z3 the exponential function
satisfies?

e*le® = M1 t22 (1.6)
We then have

Theorem 1.10 (Eulers formula). We have

e = cosh +isinf . (1.7)
Proof. This is basically a calculus result, we will sketch the proof, but you might need more
calculus to fully understand it. We recall that the sine function and the cosine function can
be defined by the following power series

sin(az):a:—lx3+lx5—~~:§:ﬂx2k+l
3! 5! — (2k+1)!
_ Lo 14 RN Vg
cos(:c)-l—;n +® —--'—kz_:o (2k)!x .

-+, we find by comparing the power series

: 1 1 1 1
9 _ N IR e I I
eV =1+16 2«9 13!0 +4!«9 +15!0 +

= 1—;92+L94+--.] +1[9—;93+51!05+~- =cosf +isinf .
O
Using Euler’s formula we see that
v(e’) =u(9) ,

see (1.1), so we can use the results from the previous section. We find in particular that we
can write any complex number z, z # 0, in the form

2= Nel? |

where A = |z| and 0 is called the argument of z.

2We ignore the issue of convergence here, but the sum is actually convergent for all z € C.
3The proof of this relation for real z can be directly extended to complex z
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For the multiplication of complex numbers we find then that if z; = )xleiel, 29 = Agelf2
then
2129 = )\1)\2ei(91+92) 7 1 ﬁei(91—92) ,
Z9 )\2
so multiplication corresponds to adding the arguments and multiplying the modulus. In
particular if A = 1, then multiplying by €'’ corresponds to rotation by € in the complex plane.
The result (1.7) has as well some nice applications to trigonometric functions.

(i) By (1.6) we have for n € IN that (') = ei"?, and since €’ = cos@ + isind and
e = cos(nh) + isin(nf) this gives us the following identity which is known as de
Moivre’s Theorem:

(cos @ +1isin @)™ = cos(nb) + isin(nd) (1.8)

If we choose for instance n = 2, and multiply out the left hand side, we obtain cos? 6 +
2isin f cos  — sin? § = cos(260) + isin(20) and separating real and imaginary part leads
to the two angle doubling identities

cos(26) = cos®§ —sin? 6, sin(26) = 2sinf cos b .
Similar identities can be derived for larger n.

(ii) If we use e?e™1% = ¢/(=%) and apply (1.7) to both sides we obtain (cos 6 +isin #)(cos ¢ —
ising) = cos(f — ¢) + isin(f — ¢) and multiplying out the left hand side gives the two
relations

cos(f — ) = cosfcosp +sinfsing , sin(f — ) =sinfcosp —cosfsiny . (1.9)

(iii) The relationship (1.7) can as well be used to obtain the following standard representa-
tions for the sine and cosine functions:

i0 —if i0 —if
sinf=""2 , cosf = % . (1.10)
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Chapter 2

Euclidean space R"

We introduced R? as the set of ordered pairs (21, x2) of real numbers, we now generalise this
concept by allowing longer lists of numbers. For instance instead of ordered pairs we could
take ordered triples (z1, z2, z3) of numbers x1, x2, x3 € R and if we take 4, 5 or more numbers
we arrive at the general concept of R"

Definition 2.1. Let n € IN be a positive integer, the set R™ consists of all ordered n-tuples
x = (z1,22,x3, - ,Ty) where x1,x9, - x, are real numbers. Le.,

]Rn :{(1"171‘27'” an) y L1y L2." " T G]R} .

Z

Figure 2.1: A vector v = (z,y, z) in R3.
Examples:
(i) n =1, then we just get the set of real numbers R.
(ii) n = 2, this is the case we studied before, R2.

(iii) m = 3, this is R? and the elements in R? provide for instance coordinates in 3-space. To
a vector x = (x,y, z) we associate a point in 3-space by choosing = to be the distance

15
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to the origin in the z-direction, y to be the distance to the origin in the y-direction and
z to be the distance to the origin in the z-direction.

(iv) Let f(z) be a function defined on an interval [0, 1], than we can consider a discretisation
of f. Le., we consider a grid of points z; = i/n, i = 1,2,--- ,n and evaluate f at these
points,

(f(1/n), f(2/n), -+, f(1)) € R™ .

These values of f form a vector in R™ which gives us an approximation for f. The
larger n becomes the better the approximation will usually be.

We will mostly write elements of R™ in the from x = (z1, 2,23, -+ ,2,), but in some
areas, e.g., physics one often sees
z1
T2
x - )
L,

and we might occasionally use this notation, too.

The elements of R™ are just lists of n real numbers and in applications these are often
lists of data relevant to the problem at hand. As we have seen in the examples, these could
be coordinates giving the position of a particle, but they could have as well a completely
different meaning, like a string of economical data, e.g., the outputs of n different economical
sectors, or some biological data like the numbers of n different species in an eco-system.

Another way in which the sets R™ often show up is by by taking direct products.

Definition 2.2. Let A, B be non-empty sets, then the set A x B, called the direct product, is
the set of ordered pairs (a,b) where a € A and b € B, i.e.,

Ax B:={(a,b);ac A, be B} . (2.1)
If A = B we sometimes write A x A = A?.
Examples
(i) If A= {1,2} and B = {1, 2,3} then the set Ax B has the elements (1, 1), (1,2),(1,3),(2,1),(2,2),(2, 3).
(ii) If A= {1,2} then A? has the elements (1,1),(1,2),(2,1),(2,2).

(iii) If A = R, then R? = R x R is the set with elements (x, %) where 2,y € R, so it coincides
with the set we called already R2.

A further way how sets of the form R™ for large n can arise in applications is the following
example. Assume we have two particles in 3 space. The position of particle A is described by
points in R?, and the position of particle B is as well described by points in R?. If we want to
describe now both particle at once, then it is natural to combine the two vectors with three
components into one with six components:

R? x R?® = R® (2.2)

This example can be generalised. If we have N particles in R? then the positions of all these
particles give rise to R3V.
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The construction of direct products can of course be extended to other sets, and for
instance C" is the set of n-tuples of complex numbers (21, 22, - , 2 ).

Now we will extend the results from Chapter 1. We can extend directly the definitions of
addition and multiplication by scalars from R? to R™.

€1 1

.. Z2 Y2
Definition 2.3. Letx,y e R", x=| . |,y =| . |, we define the sum of x andy, x+Y,

Tn Yn

to be the vector
x1+ Y1
T2 + Y2
X+y:= .
Tn + Yn

If A € R we define the multiplication of x € R™ by A by

/\3}1

X2
AX =

ATy,
A simple consequence of the definition is that we have for any x,y € R” and A € R
Ax+y)= x+ )y . (2.3)

We will usually write 0 € R™ to denote the vector whose components are all 0. We have
that —x := (—1)x satisfies x — x = 0 and 0x = 0 where the 0 on the left hand side is 0 € R,
whereas the 0 in the right hand side is 0 = (0,0,--- ,0) € R™.

2.1 Dot product

We can extend the definition of the dot-product from R? to R™:

Definition 2.4. Let x,y € R", then the dot product of x and y is defined by
n
Xy :=x1Y1 +Toy2 + 0 TnYn = Zwiyz‘ .
i=1

Theorem 2.5. The dot product satisfies for all x,y,v,w € R" and A € R
(i) xy=y-x
(ii) x- (v+w)=x-v+x-wand (XxX+y) v=x-v+y- v

(iii) (Ax) -y = Ax-y) and x- (Ay) = A(x-y)

Furthermore x - x > 0 and x - x = 0 is equivalent to x = 0.
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Proof. All these properties follow directly from the definition. So we leave most of them as
an exercise, let us just prove (i7) and the last remark. To prove (i7) we use the definition

n n n n
X'(V—i—W):E xi(vi+wi):§ xivi+xiwizg xivi+g TiW; =X-V+X-W,
i=1 i=1 i=1 i=1

and the second identity in (i7) is proved the same way. Concerning the last remark, we notice

that
n
vov=Y e
i=1

is a sum of squares, i.e., no term in the sum can be negative. Therefore, if the sum is 0, all
terms in the sum must be 0, i.e., v; = 0 for all 4, which means that v = 0. ]

Definition 2.6. The norm of a vector in R™ is defined as

Il == VA% = (Zx)

i=1

As in R? we think of the norm as a measure for the size, or length, of a vector.
We will see below that we can use the dot product to define the angle between vectors,
but a special case we will introduce already here, namely orthogonal vectors.

Definition 2.7. x,y € R" are called orthogonal if x -y = 0. We often write x L y to
indicate that x -y = 0 holds.

Pythagoras Theorem:
Theorem 2.8. If x-y =0 then
Il +yl1* = llx]* + Iy |l -

This will be shown in the exercises.
A fundamental property of the dot product is the Cauchy Schwarz inequality:

Theorem 2.9. For any x,y € R"

-yl < [x[lllyll -

Proof. Notice that v-v > 0 for any v € R", so let us try to use this inequality by applying
it to v. = x — ty, where ¢ is a real number which we will choose later. First we get

0<(x—ty) (x—ty)=x-x—2tx-y+t’y -y,
and we see how the dot products and the norm related in the Cauchy Schwarz inequality
appear. Now we have to make a clever choice for t, let us try
Xy
y'y’
this is actually the value of ¢ for which the right hand side becomes minimal. With this choice
we obtain

t =

(x-y)?

lyll®
and so (x-y)? < |x||?|ly||> which after taking the square root gives the desired result. O

0 < [|x[* -
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This proof is maybe not very intuitive. We will actually give later on another proof, which
is a bit more geometrical.

Theorem 2.10. The norm satisfies
(i) ||1x|| > 0, and ||x|| =0 only if x = 0.
(1) | Ax]] = [A[lx]l

(1) [lx + | < lIx[[ + [lyll-

Proof. (i) follows from the definition and the remark in Theorem 2.5 (i7) follows as well just
by using the definition, see the corresponding proof in Theorem 1.5. To prove (iii) we consider

Ix+ylP=x+y) (x+y)=x-x+2x-y+y-y=|x|*+2x-y+|y|*.

and now applying the Cauchy Schwarz inequality in the form x -y < ||x||||y|| to the right
hand side gives

I+ 3117 < 1l + 2lxlly [l + Iy lI* = (=l + ly1)*

and taking the square root gives the triangle inequality (7). O

2.2 Angle between vectors in R"

We found in R? that for x,y € R?, ||x||, |ly|| # 0 that the angle between the vectors satisfies

__*y
%11yl

CoS

For R™ we take this as a definition of the angle between two vectors.

Definition 2.11. Let x,y € R"™ with x # 0 and y # 0, the angle ¢ between the two vectors
is defined by

Xy

x|yl -

cosp = |

Notice that this definition makes sense because the Cauchy Schwarz inequality holds,
nameley Cauchy Schwarz gives us
Xy
= Xyl =

and therefore there exist an ¢ € [0, 7) such that

Xy

COS Y = ———— .
[1x[[ly]]
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2.3 Linear subspaces

A 7Leitmotiv” of linear algebra is to study the two operations of addition of vectors and
multiplication of vectors by numbers. In this section we want to study the following two
closely related questions:

(i) Which type of subsets of R"™ can be generated by using these two operations?
(ii) Which type of subsets of R™ stay invariant under these two operations?
The second question immediately leads to the following definition:
Definition 2.12. A subset V. C R" is called a linear subspace of R" if
(i) V #10, i.e., V is non-empty.
(ii) for all v,w € V, we have v+w €V, i.e., V is closed under addition
(iii) for allX € R, v € V, we have A\v € V| i.e., V is closed under multiplication by numbers.
Examples:

e there are two trivial examples, V = {0}, the set containing only 0 is a subspace, and
V = R" itself satisfies as well the conditions for a linear subspace.

e Let v € R™ be non-zero vector and let us take the set of all multiples of v, i.e.,
Vi={\v ,AeR}

This is a subspace since, (i) V # 0, (ii) if x,y € V then there are A;, A2 € R such
that x = A;v and y = Agv, this follows from the definition of V', and hence x +y =
AV + Av = (A1 + A2)v € V., and (idi) if x € V, i.e., x = A\;v then Ax = A\ v e V.

In geometric terms V' is a straight line through the origin, e.g., if n = 2 and v = (1, 1),
then V is just the diagonal in R2.

Figure 2.2: The subspace V' C R? (a line) generated by a vector v € R2.
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The second example we looked at is related to the first question we initially asked, here we
fixed one vector and took all its multiples, and that gave us a straight line. Generalising this
idea to two and more vectors and taking sums as well into account leads us to the following
definition:

Definition 2.13. Let x1,Xs, -+ ,xi € R"™ be k vectors, the span of this set of vectors is
defined as

span{xi,Xa, - Xg} = { X1 + Aoxo + - ApXp 0 A, A, A € R}
We will call an expression like
A1X1 + AoXg + - - - ApXyg (2.4)

an linear combination of the vectors x1,--- , X, with coefficients Aq,--- , Ag.

So the span of a set of vectors is the set generated by taking all linear combinations of the
vectors from the set. We have seen one example already above, but if we take for instance
two vectors x1,x € R3, and if they do point in different directions, then their span is a
plane through the origin in R?. The geometric picture associated with a span is that it is a
generalisation of lines and planes through the origin in R? and R3 to R".

’

Figure 2.3: The subspace V C R? generated by two vectors x and y, it contains the lines
through x and y, and is spanned by these.

Theorem 2.14. Let x1,X2,- X, € R" then span{xi,xa, -+ , X} is a linear subspace of R™.

Proof. The set is clearly non-empty. Now assume v,w € span{xi,Xa,---,Xy}, i.e., there
exist A1, Ao, -, A\x € R and py, po, - -+, i € R such that

V=A1X] + AoXo 4+ -+ M\eXe and W = u1Xy + poXg + -+ X .
Therefore
v+ w= (A1 4+ p1)x1 + (A2 + p2)xe + -+ - + (Ag + pr) X € span{xy,xo, - ,Xp} ,

and
AV = ANX] + Aexo + -+ - + AN\gXg € span{xy, X2, - , Xk} ,

for all A € R. So span{xy,x2,- -, Xy} is closed under addition and multiplication by numbers,
hence it is a subspace. O
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Examples:

(a) Consider the set of vectors of the form (z,1), with x € R, i.e., V ={(z,1); z € R}. Is
this a linear subspace? To answer this question we have to check the three properties in
the definition. () since for instance (1,1) € V we have V # (), (i7) choose two elements
inV, eg., (1,1) and (2,1), then (1,1) 4+ (2,1) = (3,2) ¢ V, hence the condition (ii) is
not fulfilled and V is not a subspace.

(b) Now for comparison choose V' = {(z,0); z € R}. Then

(i), V#0,
(ii) since (z,0) + (y,0) = (z + y,0) € V' we have that V is closed under addition.
(iii) Since A(z,0) = (Az,0) € V, V is closed under scalar multiplication.

Hence V satisfies all three conditions of the definition and is a linear subspace.

(¢) Now consider the set V' = span{x;,x2} with x; = (1,1,1) and x5 = (2,0,1). The span
is the set of all vectors of the form

A1X1 + Aoxa

where A1, A2 € R can take arbitrary values. For instance if we set Ao = 0 and let A; run
through R we obtain the line through x;, similarly by setting Ay = 0 we obtain the line
through x3. The set V' is now the plane containing these two lines, see Figure 2.3. To
check if a vector is in this plane, i.e, in V', we have to see if it can be written as a linear
combination of x; and xs.

(i) Let us check if (1,0,0) € V. We have to find A1, Ay such that
(1,0,0) = A1x1 + Aoxa = (A1 + 29, A1, A1 + A2) .
This gives us three equations, one for each component:
1=XM4+2x, M=0, A+X=0.

From the second equation we get A\; = 0, then the third equation gives Ay = 0
but the first equation then becomes 1 = 0, hence there is a contradiction and
(1,1,1) ¢ V.

(ii) On the other hand side (0,2, —1) € V, since
(0,2, 1) = 2X1 — X2 .

Another way to create a subspace is by giving conditions on the vectors contained in it.
For instance let us chose a vector a € R™ and let us look at the set of vectors x in R™ which
are orthogonal to a, i.e., which satisfy

a-x=0 (2.5)

ie, Wa:={xeR", x-a=0}.
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Figure 2.4: The plane orthogonal to a non-zero vector a is a subspace Wj,.

Theorem 2.15. W, := {x € R", x-a =0} is a subspace of R™.

Proof. Clearly 0 € Wy, s0o Wo # 0. If x-a =0, then (Ax)-a = Ax-a =0 hence Ax € W, and
ifx-a=0andy-a=0,then (x+y)-a=x-at+y-a=0,and sox+y € W,. O

For instance if n = 2, then W, is the line perpendicular to a (if a # 0, otherwise W, = R?)
and if n = 3, then W, is a plane perpendicular to a (if a # 0, otherwise W, = R3).

There can be different vectors a which determine the same subspace, in particular notice
that since for A # 0 we have x-a = 0 if and only if x - (A\a) = 0 we get W, = Wy, for X # 0.
In terms of the subspace V := span a this means

Wa=Wy, forall beV\{0},

and so W, is actually perpendicular to the whole subspace V spanned by a. This motivates
the following definition:

Definition 2.16. Let V be a subspace of R™, then the orthogonal complement V' is
defined as

v+ ={xeR" ,x-y=0foralyeV}.

So the orthogonal complement consists of all vectors x € R™ which are perpendicular to
all vectors in V. So for instance if V is a plane in R?, then V= is the line perpendicular to it.

Theorem 2.17. Let V be a subspace of R™, then V=* is as well a subspace of R".

Proof. Clearly 0 € V+, so V- # . If x € V-, then for any v € V x-v = 0 and therefore
(Ax)-v = Ax-v = 0 and so Ax € V*, so V1 is closed under multiplication by numbers. Finally
if x,y € V+ thenx-v=0andy-v=0forallveV and hence (x+y)-v=x-v+y-v=0
for all v € V, therefore x +y € V1. O
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If V = span{ay, - -- ,a;} is spanned by k vectors, then x € V' means that the k conditions
a;-x=0
as-x=0
ap-x=0

hold simultaneously.
Subspaces can be used to generate new subspaces:

Theorem 2.18. Assume V., W are subspaces of R™, then
o VNW is a subspace of R"
e V+W:={v+w,veVweW} is a subspace of R™.
The proof of this result will be left as an exercise, as will the following generalisation:
Theorem 2.19. Let Wy, Wy, --- W, be subspaces of R", then
WinW,n---NnWy,
s a subspace of R, too.

We will sometimes use the notion of a direct sum:

Definition 2.20. A subspace W C R” is said to be the direct sum of two subspaces Vi, Vo C
R"™ if

(i) W=Vi+V,
(ii) ViNVa={0}

As example, consider Vi = span{e;}, Vo = span{ey} with e; = (1,0),e2 = (0,1) € R?,
then
R? = VieVs.
If a subspace W is the sum of two subspaces Vi, Vs, every element of W can be written as

a sum of two elements of Vi and Vs, and if W is a direct sum this decomposition is unique:

Theorem 2.21. Let W = V1 @ Vs, then for any w € W there exist unique vi € Vi, vy € V5
such that w = vy + vaq.

Proof. 1t is clear that there exist vi, vy with w = vi+vs, what we have to show is uniqueness.
So let us assume there is another pair v| € V; and v/, € V5 such that w = v} + v}, then we
can subtract the two different expressions for w and obtain

0= (vi+v2) = (Vi +Vy) =vi — V] = (v5 — v3)

and therefore vi — v = v, — vo. But in this last equation the left hand side is a vector in V7,
the right hand side is a vector in V5 and since they have to be equal, they lie in V) NV, = {0},
so vi = vy and v}, = va. O



Chapter 3

Linear equations and Matrices

The simplest linear equation is an equation of the form

20 =17

where x is an unknown number which we want to determine. For this example we find the
solution = 7/2. Linear means that no powers or more complicated expressions of x occur,
for instance the following equations

325 - 22 =3 cos(z)+1= otan(z?)

are not linear.
But more interesting than the case of one unknown are equations where we have more
than one unknown. Let us look at a couple of simple examples:

(i)

(i)

3r—4y =3

where x and y are two unknown numbers. In this case the equation is satisfied for all

x,y such that

_3,.3
y_4 47

so instead of determining a single solution the equation defines a set of x, y which satisfy
the equation. This set is a line in R2.

If we add another equation, i.e., consider the solutions to two equations, e.g.,
3r —4y=3, 3r+y=1

then we find again a single solution, namely subtracting the second equation from the
first gives —5y = 2, hence y = —2/5 and then from the first equation z = 1+ %y =T7/15.
Another way to look at the two equations is that they define two lines in R? and the
joint solution is the intersection of these two straight lines.

L©University of Bristol 2011 This material is copyright of the University unless explicitly stated otherwise.
It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your
private study only.
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(ii) But if we look instead at the slightly modified system of two equations
3r—4y=3, —6x+8y=0,

then we find that these two equations have no solutions. To see this we multiply the
first equation by —2, and then the set of two equations becomes

—6x+8y=3, —6x+8y=0,

so the two equations contradict each other and the system has no solutions. Geometri-
cally speaking this means that the straight lines defined by the two equations have no
intersection, i.e., are parallel.

Ay

\ 4

Figure 3.1: Left: A system of two linear equations in two unknowns (z,y) which determines
two lines, their intersection gives the solution. Right: A system of two linear equations in two
unknowns (z,y) where the corresponding lines have no intersection, hence the system has no
solution.

We found examples of linear equations which have exactly one solution, many solutions,
and no solutions at all. We will see in the folowing that these examples cover all the cases
which can occur in general. So far we have talked about linear equations but haven’t really

defined them.
A linear equation in n variables 1,3, - - , T, is an equation of the form
arry + azry + -+ apxy = b

where a1, a9, -+ ,a, and b are given numbers. The important fact is that no higher powers
of the variables x1,xs,- - ,x, appear. A system of m linear equation is then just a collection
of m such linear equations:

Definition 3.1. A system of m linear equations in n unknowns xri,Ts, -+ , Ty s a collection
of m linear equations of the form

a11x1 + ajors + - + a1pT, = by

a9171 + agows + -+ - + a2, Ty = by

Am1T1 + AmaT2 + - + ATy = by,
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where the coefficients a;; and b; are given numbers.

When we ask for a solution z1, 9, - -, z, to a system of linear equations, then we ask for
a set of numbers 1,9, -+, z, which satisfy all m equations simultaneously.

One often looks at the set of coefficients a;; defining a system of linear equations as an
independent entity in its own right.

Definition 3.2. Let m,n € N, a m x n matrizx A (an "m by n” matriz) is a rectangular

array of numbers a;; € R, 1 =1,2--- ;m and j =1,--- ,n of the form
ail a2z - Qlp
a1 a2 -+ A2
A= ] . . (3.1)
Gm1 Am2 " Amp

The numbers a;j are called the elements of the matriz A, and we often write A = (ai;) to
denote the matriz A with elements a;j. The set of all m x n matrices with real elements will
be denoted by

Mpn(R) ,

and if n = m we will write
M,(R) .

One can similarly define matrices with elements in other sets, e.g,. My, ,(C) is the set of
matrices with complex elements.
An example of a 3 x 2 matrix is

1 3
-1 0
2 2

An m x n matrix has m rows and n columns. The i’th row or row vector of A = (a;;) is
given by
n
(@i, @iz, -+ aim) € R

and is a vector with n components, and the j’th column vector of A is given by

CL]j

agj
eR™,

amj

and it has m components
For the example above the first and second column vectors are

1 3
—1| and 0l ,
2 2

respectively, and the first second and third row vectors are

(1,3)  (-1,0) (2,2) .
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In Definition 3.1 the rows of the matrix of coefficients are combined with the n unknowns
to produce m numbers b;, we will take these formulas and turn them into a definition for the
action of m X n matrices on vectors with n components:

Definition 3.3. Let A = (a;;) be an m x n matriz and x € R" with components x =
(x1,22, - ,Zn), then the action of A on x is defined by

a11T1 + ajpx2 + - + ainTy
a21T1 + a22x2 + - -+ + Aop Ty
Ax = ) cR™ (3.2)

Am1T1 + Am2T2 + - - + AmnTn

Ax is a vector in R™ and if we write y = Ax then the components of y are given by
n
Yi = Z aij T (3.3)
j=1

which is the dot-product between x and the i’th row vector of A. The action of A on elements
of R" is a map from R" to R™, i.e.,

A:R" - R™. (3.4)
Another way of looking at the action of a matrix on a vector is as follows: Let aj,as,--- ,a, €
R™ be the column vectors of A, then
AX = x1a1 + 2080 + - -+ + ThQ, . (35)

So Ax is a linear combination of the column vectors of A with coefficients given by the
components of x. This relation follows directly from (3.3).
This map has the following important properties:

Theorem 3.4. Let A be an m X n matriz, then the map defined in definition 3.3 satisfies the
two properties

(i) A(x+y)=Ax+ Ay for all x,y € R"
(ii) A(Ax) = A\Ax for all x € R™ and X\ € R.

Proof. This is most easily shown using (3.3). Let us denote the components of the vector
Ax+y) by z,i=1,2--- ,m,ie,z=Ax+y) with z = (21,22, -+, 2;), then by (3.3)

n n n
si= Y aigleg ) =Y ag+ Y aiy;
7j=1 7=1 j=1

and on the right hand side we have the sum of the i’th components of Ax and Ay, again by
(3.3). The second assertion A(Ax) = AAx follows again directly from (3.3) and is left as a
simple exercise. O

Corollary 3.5. Assume x = A\ix1 + AoXo + -+ + A\pxi € R is a linear combination of k
vectors, and A € Myn(R), then

Ax = MAX] + Ao Axg + - - M Axy, . (3.6)
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Proof. We use (i) and (ii) from Theorem 3.4

Ax = A()\lxl + XoxXg + - -+ )\ka;)
= A()\lxl) + A(>\2X2 —+ e )\kxk) (37)
= MAx + A()\QXQ + .- )\kxk)

and we repeat this step k£ — 1 times. O

Using the notation of matrices and their action on vectors we have introduced, a system
of linear equations of the form in Definition 3.1 can now be rewritten as

Ax=b . (3.8)

So using matrices allows us to write a system of linear equations in a much more compact
way.
Before exploiting this we will pause and study matrices in some more detail.

3.1 Matrices

The most important property of matrices is that one can multiply them under suitable con-
ditions on the number of rows and columns. The product of matrices appears naturally of
we consider a vector y = Ax and apply another matrix to it, i.e., By = B(Ax) the question
is then if there exist a matrix C' such that

Cx = B(Ax) , (3.9)

then we would call C = BA the matrix product of B and A. If we use the representation
(3.5) and Corollary 3.5 we obtain

B(Ax) = B(z1a; + z0ag + - - - + xpay,)

(3.10)
=zx1Ba; + x9Bas + --- + z,Ba,, .

Hence if C' is the matrix with columns Bay,--- , Ba,, then, again by (3.5), we have Cx =
B(Ax).
We formulate this now a bit more precisely:

Theorem 3.6. Let A = (a;j) € My, n(R) and B = (b;j) € M, (R) then there exist a matrix
C = (¢ij) € My n(R) such that for all x € R™ we have

Cx = B(Ax) (3.11)
and the elements of C' are given by
Cij = Zbikakj . (3.12)
k=1

Note that c;j is the dot product between the i’th row vector of B and the j’th column vector
of A. We call C = BA the product of B and A.
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The theorem follows from (3.10), but to provide a different perspective we give another
proof:

Proof. We write y = Ax and note that y = (y1,y2, -+, ym) with

n
Yk = Z Q55 (3.13)
j=1
and similarly we write z = By and note that z = (21, 29, - - , 2;) with
m
Z; = Z bikyk . (3.14)
k=1

Now inserting the expression (3.13) for y;, into (3.14) gives
m n n m n
Z; = szk Zakja:j = Z Z bikaijxj = Z cijxj s (3.15)
k=1 j=1 j=1k=1 j=1
where we have exchanged the order of summation. O

Note that in order to multiply to matrices A and B, the number of rows of A must be the
same as the number of columns of B in order that BA can be formed.

Theorem 3.7. Let A, B be m x n matrices and C a m x [ matriz, then
C(A+B)=CA+ AB.
Let A, B be m x | matrices and C a n X m matriz, then
(A+ B)C = AC + BC .
Let C be a m x n matriz, B be a l x m matriz and A a l x k matriz, then
A(BC) = (AB)C' .

The proof of this Theorem will be a simple consequence of general properties of linear
maps which we will discuss in Chapter 5.

Now let us look at a few examples of matrices and products of them. We say that a matrix
is a square matriz if m = n. If A = (a;;) is a n x n square matrix, then we call the elements
a;; the diagonal elements of A and a;; for @ # j the off-diagonal elements of A. A square
matrix A is called a diagonal matriz if all off-diagonal elements are 0. E.g. the following is a
3 x 3 diagonal matrix

-2 0 0

0o 3 0],

0 0 1
with diagonal elements a1 = —2,a92 = 3 and asz = 1.

A special role is played by the so called unit matrix I, this is a matrix with elements

| i
dij 12{ 2 ].a (3.16)
0 i#j
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i.e., a diagonal matrix with all diagonal elements equal to 1:

10 --- 0
01 --- 0
Ir=1. . . :
00 --- 1

The symbol §;; is often called the Kronecker delta. If we want to specify the size of the unit
matrix we write I,, for the n X n unit matrix. The unit matrix is the matrix of the identity
in multiplication, i.e., we have for any m X n matrix A

Al =1,A=A.

Let us now look at a couple of examples of products of matrices. Lets start with 2 x 2
matrices, a standard product gives e.g.

(4 )= (s )

-(1 ).

where we have explicitly written out the intermediate step where we write each element of
the product matrix as a dot product of a row vector of the first matrix and a column vector
of the second matrix. For comparison, let us compute the product the other way round

<_35 —11) (—11 g) - <_46 _610> (3.18)

and we see that the result is different. So contrary to the multiplication of numbers, the
product of matrices depends on the order in which we take the product. l.e., in general we
have

(3.17)

AB # BA .

A few other interesting matrix products are

1 0\ /0 O 00 _
(a) <O 0) <0 1> = <O 0> = 0, the product of two non-zero matrices can be 0

2
0 1 0 1} /0 1 00 .
(b) (O O) = <O 0) (0 0> = <O 0) = 0 the square of a non-zero matrix can be 0.

(c) Let J = <(1) _01> then J? = —1I, i.e., the square of J is —1I, very similar to i = \/—1.

These examples show that matrix multiplication behaves very different from multiplication
of numbers which we are used to.

It is as well instructive to look at products of matrices which are not square matrices.
Recall that by definition we can only form the product of A and B, AB, if the number of rows
of B is equal to the number of columns of A. Consider for instance the following matrices

2
1 30 0 1
A=(1 -1 2), B=|0], C:<_2 13), D:(1 0)’
1
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then A is 1 x 3 matrix, B a 3 x 1 matrix, C' a 2 X 3 matrix and D a 2 X 2 matrix. So we can
form the following products

2 -2 4
AB=4, BA=[0 0 0], 03:(2), DC:<_2 1 3)
L1 9 —1 1 30

and apart from D? = I no others.

There are a few types of matrices which occur quite often and have therefore special
names. We will give a list of some we will encounter:

e triangular matrices: these come in two types,

1 3 -1
— upper triangular: A = (a;;) with a;; =01ifi>j,eg., |0 2 1
0 0 3
1 0 0
— lower triangular: A = (a;;) with a;; =0ifi<j,eg., [5 2 0
2 =7 3
1 2 3
e symmetric matrices: A = (a;;) with a;; = aj;, eg., [2 —1 0
3 0 1
0o -1 2
e anti-symmetric matrices: A = (a;;) with a;; = —aji, e.g., | 1 0 3
-2 =3 0

The following operation on matrices occurs quite often in applications.

Definition 3.8. Let A = (a;j) € My, ,(R) then the transposed of A, A, is a matriz in
My m(R) with elements A" = (aj;) (the indices i and j are switched). Le., A' is obtained
from A by exchanging the rows with the columns.

For the matrices A, B, C, D we considered above we obtain

1 1 -2 01
Al=|-1], B'=(2 0 1), C'=(3 1], Dt=<1 0>,
2 0 3
and for instance a matrix is symmetric if A* = A and anti-symmetric if A' = —A. Any square

matrix A € M, ,(R) can be decomposed into a sum of a symmetric and an anti-symmetric
matrix by

A:%(A+At)+%(A—At).

One of the reasons why the transposed is important is the following relation with the
dot-product.

Theorem 3.9. Let A € M, ,(R), then we have for any x € R" and y € R™

y-Ax = (Aly) -x.
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Proof. The i'th component of Ax is Y% a;jz; and soy - Ax = 37" | 370, y;aijz;. On the
other hand the j’th component of A’y is > a;;y; and so (Aly) - x = Doio1 Dy T
And since the order of summation does not matter in a double sum the two expressions
agree. ]

One important property of the transposed which can be derived from this relation is

Theorem 3.10.
(AB)! = B'A?

Proof. Using Theorem 3.9 for (AB) gives ((AB)ty) -x = y-(ABx) and now we apply Theorem
3.9 first to A and then to B which gives y - (ABx) = (Aly) - (Bx) = (B'Aly) - x and so we
have

(AB)'y) -x = (B'Ay) -x .

Since this is true for any x,y we have (AB)! = A'B!. O

3.2 The structure of the set of solutions to a system of linear
equations

In this section we will study the general structure of the set of solutions to a system of linear
equation, in case that is has solutions. In the next section we will then look at methods to
actually solve a system of linear equations.

Definition 3.11. Let A € M, n(R) and b € R™, then we set
S(A,b) :={xeR"; Ax=Db}.

This is a subset of R™ and consists of all the solutions to the system of linear equations
Ax = b. If there are no solutions then S(A,b) = (.

One often distinguishes between two types of systems of linear equations.

Definition 3.12. The system of linear equations Ax = b is called homogeneous if b = 0,
i.e., if it is of the form
Ax =0 .

If b £ 0 the system is called inhomogeneous.

The structure of the set of solutions of a homogeneous equation leads us back to the theory
of subspaces.

Theorem 3.13. Let A € M, ,(R) then S(A,0) C R" is a linear subspace.

Before proving the theorem let us just spell out what this means in detail for a homoge-
neous set of linear equations Ax = 0:

(i) there is alway at least one solution, namely x = 0.
(ii) the sum of any two solutions is again a solution,

(iii) any multiple of a solution is again a solution.
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Proof. We will actually give two proofs, just to emphasise the relation of this result with the
theory of subspace we developed previously. The equation Ax = 0 means that the following
m equations hold;

aj-x=0, ay-x=0 .-+, a,-x=0,
where aj,as, - - ,a,, are the m row vectors of A. But the x € R"™ which satisfy a; -x =0
form a subspace W,, by Theorem 2.15, and similarly the other m — 1 equations a; - x = 0
define subspace Wa,, -+, Wa,,. Now a solution to Ax = 0 lies in all these spaces and, vice

versa, if x lies in all these spaces it is a solution to Ax = 0, hence
S(A,0) =Wy, NWa, N NW,,

and this is a subspace by Theorem 2.19 which was proved in the exercises.

The second proof uses Theorem 3.4 to check the conditions a subspace has to fulfill directly.
We find (i) S(A,0) is nonempty since A0 = 0, hence 0 € S(A4,0), (i7) if x,y € S(A,0), then
Ax+y)=Ax+ Ay =0+ 0=0, hence x+y € S(A,0) and finally (zi7) if x € S(A,0) then
A(Ax) = AAx = A0 = 0 and therefore Ax € S(A4,0). O

The second proof we gave is more direct, but the first proof has a geometrical interpretation
which generalises our discussion of examples at the beginning of this chapter. In R? the spaces
W, are straight lines and the solution to a system of equations was given by the intersection
of these lines. In R3 the space W, are planes, and intersecting two of them will give typically
a line, intersecting three will usually give a point. The generalisations to higher dimensions
are called hyperplanes then, and the solution to a system of linear equations can be described
in terms of intersections of these hyperplanes.

If the system is inhomogeneous, then it doesn’t necessarily have a solution. But for the
ones which have a solution we can determine the structure of the set of solutions. The key
observation is that if we have one solution, say x¢o € R™ which satisfies Axqg = b, then we
can create further solutions by adding solutions of the corresponding homogeneous system,
Ax =0, since if Ax =0

Axo+x)=Ax0+Ax=b+0=Db,
and so Xg + x is a another solution to the inhomogeneous system.

Theorem 3.14. Let A € M, ,(R) and b € R"™ and assume there exist an x9 € R™ with
Axg = b, then
S(A,b) ={x0} + S(A,0) :=={x0+x,x € S(A,0)} (3.19)

Proof. As we noticed above, if x € S(A,0), then A(xp + x) = b, hence {x0} + S(4,0) C
S(A,b).

On the other hand side, if y € S(A,b) then A(y —x¢) = Ay — Axg = b — b =0, and so
y —xg € S(A,0). Therefore S(A,b) C {x¢} + S(A,0) and so S(A,b) = {xo} + S(A4,0). O

Remarks:

(a) The structure of the set of solutions is often described as follows: The general solution
of the inhomogeneous system Ax = b is given by a special solution x¢ to the inho-
mogeneous system plus a general solution to the corresponding homogeneous system
Ax = 0.
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(b) The case that there is unique solution to Ax = b corresponds to S(A,0) = {0}, then
S(A,b) = {x0}.

At first sight the definition of the set {xo} + S(A4,0) seems to depend on the choice of the
particular solution xg to Axg = b. But this is not so, another choice yg just corresponds to
a different labelling of the elements of the set.

Let us look at an example of three equations with three unknowns:

3z +2=0
y—z=1
3z+y=1
this set of equations corresponds to
3 0 1 0
A=10 1 -1 b=|1
31 0 1

To solve this set of equations we try to simplify it, if we subtract the first equation from the
third the third equation becomes y — z = 1 which is identical to the second equation, hence
the initial system of 3 equations is equivalent to the following system of 2 equations:

3r+2=0, y—z=1.

In the first one we can solve for = as a function of z and in the second for y as a function of

z, hence

1
T=-3%, y=1+2. (3.20)

So z is arbitrary, but once z is chosen, x and y are fixed, and the set of solutions ins given by

S(A,b) ={(-2/3,142z,2) ; z€ R} .

A similar computation gives for the corresponding homogeneous system of equations

3z +2=0
y—2=0
3z+y =20
the solutions z = —z/3, y = z, and z € R arbitrary, hence

S(A,0) ={(-2/3,2z,2) ; z€ R} .

A solution to the inhomogeneous system is given by choosing z = 0 in (3.20), i.e., xg =
(0,1,0), and then the relation

S(A,b) = {xo} + S(4,0)

can be seen directly, since for x = (—z/3,2,2) € S(A,0) we have xo + x = (0,1,0) +
(—2/3,2,2z) = (—2/3,1+z, z) which was the general form of an element in S(A4,b). But what
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happens if we choose another element of S(A,b)? Let A € R, then x) := (—=A/3,1+ A\, \) is
in S(A,b) and we again have

S(A,b) = {xx} +S(4,0),

since x) +x = (—=A/3, 1+ X\ \)+(—2/3,2,2) = (—(A+2)/3,1+ (A+2), (A+2)) and if z runs
through R we again obtain the whole set S(A,b), independent of which A we chose initially.
The choice of A only determines the way in which we label the elements in S(A,b).

Finally we should notice that the set S(A,0) is spanned by one vector, namely we have
(—2/3,2z,2) = 2(—1/3,1,1) and hence with v = (—1/3.1.1) we have S(A4,0) = span{v} and

S(A,b) = {xx} +span{v} .

In the next section we will develop systematic methods to solve large systems of linear
equations.

3.3 Solving systems of linear equations

To solve a system of linear equations we will introduce a systematic way to simplify it until
we can read of directly if it is solvable and compute the solutions easily. Again it will be
useful to write the system of equations in matrix form.

3.3.1 Elementary row operations

Let us return for a moment to the original way of writing a set of m linear equations in n
unkowns,

11701 + ajoxe + -+ + a1pxy = by

a91x1 + agewe + -+ - + a2, = by

Am1T1 + Ama®2 + -+ + GpnTn = by,

We can perform the following operations on the set of equations without changing the solu-
tions,

(i) multiply an equation by a non-zero constant
(ii) add a multiple of any equation to one of the other equations
(iii) exchange two of the equations.

It is clear that operations (i) and (iii) don’t change the set of solutions, to see that operation
(ii) doesn’t change the set of solutions we can ague as follows: If x € R" is a solution to the
system of equations and we change the system by adding A\ times equation i to equation j
then x is clearly a solution of the new system, too. But if x’ € R" is a solution to the new
system we can return to the old system by substracting A times equation ¢ from equation j,
and the previous argument gives that x’ must be a solution to the old system, too. Hence
both systems have the same set of solutions.
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The way to solve a system of equations is to use the above operations to simplify a system
of equations systematically until we can basically read of the solutions. It is useful to formulate
this using the matrix representation of a system of linear equations

Ax=Db.

Definition 3.15. Let Ax = b be a system of linear equations, the augmented matrix
associated with this system is

(A b) .
It is obtained by adding b as the final column to A, hence it is a m x (n + 1) matriz if the

system has n unknowns and m equations.

Now we translate the above operations on systems of equations into operations on the
augmented matrix.

Definition 3.16. An elementary row operation (ERO) is one of the following operations
on matrices:

(i) multiply a row by a non-zero number (row i — A X row i)
(i) add a multiple of one row to another row (row i — row i +\ X row j)

(iii) exchange two rows (row i < row j)

Theorem 3.17. Let A € M, »,(R), b € R™ and assume (A'b’) is obtained from (Ab)
by a sequence of ERO’s, then the corresponding systems of linear equations have the same

solutions, 1i.e.,
S(A,b) = S(A",b) .

Proof. If we apply these operations to the augmented matrix of a system of linear equations
then they clearly correspond to the three operations (i), (i7), and (éii) we introduced above,
hence the system corresponding to the new matrix has the same set of solutions. O

We want to use these operations to systematically simplify the augmented matrix. Let us
look at an example to get an idea which type of simplification we can achieve.
Example: Consider the following system of equations

rT+y+2z=9
2 +4y—3z=1
3z +6y—5z2=0

this is of the form Ax = b with
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Applying elementary row operations gives

11 2 9
2 4 -3 1
3 6 =5 0
1 1 2 9
0o 2 -7 =17 row2—2xrowl row3d—3xrowl
0 3 —-11 -27
1 1 2 9
0o 2 -7 -—-17 row 3 — row 2
01 —4 -10
1 1 2 9
01 —4 -10 row 3 < row 2
0o 2 -7 -17
1 1 2 9
01 —4 -10 row 3 —2 X row 2
00 1 3

where we have written next to the matrix which elementary row operations we applied in order
to arrive at the given line from the previous one. The system of equations corresponding to
the last matrix is

r+y+2z2=9
y—4z=-10
z=3

so we have z = 3 from the last equation, substituting this in the second equation gives
y=—104+42z = —10+12 = 2 and substituting this in the first equation gives t = 9—y—22z =
9—2—6=1. So we see that if the augmented matrix is in the above triangular like form we
can solve the system of equations easily by what is called backsubtitution.

But we can as well continue applying elementary row operations and find

1 1 2 9

01 -4 -10

0 0 1 3

1 0 6 19

01 —4 -10 row 1 —row 2

0 0 1 3
1 0 01
01 0 2 rowl—6xrow3 row?2+4xrow3
0 01 3

Now the corresponding system of equations is of even simpler form

r=1
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and gives the solution directly.
The different forms into which we brought the matrix by elementary row operations are
of a special type:

Definition 3.18. A matriz M is in row echelon form if

(i) in each row the leftmost non-zero number is 1 (the leading 1 in that row)

(ii) if row i is above row j, then the leading 1 of row i is to the left of row j
A matriz is in reduced row echelon form if, in addition to (i) and (ii) it satisfies
(iii) in each column which contains a leading 1, all other numbers are 0.

The following matrices are in row echelon form

1 4 3 2 1 1 0 01 2 6 0
01 6 2 010 001 -1 0
0 015 0 0 O 00 0 0 1
and these ones are in reduced row echelon form:
100 10 0 4 01 =201
00 0 1 3
01 0 01 0 7
0 0 1 0 01 -1 000 00
00 0 0O

In the examples we have marked the leading 1’s, we will see that their distribution determines
the nature of the solutions of the corresponding system of equations.

The reason for introducing these definitions is that elementary row operations can be used
to bring any matrix to these forms:

Theorem 3.19. Any matriz M can by a finite number of elementary row operations be
brought to

e row echelon form, this is called Gaussian elimination
o reduced row echelon form, this is called Gauss-Jordan elimination.

Proof. Let M = (mp, my,--- ,m,) where m; € R™ are the column vectors of M. Take the
leftmost column vector which is non-zero, say this is m;, and exchange rows until the first
entry in that vector is non-zero, and divide the first row by that number. Now the matrix is

M’ = (m),m), - ,m}) and the leftmost non-zero column vector is of the form
1
)| %2
m); = :
Ajm

Now we can substract multiples of the first row from the other rows until all numbers in the
J’th column below the top 1 are 0, more precisely, we substract from row i aj; times the first
row. We have transformed the matrix now to the form

(s )
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and now we apply the same procedure to the matrix M. Eventually we arrive at row echelon
form. To arrive at reduced row echelon form we start from row echelon form and use the
leading 1’s to clear out all non-zero elements in the columns containing a leading 1.

O

The example above is an illustration on how the reduction to row echelon and reduced
row echelon form works.

Let us now turn to the question what the row echelon form tells us about the structure of
the set of solutions to a system of linear equations. The key information lies in the distribution
of the leading 1’s.

Theorem 3.20. Let Ax = b be a system of equations in n unknowns, and M be the row
echelon form of the associated augmented matriz. Then

(i) the system has no solutions if and only if the last column of M contains a leading 1,

(ii) the system has a unique solution if every column except the last one of contains a leading
L,

(iii) the system has infinitely many solutions if the last column of M does not contain a
leading 1 and there are less than n leading 1’s. Then there n — k unknowns which can
chosen arbitrarily, where k is the number of leading 1° s of M

Proof. Let us first observe that the leading 1’s of the reduced row echelon form of a system
are the same as the leading 1’ of the row echelon form. Therefore we can assume the system
is in reduced row echelon form, that makes the arguments slightly simpler. Let us start
with the last non-zero row, that is the row with the rightmost leading 1, and consider the
corresponding equation. If the leading 1 is in the last column, then this equation is of the
form

Ox1+0x2+---4+0x, =1,

and so we have the contradiction 0 = 1 and therefore there is no x € R” solving the set of
equations. This is case (i) of the theorem.

If the last column does not contain a leading 1, but all other columns contain leading 1’s
then the reduced row echelon form is

10 - 0 b
0 1 0 b
00 - 1 b,

and if m > n there are m — n rows with only 0’s. The corresponding system of equations is
then
=V, zo=0y, - =0,
and so there is a unique solution. This is case (ii) in the theorem.
Finally let us consider the case that there are k leading 1’s with & < n and none of them
is in the last column. Let us index the column with leading 1’s by j1, jo, -+, jr , then the
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system of equations corresponding to the reduced row echelon form is of the form

Y
Tj + E QjyiTi = bj1

inot leading

Y
Tj, + E QjyiTi = ij

inot leading
o/
T, + E Qi = bjk
inot leading

where the sums contain only those x; whose index is not labelling a column with a leading
1. These are n — k unknowns x; whose value can be chosen arbitrarily and once their value
is fixed, the remaining k unknowns are determined uniquely. This proves part (iii) of the
Theorem. O

Let us note one simple consequence of this general Theorem which we will use in a couple
of proofs later on, it gives a rigorous basis to the intuitive idea that if you have n unknowns,
you need at least n linear equations to determine the unknowns uniquely.

Corollary 3.21. Let A € M, ,(R) and assume that
S(Av O) = {0} ’
i.e., the only solution to Ax =0 is x =0, then m > n.

Proof. This follows from part (ii) of the previous Theorem, if every column has a leading one
then there are at least as many rows as columns, i.e., m > n. ]

3.4 Elementary matrices and inverting a matrix

We now want to discuss inverses of matrices in some more detail.

Definition 3.22. A matriz A € M, (R) is called invertible, or non-singular, if there
exist a matriz A~ € My, o(R) such that

AT'A=T.
If A is not invertible then it is called singular.

We will first give some properties of inverses, namely that a left inverse is as well a
right inverse, and that the inverse is unique. These properties are direct consequences of the
corresponding properties of linear maps, see Theorem 5.23, so we will give a proof in Chapter
5.

Theorem 3.23. Let A € M,(R) be invertible with inverse A~!, then
(i) AA~t =1

(ii) If BA =1 for some matriz B € M,(R) then B = A~!
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(iii) If B € M, (R) is as well invertible, that AB is invertible with (AB)~' = B~1A~L.

The third property implies that arbitrary long products of invertible matrices are invert-
ible, too. The first property can can as well be interpreted as saying that A~! is invertible,
too, and has the inverse A, i.e.,

(A Ht=4.

These results establish as well that the set of invertible n x n matrices forms a group under
multiplication, which is called the general linear group over R",

GL,(R) :={A € M,(R) , A is invertible} . (3.21)

We will now turn to the question of how to compute the inverse of a matrix. This will
involve similar techniques as for solving systems of linear equations, in particular the use of
elementary row operations. The first step will be to show that elementary row operations
can be performed using matrix multiplication. To this end we introduce a special type of
matrices:

Definition 3.24. A matriz E € M, ,(R) is called an elementary matrix if it is obtained
from the identity matrix I, by an elementary row operation.

Examples:

e switching rows in Iy gives E = <(1) é)

e multiplying row 1 by A in I3 gives E = <g\ (1))

11
e adding row 2 to row one in I» gives F = < )

0 1
100 00
01000
e switching row 3 and row 5 in I5 gives |0 0 0 0 1
00010
00100

The important property of elementary matrices is the following

Theorem 3.25. Let A € My, ,(R) and assume B is obtained from A by an elementary row
operation with corresponding elementary matriz E, then

B=FA.

Proof. Let c1,--- ¢ € R™ be the columns of A, and fy,---f, € R"™ the rows of E, then the
matrix B has rows by, -, b, with

b’i:(fi'clafi'CQa"' ,fi'Cm) .

Since E is an elementary matrix, there are only four possibilities for f;:
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o if the elementary row operation didn’t change row ¢, then f; = e; and b; = a;
e if the elementary row operation exchanged row ¢ and row j, then f; = e; and b; = a;
e if the elementary row operation multiplied row i by A, thne f; = Ae; and b; = A\a;

o if the elementary row operation added row j to row i then f; = e; +-e; and b; = a; +a;.

So we see that in all possible cases the multiplication o A by E has the same effect as applying
an elementary row operation to A. ]

. a b 0 1 a b
Let us look at the previous examples, let A = <c d>’ then we find (1 O) <c d> =

c d A0\ fa b\ [Aa Xb nd 1 1\ fa b\ (a+c b+d hich corr
a b)>\o 1)\c d) " \e a)? 0 1)\c d) \ ¢ g ) Ve cone
spond indeed to the associated elementary row operations.

Since any elementary row operation can be undone by other elementary row operations
we immediately obtain the following

Corollary 3.26. Any elementary matriz is invertible.

Now let us see how we can use these elementary matrices. Assume we can find a sequence
of N elementary row operations which transform a matrix A into the diagonal matrix I and
let F,---, En be the elementary matrices associated with these elementary row operations,
then repeated application of Theorem 3.25 gives [ = En --- E3E1 A, hence

AV =EN-- EyE; .

So we have found a representation of A~! as a product of elementary matrices, but we can
simplify this even further, since En --- EsF1 = En--- E3E1I we can again invoke Theorem
3.25 to conclude that A~! is obtained by applying the sequence of elementary row operations
to the identity matrix I. This means that we don’t have to compute the elementary matrices,
nor their product. What we found is summarised in the following

Theorem 3.27. Let A € M, ,(R), if A can be transformed by successive elementary row
operations into the identity matriz, then A is invertible and the inverse is obtained by applying
the same sequence of elementary row operations to I.

This leads to the following algorithm: Form the n x 2n matriz (AI) and apply elementary
row transformation until A is in reduced row echelon form C, i.e, (AI) is transformed to
(C B). If the reduced row echelon form of A is I, i.e., C = I, then B = A™1, if the reduced
row echelon form is not I, then A is not invertible.

Let us look at a few examples to see how this algorithm works:

o Let A = ((1) _21), then (AI) = <(1) _21 (1) (1)> and consecutive elementary row

operations give
0 2 10 1 -1 0 1
—
1 -1 01 0 2 10
1 -1 0 1
—><0 112 0) (3.22)

MR



44 CHAPTER 3. LINEAR EQUATIONS AND MATRICES

_ 1/2 1
1 _
and so A7 = <1/2 0).

e Let A= <_21 _24>, then adding 2 times the second row to the first gives (_01 g)
and the reduced row echelon form of this matrix is <(1) _02> hence A is not invertible.
21 0
e Let A=(0 1 2 |, then elementary row operations give
2 1 -1
21 0 100 21 0 1 00
01 2 010)—{01 2 0 10
21 -1 0 0 1 00 -1 -1 01
21 0 1 00
—-10 1 0 -2 1 2
00 -1 -1 01
(3.23)
20 0 3 -1 -2
-0 1 0 -2 1 2
00 -1 -1 0 1
10 0 3/2 —-1/2 -1
- 10 1 0 -2 1 2
0 01 1 0 -1
3/2 —-1/2 -1
and so A=t = [ =2 1 2
1 0 -1

For a general 2 x 2 matrix A = (i 2) we find

1 d —b
Al =
ad — bc <—c a > ’

ad —bc#0 .

which is well defined if

The only statement in Theorem 3.27 which wasn’t covered in the discussion leading to it
is the case that A is non-invertible. Since A is an n by n matrix the fact that the reduced row
echelon form is not I means that it has strictly less then n leading 1’s, which by Theorem 3.20
implies that the equation Ax = 0 has infinitely many solutions, hence A can’t be invertible.



Chapter 4

Linear independence, bases and
dimension

4.1 Linear dependence and independence

How do we characterise a subspace V7 One possibility is to choose a set of vectors vy, vo, -+ , vy C
V' which span V, i.e., such that

V= Spal’l{Vl,VQ, e >V]€} :

In order do this in an efficient way, we want to choose the minimum number of vectors
necessary. E.g, if one vector from the set can be written as a linear combination of the other,
it is redundant. This leads to

Definition 4.1. The vectors x1,X2,--- ,Xx € R"™ are called linearly dependent if there
exrist A1, A2, -+, A € R, not all 0, such that

X1+ Aoxo + -+ Mpgxp =0 .
Examples:
o If k=1 then \ix; = 0 with A\; # 0 means x; = 0.

e If k = 2, then if two vectors x1,Xo are linearly dependent, it means there are A1, Ao
which are not both simultaneously zero, such that

AX1 4+ A9xo =0 . (4.1)

Now it could be that at least one of the vectors is 0, say for instance x; = 0, then
A1x1 4 0xo = 0 for any A1, so x1,Xo are indeed linearly dependent. But this is a trivial
case, whenever in a finite set of vectors at least one of the vectors is 0, then the set of
vectors is linearly dependent. So assume x; # 0 and x2 # 0, then in (4.1) both A; and
A9 most be non-zero and hence

X] = Axg, with X=X/
so one vector is just a multiple of the other.

45
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e k = 3: If we have three linearly dependent vectors given, then a similar analysis shows
that 3 cases can occur: either (i) at least one of them is 0, or (i) two of them are
proportional to each other, or (7i7) one of them is a linear combination of the other two.

As the examples illustrate, when x1,--- ,x; are linearly dependent, then we can write
one of the vectors as a linear combination of the others. Namely, assume 2?21 Aixg = 0 and

Aj # 0, then
-\
i#£]
If they are not linearly dependent they are called linearly independent:

Definition 4.2. The vectors x1,%a,--- ,X; € R"™ are called linearly independent f
Ax1+ Aoxo + -+ Apgxp =0
implies that Ay = o = -+ = X, = 0.

If the vectors are linearly independent the only way to get 0 as a linear combination is to
choose all the coefficients to be 0.

. 2
Let us look at some examples: assume we want to know if the two vectors x = (3> and

1
y = <_ 1> are linearly independent or not. So we have to see if we can find A1, Ay € R such

A12 + Ao

that A\;x+ Aoy = 0, but since A\;x+ A2y = ()\ 3
13 — A2

> this translates into the two equations

201 +X =0 and 3X\1 —X =0

adding the two equations gives 5A; = 0, hence A\; = 0 and then Ao = 0. Therefore the two
vectors are linearly independent.

Consider on the other hand side the two vectors x = (g) and y = <__182>. Again we
look for A1, A2 € R with

MX 4+ oy = <2A1_8A2) =0

3A1 — 12X

which leads to the two equations 2A\; — 8\ = 0 and 3\; — 12X\ = 0. Dividing the first by
2 and the second by 3 reduces both equations to the same one, \y — 4\o = 0, and this is
satisfied whenever A\; = 4o, hence the two vectors are linearly dependent.

What these examples showed is that questions about linear dependence or independence
lead to linear systems of equations.

Theorem 4.3. Let vqi,vo,---,vi € R" and let A € M, ,(R) be the matriz which has
V1,Va, -+, Vi as its columns, then the vectors vi,va, -+, Vi are linearly independent if

S(4,0) = {0} (4.3)

and linearly dependent otherwise.
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Proof. By the definition of A we have for A = (A1, Ag, -+, Ag)
AN = AV + Agvo + - + ARV

(this follows from the definition of the action of a matrix on a vector Definition 3.3, check this,
it will useful in many later instances!). So if S(A,0) = {0} then vy, va,---, vy are linearly
independent, and otherwise not. ]

As a consequence of this result we can use Gaussian elimination to determine if a set of
vectors is linearly dependent or linearly independent. We consider the matrix A whose column
vectors are the set of vectors under investigation and apply elementary row operations until it
is in row-echelon form. If every column has a leading one the vectors are linearly independent,
otherwise they are linearly dependent.

As an example take the three vectors vi = (1,2,3), vo = (—1,2,1) and v = (0,0, 1), then

1 -1 0
A=12 2 0
3 1 1

and after a couple of elementary row operations (row 2-2xrow 1, row 3-3xrow 1, row 3-row
2, row 2— (row 2)/4) we find the following row echelon form

1 -1 0
0 1 0
0 0 1
and so the vectors are linearly independent. On the other hand side, if we take vi = (1,2, 3),
V2 = (_]-7 27 ]-) and V3 = (270, 2), then

1 -1 2
A=12 2 0
3 1 2

and after a couple of elementary row operations (row 2-2xrow 1, row 3-3xrow 1, row 3-row
2, row 2— (row 2)/4) we find the following row echelon form

1 -1 2

0o 1 -1

0 0 0
and so the vectors are linearly dependent.

As a consequence of this relation to systems of linear equations we have the following
fundamental result.

Corollary 4.4. Let vi,va, -+ ,vi € R" be linearly independent, then k < n. So any set of
linearly independent vectors in R™ can contain at most n elements.

Proof. Let A be the n x k matrix consisting of the columns vi,vo, - -+, vg, then by Theorem
4.3 the vectors are linearly independent if S(A,0) = {0}, but by Corollary 3.21 this gives
k<n. O
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4.2 Bases and dimension

Now if a collection of vectors span a subspace and are linearly independent, then they deserve
a special name:

Definition 4.5. Let V C R" be a linear subspace, a basis of V' is a set of vectors vi, vy -+, Vi
V' such that

(i) span{vyi,ve -+ vy} =V
(ii) the vectors vi,vy -+ vy € V are linearly independent

So a basis of V is a set of vectors in V which generate the whole subspace V', but with
the minimal number of vectors necessary.
Example: The standard basis in R"is given by e; = (1,0,0,---,0), e2 = (0,1,0,---,0),

es =(0,0,1,---,0), ... , &, =(0,0,0,---,1). It consists of n vectors and we actually have

X = (I17x27’ e 7‘7571) =2zxi€1 + x2€2 + -+ Tpey .
Theorem 4.6. Let V C R" be a linear subspace, and vi,vo -+ , vy € V a basis of V, then
for any v € V there exist a unique set of numbers A1, A2, - , A € R such that

V=AVi+ AV -+ AV

Proof. Since the vectors vy, vy - -+, v span V there exist for any v € V numbers A1, Ao, - -+, A
R such that
V=MV]+Xvy—+ -+ AV . (4.4)

We have to show that these numbers are unique. So let us assume there is another, possible
different, set of numbers 1, po, - - - , pg With

V = [1V] + oV 4 Vi, (4.5)
then subtracting (4.4) from (4.5) gives

0= (u1 —A)vi+ (2 — A)va+ - + (e — M) Vi

but since we assumed that the vectors vi,va, -, vy are linearly independent we get that
/11—/\1 :ug—)\gz---:uk—)\kzoandhence
P1=A1, H2=A2, 0 = Ag .
O

To illustrate the concept of a basis, let us consider the example of the two vectors vi =
(1,1) and vo = (—1,1), let us see if they form a basis of R2. The check if they span R?, we
have to find for an arbitrary (z1,z2) € R? A;, A2 € R with

r1\ _ (M=
(l‘z) = A\1V] + Agvy = <)\1 n )\2) .

This is just a system of two linear equations for A1, Ao and can be easily solved to give

1+ X2 Tl — T2
A — )\ =
1 2 ; 2 2 ’
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hence the two vectors span R? . Furthermore if we set 1 = x93 = 0 we see that the only
solution to A\;vi 4+ Aavy = 0 is A{ = Ao = 0, so the vectors are as well linear independent.

The theorem tells us that we can write any vector in a unique way as a linear combination
of the vectors in a basis, so we can interpret the basis vectors as giving us a coordinate system,
and the coefficients \; in an expansion x = ) . \;v; are the coordinates of x. See Figure 4.2
for an illustration.

Figure 4.1: Illustrating how a basis vi, vy of R? acts as a coordinate system: the dashed
lines are the new coordinate axes spanned by vi,vo, and A1, Ay are the coordinates of x =
A1V] + Agva.

Notice that in the standard basis ej,--- ,e, of R™ the expansion coefficients of x are
1, -+ ,Zp, the usual Cartesian coordinates.

Given a basis vi, vy -+, vi of V it is not always straightforward to compute the expansion
of a vector v in that basis, i.e., to find the numbers Aj, Ao, --- , A\ € R. In general this leads
to a system of linear equations for the Ay, Ao, -+, Ag.

As an example led us consider the set of vectors vi = (1,2,3), vo = (—1,2,1) and

vy = (0,0,1), we know from the example above that they are linearly independent, so they
form a good candidate for a basis of V' = R3. So we have to show that they span R3; let
x = (z,7,2) € R3 then we have to find A;, A2, A3 such that

A1V] + Aave 4+ A3vy =X,

if we write this in components this is system of three linear equations for three unknowns
A1, A2, A3 and the corresponding augmented matrix is

1 -1 0
Ax)=12 2 0
3 1 1

INIENS. S

and after a couple of elementary row operations (row 2-2xrow 1, row 3-3xrow 1, row 3-row
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2, row 2— (row 2)/4) we find the following row echelon form

1 -1 0 T
0 1 0 y/4—=z/2
0 0 1 z—y—=

and back-substitution gives

O VT

RS
VRS

Therefore the the vectors form a basis and the expansion of an arbitrary vector x = (z,y, z) €
R? in that basis is given by

A y_zr -
x—<4+2)v1+<4 2>V2+<Z y—1)Vs .

We now want show that any subspace of R" actually has a basis. This will be a consequence
of the following result which say that any set of linearly independent vectors in a subspace V'
is either already a basis of V', or can be extended to a basis of V.

Theorem 4.7. Let V C R™ be a subspace and vi,va,--- ,v, € V be a set of linearly indepen-
dent vectors, then either vi,--- v, are a basis of V, or there exist a finite number of further
vectors Veg1, - , Vi € V such that vi,--- v is a basis of V.

Proof. Let us set

‘/7" = Span{VhVQa o 7VT} 3
this is a subspace with basis vi,vs, -, v, and V. C V.
Now either V. = V', then we are done. Or V. # V| and then there exist a v,4+1 # 0 with
Vr41 € V but v € V.. We claim that vq,ve, -+ ,v,,v,41 are linearly independent: to

show this assume
AMvi+Xovo+ -+ ANV + A1 v =0,

then if A\, # 0 we get

A1 A2
V1 —

VQ__LVTEVT

Virgyl = —
)\r+l )\7"+1

>\r+1

which contradict our assumption v,4; ¢ V.. Hence A\,11 = 0 but then all the other \;’s must

be 0, too, since vi, vy, --- , Vv, are linearly independent.
So we set
‘/;-_i_l = Spaﬂ{vh V2, 0,V v’r‘-i—l}
which is again a subspace with basis v, v, -+, vy, V.11, and proceed as before, either V.1 =

V', or we can find a another linearly independent v, 2, etc. In this way we find a chain of
subspaces
VicVipp oo CV

which are strictly increasing. But by Corollary 4.4 there can be at most n linearly independent
vectors in R™, and therefore there must be a finite k such that Vj, = V', and then vq1,---, vy
is a basis of V. ]
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Corollary 4.8. Any linear subspace V' of R™ has a basis.

Proof. If V.= {0} we are done, so assume V # {0} then there exist at least one v # 0 with
v € V and by Theorem 4.7 it can be extended to a basis. O

We found above that R™ can have at most n linearly independent vectors, we now extend
this to subspaces, the number of linearly independent vectors is bounded by the number of
elements in a basis.

Theorem 4.9. Let V C R"™ be linear subspace and vi,--- ,vi C V a basis of V, then if
w1, W, €V are a set of linearly independent vectors we have r < k

Proof. Since vy, --- , vy is a basis we can expand each vector w;, ¢ = 1,--- | r into that basis,
giving

k
WwW; = E ajivj 5
i=1
where a;; € R are the expansion coefficients. Now the assumption that wy, - - - w, are linearly

independent means that 2;21 Aw; = 0 implies that A\{ = Ao = --- = A, = 0. But with the
expansion of the w; in the basis we can rewrite this equation as

T r k k r
0= Z )\iwi = Z Z ajl-vj)\i = Z < aji)\i> Vj
=1 =1 j=1 7j=1 =1

Now we use that the vectors vi,--- , vy are linearly independent, and therefore we find

s T s
Zau}\i:(), Zam;)\i:(], e Zaki)\izo-
i=1 i=1 i=1

This is system of k£ linear equations for the r unknowns Ay,---, )\, and in order that the
only solution to this system is A\; = Ay = -+ = A, = 0 we must have by Corollary 3.21 that
k>r. O

From this result we immediately get

Corollary 4.10. Let V C R" be a linear subspace, then any basis of V' has the same number
of elements.

So the number of elements in a basis does not depend on the choice of the basis, it is an
attribute of the subspace V', which can be viewed as an indicator of its size.

Definition 4.11. Let V C R" be a linear subspace, the dimension of V, dimV is the
minimal number of vectors needed to span V, which is the number of elements in a basis of
V.

So let us use the dimension to classify the types of linear subspaces and give a list for
n=123.

n=1 The only linear subspace of R are V' = {0} and V = R. We have dim{0} = 0 and
dimR =1
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n=2 — With dim V = 0 there is only {0}.
— If dimV = 1, we need one vector v to span V, hence every one dimensional
subspace is a line through the origin.

— If dim V' = 2 then V = R,
n=3 — With dimV = 0 there is only {0}.

— If dimV = 1, we need one vector v to span V, hence every one dimensional
subspace is a line through the origin.

— If dimV = 2 we need two vectors to span V, so we obtain a plane through the
origin. So two dimensional subspaces of R3 are planes through the origin.

— If dimV = 3, then V = R3.

4.3 Orthonormal Bases

A case where the expansion of a general vector in a basis can be achieved without having to
solve a system of linear equations is if we choose the basis to be of a special type.

Definition 4.12. Let V C R be a linear subspace, a basis vi,va --- ,vg of V is called an
orthonormal basis (often abbreviated as ONB) if the vectors satisfy

(i) vi-v;j=0ifi#j
(’LZ) Vi'Vizl,Z':LQ,'--,]{.

The two conditions can be combined by using the symbol

L i
0ij = .
0 i1#j

V; 'Vj = 51'3‘

Then

For an orthonormal basis we can compute the expansion coefficients using the dot product.

Theorem 4.13. Let V C R"™ be a linear subspace and uy,ug --- ,ur a orthonormal basis of
V, then for any v eV

v=(u;-v)us + (ug-v)ug + -+ (ug - v)uy ,
i.e., the expansion coefficients \; are given by A\; = u; - v.

Proof. Since the uy,us --- ,ui form a basis of V' there are for any v € V Ay, Ag,--- , A\t € R

such that i
VvV = Z )\ju]‘ .
j=1

But if we take the dot product of this equation with u; we find

k k
ui-v:Z)\jui-uj: E Ajél]:)\z
J=1 J=1
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This is a great simplification and one of the reasons why it is very useful to work with
orthonormal basis if possible.

Theorem 4.14. Let V C R" be a linear subspace and ui,us --- ,ur a orthonormal basis of
V', then for any v,w € V we have

(i) vow=31 (uv)(uw)
1
.. k 2 2
fii) vl = (zH(u«v) )
This will be proved in the exercises.

Notice that R™ is a subspace of itself, so the notion of basis applies to R, too. The so
called standard basis is given by the n vectors

1 0 0
0 1 0

e = 1. € = 1. e = | . ) (4'6)
0 0 1

i.e., e; has all components 0 exceptthe i’th one which is 1.
This is as well an ONB, and for an arbitrary vector x € R™ we find

€ X =11,
therefore

n
X = g €i€; ,
i=1

and the formulas in Theorem 4.14 reduce to the standard ones in case of the standard basis.
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Chapter 5

Linear Maps

So far we have studied addition and multiplication by numbers of elements of R", and the
structures which are generated by these two operations. Now we turn our attention to maps.
In general a map T from R’ to R is a rule which assigns to each element of R™ an element
of R™. E.g., T(x,y) := (23y — 4,cos(xy)) is a map from R? to R2. A map from R to R is
usually called a function.

In Linear Algebra we focus on a special class of maps, namely the ones which respect our
fundamental operations, addition of vectors and multiplication by numbers:

Definition 5.1. A map T : R™ — R™ is called a linear map if
(i) T(x+y)=T(x)+T(y), for all x,y € R"
(ii) T(A\x) = AT(x), for all A € R and x € R™.
Let us note two immediate consequences of the definition:
Lemma 5.2. Let T : R™ — R™ be a linear map, then
(i) T(0) =0
(i) For arbitrary xi,--- ,x; € R™ and A1,--- , Ay € R we have

T()\lxl + -+ /\kxk) = AlT(Xl) + -+ AkT(Xk)

Proof. (i) follows from T'(Ax) = AT'(x) if one sets A = 0. The second property is obtained by
applying (i) and (ii) from the definition repeatedly. O

Note that we can write the second property using the summation sign as well as

T<g)\ixi> - gAiT(xi) . (5.1)

Linearity is a strong condition on a map. The simplest case is if n = m = 1, let us see
how a linear map 7" : R — R can look like: Since in this case x = z € R we can use condition
(ii) and see that

T(x)=T(xx1)=2T(1),

95
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which means that the linear map is completely determined by its value at z = 1. So if we set
a =T(1) we see that any linear map from R to R is of the form

T(x) = ax

for some fixed number a.
The case m = n = 1 is an extreme case, to see a more typical case let us look at m =n = 2.
If T:R? — R? we can write X = x1e; + x2es, see (4.6), and then linearity gives

T(x) = T(z1€1 + z2€2)
=T(z1€1) + T(z202) (5:2)
= xlT(el) + xQT(e2) ’

where we have used first (i) and then (ii) of Definition 5.1. So the map 7' is completely
determined by its action on the basis vectors T'(e;) and T'(ez). If we expand the vectors
T(e1) and T'(eg) into the standard basis

T(e1) = <t11> . T(ey) = <t12> with ;= e; - T(e;) , (5.3)

to1 too

ti1 7512)
5.4
(tzl a2 (54)
determine the map T' completely. So instead of one number, as in the case of m =n =1 we
now need four numbers.

we see that the four numbers

X1
1)

T(x) = <t11x1 —|—t12x2> ’ (5.5)

Given the numbers t;; = e; - T'(e;) the action of the map T" on x = ( > can be written

as

to121 + 12272

this follows by combining (5.2) with (5.3).

The array of numbers ¢;; form of course a matrix, see Definition 3.2, and the formula (5.5)
which expresses the action of a linear map on a vector in terms of the elements of a matrix
and the components of the vector is a special case of the general definition of the action of
m X n matrices on vectors with n components in Definition 3.3

Definition 5.3. Let T : R™ — R™ be a linear map, the associated m X n matrixz is defined
by Mr = (t;;) with elements
tij =e€e;- T(ej) . (56)

Recall that the standard basis was defined in (4.6). Note that we abuse notation here a
bit, because the vectors e; form a basis in R™ wheras the e; form a basis in R™, so they are
different objects but we use the same notation.

Theorem 5.4. Let T : R™ — R™ be a linear map, and My = (t;;) the associated matriz,
then

T(x) = Mrx .
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Proof. We have shown this above for the case of a map T : R? — R2, which motivated our
introduction of matrices. The general case follows along the same lines: Write x = 2?21 zje;,
then, as in (5.2), we obtain with Lemma 5.2 from linearity of T

T(x) = T<éxjej> = éij(ej) .

Now if we write y = T'(x) then the i’th component of y is given by

n n
Y =€,y = Z:pjei . T(ej) = Ztijxj .
7j=1 7j=1

O]

This theorem tells us that every linear map can be written in matrix form, so a general
linear map 7' : R™ — R™ is uniquely determined by the mn numbers ¢;; = e; - T'(ej). So
it is tempting to think of linear maps just as matrices, but it is important to notice that
the associated matrix is defined using a basis e;, so the relation between linear maps and
matrices depends on the choice of a basis in R™ and in R". We will study this dependence
on the choice of basis in more detail later on. For the moment we just assume that we always
choose the standard basis e;, and with this choice in mind we can talk about the matrix My
associated with T'.

Notice furthermore that since we associated matrices with linear maps, we automatically
get that the action of matrices on vectors is linear, i.e., the content of Theorem 3.4.

5.1 Abstract properties of linear maps

In this section we will study some properties of linear maps and develop some of the related
structures without using a concrete representation of the map, like a matrix. This is why we
call these abstract properties. In the following sections we will then develop the implications
for matrices and applications to systems of linear equations.

We first notice that we can add linear maps if they relate the same spaces, and multiply
them by numbers:

Definition 5.5. Let S : R" — R™ and T : R™ — R™ be linear maps, and X € R, then we
define

(i) (A\T)(x) := \T'(x) and
(i) (S+T)(x):=8(x)+T(x)
Theorem 5.6. The maps AT and S+ T are linear maps from R™ to R™.

The proof follows directly from the definitions.
We can as well compose maps in general, and for linear maps we find

Theorem 5.7. Let T : R" — R™ and S : R™ — R be linear maps, then the composition
§ 0 T(x) i= S(T(x))

is a linear map SoT : R" — RF.
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Proof. We consider first the action of S o T on Ax, since T is linear we have S o T'(Ax) =
S(T'(Ax)) = S(AT'(x)) and since S is linear, too, we get S(AT(x)) = AS(T'(x)) = AS o T'(x).
Now we apply SoT to x+y,

o T(x+y) = S(I(

>
+
=

In a similar way one can prove
Theorem 5.8. Let T : R* — R™ and R, S : R™ — R* be linear maps, then
(R+S)oT=RoT+ 80T
and if S,T : R™ — R™ and R : R™ — R* be linear maps, then
Ro(S+T)=RoS+RoT.
Furthermore if T : R® — R™, S : R™ — R* and R: R* — R are linear maps then
(RoS)oT =Ro(SoT).

The proof will be done as an exercise.
Recall that if A, B are sets and f: A — B is a map, then f is called

e surjective, if for any b € B there exists an a € A such that f(a) = b.
e injective, if whenever f(a) = f(a’) then a = d.

e bijective, if f is injective and surjective, or if for any b € B there exist exactly one a € A
with f(a) = b.

Theorem 5.9. If f : A — B is bijective, then there exists a unique map f~': B — A with
fof Y(b)=0bforallbe B, f~'o f(a) =a for alla € A and f~! is bijective, too.

Proof. Let us first show existence: For any b € B, there exists an a € A such that f(a) = b,
since f is surjective. Since f is injective, this a is unique, i.e., if f(a’) = b, then ¢’ = a, so we
can set

FHb) =

a.
By definition this maps satisfies fo f=1(b) = f(f~*(b)) = f(a) =band f~(f(a)) = f~1(b) =
a. O

Now what do these general properties of maps mean for linear maps?
Let us define two subsets related naturally to each linear map

Definition 5.10. Let T : R™ — R™ be a linear map, then we define
(a) the image of T to be

ImT :={y € R™ : there exists ax € R" with T(x) =y} C R™
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(b) the kernel of T to be

kerT:={xeR": T(x)=0€R"} CR".

Examples:

o If T: R? — R2, is given by T'(x) = (x - u)v, then Im7T = span{v} and ker T = {x €

R?; x-u =0}

o Let A € M, ,(R) and let aj,ag, -+ ,a, € R™ be the column vectors of A, and set
Tyx := Ax which is a linear map 7T : R — R"™. Then since T4x = 0 means Ax = 0
we have

ker Ty = S(A,0) , (5.7)

and from the relation Tyx = Ax = x1a; + z2ag + - - - + x,a, we see that

ImTA = Span{a17 az, - 7an} . (58)

These examples suggest that the image and the kernel of a map are linear subspaces:

Theorem 5.11. Let T : R™ — R™ be a linear map, then ImT is a linear subspace of R™
and kerT' is a linear subspace of R".

Proof. Exercise. 0

Now let us relate the image and the kernel to the general mapping properties of a map.
Theorem 5.12. Let T : R™ — R™ be a linear map, then

o T is surjective if ImT = R™,

o T is injective if ker T = {0} and

o T is bijective if InT = R™ and ker T' = {0}.

Proof. That surjective is equivalent to Im7 = R™ follow directly from the definition of
surjective and Im 7.

Notice that we always have 0 € ker T, since T(0) = 0. Now assume 7T is injective and
let x € kerT, i.e, T(x) = 0. But then T(x) = T'(0) and injectivity of T gives x = 0,
hence ker ' = {0}. For the converse, let ker T' = {0}, and assume there are x,x" € R" with
T(x) = T(x"). Using linearity of T we then get 0 = T'(x) — T'(x') = T(x — x’) and hence
x —x’ € ker T, and since ker T" = {0} this means hat x = x" and hence T is injective. O

An important property of linear maps with ker 7" = {0} is the following;:

Theorem 5.13. Let x1,X2,--- , X € R” be linear independent, and T : R" — R"™ a linear
map with ker T = {0}. Then T'(x1),T(x2), -+ ,T(xx) are linearly independent.
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Proof. Assume T'(x1),T(x2),--- ,T(xy) are linearly dependent, i.e., there exist A1, Ag, -+ , A,
not all 0, such that
)\1T(X1) + )\QT(XQ) —+ -+ )\kT(Xk> =0.

But since T is linear we have
T(Mx1 + Aoxo + -+ N\exXp) = MT(x1) + Ao T(x2) + -+ M (x) =0,
and hence A\1x1 + Aoxa + -+ - + ApXy € ker T'. But since ker T = {0} it follows that
A1X1 + AoXo + -+ X =0

which means that the vectors xi,Xs,--- ,X; are linearly dependent, and this contradict the
assumption. Therefore T'(x1),T(x2),- - ,T(xx) are linearly independent. O

Notice that this result implies that if 7" is bijective, it maps a basis of R™ to a basis of
R™, hence m = n.

We saw that a bijective map has an inverse, we now show that if 7" is linear, then the
inverse is linear, too.

Theorem 5.14. Let T : R* — R"™ be a linear map and assume T is bijective. Then T! :
R™ — R™ 1is linear, too.

Proof. (i) T-Y(y+y') =T Yy)+T ' (y"): Since T is bijective we know that there are
unique x,x’ with y = 7T'(x) and y’ = T'(x'), therefore

y+y =Tx)+T(x)=T(x+x)
and applying 77! to both sides of this equation gives

T y+y) =T (Tx+x))=x+x'=T"'(y) +T7'(y) .

(ii) Exercise

5.2 Matrices

The aim of this subsection is to translate some of the results we formulated in the previous
subsection for linear maps into the setting of matrices.

Recall that given a linear map 7" : R® — R™ we introduced the m x n matrix Mr = (t;;)
with elements given by t;; = e; - T'(e;). The action of the map 7" on vectors can be written in
terms of the matrix as y = T'(x) € R™ with y = (y1,y2, -+ ,ym) given by (3.3)

n
Yi = Ztijxj .
j=1

We introduced a couple of operations for linear maps, addition, multiplication by a num-
ber, and composition. We wan to study now how these translate to matrices:
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Theorem 5.15. , Let S, T : R® — R™ be linear maps with corresponding matrices Mp =
(tij), Ms = (si;), and XA € R, then the matrices corresponding to the maps XT' and T + S are
given by

My = \Mp = ()\tz'j) and Mgir = (Sij + tij) = Mg+ My .

Proof. Let R = S+T, the matrix associated with R is by definition (5.6) given by Mg = (4;)
with matrix elements 7;; = e; - R(e;), but since R(e;) = S(e;) + T(e;) we obtain

rij = ei - R(ej) = ei - (S(ej) +T(ey)) = ei- S(ej) +ei-T(ej) = sij +1ij -
Similarly we find that Myp has matrix elements
e - (NT'(ej)) = Xe; - T(ej) = Atyj .
O]

So we just add the corresponding matrix elements, or multiply them by a number. Note
that this extends to expressions of the form

Mysyur = AMgs + pMr .

and these expressions actually define the addition of matrices.
The composition of maps leads to multiplication of matrices:

Theorem 5.16. Let T : R* — R™ and S : R™ — R! be linear maps with corresponding
matrices Mp = (t;;) and Mg = s;;, where My is m x n and Mg is | x m. Then the matriz
Mgor = (ri) corresponding to the composition R =S oT of T and S has elements

m
Tik = Z Sijtjk
=1

and is a | X n matrix.

Proof. By definition (5.6) the matrix elements of R are given by
Tik — €4 - R(ek) =€ - So T(ek) = €; - S(T(ek)) .

Now T'(eg) is the k’th column vector of My and has components T'(ex) = (t1k, tok, ** » tmk)
and so the ¢’th component of S(T'(eg)) is by (3.3) given by

k
E Sijtik
=1

but the i’th component of S(T'(ey)) is as well e; - S(T'(ex)) = 7 O

For me the easiest way to think about the formula for matrix multiplication is that r;; is
the dot product of the 7't row vector of Mg and the k’th column vector of Mp. This formula
defines a product of matrices by

MsMT = MSOT .

So we have now used the notions of addition and composition of linear maps to define addi-
tion and products of matrices. The results about maps then immediately imply corresponding
results for matrices:
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Theorem 5.17. Let A, B be m x n matrices and C a m X | matriz, then
C(A+B)=CA+CB.
Let A, B be m x I matrices and C a n X m matriz, then
(A+ B)C = AC + BC' .
Let C be a m x n matriz, B be a l x m matrix and A al x k matriz, then
A(BC) = (AB)C' .

Proof. We saw in Theorem 3.4 that matrices define linear maps, and in Theorem 5.8 the
above properties where shown for linear maps. ]

The first two properties mean that matrix multiplication is distributive over addition, and
the last one is called associativity. In particular associativity would be quite cumbersome to
prove directly for matrix multiplication, whereas the proof for linear maps is very simple.
This shows that often an abstract approach simplifies proofs a lot. The price one pays for
this is that it takes sometimes longer to learn and understand the material in a more abstract
language.

5.3 Rank and nullity

We introduced the image and the kernel of a linear map 7' as subspaces related to the general
mapping properties of T. In particular T is injective if ker T = {0} and it is surjective if
ImT = R™ and hence it is invertible if ker 7" = {0} and Im 7" = R™. We introduced the
dimension as a measure for the size of a subspace and we will give the dimensions of the
kernel and the image special names.

Definition 5.18. Let T : R™ — R™ be a linear map, then we define the nullity of T' as
nullity 7" := dimker T, (5.9)

and the rank of T as
rank 7 :=dimIm7T . (5.10)

Example: Let T(x) = (8 (1)> (il) = (%2>, then x € kerT means xy = 0, hence
2

ker T' = span{e; }, and Im T = span{e; }. Therefore we find rank7 = 1 and nullity 7" = 1.
We will speak as well about the rank and nullity of matrices by identifying them with the
corresponding map.
So in view of our discussion above we have that a map 7" : R® — R™ is injective if
nullity 7" = 0 and surjective if rank T = m. It turns out that rank and nullity are actually
related, this is the content of the Rank Nullity Theorem:

Theorem 5.19. Let T : R® — R™ be a linear map, then

rank T + nullity I' = n . (5.11)
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Proof. Let vi,---, vy be a basis of ker T', then nullity 7' = k, and let us extend it to a basis
of R™

Vi, 3 Vg, V1, 0 3V -

That we can do this follows from Theorem 4.7 and the Corollary following it. Note that both
extreme cases k = nullity 7" = 0 and k = nullity " = n are included.

Now we consider wiy1 = T(vgi1), -+ ,w, = T(v,) and we claim that these vectors
form a basis of Im7". To show this we have to check that they span Im 7T and are linearly
independent. Since vi,---, Vg, Vi1, ,Vy is a basis of R” we can write an arbitrary vector
x € R™" as x = A1vi + -+ A\yv,. Now using linearity of T" and that vy,--- vy € kerT" we get

T(x)=MT(v1)+ -+ MT (Vi) + g1 T (Vi) + - AT (Vi)

(5.12)
= MNeWgt1+ 0+ AWy

Since x was arbitrary this means that Im 7" = span{wy1,--- , w,}.

To show linear independence we observe that if \xwg1+- - -+ A, wy, = 0, then T'(Ag41Vir1+
<+ 4+ Apvyp) = 0 and hence \gy1vii1 + -+ + Apvy, € kerT. But since ker T' is spanned by
Vi, , Vg which are linearly independent from wvgyq1,---,v, we must have \y;1 = -+ =
An = 0. Therefore wy11,--- ,w, are linearly independent and so rank 7 =n — k.

So we have found nullity ' = k and rank T = n — k, hence nullity 7" + rank T = n. O

Let us notice a few immediate consequences:
Corollary 5.20. Assume the linear map T : R™ — R™ is invertible, then n = m.

Proof. That T is invertible means that rankT = m and nullity 7" = 0, hence by the rank
nullity theorem m = rank 7T = n. O

Corollary 5.21. Let T : R™ — R" be a linear map, then
(i) if rank T = n, then T is invertible,
(#) if nullity T' = 0, then T is invertible

Proof. T is invertible if rankT = n and nullity 7" = 0, but by the rank nullity theorem
rank 7'+ nullity 7" = n, hence any one of the conditions implies the other. O

In the exercises we will show the following relations about the rank and nullity of compo-
sition of maps.

Theorem 5.22. Let S: R* — R™ and T : RF — R" be leinear maps, then
(i) SoT =0 if, and only if, InT C ker S
(i) rank S o T < rankT and rank S o T' < rank S

(#3) nullity S o T' > nullity T and nullity S o T' > nullity S + k — n

(iv) if S is invertible, then rank S o T = rank T and nullity S o T' = nullity 7.
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A more general set of relations is

rank S o T =rank T — dim(ker SN Im7T) (5.13)
nullity S o 7' = nullity 7" + dim(ker SN Im T") (5.14)

whose proof we leave to the reader.
The following are some general properties of inverses.

Theorem 5.23. Let T : R® — R™ be invertible with inverse T, i.e., T™'T = I, then
(i) TT' =1
(ii) If ST = I for some linear map S : R® — R" then S = T~!

(iii) If SR™ — R™ is as well invertible, than T'S is invertible with (T'S)~! = S~tT-1.

Proof. To prove (i) we start from T-'T — I = 0 and multiply this by 7 from the left, then
we obtain (TT~! — IN'T = 0 By Theorem 5.22, part (i), we have ImT C ker(TT~! — I), but
since T is invertible, Im T = R™ and hence ker(TT! —I) =R" or TT~! — I = 0.
Part (ii) and (iii) are left as exercises.
O

Gaussian elimination can be refined to give an algorithm to compute the rank of a general,
not necessarily square, matrix A.

Theorem 5.24. Let A € My, ,(R) and assume that the row echelon form of A has k leading
1’ s, then rank A = k an nullity A = n — k.

The proof will be left as an exercise. So in order to find the rank of a matrix we use
elementary row operations to bring it to row echelon form and then we just count the number
of leading 1’s.



Chapter 6

Determinants

c d
ad — bc # 0. This combination of numbers has a name, it is called the determinant of A,

When we computed the inverse of a 2 x 2 matrix A = <a > we saw that it is invertible if

a b
det <c d> =ad — bc . (6.1)

The determinant is a single number we can associate with a square matrix, and it is very
useful, since many properties of the matrix are reflected in that number. In particular, if
det A # 0 then the matrix is invertible.

The theory of determinants is probably the most difficult part of this course, formulas for
determinants tend to be notoriously complicated. It is often not easy to read of properties
of determinants from explicit formulas for them. In our treatment of determinants of n x n
matrices for n > 2 we will use an axiomatic approach, i.e., we will single out a few properties
of the determinant and and use these to define what a determinant should be. Then we show
that there exist only one function with these properties and then derive other properties from
them. The advantage of this approach is that it is conceptually clear, we single out a few
key properties at the beginning and then we derive step by step other properties and explicit
formulas for the determinants. The disadvantage of this approach is that it is rather abstract
at the beginning, we define an object not by writing down a formula for it, but by requiring
some properties it should have. And it takes quite a while before we eventually arrive at some
explicit formulas. But along the way we will encounter some key mathematical ideas which
are of wider use.

Our treatment of determinants will have three parts

(1) Definition and basic properties
(2) explicit formulas and how to compute determinants

(3) some applications of determinants.

6.1 Definition and basic properties

As a warm up we will use the axiomatic approach to define the determinant of a 2 x 2 matrix,
and show that it gives the formula (6.1).

65
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We will write the determinant as a function of the column vectors of a matrix! so for the

ail a ail ai
121) the two column vectors are a; = and ap = 2).
as1  a92 a21 a22

2 X 2 matrix A =

Definition 6.1. A n =2 determinant function dy(ai,as) is a function
dy: R*xR* - R,
which satisfies the following three conditions:
(ML) multilinear: it is linear in each argument
(1) dy(Aay + pby,a) = Mdy(ay, ag) + puda(by,ag) for all \, u € R and a;, az, by € R?
(2) da(a1, Aag + ubg) = Ada(ay,as) + uda(ar, be) for all A\, € R and aj,az, by € R?

(A) alternating, i.e, antisymmetric under exchange of arguments: do(ag,a;) = —da(ay,as)
for all aj,as € R?

(N) normalisation: da(e1,e2) = 1.

These three conditions prescribe what happens to the determinant if we manipulate the
columns of a matrix, e.g., (A) says that exchanging columns changes the sign. In particular
we can rewrite (A) as

dg(al,ag) + dg(az,al) =0 ,

and so if a; = ay = a, then
da(a,a) =0 . (6.2)

That means if the two columns in a matrix are equal, then the determinant is 0. The first
condition can be used to find out how a determinant function behaves under elementary
column operations on the matrix?. Say if we multiply column 1 by A, then

da(Aag, az) = Adz(aj,az) ,
and if we add A times column 2 to column 1 we get
da(a; + \ag, as) = do(ag,as) + Ada(ag, as) = do(ag, as) ,
by (6.2).

Now let us see how much the conditions in the definition restrict the function dy. If we
write a; = aj1e; + az1e2 and as = ajse; + agees, then we can use multilinearity to obtain
da(aj,az) = da(arrer + aziez, aj2e1 + axzes)
= andz(e1, aizer + axes) + azida(ez, ajzer + azges)
= aj1a12da(e1, 1) + ar1a22dz(e1, €2) + as1aiada(ez, €1) + aziazada(ez, e2) .

This means that the function is completely determined by its values on the standard basis
vectors e;. Now (6.2) implies that

da(e1,e1) = da(ez,e2) =0,

LOne can as well choose row vectors to define a determinant, both approaches give the same result, and
have different advantages and disadvantages. In a previous version of this script row vectors were used, so
beware, there might be some remnants left

2Elementary column operations are defined the same way as elementary row operations
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and by antisymmetry da(ez,e1) = —da(eq,e2), hence
da(a1,az) = (a11a22 — aziaiz)dz(er, ez) .
Finally the normalisation ds(e;,e3) = 1 means that ds is actually uniquely determined and
da(ar,az) = ar1azs — azraiz.

So there is only one determinant function, and it coincides with the expression (6.1), i.e.,

ain a2
da(ar,az) = arjaz — azrajp = det .
as  ax

The determinant was originally not introduced this way, it emerged from the study of
systems of linear equation as a combination of coefficients which seemed to be indicative of
solvability.

The conditions in the definition probably seem to be a bit ad hoc. They emerged as the
crucial properties of determinants, and it turned out that they characterise it uniquely. It
is hard to motivate them without a priori knowledge of determinants, but one can at least
indicate why one might pick these conditions. The multilinearity is natural in the context
we are working in, we are interested in structures related to linearity. The normalisation is
just that, a convention to fix a multiplicative constant. The most interesting condition is the
antisymmetry, as we have seen antisymmetry implies that da(a, a) = 0, and with linearity this
means f(a,b) whenever b = Aa for some A € R, but that means that whenever a and b are
linearly dependent, then f(a,b) = 0. Hence the determinant detects if vectors are linearly
dependent, and this is due to the antisymmetry together with multilinearity.

We extend the definition now to n X n matrices:

Definition 6.2. An n-determinant d,(ay,ag, - ,ay,) is a function
dy R"XR"%x---xR"— R,
which satisfies
(ML) multilinearity: for any i and any a;,b; € R™", \,u € R
d(- -, Aa; + pbi, ) = My (- a4, ) + pdp (- by, -+ ),
where the -+ mean the other n — 1 vectors stay fized.

(A) alternating, i.e. antisymmetry in each pair of arguments: whenever we exchange two
vectors we pick up a factor —1: if i # j then

(N) normalisation: d,(e1, ez, - ,e,) = 1.

We will call these three properties sometimes the axioms of the determinant. We have
formulated the determinant function as function of vectors, to connect it to matrices we take
these vectors to be the column vectors of a matrix. The properties (ML) and (A) then
correspond to column operations in the same way as we discussed after the definition of a
2-determinant. The property (IN) means that the unit matrix has determinant 1.

Before proceeding to the proof that there is only one n-determinant let us make a obser-
vation similar to (6.2).
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Proposition 6.3. Let d,,(a,as, - ,a,) be an n-determinant, then
(i) whenever one of the vectors aj,as, -+ ,a, is 0 then
dp(ay,ag, -+ ,a,) =0,
(i) whenever two of the vectors aj,ag, - -+ ,a, are equal, then
dp(ay,ag, -+ ,a,) =0,
(iii) whenever the vectors aj,ag, -+ ,a, are linearly dependent, then
dp(ai,ag, -+ ,a,)=0.
Proof. To prove (i) we use multilinearity. We have for any a; that d,(---,Aa;,---) =

Adp(- -+ ,a,--+) for any A € R, and setting A = 0 gives d,(---,0---) =0.
To prove (i) we rewrite condition (A) in the definition as

dn(,a“’aj,)_{_dn(,a]?’a“)zo,

and so if a; = aj, then 2d,(--- ,a;,--- ,a;5,---) = 0.
Part (iii): If a;,a,- - ,a, are linearly dependent, then there is an ¢ and \; such that
a; = Z )\jaj s
i

and using linearity in the ¢’th component we get

dn(alv'” yQg, ,an) :dn<a17"' 72)\ja_]7 aan>

J#

:ZA]dn(ah ’aj’... ,an):()
J#i

where in the last step we used that there are always at least two equal vectors in the argument
of dy(ay,--- ,a;,---,ay,), so by (ii) we get 0 . O

As a direct consequence we obtain the following useful property: we can add to a column
any multiple of one of the other columns without changing the value of the determinant
function.

Corollary 6.4. We have for any j # i and A € R that

dn(ala"‘ aai+>‘aj7"‘an):dn(al7"' 7ai7"‘an) .

Proof. By linearity we have dp(ay,--- ,a;+Aa;, - -a,) = dy(a, -+ ,a;,---a,)+Ad,(ay, -+ ,a;,- -

but in the second term two of the vectors in the arguments are the same, hence the term is
0. O

.an)
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Using the properties of a determinant function we know by now we can actually already
compute them. This will not be a very efficient way to compute them, but it is very instructive
to see how the properties of a determinant function work together. Let us take

-10 2 0
a] = 0 N ag = 1 , ag = 2 (63)
2 0 0
then we can use that a; = —10e; + 2e3 and linearity in the first argument to obtain
d3(a1, ag, a3) = dg(—loel + 2e3, ag, a3) = —10d3(€1, ag, a3) + 2d3(€3, ag, a3) . (6.4)

Similarly as = 2e; + ey gives
ds(e1,az,a3) = ds(e1,2e; + ez,a3) = 2ds(e1, e1,a3) + ds(er, es,a3) = ds(er,ez,a3) , (6.5)
where we have used that d3(e1, e1,a3) = 0 since two of the vectors are equal, and
ds(es, as,a3) = ds(es,2e; + e, a3) = 2ds(es, e1,a3) + ds(es, ez, as) . (6.6)
Now we use that ag = 2e2 which gives
ds(e1,e2,a3) = ds(er, ez,2e2) = 2ds(eq,ez,€2) =0 (6.7)
again since two vectors are equal, and similarly ds(es, e2,a3) = 0 and finally
ds(es,eq,a3) = ds(es,eq,2e;) = 2ds(e3, e1,€3) . (6.8)

This last term we can evaluate using that the determinant is alternating and normalised, by
switching first e; and e3 and then e, and es we obtain

d3(es, e, ex) = —ds(e1,e3,e3) = d3(e1,e2,e3) =1 . (6.9)
So putting all this together we have found
dg(al,ag, a3) =8. (610)

One can use these ideas as well to compute the determinant function for some special
classes of matrices. For instance for diagonal matrices, i.e, A = (a;;) with a;; = 0 if ¢ # j,
the columns are a; = ajje;,as = aes, -+ ,a, = aype, and using multilinearity in each
argument and normalisation we get

dn(aiier,ae€s, -, appen) = a11dy (€1, a2e2, -+, apney)
= ajjazdy(er, ez, -, apnep) (6.11)
= a11a22 - Gpndp(€1,€2, -+ ,€,) = a11a22 - - Anp

After these preparations we can now show that there exist only one n-determinant func-
tion.

Theorem 6.5. There exists one, and only one, n-determinant function.
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Proof. We only give a sketch of the proof. Let us expand the columns in the standard basis
vectors

n
ai:zajiieji i=1,--,n, (6'12)
Ji=1
and insert these expansions into d,(aj, as, -+ ,a,). Doing this for a; and using multilniearity

gives

dp(ar,ag, - ,a,) = dn( > ajnej a, - 7an> = ajdn(ej, a2, ,a,) . (6.13)

Jji=1 ji=1

Repeating the same step for ag, as, etc., gives then

n n n
dp(an,az, -+ a0) = Y > - Y aj1a40 - ajndn(e) € s€5,) (6.14)

J1=1j2=1 Jn=1

This formula tells us that a determinant function is determined by its value on the standard
basis vectors. Recall that we applied the same idea to linear maps before. Now by Proposition
6.3 whenever at least two of the vectors e;,,e;,,- -, e;, are equal then dy(ej,,ej,, - ,€j,) =
0. This means that there are only n! non-zero terms in the sum. If the vectors e;,, e;,, - - ,€;,
are all different, then they can be rearranged by a finite number of pairwise exchanges into
e, ez, - ,e,. By (A) we pick up for each exchange a — sign, so if there are k exchanges
necessary we get d,(ej,,ej,, - ,ej,) = (—1)*. So in summary all terms in the sum (6.14)
are uniquely determined and independent of the choice of d,, so there can only be one n-
determinant function.

What we don’t show here is existence. It could be that the axioms for a determinant
contain a contradiction, so that a function with that properties does not exist. Existence
will be shown in the second year course on linear algebra and uses a bit of group theory,
namely permutations. The rearrangement of e;, ,ej,,---,e;, into ej,es,--- e, is nothing
but a permutation ¢ of the indices and the sign which we get is the sign signo of that
permutation. We arrive then at a formula for the determinant as a sum over all permutations
of n numbers:

dn(ala T an) = Z signo Ar(1)105(2)2 " Qo (n)n - (615)
oceP,
Using group theory one can then show that this function satisfies the axioms of a determinant
function.

O

Knowing this we can define the determinant of a matrix by applying d,, to its column
vectors.

Definition 6.6. Let A be an nxn matriz, and denote the column vectors of A by aj,as,--- ,ay,
the we define the determinant of A as

det A :=dy(aj,as, - ,a,) .

Let us now continue with computing some determinants. We learned in (6.11) that the
determinant of a diagonal matrix is just the product of the diagonal elements. The same is
true for upper triangular matrices.
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Lemma 6.7. Let A = (ai;) € Mp(R) be upper triangular, i.e., aj;; = 0 if i > j, and let
aj,as, -+ ,a, be the column vectors of A. Then we have for any n-determinant function

dn(ala ag, .- )an) = Q11422 Apn ,
i.e., the determinant is the product of the diagonal elements.

Proof. Let us first assume that all he diagonal elements a;; are nonzero. The matrix A is of
the form

aip aiz a3 -+ Qln
0 ax ay - a

A= 0 0 az - a3 (6.16)
0 0 0 - apm

In the first steps we will subtract multiples of column 1 from the other columns to remove
the entries in the first row, so as — aj2/a11a1, ag — ai3/a11a;, etc. . By Corollary 6.4 these
operations to not change the determinant and hence we have

all 0 0 s 0
0 ag a3 -+ aoy
det A=det | 0 0 as3 - az (6.17)
0 0 0 - apn

In the next step we repeat the same procedure with the second row, i.e., subtract suitable
multiples of the second column from the other columns, and the we continue with the third
row, etc. . At the and we arrive at a diagonal matrix and then by (6.11)

ail 0 0 s 0
0 a9 0 s 0
det A=det| 0 0 az - 0 = 11G22G33 * * * App, - (6.18)
0 O O e Ann,

If one of the diagonal matrix elements is 0, then we can follow the same procedure until we
arrive at the first column where the diagonal element is 0. But this column will be entirely 0

then and so by Proposition 6.3 the determinant is 0. O
Examples:
1 4 7
e an upper triangular matrix: det {0 1 3 | = -2
0 0 -2

e for a general matrix we use elementary column operations: (i) adding multiples of one
column to another, (47) multiplying columns by real numbers A, (ii7) switching columns.
(1) doesn’t change the determinant, (i7) gives a factor 1/\ and (iii) changes the sign.
E.g.
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2 0 3 3 0 2

(i) det { =1 2 0] = —det (0 2 —1] = —12 (switching columns 1 and 3)
2 00 00 2
3 2 1 1 11

(ii) det | 2 2 1) =det [0 1 1) = 1 (subtracting column 3 from column 2 and 2
2 11 0 01

times column 3 from column 1)

10 3 4 9 4 7 4 9 18 7 4

02 1 -1 -2 1 0 -1 -2 1 0 -1

(iii) det 09 -1 0|~ det 0 2 -1 0|~ det 0 0 -1 ol =
21 1 -1 0 0 0 -1 0O 0 0 -1

45 18 7 4
0o 1 0 -1
det 0 0 —1 0 = 45 In the first step we used column 4 to remove all
0 0 0 -1
non-zero entries in row 4 except the last. Then we used column 3 to simplify

column 2 and finally we used column 2 to simplify column 1.

Let us now collect a few important properties of the determinant.
Theorem 6.8. Let A and B be n X n matrices, then
det(AB) = det(A) det(B) .

This is a quite astonishing property, because so far we had usually linearity built in into
our constructions. That the determinant is multiplicative is therefore a surprise. And note
that the determinant is not linear, in general

det(A+ B) # det A+ det B,

as we will see in examples.
In the proof of Theorem 6.8 we will use the following simple observation, let b; be the

1’th column vector of B, then
C; = AbZ . (6.19)

is the ¢’th column vector of AB Now we give the proof of Theorem 6.8.

Proof. Let us first notice that if we replace in the definition of the determinant the normalisa-
tion condition (N) by d,,(e1, ez, - ,e,) = C for some constant C' € R, then d,,(by, ba, - ,by,)
C det B, where B has column vectors by, bs, -+ | by,.

So let us fix A and define

gn(b1,ba, - by,) :=det(AB) = d,(Aby, Aby, ..., Ab,) ,

where we used (6.19). Now g, (b1, b, -+, by) is multilinear and antisymmetric, i.e., satisfies
condition (ML) and (A) of the definition of a determinant function, and furthermore
gn(er, e, -+ ,e,) =det(Al) =det A . (6.20)

So by the remark at the beginning of the proof (with C' = det A) we get
gn(aj,ag, -+ ,a,) =det Bdet A .
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One of the consequence of his result is that if A is invertible, i.e., there exits an A~! such
that A=1A = I, then det Adet A~! = 1, and hence det A # 0 and

1
det A7 = )
¢ det A

So if A is invertible, then det A # 0. But even the following stronger result holds.

Theorem 6.9. Let A € M, (R), then the following three properties are equivalent
(1) det A#0 .
(2) A is invertible
(8) the column vectors of A are linearly independent

Or, in different words, if det A = 0 then A is singular, and if det A # 0, then A is non-
singular.

Proof. Let us first show that (1) implies (3): we know by part (iii) of Proposition 6.3 that
if the column vectors of A are linearly dependent, then det A = 0, hence if det A # 0 the
column vectors must be linearly independent.

Now we show that (3) implies (2): If the column vectors are linearly independent, then
ker A = {0}, i.e., nullity A = 0 and A is invertible by Corollary 5.21.

Finally (2) implies (1) since if A=*A = I we get by the product formula det Adet A~! =1,
hence det A # 0, as we have noted already above. O

This is one of the most important results about determinants and it is often used when
one needs a criterium for invertibility or linear independence.
The following result we will quote without giving a proof.

Theorem 6.10. Let A be an n X n matriz, then

det A = det A® .
Let us comment on the meaning of this result. We defined the determinant of a matrix
in two steps, we first defined the determinant function d,(a;,az, - ,a,) as a function of n
vectors, and then we related it to a matrix A by choosing for aj, as, - - - , a, the column vectors

of A. We could have instead chosen the row vectors of A, that would have been an alternative
definition of a determinant. The theorem tells us that both ways we get the same result.

Properties (ML) and (A) from the basic Definition 6.2, together with Definition 6.6 tell us
what happens to determinants if we manipulate the columns by linear operations, in particular
they tell us what happens if we apply elementary column operations to the matrix. But using
det A* = det A we get the same properties for elementary row operations:

Theorem 6.11. Let A be an n X n matriz, then we have

(a) If A" is obtained from A by exchanging two rows, then det A’ = —det A and if E is the
elementary matrix corresponding to the row exchange, then det E = —1.

(b) If A" is obtained from A by adding X\ times row j to row i, (i # j), then det A = det A’

and the corresponding elementary matriz satisfies det E = 1.
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(c) If A" is obtained from A by multiplying row i by A € R, then det A’ = Adet A and the
corresponding elementary matriz satisfies det E = .

An interesting consequence of this result is that it shows independently from Theorem
6.8 that det FA = det Fdet A for any elementary matrix. We see that by just computing
the left and the right hand sides for each case in Theorem 6.11. This observation can be
used to give a different proof of the multiplicative property det(AB) = det A det B, the main
idea is to write A as a product of elementary matrices, which turns out to be possible if A is
non-singular, and then use that we have the multiplicative property for elementary matrices.

Similarly, the results of Lemma 6.3 and Theorem 6.9 are true for rows as well.

6.2 Computing determinants

We know already how to compute the determinants of general 2 x 2 matrices, here we want
to look at determinants of larger matrices. There is a convention to denote the determinant
of a matrix by replacing the brackets by vertical bars. e.g.

ai;p a2
a21 a2

—d ailp aiy)
= det = a11a22 — a120a21 .
az; a2

We will now discuss some systematical methods to compute determinants. The first is
Laplace expansion. As a preparation we need some definitions.

Definition 6.12. Let A € M,(R), then we define
(i) Aij € M,_1(R) is the matriz obtained from A by removing row i and column j.
(i1) det flij is called the minor associated with a;;.

(ii) A;j = (—1)" det /L-j is called the signed minor associated with a;;.

Examples:
1 0 -1
A 1 3 A 2 3 A 2 1 A 1 -1
e A= 3 1 g then Ay; = <1 0>,A12 = (0 O>7A13= <0 1>,A32= (2 3>
and so on. For the minors we find 417 = —3, A1 =0, A13 =2, A3s = —5 and so on.

o A = (Zl)) i) then All = 4, Alg = 3, Agl = 2, AQQ =1 and A1 = 4, A1p = -3,

A21 =-2 A22 =1.
Theorem 6.13. Laplace expansion: Let A € M,(R), then

(a) expansion into row i: For any row (a;1, a2, - ,ain) we have

n
det A = anAi + aigAig + - + ainAin = Y _ aijAij .
i=1
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alj
. . . az;
(b) expansion into column j: For any column . we have

anj
n
det A = a1;A1j + agjAgj + - + anjAn; = Z aijAij -
i=1

We will discuss the proof of this result later, but let us first see how we can use it. The
main point is that Laplace expansion gives an expression for a determinant of an n x n matrix
as a sum over n determinants of smaller (n — 1) X (n — 1) matrices, and so we can iterate this,
the determinants of (n—1) x (n—1) matrices can then be expressed in terms of determinants of
(n—2) x (n—2) matrices, and so on, until we arrive at, say 2 x 2 matrices whose determinants
we can compute directly.

Sometimes one prefers to write the Laplace expansion formulas in terms of the determi-
nants of Aij directly

det A = Z(—l)i+jaij det Aij
7=1

det A= Z(—l)i—’—jazj det Aij
=1

Now let us look at some examples to see how to use this result. It is useful to visualise
the sign-factors (—1)**/ by looking at the corresponding matrix

which has a chess board pattern of alternating + and — signs. So if, for instance, we want to
expand A into the second row we get

det A = —ag; det Agy + agpAgg — agz Aoz + - --

and the pattern of signs in front of the terms is the same as the second row of the above
sign-matrix.
Examples:

1 0 -1
e A=12 1 3
01 O

(i) expansion in the first row gives:

~1
13 2 3 2 w:_3_2:_5

0
1 3 :1‘ ’—o’ ’+pqw
Lo 10 00 0 1

SN =
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(ii) expansion in the last column gives:

—1

10
2 1 3 :(DE Hsﬁ ﬂ+0E ﬂ:23:5
01 0
(iii) and expansion in the last row gives:
1 0 -1
2 1 3 ———‘; ?;’—-—5
01 0

where we already left out the terms where a3; = 0.

2 3 7 0 1

-2 0 3 0 O

o A= 0 0 1 0 O
-10 1 0 -1 3

0 2 -2 0 O

We start by expanding in the 3 row and then expand in the next step in the 2nd row

3.0 1
3.0 1
2.0 0 0 0 1
detA=| 1_13_—@m;-§ 3_44-J 2
0 2 0 0

where in the final step we expanded in the last row.

The scheme works similarly for larger matrices, but it becomes rather long. As the example
shows, one can use the freedom of choice of rows or columns for the expansion, to chose one
which contains as many 0’s as possible, this reduces the computational work one has to do.

We showed already in Lemma 6.7 that determinants of triangular matrices are simple Let
us derive this as well from Laplace expansion:

Proposition 6.14. Let A € M, (R)
(a) if A is upper triangular, i.e., a;; =0 if i > j, then
det A =aj1a22- - any -
(b) if A is lower triangular, i.e., a;; =0 if i < j, then
det A =aj1a92 - ann -

Proof. We will only prove (a), part (b) will be left as exercise. Since A is upper triangular
ai

its first column is . |, hence expanding into that column gives det A = ay141;. But
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a2
. 0
Aq1 is again upper triangular with first column . and so iterating this argument gives
0
det A = a11a92 * * * Apn- O

This implies for instance that a triangular matrix is invertible if, and only if, all its diagonal
elements are non-zero.

This result will be the starting point for the second method we want to discuss to compute
determinants. Whenever we have a triangular matrix we can compute the determinant easily.
In Theorem 6.11 we discussed how elementary row operations affected the determinant. So
combining the two results we end up with the following strategy: First use elementary row
operations to bring a matrix to triangular form, this can always be done, and then use the
above result to compute the determinant of that triangular matrix. One only has to be careful
about tracking the changes in the determinant when applying elementary row operations,
namely a switch of rows gives a minus sign and multiplying a row by a number gives an over
all factor.

Examples:

1/2 3/2] 1|1 3 _ 1]2 0
- 13

2 0] 220 2
These operations should illustrate the general principle, in this particular case they didn’t
significantly simplify the matrix.

To see an example let us take the matrix

1 0 -1 1 0 -1 1 0 -1 1 0 -1
21 3|=01 5|{=]00 5|=—-|01 0|=-5
01 0 01 0 01 0 0 0 5

The larger the matrix is the more efficient becomes this second method compared to Laplace
expansion.
We haven’t yet given a proof of the Laplace expansion formulas. We will sketch one now.

Proof of Theorem 6.13. Since det A = det A? it is enough to prove either the expansion for-
mula for rows, or for columns. Lets do it for the i’th row a; of A, then we have

detA = dn<alua2) T g, 7an) = <_1)i71dn(ai7a17a27 o 7a7’b) P

where we have exchanged row ¢ with row ¢ — 1, then with row 7 — 2, and so on until row i is the
new row 1 and the other rows follow in the previous order. We need i — 1 switches of rows to
do this so we picked up the factor (—1)"~!. Now we use linearity applied to a; = Z?:l a;;je;,
SO

n
dn(aia aj,az,--- aan> = E aijdn(eja aj,az,--- aan>
j=1
and we have to determine dy(ej,ai,as, -+ ,a,). Now we observe that since det A = det Al

we can as well exchange columns in a matrix and change the corresponding determinant by
a sign. Switching the jth column through to the left until it is the first column gives

dn(ej,ar, a0, a,) = (—1)7 'd,(er,a,af, - all)
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where agj) = (a1j,a11,012, - ,a1n), and so on, are the original row vectors with the j’th
component moved to the first place. We now claim that

d (el,agj),ag), . ,ag)):detflij .
This follows from two observations,

(i) first, d, (el,agj),agj), . ,ag)) does not depend on ayj,ag;, - ,an;, since by Theorem

6.11, part (c), one can add arbitrary multiples of e; to all other arguments without

changing the value of d, (el,agj),ag ), - 7(5)) This means d, (el,ag ), (J),-u ,ag))

depends only on flij (recall that we removed row i already before.)

(ii) The function dy(eq, ag ), agj ), e ag )) is by construction a multilinear and alternating
function of the rows of Am and furthermore if A; ij = 1, then d,, (e, ag ), agj), e ,ag)) =
1, hence by Theorem 6.5 we have d,, (el,ag ),aéj), co,a ay )) = det AU .

So collecting all formulas we have found
n . .
det A = Z(_l)l‘ﬂ—zaij det Aij

and since (—1)"7/=2 = (—1)"*J the proof is complete. O

6.3 Some applications of determinants

In this section we will collect a few applications of determinants. But we will start by men-
tioning two different approaches to determinants which are useful as well.

(a) As we mentioned in the proof of Theorem 6.5 a more careful study depends on permu-
tations. This leads to a formula for the determinant as a sum over all permutations of
n elements:
det A = Z SIgN O A15(1)20(2) " * Ano(n) -
oePl,
This is called Leibniz’ formula and will be treated in the second year advanced course
on Linear Algebra.

(b) We discussed in the problem classes that the determinant of a 2 x 2 matrix is the
oriented area of the parallelogram spanned by the row vectors (or the column vectors).
This generalises to higher dimensions. For n = 3 the 3 row vectors of A € M3(RR) span a
parallelepiped and det A is the oriented volume of it. And in general the row vectors of
A € M,(R) span a parallelepiped in R™ and the determinant gives its oriented volume.
This is a useful interpretation of the determinant, for instance it gives a good intuitively
clear argument why the determinant is 0 when the rows are linearly dependent, because
then the body spanned by them is actually flat, so has volume 0. E.g. in R?® when 3
vectors are linearly dependent , then typically one of them lies in the plane spanned by
the other 2, so they don’t span a solid body.
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6.3.1 Inverse matrices and linear systems of equations

A system of m linear equations in n unknowns can be written in the form
Ax=Db,

where A € M, »(R) and b € R™, and x € R"™ are the unknowns. If m = n, i.e., the system
has as many equations as unknowns, then A is a square matrix and so we can ask if it is
invertible. By Theorem 6.9 A is invertible if and only if det A # 0, and then we find

x=A"'b.

So det A # 0 means the system has a unique solution. If det A = 0, then nullity A > 0 and
rank A < n, so a solution exist only if b € Im A, and if a solution xq exist, then all vectors in
{x0} + ker A are solutions, too, hence there are infinitely many solutions then.

We have shown

Theorem 6.15. The system of linear equations Ax = b, with A € M,(R) has a unique
solution if and only if detA# 0. Ifdet A =0 and b ¢ Im A no solution exist, and if det A =0
and b € Im A infinitely many solutions exist.

If det A # 0 one can go even further and use the determinant to compute an inverse
and the unique solution to Ax = b. Let A € M, ,(R) and let A;; be the signed minors, or
cofactors, of A, we can ask if the matrix 4 = (A;j;) which has the minors as elements, has
any special meaning. The answer is that its transpose, which is called the (classical) adjoint,

adj A := A' = (Aj;) € M,, ,
has:

Theorem 6.16. Let A € M,,(R) and assume det A # 0, then

1 _ 1
det A

adj A .

The following related result is called Cramer’s rule:

Theorem 6.17. Let A € M, ,(R), b € R" and let A; € M, be the matriz obtained from
A by replacing column i by b. Then if det A # 0 the unique solution x = (x1,z2, - ,Tp) to
Ax = b is given by

det A;
T qetA ! A

Both results can be proved by playing around with Laplace expansion and some of the
basic properties of determinants. They will be discussed in the exercises.

These two results are mainly of theoretical use, since typically the computation of one
determinant needs almost as many operations as the solution of a system of linear equations
using elementary row operations. So computing the inverse or the solutions of linear equations
using determinants will typically require much more work than solving the system of equations
using elementary row operations.
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6.3.2 Bases

By Theorem 6.9 det A # 0 means that the column vectors (and row vectors) of A are linearly
independent. Since dimR™ = n they also span R™. Hence if det A # 0 the column vectors
form a basis of R".

Theorem 6.18. A set of n vectors aj,as, - ,a, € R™ form a basis if and only if det A # 0,
where A has column (or row) vectors aj,ag, - ,ay,.

This result gives a useful test to see if a set of vectors forms a basis of R"™.

6.3.3 Cross product

The determinant can be used to define the cross product of two vectors in R?, which will be
another vector in R3. If we recall Laplace expansion in the first column for a 3 x 3 matrix,

det A = a11 411 + a10A12 + a134s3 (6.21)

then we can interpret this as well as the dot product between the first column-vector of A
and the vector (Aj1, A12, A13) whose components are the signed minors associated with the
first column. If we denote the first column by z = (21, 22, z3) and the second and third by
x = (x1,22.23), ¥ = (y1,¥2,¥3), then the above formula reads

21 1 N1
det | 22 2 w2 | = z1(22y3 — 23y2) + 22(x3y1 — T1Y3) + 23(21Y2 — 2291) »
z3 T3 Y3

and if we therefore define

L2Yy3 — T3Y2
XXY:=|2Z3y1 —T1Yy3 | »
T1Y2 — 1291
the formula (6.21) becomes
21 T1 W
det | z2 2 y2| =2z -(xXxYy). (6.22)
23 X3 Y3
So for example
2 -1 —19
2| x| 3 ]|=1-13
3 5 4

The cross product, and notions derived from it, appear in many applications, e.g.,
e mechanics, where for instance the angular momentum vector is defined as L = x X p
e vector calculus, where quantities like curl are derived from the cross product.

e geometry, where one uses that the cross product of two vectors is orthogonal to both of
them.

Let us collect now a few properties.
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Theorem 6.19. The cross product is a map R3 x R? — R3 which satisfies
(i) antisymmetrie: y X x =—x Xy and x X x =0
(i) bilinear: (ax + fy) X z = a(x X z) + ((y X z)
(iit) x- (xxy) =y (xxy) =0
(iv) x <yl = [x|?|yl]* - (x - ¥)?
(v) xx (yx2z)=(x-2)y - (x-y)z

We will leave this as an exercise. The first three properties follow easily from the relation
(6.22) and properties of the determinant, and the remaining two can be verified by direct
computations.

Property (iii) means that x x y is orthogonal to the plane spanned by x and y, and (iv)
gives us the length as

Il < w17 = (1[I |y |[*|sin 6], (6.23)
where @ is the angle between x and y (since (x -y)? = |x[|?|ly||? cos? ) . Let n be the unit
vector (i.e., ||n|| = 1) orthogonal to x and y chosen according to the right hand rule: if x

points in the direction of the thumb, y in the direction of the index finger, then n points in
the direction of the middle finger. E.g. if x = e;, y = e2 then n = e3, where as x = eo,
y = e gives n = —e3. Then we have

Theorem 6.20. The cross product satisfies
x xy = [[x[l[lyll[sin6n .
This result is sometimes taken as the definition of the cross product.
Proof. By property (iii) of Theorem 6.21 and (6.23) we have that
x xy = ol|x|[ly[l[sinn

where the factor ¢ can only be 1 or —1. Now we notice that all known expressions on the
left and the right hand side are continuous functions of x and y, hence o must be as well
continuous. That means either o = 1 for all x,y € R? or ¢ = —1 for all x,y € R3?. Then
using e; X ea = e3 gives 0 = 1. O

Property (v) of Theorem 6.21 implies that the cross product is not associative, i.e., in
general (x X y) X z # x x (y x z). Instead the so called Jacobi identity holds:

xX(yxz)+yx(zxx)+zx(xxy)=0.

Another relation which can be derived from the product formula for determinants and
(6.22) is

Theorem 6.21. Let A € M3(R) and det A # 0, then

(Ax) x (Ay) =det A (A Hxxy). (6.24)
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Proof. Let us in the following denote by (z,y,x) the matrix with columns z, x,y. We have

e; - ((Ax) x (Ay)) = det(e;, Ax, Ay)
= det Adet(A e, x,y) (6.25)
=det A(A7'e;) - (x xy) =det Ae; - ((At)_l(x Xy)) .

O]

The relation in the theorem simplifies for orthogonal matrices. Recall that O is orthogonal
if O'O = I, and this implies that det O = £1. The set of orthogonal matrices with det O = 1
is called SO(3) := {0 € M3(R); O'O =1 and det O = 1}. For these matrices (6.24) becomes

Oxx 0y =0(xxYy). (6.26)

The matrices in SO(3) correspond to rotations in R3, so this relation means that the cross
product is invariant under rotations.
Finally we have the following geometric interpretations:

e ||x x y|| is the area of the parallelogram spanned by x and y.
e x - (y X z) is the oriented volume of the paralellepiped spanned by x,y, z.

These will be discussed on the problem sheets.



Chapter 7

Vector spaces

In this section we will introduce a class of objects which generalise R", so called vector
spaces. On R™ we had two basic operations, we could add vectors from R™ and we could
multiply a vector from R™ by a real number from R. We will allow for two generalisations
now, first we will allow more general classes of numbers, e.g., C instead of R, and second we
will allow more genaral object which can be added and multiplied by numbers, e.g., functions.

7.1 On numbers

We will allow now for other sets of numbers then R, we will replace R by a general field of
numbers IF. A field I is set of numbers for which the operations of addition, subtraction,
multiplication and division are defined and satisfy the usual rules. We will give below a set
of axioms for a field, but will not discuss them further, this will be done in the course on
algebra. Instead we will give a list of examples. The standard fields are C, R and Q, the set
of complex, real, or rational numbers, and whenever we use the symbol F you can substitute
one of those of you like. The sets IN and Z are not fields, since in IN one cannot subtract
arbitrary numbers, and in Z one cannot divide by arbitrary numbers.

More generally sets of the form Q[i] := {a+ib , a,b € Q} or Q[v2] := {a++2b , a,b € Q}
are fields, and there many fields of this type which one obtains by extending the rational
numbers by certain complex or real numbers. These are used a lot in Number Theory.

Finally there exists as well finite fields, i.e., fields with only a finite number of elements,
e.g., if p is a prime number then Z/pZ is field with p elements. Such fields play an important
role in many areas, in particular in Number Theory and Cryptography.

The formal definition of a field I is as follows:

Definition 7.1. A field is a set IF with at least two elements on which there are two operations
defined, addition I > o, — a+ B € F and multiplication F > «, 8 — af which satisfy the
following properties (for any a, 3,y € I):

o Commutativity: o+ 6 =0+ a and af = fa

L©University of Bristol 2012 This material is copyright of the University unless explicitly stated otherwise.
It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your
private study only.
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o Associativity: a+ (B+7) = (a+ B) + v and a(By) = (afB)y

o Multiplication is distributive over addition: (8 + ) = aff + ay
o FEuxistence of 0: there exist an element 0 € F with a4+ 0 = «

e FExistence of 1: there exist an element 1 € I with ol = «.

o [nverses: for any o € T there exist an —a € F with o+ (—a) = 0 and if o # 0 there
exist an o' € F with o ta =1

From now on we will write I to denote a field, but you can think of it as just being R or
C, the two most important cases.

The properties of the real numbers R which we used in what we have done so far in
this course are the ones they share with all other fields, namely addition and multiplication.
Therefore almost all the results we have developed in the first part of the course remain true
if we replace R with a general field F. In particular we can define

IFn = {(xlax27”' 7-7571)’ L1, T2, " 3, Tn E]F}

i.e., the space of vectors with n components given by elemnets of IF, and matrices with
elements in IF

Mmm(]F) = {A = (aij); aij € F } .

Then the normal rules for matrix multiplication and for applying a matrix to a vector carry
over since they only rely on addition and multiplication, e.g., Ax =y is defined by

n
Yi = E aija:j, i:1,2,---,m.
7j=1

Therefore the theory of systems of linear equations we developed in Chapter 3 remains valid
if we replace R by a general field IF. That means the coefficients in the equation

Ax=Db,

which are the elements of A and the components of b are in I and the unknowns x are as
well sought in IF. For instance if IF = Q that means we have rationale coefficients and look
for rationale solutions only, whereas if I = C we allow everything to be complex.

Since elementary row operations use only operations which are defined in every field IF,
not just in R, we can use the same methods for solving systems of linear equations. We get
in particular that Theorem 3.20 remains valid, i.e., we have

Theorem 7.2. Let Ax = b be a system of equations in n unknowns over I, i.e., A €
Mpn(F), b e F™ and x € I, and let M be the row echelon form of the associated augmented
matriz. Then

(i) the system has no solutions if and only if the last column of M contains a leading 1,

(ii) the system has a unique solution if every column except the last one of M contains a
leading 1,
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(iii) the system has infinitely many solutions if the last column of M does not contain a
leading 1 and there are less than n leading 1’s. Then there are n — k unknowns which
can be chosen arbitrarily, where k is the number of leading 1’ s of M

And we get as well the following

Corollary 7.3. Let A € My, ,(IF) and assume that the only solution to Ax = 0 is x = 0.
Then m > n, i.e., we need at least as many equations as unknowns to determine a unique
solution.

We will occasionally use this result in the following, but we will not repeat the proof, it
is identical to the case F = R.

7.2 Vector spaces

A vector space is now a set of objects we can add and multiply by elements from F, more
precisely the definition is:

Definition 7.4. A set V, with V # (), is called a vector space over the field ¥ if there are
two operations defined on V :

o addition: VxV =V, (v,w) — v+ w
o scalar multiplication: F x V. — V, (A, v) — Av
which satisfy the following set of axioms:

Viv+w=w+v forallv,w eV
V2 there exists a 0 € V, withv+0=wv for allveV
V3 for every v € V there is an inverse —v € V, i.e, v+ (—v) = 0.
Viu+ (v+w)=(u+v)+w for all u,v,w e V.
V5 Mv+w) = v+ w forallvywe V, A e F
V6 (A +p)v= v+ pv foralveV, \peF
V7 (Ap)v = Apw) for allveV, \,peF
V8§ lv=w forallveV
V9 0v=0 forallveV

This set of axioms is one way to formalise what we meant when we said that on V' ”the
usual rules” of addition and multiplication by numbers hold. V1 — V4 can be rephrased by
saying that (V,+) forms an abelian group, and V5 — V9 then describe how the multiplication
by scalars interacts with addition. One can find different sets of axioms which characterise
the same set of objects. E.g. the last property, V9 follows from the others, as we will show
below, but it is useful to list it among the fundamental properties of a vector space.

Lemma 7.5. (V9) follows from the other axioms.
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Proof. By (V8), (V2) and (V6) we have v = 1lv = (1 + 0)v = 1v + 0v = v + Ov, hence
v = v+ 0v. Now we use (V3) and add —v to both sides which gives 0 = 04 0v = 0v+0 = Ov
by (V1) and (V2). O

Let us look at some examples:

(i)

(i)

(iii)

(iv)

Set V. =TF" := {(x1,29, -+ ,xn), x; € F}, i.e., the set of ordered n-tuples of elements
from F. This is the direct generalisation of R"™ to the case of a general field . For
special fields this gives for instance C™ and Q". We define addition and multiplication
by scalars on IF"* by

— (z1,22, - s xn) + (Y1, ¥2, - yn) = (1 + Y, 22+ Y2, -, T + YUn)
- >\($1,$2,"' 7xn) = ()\xlv)\x2a"' 7)\1:71)

i.e., just component-wise as in R™. Since the components x; are elements of I the
addition and scalar multiplication is induced by addition and multiplication in IF. That
IF™ satisfies the axioms of a vector space can now be directly checked and follows from
the properties of IF.

Take V = C and IF = R, then V is a vector space over R. Similarly R is a vector space
over Q.

Let S = {(aj)jen, ,a; € F} be the set of infinite sequences of elements from F, i.e.,
(aj)jen is a shorthand for the sequence (ai,as,as,as,---) where the numbers a; are
chosen from IF. On S we can define

— addition: (aj)jen + (bj)jen = (aj + b)) jen
— scalar multiplication: A(a;)jen := (Aaj)jen

this is similar to the case ", but we have n = co. You will show in the exercises that
S is a vector space over IF.

Another class of vector spaces is given by functions, e.g., set F(R,F) :={f : R — F},
this is the set of functions from R — T, i.e,, f(x) € F for any x € R. For instance
if F = C then this is the set of complex valued functions on R, and an example is
f(z) =e®. On F(R,TF) we can define

— addition: (f + g)(x) := f(z) + g(x)
— scalar multiplication: (Af)(x) := Af(z)

so the addition and multiplication are defined in terms of addition and multiplication
in the field IF. Again it is easy to check that F(R,T) is a vector space over .

A smaller class of function spaces which will provide a useful set of examples is given
by the set of polynomials of degree N € IN with coefficients in IF:

Nfl_'_

Py = {aNa;N+aN_1a: o t+ax+ao; an,an—1,- - a9 € F}.

These are functions from F to IF and with addition and scalar multiplication defined as
in the previous example, they form a vector space over IF.
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(vi) Let My, n(IF) := {A = (as5) ,a;; € '} be the set of m x n matrices with elements from
IF, this is a direct generalisation of the classes of matrices we met before, only that
instead of real numbers we allow more general numbers as entries. E.g.,

i 25
=%

is in M>(C). On My, »(IF) we can define addition and multiplication for each element:
— addition: (a;j) + (bsj) := (asj + bij)
— scalar multiplication: A(ai;) = (Aaij)
again it is easy to see that M, ,(IF) is a vector space over F.
The following construction is the source of many examples of vector spaces.
Theorem 7.6. Let W be a vector space over the field F and U a set, and let
FUW):={f:U—-W} (7.1)
be the set of maps, or functions, from U to W. Then F(U,W) is a vector space over IF.

Here we use the expressions map and function synonymously. Note that we mean general
maps, not necessarily linear maps, and U need not be a vector space. Addition and scalar
multiplication are inherited from W, let f,g € F(U, W) then we can define f + g by

(f +9)(u) = f(u) + g(u)

for any w € U and Af by
(Af)(u) = Af(u) (7.2)

for any w € U. Here we use that f(u) € W and g(u) € W and hence they can be added and
multiplied by elements in the field.

Proof. We have to go through the axioms:
(V1) f(u)+ g(u) = g(u) + f(u) holds because W is a vector space
(V2) the zero element is the function 0 which maps all of U to 0.

(V3) the inverse of f is —f defined by (—f)(u) = —f(u) where we use that all elements in
W have an inverse.

(V4) follows from the corresponding property in W: (f + (g + h))(u) = f(u) + (g + h)(u) =
f(u) 4+ (g(u) + hw)) = (f(u) + g(w) + h(u) = (f + 9)(u) + h(v) = ((f + 9) + h)(w).

(V5) this follows again from the corresponding property in W: (A(f+¢))(u) = A(f+¢g)(u) =
A(f(g) + f(u) = Af(u) + Ag(u) = (Af)(u) + (Ag)(u).

(V6) (A4 ) f)(w) = A+ p)f(u) = Af(u) + pf(u) = Af)(uw) + (ug)(u).
(VT) () f)(u) = M) f(u) = Apf () = Mpf)(uw) = (A(pf)) (w).
(V8) (1f)(u) = 1f(u) = f(u)
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(V9) (0f)(u) = 0f(u) =0

Examples:

e Let U =R and W =T, then F (R, ) is the set of functions on R with values in I, for
instance F'(R,R) is the set of real valued functions and F(RR, C) is the set of complex
valued functions.

e More generally, if U is any subset of R, then F(U,T) is the set of functions from U to
I.

o Let U ={1,2,--- ,n} be the finite set of the first n integers and W = F. Then an ele-
ment in F'(U, ) is a function f: {1,2,--- ,n} — I, such a function is completely deter-
mined by the values it takes on the first n integers, i.e., by the list (f(1), f(2),---, f(n)).
But this is an element in F", and since the functions can take arbitrary values values
we find

FUTF)=TF".

e If U =N and W = F, then an element in F(IN,F) is a function f : IN — I which is
defined by the list of values it takes on all the integers

(F), £2), fB)s -5 f(R), )
but this is nothing but an infinite sequence, hence F(IN,IF) = S.

o Let U = {1,2,--- ,m} x{1,2,--- ,;n} = {(4,5);i=1,2,--- ,m,j =1,2--- ,n} be
the set of ordered pairs of integers between 1 and m and 1 and n, and W = IF. Then
F(U,F) = My, »,(IF) is the set of m x n matrices with elements in IF.

Let us note a few immediate consequences of the axioms.
Proposition 7.7. Let V' be a vector space over I, then

(a) Assume there is a 0/ € V with 0/ +w = w for allw € V, then 0/ =0, i.e., there is only
one zero element in V.

(b) Let v eV and assume there is a w € V with v+ w = 0, then w = —v, i.e., the inverse
of each vector is unique.

Proof. To prove (a) we apply V2 to v =0, i.e. , 0'+0 = 0". On the other hand side, if we
apply the assumption in (a) to w =0 we get 0' + 0 = 0, and therefore 0' = 0.
To show (b) we add —v to v + w = 0 which gives

(v+w)+ (—v) =0+ (—

v)
By V1 and V2 the right hand side gives 0+ (—v) = (—v) + 0 = —v. The left hand side gives
by V1,V4, V3 and V2 (v+w)+(—v) = (—v)+ (v+w) = ((—v)+v)+w = (v+(—v))+w =
0 4+ w = w and therefore w = —v. O

By V9, V6 and V8 we see as well that
OZOU: (1_1)'02 1’U—|—(—1)’U:U—|—(_1)fu

so (—1)v = —v.
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7.3 Subspaces

As in R™ we can look at subspaces of general vector spaces.

Definition 7.8. Let V' be a vector space over F. A subset U C V is called a subspace if U
s a vector space over I with the addition and scalar multiplication induced by V.

This is a natural definition, let us look at some examples:

(i) Let V. =F" and U = {(a1,a2, - ,an),a1 = 0}. Going through the axioms one easily
sees that U is vector space, and hence subspace of V.

(ii) Let V.= F(R,F) and U = {f : R — F; f(0) = 0}. Again one can go through the
axioms and see that U is a vector space, and hence a subspace of V.

(iii) Pn, the set of polynomials of degree N with coefficients in I is a subspace of F(IF, ).

The drawback of this definition is that in order to check it we have to go through all the
axioms for a vector space. Therefore it is useful to have a simpler criterion which is provided
by the next theorem.

Theorem 7.9. Let V' be a vector space over . A subset U C V is a subspace if the following
three conditions hold

(i) U is not empty: U # (.
(11) U is closed under addition: for allu,v/ € U, u+u' € U.
(iii) U is closed under multiplication by scalars: for all A\ € F and u € U, Au € U.

Proof. We have to show that U is a vector space over IF with the addition and scalar multi-
plication from V. Since U # () the first condition is fulfilled and there exits a u € U. Since by
(7i7) Ou € U and by axiom V9 Ou = 0 we have 0 € U which is axiom V2. Furthermore, again
by (#i7), since for u € U, (—1)u € U and (—1)u = —u we have the existence of an inverse for
every u € U which is V3. V1, V4-V9 follow then from their validity in V and the fact that
U is closed under addition and scalar multiplication.

O

This result is a further source of many examples of vector spaces, in particular spaces of
functions with certain properties:

e The set Py(IF) of polynomials of degree N with coefficients in I is a subset of F(IF, )
and it is closed under addition and scalar multiplication, hence it is a vector space.

e Theset PF(R,C):={f € F(R,C); f(x+1) = f(z) for all z € R} is the set of all peri-
odic functions with period 1 on R. This set is closed under addition and multiplication
by scalars, and hence is a vector space.

e The set C(R,R) of continuous functions f : R — R is a subset of F(R,R) which is
closed under addition and multiplication by scalars. Similarly

C*(R,R) := {f:R—JR;ZmEC(]R,]R) forogmgk}
x

is a vector space.
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o (4(R,R) C C(R,R), defined by f € Cp(R,R) if f € C(R,R) and there exist a Cy > 0
such that |f(x)] < Cf for all z € R, is a vector space.

If we have some subspaces we can create other subspaces by taking intersections.

Theorem 7.10. Let V' be a vector space over ' and U, W C V' be subspaces, then U NW is
a subspace of V.

We leave the proof as an easy exercise.
Another common way in which subspaces occur is by taking all the linear combination of
a given set of elements from V.

Definition 7.11. Let V' be a vector space over F and S C V' a subset.

(i) we say that v € V is a linear combination of elements from S if there exits
V1,09, , U €8 and A\, Ao, -+, A\, € F such that

U= A1v1 + Agv2 + -+ Apug .

(ii) The span of S, span(S), is defined as the set of all linear combinations of elements
from S.

The integer k& which appears in part (¢) can be an arbitrary number. If S is finite and
has n elements, than it s natural to choose £k = n and this gives the same definition as in
the case of R™. But in general the set S can contain infinitely many elements, but a linear
combination always contains only a finite number of them, and the span is defined as the set
of linear combinations with finitely many elements from S. The reason for this restriction
is that for a general vector space we have no notion of convergence of infinite sums, so we
simply can not say what the meaning of an infinite sum would be. When we will introduce
norms on vector spaces later on we can drop this restriction and allow actually infinite linear
combinations.

The span of a subset is actually a subspace.

Theorem 7.12. Let V be a vector space over F and S C V a subset with S # (), then span S
s a subspace of V.

Proof. S is nonempty, so for v € S we have v = 1v € span S, so spanS # (). Since the sum of
two linear combinations is again a linear combination, the set span .S is closed under addition,
and since any multiple of a linear combination is again a linear combination, span S is closed
under scalar multiplication. So by Theorem 7.9 span S is subspace. O

A natural example is provided by the set of polynomials of degree n, take S, to be the set
S, ={1,z,2% - 2"},
of all simple powers up order n, then S,, C F(IF,F) and
P, =spanl¥, .

is a subspace.
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An example with an infinite S is given by

Soo :i={2";n=0,1,2,---} C F(F,TF)

then P, := span S, is a vector space. Notice that P, consists only of finite linear combi-
nations of powers, i.e., p(z) € Px if there exists a k € N and ny,--- ,ngy € N, p1,--- ,pp € F
such that

k
pla) =) pix™ .
=1

The notion of a infinite sum is not defined in a general vector space, because there is no
concept of convergence. This will require an additional structure, like a norm, which gives a
notion of how close two elements in a vector space are to each other.

Examples similar to the above are:

e Trigonometric polynomials, for N € IN

TN ::span{ezmm; TL:—N7—N+1, 5_170)1)"' 7N_17N} .

e Almost periodic functions

AP := span{e*? , w € R} .

7.4 Linear maps
The notion of a linear map has a direct generalisation from R" to general vector spaces.

Definition 7.13. Let V,W be vector spaces over . A map T : V — W is called a linear
map if it satisfies

(i) T(u+v) =T (u)+T(v) for allu,v € V
(ii) T(Av) = AT'(v) for all X\ € F and v € V.

Let us look at some examples:

(i) Let V = P, and W = P,_1, the spaces of polynomials of degree n and n—1, respectively,
and D : V. — W be D(p(z)) = p'(x), the derivative. Then D reduces the order by 1, so
it maps P, to P,_1 and it defines a linear map.

(ii) Similarly, let g(z) = 2® — 22 be a fixed polynomial, then multiplication by q(z),
M,(p(x)) := q(x)p(z), defines a linear map M, : P, — P,43.

(iii) Let V = F(R,F), and set To(f(z)) := f(x 4+ «) for some fixed number a € R, then
T :'V — V is linear.

(iv) Again let 5 € R be a fixed number, and define Rg : F(R,F) — F by Rg(f(z)) := f(B),
then Rg is a linear map.
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Let us note as well some immediate consequences of the definition. From (i7) with A = 0
and (7) with w = —v we get that

T0)=0 and T(—v)=-T(v).

Furthermore combining (i) and (i7) gives for an arbitrary linear combination v = Zf:o Aivi,
with v; € V and \; € F fori=1,2,--- ,k , that

T ( Z; Am> - Z; AT (v;) . (7.3)

Many subspaces arise naturally in connection with linear maps.
Definition 7.14. Let V,W be vector spaces over F and T : V — W a linear map.

(i) the kernel of T is defined as

kerT:={veV K T(v)=0}.

(ii) the image of T is defined as

ImT :={w e W, there exist a v € V with T(v) =w} .

Theorem 7.15. Let VW be vector spaces over ¥ and T : V. — W a linear map. Then
kerT CV and ImT C W are subspaces.

Proof. The proof is identical to the one given for linear maps on R, so we omit it. 0
Let us look at the previous examples:
(i) ker D = Py = I the space of polynomial of degree 0 and ImD = P,,_;.

(ii) If p(x) = apaz™ + ap—12" 1 + - +ag € P, is in ker M, then g(z)p(z) =0 for all z € R
but q(z)p(x) = 2’p(z) — 2*p(x) = @n2™* + (an-1 = an)2™*? + (an-2 — an-1)z"*! +
-+ (ap —a1)x3 — apr?®. Now a polynomial is only identical to 0 if all coefficients are equal

to 0, and therefore g(x)p(x) = 0 implies a,, =0, ap—1 —a, =0, ... , a9—a1 =0, ap =0,
and therefore a, = ap—1 = --- = ap = 0, and so p = 0. So ker M, = {0}. Im M, is
harder to compute, and we will later on use the rank nullity theorem to say something
about Im M.

(iii) kerT, = {0} and Im7T, = F(R,F), since T_, o T,, = I, where I denote the identity
map.

(iv) ker(T1 — I) = PF (R, IF) the space of periodic functions with period 1.
(v) ker Rg = {f(x), f(#) =0} and ImRg = IF.

Further examples will be discussed on the problem sheets.
An interesting application of the above result is the following alternative proof that span S
is a subspace for the case that S is finite. So let V' be a vector space over IF, and S =
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{v1,v9, -+ ,v,} C V be a finite set of vectors, then we can define a linear map T : F" — V
by

Ts((w1, 2, ,Tn)) = 2101 + T2v2 + - + DUy . (7.4)
The map Ts generates for every element (z1,z2, - ,z,) € F™ a linear combination in V' of

vectors from S, and so it follows that
ImTg =span§ ,

and therefore span .S is a subspace of V.
We expect that a subspace is as well mapped to a subspace by a linear map.

Theorem 7.16. Let V,W be vector spaces over ¥ and T : V — W a linear map. If U C V
is a subspace, then T(U) = {T'(u),u € U} C W is a subspace, too.

The proof is a simple consequence of linearity and left as an exercise.
Interestingly, the set of linear maps from V' to W is actually as well a vector space.

Theorem 7.17. Let V,W be vector spaces over F and L(V,W) the set of linear maps from
V to W. On L(V,W) we have a natural addition and scalar multiplication defined by (T +
R)(v) :=T(v) + R(v) and (AT)(v) :== XT'(v), and L(V,W) is a vector space over IF.

Proof. We have L(V,W) C F(V,W), so we can use Theorem 7.9. (i) T'(v) := 0 for all
v € V is a linear map, hence L(V,W) # 0, (ii) (T + R)(u +v) = T(u + v) + R(u + v) =
T(u)+T(v)+ R(u)+ R(v) = (T + R)(u) + (T'+ R)(v) and (T + R)(\v) = T'(\v) + R(\v) =
AT (v) + AR(v) = AT + R)(v), so L(V,W) is closed under addition and similarly one shows
that it is closed under scalar multiplication. O

Of course linear maps can be composed and the composition will be again a linear map:

Theorem 7.18. If U, V,W are vector spaces over I, then if T € L(U,V) and R € L(V,W)
then
RoT e L(U,W) .

Furthermore
e Ro(S+T)=RoS+RoT ifS,T € L(U,V) and R € L(V,W)
e (R+S)oT=RoT+SoT ifT € L(U,V) and R,S € L(V,W)
e (RoS)oT =Ro(SoT) ifT € LU, U), S € L(U,V) and R € L(V,W) where U’ is

another vector space over IF.

We leave the proof as an exercise, its identical to the proof of Theorem 5.8 .

7.5 Bases and Dimension

Following the same strategy as for subspaces in R™ we want to see if we can pick nice subsets
B C V such that V = span B and B is in some sense optimal, i.e., contains the fewest possible
elements. Such a set will be called a basis, and the size of the set will be called the dimension
of V.

Defining what a smallest spanning set should be leads naturally to the notions of linear
dependence and independence.
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Definition 7.19. Let V be a vector space over F and S C V.

(a) We say that S is linearly dependent, if there are elements vi,ve, -+ v € S with
v; #vj fori# j and A\, Mg, -, A\ with \; #0 fori=1,--- ,k such that

0= Ao+ Xovg + -+ + \up, -
(b) We say that S is linearly independent if for any vy, - v € S the equation

Avr 4o+ Agv =0

has only the solution \y = --- = X\, = 0.

Linear dependence means that we can find a collection of vectors vy, --- ,v; in S and non-
zero coefficients A1, .-+, Ar € IF such that the corresponding linear combination is 0. This
means in particular that

-1
v = )\7()\2’02 4+ -+ )\k?)k) (75)
1

hence if S’ := S\{v1} then spanS = spanS’. So if S is linearly dependent one can find a
smaller set which has the same span as S. This is a useful observation so we put in in form
of a lemma.

Lemma 7.20. Let V' be a vector space over I and S C V', then S is linearly dependent if
and only if there exist a v € S such that span S = span(S\{v}).

Proof. Assume S is linearly dependent, then by (7.5) there is an element v; € S which can be
written as a linear combination v; = psvy + - - - + prvg of some other elements vy, --- v € S.
Now assume v € span S, then v can be written as a linear combination of elements from S, if
v1 is not contained in this linear combination then v € span(S\{v1}), and if v; is contained in
this linear combination then v = A\jv1 + Agwa + - - + Apwy, = A1 piave + - - - + A gV + Aows +
- 4 Awy, € span(S\{v1}) for some wy,--- ,w, € S\{vi}. Hence span S = span(S\{v}).

In the other direction; if span.S = span(S\{v}), then v € S € span(S\{v}) hence v is a
linear combination of elements from S\{v} hence S is linear dependent. O

Examples:

(i) Let V= C? F = C and v; = (1,1) and vy = (i,1), then vy + ivg = 0, hence the set
S = {v1,v2} is linearly dependent.

(ii) But we can view V = C? as well as a vector space over F = R, then v; = (1,1)
and vg = (i,1) are linearly independent, since in order that A\jv; + Agvg = 0 we must
have Ay = —i)g which is impossible for nonzero A1, Ay € R. So linear dependence or

independence depends strongly on the field IF we choose.

(iii) Let S = {cosx,sinx,e?} C F(R,C), with F = C. Then by e* = cosz + isinz the set
S is linearly dependent.

(iv) the smaller set S = {cosz,sinx} is linearly independent, since if Aj cosz + Agsinz =0
for all x € R, then for x = 0 we get \; = 0 and for x = 7/2 we get A2 = 0.

(v) Sp={1,z,2% - 2"} is linearly independent. We will show this in the exercises.
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(vi) Similarly the sets Sz := {e*™* ;n € Z} C F(R,C) and S := {e“*; w € R} C
F(R,C) are linearly independent. This will discussed in the exercises.

Definition 7.21. Let V be a vector space over I, a subset B C 'V is called a basis of V if
(i) B spans V, V = span B
(ii) B is linearly independent.
Examples:

(i) Theset S, = {1,z,22,--- , 2"} which by definition spans P, and is linearly independent
forms a basis of P,.

(ii) Let V = ", then & = {ej,eq, -+ ,e,} with e = (1,0,---,0), e2 = (0,1,---,0), ...
,en = (0,0,---,1) forms the so called standard basis of IF".

As in the case of subspaces of R™ one can show:

Theorem 7.22. Let V' be a vector space over F and B C 'V a basis of V, then for anyv € V
there exist a unique set of vi,ve,--- ,vp € B and A1, Aa, -+, A\p € F, with \; # 0, such that

v:)\lvl—f—‘---i-)\kvk.

Since the proof is almost identical to the one for subspaces in R"™ we leave it as a an
exercise. The only major difference now is that in general a basis can contain infinitely many
elements, in this case the number k, although always finite, can become arbitrary large.

Or main goal in this section is to show that if V' has a basis B with finitely many elements,
then any other basis of V' will have the same number of elements. Hence the number of
elements a basis contains is well defined and will be called the dimension. In the following we
will denote by |S| the number of elements in the set S, or the cardinality.

We will restrict ourselves to the case of vector spaces which can be spanned by finite sets:

Definition 7.23. We call a vector space V' over a field F finite dimensional if there exits
a set S CV with V. =span S and |S| < co.

Theorem 7.24. Let V be a vector space over F and S C'V a set with |S| < oo and span S =
V, then S contains a basis of V. In particular every finite dimensional vector space has a
basis.

Proof. This is an application of Lemma 7.20: If S is linearly independent, then S is already
a basis, but if S is linearly dependent, then by Lemma 7.20 there exist a v; € S such that
Sy := S\{v1} spans V. Now if S; is linearly independent, then it forms a basis, if it is not
linearly independent we apply Lemma 7.20 again to obtain a smaller set So which still spans
V. Continuing this process we get a sequence of sets S, S, 52, - with |S;+1| = [Si| — 1, so
with strictly decreasing size, and since we started with a finite set S this sequence must stop
and at some step k the corresponding set S; will be linearly independent and span V', and
hence be a basis of V. O

The next result shows that a linearly independent set can not contain more element than
a basis, and it is the main tool to show that any two bases have the same number of elements.
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Theorem 7.25. Let V' be a vector space over ', B C V a basis with |B| < co and S CV a

linearly independent subset. Then
S| < 1B .

We will skip the proof since it is identical to the one of the corresponding result in R”,
see Theorem 4.9.
As a Corollary we get

Corollary 7.26. Let V be a vector space over IF, if V' has a basis with finitely many elements,
then any other basis of V' has the same number of elements.

Proof. Let B,B" C V be two bases of V, since B’ is linearly independent we get |B'| < |B|.
But reversing the roles of B and B’ we get as well |B| < |B'|, and hence |B| = |B/|. O

As a consequence we can define the dimension of a vector space which has a basis with
finitely many elements.

Definition 7.27. Let V be vector space and assume that V has a basis B with finitely many
elements, then we define the dimension of V as

dimV :=|B| .

This definition works as well for infinite bases, but to show this is beyond the scope of
this course.
Let us look at some examples:

(i) dimF™ = n, since B = {e1,e9,--- ,e,} is a basis of F".

1 i=kj=1
(ii) dim M, ,(F) = mn, since if we set Ey := (a;j) with a;; = ! ’]' , then the
0 otherwise

seot of By, k=1,---,m,l=1,--- ,n, form a basis of My, ,(IF)
(iii) We will see later that dim L(V, W) = dim V dim W.
(iv) dim P, =n + 1.

If V does not have a finite basis, it is called infinite dimensional. Function spaces are
typical examples of infinite dimensional vector spaces, as is the space of sequences. There is
a version of Theorem 7.25 for infinite dimensional spaces which says that any two bases have
the same cardinality. But this is beyond the scope of the present course.

Note that the definition of dimension depends on the field we consider. For example C?
is a vector space over C and as such has a basis ej, es, so dim C? = 2. But we can view C?
as well as a vector space over R, now eq, es are now longer a basis, since linear combinations
of e1, es with real coefficients do not give us all of C?. Instead ey,ieq, es,ies form a basis, so
as a vector space over R we have dim C? = 4. This dependence on the field I is sometimes
emphasised by putting IF as a subscript, i.e., dimp V' is the dimension of V' over IF. In our
example we found

dimeC?=2, dimpC’=1.

The difference can be even more dramatic: for instance we can view R as a vector space over
R and over Q, and dimg R = 1, but dimg R = 0.
Let us now look at some more results on bases.
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Theorem 7.28. Let V' be a vector space over I and assume V is finite dimensional. Then
any linearly independent subset S C V' can be extended to a basis B, i.e., there exist a basis
such that S C B.

The proof will follow from the following Lemma:

Lemma 7.29. Assume S C V is linearly independent and span S # V', then for any v €
V\span S the set S U{v} is linearly independent.

Proof. We have to consider
AV F -+ Agvp A =0

where vy, - v € S. If X # 0, then v = —1/A( \jv; + -+ + A\gvg) € spanS, which is a
contradiction, hence A = 0. But the remaining vectors are in S and since S is linearly
independent Ay = --- = A\ = 0. 0

Proof of Theorem 7.28. We either have span S = V, then S is already a basis, or span S # V,
then we use the Lemma and extend S to S := S U {v} where v € V\ spanS. Then SO is
linearly independent and if it is a basis we are done, otherwise we keep on extending. Since
the sets keep increasing and are still linearly independent the process has to stop since a
linearly independent set can not have more elements than the dimension of V. O

These fundamental theorems have a number of consequences:
Corollary 7.30. Let V be a vector space of dimension dimV < oo and let S C V, then
(i) If S is linearly independent, then S has at most dim V' elements.
(i) If S spans V', then S has at least dim V' elements.
(iii) If S is linearly independent and has dim V' elements, then S is a basis of V.
(iv) If S spans V' and has dim' V' elements, then S is a basis of V.

Proof. We will prove (i) and (ii) in the exercises. To prove (ii7) we note that since S is linearly
independent, we can extend it to a basis B. But since dim V' = n, B has n elements and since
S has as well n elements but is contained in B we have S = B.

To show (iv) we note that since S spans V', there is a basis B with B C S, but both B
and S have n elements, so B=S. [

This corollary gives a simpler criterion to detect a basis than the original definition. If
we know the dimension of V' then any set which has dim V' elements and is either linearly
independent or spans V is a basis. Le., we only have to check one of the two conditions in
the definition of a basis.

Remark: In particular if V = F" then we can use the determinant to test if a set of n

vectors vy, - - - , vy € ™ is linearly independent, namely if the determinant of the matrix with
column vectors given by the vy, - -+ , v, is non-zero, then the set S = {vy,--- ,v,} is linearly
independent, and since dim IF” = n, by the corollary it forms a basis then.

Examples:

i) For v; = (1,2i),v2 = (—i,3) € C? we find det 1. ) = 1, hence the vectors form a
) 21 3
basis of C2.
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(i) For v; = (1,-1.3),v2 = (2,0, —1),v3 = (—1,-2,0) € C we find

1 2 -1

so they form a basis of C3.
Finally let us look at subspaces; the following appears quite natural.

Theorem 7.31. Let V be a vector space over I with dimV < oo and let U C V' a subspace
of V, then

(i) dimU < dimV
(i) if dimU = dim 'V then U = V.

Proof. Let us prove (i) and leave (ii) as an exercise. Notice that we cannot assume that U is
finite dimensional, we have to show this as part of the proof. If U = {0} we have dimU =0
and so dimU < dim V' always holds. If there exist a v € U with u # 0 we can set S = {u},
which is a linearly independent set, and extend it to to a basis of U following the procedure
described in the proof of Theorem 7.28. Since any subset S C U is as well a subset of V', and
dim V < oo the procedure of extending S step by step must stop at some point since there
can be no more than dim V' linearly independent vectors in S. So we can find a basis By of
U and dimU = |By| < dim V. O

7.6 Direct sums

The direct sum will give us a way to decompose vector spaces into subspaces. Let V be a
vector space over IF and U, W C V be subspaces, then we set

U+W ={ut+w;uelU,weW}.
This is the sum of two subspaces and it is easy to see that it is a subspace as well.

Definition 7.32. Let V' be a vector space over B and U,W C V be subspaces which satisfy
UNW = {0}, then we set
UeW =U+W,

and call this the direct sum of U and W.

This is a special notation for the sum of subspaces which have only the zero vector in
common.

Theorem 7.33. Let V' be a vector space over I and U,W C V' be subspaces which satisfy
UNW = {0}, then any v € U @ W has a unique decomposition v = u + w with u € U and
weW.

Proof. By the definition of the sum of vector spaces there exit w € U and w € W such that
v = u + w. To show that they are unique let us assume that v = «' + w’ with «/ € U and
w' € W, then u+w = v +w' and this givesu—v =w' —w. but u—v' € U and w—w' € W
and since UNW = {0} we must have u—u = 0 and w—w’ = 0, hence u = v/ and w = w'. O
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Theorem 7.34. Let V be a vector space over I and U, W C V be finite dimensional subspaces
which satisfy UNW = {0}, then

dim(U @ W) =dimU +dim W .
Proof. Let By be a basis of U and By a basis of W, then we claim that By U By is a basis
of U W:

e span By U By = U & W, this follows since any v € U @ W can be written as v = u 4+ w
and v € span By and w € span By .

e To show that By U By is linearly independent we have to see of we can find a linear
combination which gives 0. But there are u,w such that 0 = u + w and by uniqueness
of the decomposition u = 0 and w = 0, and since By and By are linearly independent
the only way to get 0 as a linear combination is to choose all coefficients to be 0.

Since By N Bw = 0 we get dimU & W = |By U Bw| = |[By| + |Bw| = dim U + dim W. O

Theorem 7.35. Let V be a vector space over F with dimV < oo and U C V a subspace,
then there exist a subspace W C V with W NU = {0} such that

V=UacW.

W is called a complement of U in V.
Proof. Let By be a basis of U and let By be a basis of V with By C By, then we claim that

W = span (BV\BU)

is a complement of U in V. By construction it is clear that V' = U 4+ W since U + W contains
a basis of V. But if v € U NW then v can be expanded in elements from By and in elements
from By \By, and so if v # 0 then this would imply that By is linearly dependent, hence
v=0and UNW = {0}. O

Let us look at a few Examples:

(i) If V = R? and U = span{v} for some v € V, v # 0, is a line, then for any v' € V such
that {v,v'} form a basis of R? we have R? = span{v} @ span{v’}. Sometimes one writes
in a more suggestive notation span{v} = Rw, then

R*=Rve Rv ,
whenever v and v’ are linearly independent.

(ii) More generally, if U C " has basis vy, vy, -+ , vk, then in order to find a complement
of U we have to find vg41,---,v, € F” such that vy, va, -, 0%, Vgs1, -+, v, form a
basis of F™. Then W = span{vgii,---,v,} satisfies F* = U & W. Eg., if U =
span{(i, 1,i), (0,i,1)} € €3 then W = span{(1,0,0)} is a complement since

i 1 1
det {0 i 1] =2
100

and therefore the vectors form a basis by the remark after Corollary 7.30.



100

CHAPTER 7. VECTOR SPACES

(iii) Let V = M, ,(IF) and consider the subset of symmetric matrices V* :={A € V| Al =

A} and the subset of anti-symmetric matrices V=~ := {A € V| At = —A}, where A
denotes the transposed of A. These subsets are actually subspaces and we have

V=vteVv .
To see this consider for an arbitrary matrix A € V the identity
1 ¢ 1 t
Azi(A+A)+§(A—A) )

the first part on the right hand side is a symmetric matrix, and the second part is an
antisymmetric matrix. This shows that V™ + 1V~ =V, and since the only matrix which
is symmetric and anti-symmetric at the same time is A = 0 we have VT NV~ = {0}.

Remark: By generalising the ideas used in the proof of Theorem 7.34 it is not to hard to

show that

holds.

dim(U + V) =dimU 4+ dimV — dim(U NV)

7.7 The rank nullity Theorem

In the last section we have used bases to put the notion of dimension on a firm ground. We
will apply dimension theory now to say something about the properties of linear maps.

Definition 7.36. Let V., W be vector spaces over F and T : V — W a linear map. Then we
define

(i) the rank of T' as rank T := dimIm T

(ii) the nullity of T' a nullity T := dim ker T'.

Examples:

(i) Let T : C? — C be defined by T'(21, z2) = 21 — 22, then T(z1, 29) = 0 if 21 = 23, i.e., the

kernel of T' consists of multiples of (1,1), so nullity 7" = 1. Since T'(z,0) = z we have
Im7T = C and so rank T = 1.

(ii) Let T : C?> — €2 be defined by T'(z1, 22) = (21, 22, 21 — 22), then T(z1,22) = 0 implies

z1 = z9 = 0, so nullity 7" = 0 and Im T is spanned by w; = (1,0,1) and we = (0,1,—1) ,
since T'(z1, z2) = z1w1 + zow2 and since wy, wo are linearly independent we find rank 7' =
2.

(iii) For the derivative D : P, — P,_1 we get nullity D = 1 and rank D = n.

The rank and nullity determine some crucial properties of T

Theorem 7.37. Let VW be vector spaces over ¥ and T : V — W a linear map.

(i) T is injective if, and only if, nullity T' = 0.

(i) T is surjective if, and only if, rank T = dim W.
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(iii) T is bijective if, and only if, nullity T = 0 and rank T = dim .
Proof. Exercise, similar to the case of linear maps on R" O

Injectivity and surjectivity of a map are closely related to how the map acts on linearly
independent or spanning sets.

Theorem 7.38. Let VW be vector spaces over ¥ and T : V — W a linear map.

(i) Assume S C V is linearly independent and T is injective, then T'(S) C W is linearly
independent.

(ii) Assume S CV spans V and T is surjective, then T'(S) spans W.

Proof. (i) Any element in T'(.S) is of the form w = T'(v) for some v € S, hence to test linear
independence we have to see if we can find vy, -+ ,vp € S and Ay, --- , A\ € IF such that

S NT (i) = 0, but SSF A T(v) = T(Zle )\ivi> and so S2F | \jv; € ker T. But

T injective means that ker T' = {0} so Zle Av; = 0, and since S is linear independent
we must have A\; = --- = A\ = 0. Therefore T'(.S) is linearly independent, too.

(ii) That T is surjective means that for any w € W exists a v € V such that T'(v) = w.
Since S spans V' we can find vy, - ,vp € S and A1, , A\p € F such that v = Zle Aiv;
and so w =T(v) = Zle AT (v;) € span{T(S)}. Therefore spanT'(S) = W.

U

As a consequence we immediately get

Corollary 7.39. Let V,W be vector spaces over ¥ and T : V. — W a linear map and assume
dimV < oo, then if nullity T = 0 we have

rankT =dimV .

Proof. T is injective since nullity 7' = 0, so if By is a basis of V, then T(By) is linearly
independent and by construction T'(By ) spans Im T, therefore T'(By ) is a basis of ImT" and
then rank 7" = dimIm 7T = |T'(By)| = |By| = dim V. O

The main result of this section is the following theorem which relates dim V' and the rank
and nullity of a map.

Theorem 7.40. Let V,W be vector spaces over I and T : V — W a linear map and assume
dim V' < oo, then
rank 7'+ nullity 7' = dim V' .

A detailed proof is given as an exercise. But we will sketch the main idea. Since ker T C V
is a subspace and V is finite dimensional we can find a complement U of kerT in V, i.e.,
UnkerT = {0} and
V=kerToU.

Note that we have then dim V' = nullity T+dim U. Now any v € V can be written as v = v+u
with ¢ € kerT and v € Uand so T'(v) = T'(u), hence ImT = T'(U). But the restriction of
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T to U, T|y, has nullity T'|y = 0 and rankT'|y = dimT(U) = rank T, and so by applying
Corollary 7.39 to T'|y we get dimU = rank 7.

As an application let us reconsider Example (ii) after Definition 7.13, we considered
My(p(x)) == q(x)p(x) for q(z) = 3 — 22 on the spaces P, to P,13. We found ker M, = {0},
so nullity M, = 0, but Im M, is harder to describe explicitly. But the rank nullity theorem
tells us that since dim P, = n + 1 we have rank M, = n + 1 and so dimIm M, = n + 1.

Let us note the following general result which has a very short proof using the rank nullity
theorem, and so we leave it as an exercise.

Theorem 7.41. Let VW be finite dimensional vector spaces over F andT : V. — W a linear
map, then

(i) Suppose dim W > dim V', then T is not surjective.
(ii) Suppose dim W < dim V', then T is not injective.

(iii) Suppose dimV = dim W, then T is surjective if and only if T is injective.

7.8 Projections

A class of linear maps which are closely related to the decomposition of a vector space into
direct sums is given by projections.

Definition 7.42. A linear map P : V — V is called a projection if P> = P .
Examples:

e Let V = M,(F) then Sy (A) := J(A+ A") and S_(A) := (A — A") both define maps
from V to V and bot are projections. Let us check this for S

S.(S,(A)) = % ;(A+At)+;(A+At)t] - ;B(AJrAt)Jr;(AtJrA) _ %(A+At) — S, (A)

where we have used that (A?)! = A. This should as well be clear just from the properties
of S;, S;(A) is the symmetric part of the matrix A, taking the symmetric part of a
symmetric matrix then gives just the symmetric matrix. Similarly S_(A) is the anti-
symmetric part of A, and we have

A=S54(A)+S_(4) .
e Let V = F(R,C) then Sy f(z) := 3(f(z) £ f(—x)) defines two maps S;,5_: V — V,
and both are projections.
An important property of projections is the following;:
Lemma 7.43. Let P:V — V be a projection, then v € Im P if, and only if, Pv = v.

Proof. Assume Pv = v, then by definition v € Im P. Now if v € Im P, then there exists a
w € V such that v = Pw and then

Pv=Pw=Pw=vuv,

where we have used that P%2 = P. O
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Now with the help of the rank nullity theorem we can prove the following (but because of
rank-nullity we need dimV < o0).

Theorem 7.44. Let V be finite dimensional,and P :V — V be a projection. Then
V=kerP®ImP .

Proof. We first show that ker P N Im P = {0} so that the sum of the two spaces is really a
direct sum. Let v € ker P N Im P, then by lemma 7.43 v = Pv (since v € Im P), but Pv =0
(since v € ker P), hence v = Pv =0 and so ker PN Im P = {0}.

Now by theorem 7.34 and the rank nullity theorem we have

dim(ker P @ Im P) = dimker P + dimIm P = dim V'
and since ker P @ Im P C V' we get by part (i) of Theorem 7.31 that
kerPOImP =V .

O]

This theorem shows that any projector defines a decomposition of the vector space into a
direct sum of two vector spaces, the image and the kernel of the projector.
Let us look at the previous examples:

e In the case of S} : M,(F) — M,(F) we have ImS; = M, (IF) is the subspace of
symmetric matrices and ker Sy = Mn (IF) is the space of antisymmetric matrices (since
S, (A) = 0 is equivalent to A® = —A). Hence the theorem says

My (F) = M, (F) & M, (F) ,

i.e, the space of square matrices can be decomposed into the symmetric and anti-
symmetric matrices.

e Similarly in the case Sy : F(R,C) — F(R,C) weget Im S, = FH(R,C) := {f(2); f(—=)
f(x)} is the space of even functions and ker Sy = F~ (R, C) := {f(z); f(—z) = —f(z)}

is the space of odd functions. Hence

F(R,C) = Ft(R,C)® F~(R,C) .

This relation between projections and decompositions into subspaces can be inverted. Let
U,W C V be subspaces with
V=UsoW.

Then according to Theorem 7.33 we can decompose any vector v € V in a unique way into
two components, v € U and w € W, v = u + w, we define now a map

Pyewv:i=w , (7.6)

i.e., we map a vector v to its component in W, or we can rewrite the defining condition as
PU@W(U + w) =w.
To illustrate the definition let us look at some examples:
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e Let V =R? and U = span{(0,1)}, W = span{(1,1)}, then V = U @ W. To compute
Pygwv we have to decompose v = u + w. Let us write v = (x,y), then we must find
a, B such that (z,y) = v = «(0,1) + B(1,1) (since any vector in U is a multiple of
(0,1)amd any vector in W is a multiple of (1,1)) this vector equation is equivalent to
the two equations for the components

r=0, y=a+p,

and hence « = y — x and 3 = x. Therefore u = (0,y — z) and w = (x, z), and so

T x . 1 0
Puaw (y) = <w> i.e., Pygw = (1 0> :

e The same type of calculation gives that if U = span{(—1,1)} and W is unchanged, then

1/1 1

Theorem 7.45. The map Pygw : V — V defined by (7.6) is well defined, linear and is a
projection with ker Pygw = U and Im Pygyw = W.

Proof. That the map is well defined follows from the fact that the decomposition v = v + w
is unique. But it is not immediately obvious that it is linear, so let v = ' + w’ then
Pyew (v +v') = Pugw (u+u' +w+w') =w+w' = Pugw (v) + Puew (v') and Prgw (\v) =
Pygw (Au+Aw) = Aw = APygwv. Hence the map is linear. Now Py, (u+w) = Pregw (w) =
Pygw (u+w) so the map is a projection. Finally Pygw (v) = 0 means v = u+0, hence v € U,
so U = ker Pygw. And since Pygw (w) = w we have W = Im Pygw . O

The meaning of this theorem is that there is a on-to-one correspondence between projec-
tions and decompositions into subspaces.

7.9 Isomorphisms

A linear map between two vector spaces which is one-to-one is called an isomorphism, more
precisely:

Definition 7.46. Let V,W be vector spaces over I, a linear map T : V. — W 1is called an
isomorphism if T is bijective. Two wvector spaces V,W over I are called isomorphic if
there exists an isomorphism T :V — W.

We think of isomorphic vector spaces as being ”equal” as far as properties related to
addition and scalar multiplication are concerned.
Let us look at some examples:

(i) Let V. =R2 W = C and T(z,y) := = +iy. T is clearly an isomorphism, so C and R?
are isomorphic as vector spaces over R.

(ii) Let V = IF"*! and W = P,, then define T(an,an_1,--- ,a1,a0) = @pd"™ + an_12" "' +
---a1x + ag, this is a map T : F**! — P, and is an isomorphism. So P, is isomorphic
to FntL,
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What we see is that isomorphic spaces can consist of very different objects, e.g, in example
(ii), a space of functions, P, is actually isomorphic to a space of ordered n + 1 tuples, F"*1,
So we can think of them as being equal only if we strip them from all other properties except
the ones related to addition and scalar multiplication.

One direct consequence is that isomorphic vector spaces have the same dimension.

Theorem 7.47. Let V,W be vector spaces over I which are isomorphic and at least one of
them is finite dimensional, then dimV = dim W.

Proof. Assume V is finite dimensional and T : V' — W is an isomorphism. Let B be a basis
of V, and set A = T'(B) C W, the image of B under 7. By Theorem 7.38 then A is linearly
independent, since T is injective, and span. A = W, since T is surjective, hence A is a basis
of W. But A has the same number of elements as B, and therefore dim V' = dim . O

Quite surprisingly, the inverse of this result is as well true. Whenever two vector spaces
have the same dimension, over the same field, then they are isomorphic.

The main tool to prove this is the following construction, which is of independent interest.
Let V,W be vector spaces with dimV = dimW = n and B = {v,v9, -+ ,v,} C V and
A ={wi,we, - ,wy,} C W be bases in V and W, respectively. Then we define a linear map
Tag:V — W by

Tag(zivr + -+ + zpvp) = x1w1 + -+ - + Tpwy, (7.7)
where x1,--- ,x, € F. Since B is a basis, any v € V' can be written as v = xyv1 + -+ + Z,Un
for some 1, - ,z, € IF, therefore the map is well defined. The map T 45 depends on the

choice of bases, but as well on the order in which the elements in each basis are labeled, so
strictly speaking they depend on the ordered bases.

Theorem 7.48. The map Tap defined in (7.7) is an isomorphism.

Proof. From the definition (7.7) we see immediately that Im 7T 45 = span.A = W, since on the

right hand side all linear combination of vectors from the basis A appear if we vary x1,--- , .
So rank T 45 = n and then by the rank nullity theorem we have nullity T 45 = dimV —n = 0,
therefore T 45 is both surjective and injective, hence bijective and an isomorphism. O

This gives us the finite dimensional case of the following Theorem:

Theorem 7.49. Let V.W be vector spaces over I, then V and W are isomorphic if, and
only if, dimV = dim W.

So inasmuch as we can think of isomorphic vector spaces being equal, any two vector
spaces with the same dimension, and over the same field, are equal.
7.10 Change of basis and coordinate change

As a result of Theorem 7.49 every vector space over IF with dimension n is isomorphic to F".
It is worth discussing this in some more detail. If V' is a vector space over F with dimV =n
and B = {v1,--- ,v,} a basis of V, then the map Tg : I — V defined by

Tp(x1, T2, - ,Tpn) = X101 + ToV2 + -+ + TpUy , (7.8)
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is an isomorphism. The map is surjective since B spans V and it is injective since B is linearly
independent. Note that if we denote by & = {ej, - ,e,} the standard basis in F", then
Tp =1Tpe¢, see (7.7).

We want to think of a basis now in a more geometrical way, namely as providing us with
a coordinate system. If B = {vy, - ,v,} is a basis of V, then for any v € V there is a unique
vector (z1,x2, - ,2y) € F™ such that

V=101 + Tav2 + -+ TpUy ,

this is a consequence of Theorem 7.22. If we think of the elements vy, - - - , v, as vectors again,
then the numbers x4, - - - , z,, tell us how far we have to go in direction v1, then in direction wvo,
etc., until we reach the point v. And this is exactly what coordinates relative to a coordinate
system are doing. So a choice of a basis B gives us a coordinate system, the coordinates are
then elements in ", and the map T3 defined in (7.8) maps each set of coordinates to a point
inV.

So how do the coordinates change if we change the coordinate system, i.e., the basis? To
explain the main idea we first consider two coordinate systems in R2. Let B = {v1,v2} C R?
and A = {w1, w2} C R? be two bases. Then we can expand any v € R? in two different ways,

V= T1V1 + ToV2
v = yrwy + Yawa

with z1,29 € R and y1,y2 € R, and the question is: How are the coordinates x1,x2 in the
coordinate system B and the coordinates y1, s in the coordinate system A related to each
other? To this end let us expand the vectors vi,vs from the basis B into the basis A, this
gives

VU1 = C11wW1 + C1W2 , V2 = Cl12W1 + C2W2 ,

where the ¢;; are the expansion coefficients, which are uniquely determined. Then inserting
this into the expansion of v into B leads to

v =x1(criwr + ca1we) + x2(crowr + cpwsz) = (cr121 + cr2z2)wr + (c2121 + c2222)wo

and since the expansion into the basis A is unique, this implies y; = (c1121 + c1222) and

Y2 = (ca171 + c2272) Or
<Z/1> _ <011 C12> <961>
Y2 C21 €22 2y
So the coordinates are related by a matrix C 45 which is obtained by expanding the elements

in the basis B into the basis A. (Note that formally the relation can be written as (Zl> =
2

w . . . .
Clg (wi)’ this formula is only a mnemonic device).

For instance if A = {(1,1),(1,—1)} and B = {(2,1),(—1,—1)} then we find

(1) =20) () () =~()

hence
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The argument we discussed in some detail in the example can easily be generalised and
gives

Theorem 7.50. Let V' be vector space over F with dimV =n and let B = {vy,--- ,v,} and
A= {wi,---wy} be two bases of V. Let us define the matrix Cap = (cij) € M, (F) by
V; = C1iwW1 + CoiW2 + - - - + CpiWy Z.:1727'”7n7

then the coordinate vectors x = (x1,-++ ,xpn) andy = (y1, -+ ,Yn) defined by

V= T1V1 + TU2 + -+ + TpUp

V= Yrwi + Yow2 + - - + YpWy,

are related by
y = Capx .

Note that the defining relation for C 45 can formally written as wg = C%y,zv4 with w4 =
(wi, -+ ,wy) and vg = (v, -+ ,vp).

The notation C 45 is chosen so that the basis B, which is the rightmost index, is related
to the coefficients x and the left most index A is the basis related to y.

Proof. The proof is identical to the case for n = 2 which we discussed above. But we will use
the opportunity to practise the summation notation a bit more, using this notation the proof
can be written as follows. The defining relation for C4g can be written as v; = > " | ¢;jw;

and inserting this into the expansion v = Z;”:l T;v; gives
n n n n n
v=) ) cymwi=) (D cym)wi =) yivi
Jj=11i=1 i=1 j=1 i=1
with y; = 377 cijr;. But this means y = Capx. O

Another way to write the matrix Cy4 5 is in terms of the maps Tp : F" — V and T4 :
F™" — V. if the vectors x,y € F" satisfy

Tp(x) = Taly)

then y = C 4 5x, hence
Cap=T4" oTs . (7.9)

This relation does not replace the explicit method to compute the elements of C 45, but it is
a useful relation to derive further properties of C'45. It is as well often useful to illustrate the
relationship between C 45, T and T4 by a so called commutative diagram, see Figure 7.10.

Theorem 7.51. Let V be a finite dimensional vector space and A,B,C C V be three bases,
then

(i) Caa =1, where I is the n x n unit matriz.
(i1) CpaCas =1
(ii) CeaCas = Ces
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T3 Ta

Cas

Figure 7.1: The relation between the maps Tg : F"" — V, T4 : F" — V, and Cyp : F" — F",
see (7.9): For any element v € V there exist an x € " such that Tp(x) = v and a 'y € F”
such that T4(y) = v, hence Ta(y) = Tp(x) or y = T;l oTg(x). But Cyp is defined such that
y = Cypx holds, too, and so Cyp = le o Tg. Figures of this type are called commutative
diagrams in mathematics, there are two ways to go from the lower left corner to the lower
right corner, either directly using C 45, or via V, by taking first T to V' and then le from
V to IF". The diagram is called commutative if both ways lead to the same result.

Proof. Statement (i) follows by construction, and statement (ii) follows from (iii) by choosing
C = A. Part (iii) follows by using (7.9), we have Cpoy = TC_1 oTy and Cyp = T;l oTp, hence
CeaCap= Ty o Ta) (T  0oTp) =T, 0T = Cep ,
since TAoTJZ1 =1. O

Notice that the the secon property, (ii), implies that the matrices C 45 are always invertible
and C 5 = Cpa.

Let us remark that the last observation can be inverted as well, assume {wy, - ,w,} is
basis and {v1,--- ,v,} are defined by v; = >, ¢jw;, then {v1, -+ ,vn} is a basis if C' = (¢;5)
is non-singular, or invertible. We leave the simple proof of this statement as an exercise, but
we want to illustrate it with two examples.

e Let P3 be the space of polynomials of degree 3 and B = {1,z, 2%, 23} be the basis we
used. Consider the first 4 Chebycheff polynomials

To(z) =1, Ti(z)==x, Tp(zx)=2x>—-1 Ti(z)=42>—3z

Then we find 7 = Y, ¢;ja’ with

10 -1 0
01 0 =3
¢= 00 2 0
00 0 4

and since det C' = 8 the matrix is non-singular and the Chebycheff polynomials form a
basis of Ps.
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o Let Th := {ZIH\SQ a,e*™ " :q, € C} be the space of trigonometric polynomials of or-
der 2, the set B = {e 2m2% o=2miz 1 o2mz o221 ig 4 basis of Th. Now we can expand
e?™MnT — cos(2mnax)+isin(27ne) and so we expect that A = {cos(2m2z), sin(272x), cos(2rx), sin(27x), 1}
is as well a basis. The corresponding matrix is given by

1 0 0 01
—-i 0 0 0 i
Cas=10 1 0 1 0
0 -1 0 i O
0O 0 1 00
which has determinant det C 45 = —4. So it is nonsingular and A is indeed a basis.
7.11 Linear maps and matrices
Let V be a vector space over I with dimV = n and B = {vy,ve,--- ,v,} be a basis of V
which provides coordinates x = (x1, -+ ,x,) € " such that any v € V can be written as
V=x101+ -+ TpUy .
Now let W be another vector space over I with dim W = m and with a basis A = {w1, -+ ,wn },
then we have similar coordinates y = (y1,¥2, - , ym) defined by

w = Yrwy + Yow2 + -+ YmWp, -

The question we want to study now is if we have a linear map T : V — W, can we express the
action of the map in terms of the coordinates x,y defined by the bases B and A, respectively?
Le., ifv = zyv1+xova+- - +2pvp, and T'(v) = yrwi+yowo—+- - ~+Ymwm how isy = (Y1, -+ , Ym)
related to x = (z1,- -+ ,xp)?

To explain the basic idea let us first consider the case that n = m = 2, this makes the
formulas shorter. We have a map 7' : V' — W and a basis B = {v1,v2} in V, so we can
expand any v € V as v = x1v1 + Tav3, where x1,x2 € IF, this gives

T(v) = T(x1v1 + x2v2) = 21T (v1) + 2T (v32) . (7.10)

Now T'(v1),T(v2) € W, so we can expand these two vectors in the basis A = {wy, w2}, i.e.,
there exist numbers aq1, as1, a2, ass € I such that

T(v1) = anwr + anws ,  T(v2) = apwi + agaws (7.11)
and inserting this back into the equation (7.10) for T'(v) gives
T(v) = x1T(v1) + 22T (v2) = (x1011 + T2012)Ww1 + (T1a21 + T2a22)W2 . (7.12)

But the right hand side gives us now an expansion of T'(v) in the basis A, T'(v) = y1w1 +yawo,
with

Y1 = anxi + a2, Y2 = 42171 + a2 (7.13)
and by inspecting this relation between x = (z1,z2) and y = (y1, y2) we see that it is actually
given by the application of a matrix

()= (o oy () -
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ory = Mag(T)x with Mag(T) = (Z;i Z;i) defined by the expansion (7.11) of T'(v;) in
the basis vectors w;.

So given the bases A and B we can represent the action of the map 7" by a matrix M45(T)
with entries in I, and this matrix maps the expansion coefficients of a vector v in the basis
B to the expansion coefficients of the vector T'(v) in the basis \A.

In practice the difficult part in this construction is to find the coefficients a;; in (7.11).
Previously we had studied the case that V = W = R? and A = B = {e1, ez} is the standard
basis, then we could use that in this particular basis for any x € R?, x = (x-e1)e; + (x-e2)ez
and applying this to (7.11) gives a;; = €; - T'(e;j). E.g., if the map T : R* — R? is given by

T(el) = 261 — €2, T(eg) = €2,

and we denote the standard basis by € = {e1, e2}, then

Mee(T) = (3 _11> :

But if we choose instead w; = e; + 2e3 = (1,2) and we = e; —e2 = (1, —1) as a basis A
in which we want to express T'(v), then we have to find a;; such that T'(e;) = ajyw1 + az1ws
and T'(es) = ajowy + azewe, and if we write out these two equations in components this gives

() =on (3) v () = (2 20) (22) 15
()= () vea (1) = (6 4) (22) (a0

So this is a system of 4 inhomogeneous linear equations for the 4 unknowns a1, a1, a2, as2.
By the rules of matrix multiplication these two equations can be combined into one matrix

equation,
2 0y (1 1 ain a2
-1 1) \2 -1/ \aa axn/’

where the first equation above corresponds to the first column, and the second equation to
the second column of this matrix equation. This gives then finally

ann ap (1 1\ /2 0y _ -1/-1 —1\/2 0\ 1/1 1
a1 a2 T\2 -1 -1 1) 3 -2 1 -1 1) 3\5p -1
So we found an expression for M 4¢(T'), but it involved some work.

Let us now do the same construction for general n = dim V' and m = dim W.

Definition 7.52. Let V,W be vector spaces over F with dimV = n and dimW = m, and
T :V — W a linear map. Then with each choice of bases B = {vi,ve, -+ ,u,} C V and
A = {wy,wa, -+ ;wp} CW we can associate a m X n matrix

Mag(T) = (aij) € Mmn(F) ,

where the elements a;; are defined by

m
T(vj):Zaijwi , for i=1,2,--- ,n.
i=1
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We emphasise again that the existence and uniqueness of the matrix elements a;; follows
from the fact that A = {wi,- - ,wy} is a basis, but the computation of these numbers
requires usually some work and will in general lead to a system of nm linear equations.

Theorem 7.53. Let V,W be vector spaces over I with dimV =n and dimW =m, T :V —
W a linear map, and B = {v1,va, - , v} CV and A = {wi,wa, - ,wn} C W bases of V

and W, respectively. Then if v=""_, xju; we have T'(v) = 21" yiw; with

y = Map(T)x .

Proof. Using linearity and T'(v;) = Y ;" a;;w; we have

T(v) = T(émm‘) = é%T(Uj) = zn: ifﬂjazjwi = i (Zn: aiﬂj)wi

j=1 i=1 i=1 \j=1

and so if we want to write T'(v) = ), y;w; we have to choose y; = Z?zl a;jx; which is
y = Map(T)x. O

Let us look at some examples.

e Let V = Py be the set of polynomials of degree N, and let By = {1,z,22,--- 2V}
be our usual basis of Py. Consider the map D : Py — Py defined by the derivative,
ie., D(p)(x) = %(w), for p(x) € Py. Let us denote the elements of the basis By by
v = lLvg =2, ,v; = 2771 -+ Juyy = 2V, then D(2") = nz""!, hence D(v;) =
(j—1)vj—1 and so the matrix representing D in the basis By has the coefficients a;_1 ; =
j—1landa;; =0if ¢ # j — 1. So for instance for N = 4 we have

Mp,,(D) =

OO O OO
S O OO
O O O N O
O O W oo
O = O O O

This means that if p(z) = ¢ + cox + c32% + 423 + c52? then the coefficients of D(p)(z)
are given by

01 0 00 cl Co
00200 ) 2c3
000 30 cs| =1 3cs ]| ,
0 00 0 4 c4 4cs
00000 cs 0

and indeed p'(z) = c3 + 237 + 3caz? + desa®.

e Since we know that if p(z) is a polynomial of degree N, then D(p)(x) has degree N —1,
we can as well consider D : Py — Py_1, and then we find

01000
00200
MDY= 105 g o 3 9
0000 4
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Let us compare this with the integration map Int : Py_1 — Py defined by Int(p)(z) :=
Jo p(y)dy. Then Int(v;) = %’Uj_i_l for the elements in our usual basis By_1 (since

Jo v tdy = %wj), and so the matrix Mg, B,_,(Int) has elements a;; = 0 if i # j+ 1

and a1 = % For instance if N =4 we get

0 O 0 0
1 0 0 0
MB4’33(Int) =10 1/2 0 0
0 0 1/3 0
0 O 0 1/4

e For comparison let us write down the analogous formulas for the action of D on the
space of trigonometric polynomials Ty and the basis Ay := {e?™"% ; n € Z,|n| < N}.
Since De?™* = (27in)e?™ " the matrix M4, 4, (D) is diagonal with diagonal entries
2min. So for instance for N = 2 we have

47 0 0 0 0
0 -2 0 0 O
Ma4,(D)=1] 0 0 0 0 0
0 0 0 27 0
0 0 0 0 d4nri

o Let us take V' = P», the set of polynomials of degree 2 and W = Py, the set of
polynomials of degree 1, and D(p(x)) = p/(x), the derivative, which defines a linear
map D : P, — P;. Let us choose in P, the canonical basis B consisting of v; = 1,
vy = x and v3 = x? and in Py let us choose A = {wi,ws} with w; = z + 1 and
wo =2 — 1. Then

1 1

D(v1) =0 D(v)=1= QW1 — w2, D(v3) =22 = w1 + wo .

and so we see the coefficients of the matrix representing D are given by
0 1/2 1

It is sometimes helpful to express M45(7T) in term of the maps T4 and Tg, analogous to
(7.9), we have
Mup(T) =Ty ' oToTg, (7.17)
and this can be illustrated by the following commutative diagram:
v 4w
TBT TTA (7.18)
]E‘TL ]Fm
Mas(T)
Compare Figure 7.10 fo the meaning of these types of diagrams. Here we have two ways to
go from ™ to "™, either directly using M 4g(T"), or via V and W using Tzl oT oTp, and
both ways give the same result by (7.17).
If we compose two maps, we expect that this corresponds to matrix multiplication, and
this is indeed true.
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Theorem 7.54. Let U, V,W be vector spaces over F and S : U — V and T :' V — W be
linear maps. If AC W, BCV and C C U are bases, and Mag(T), Mpc(S) and Mac(T o S)
be the matrices representing the maps S, T and T oS : U — W, then

Mac(T 0 S) = Map(T)Mpe(S) -
Proof. Let us give two proofs of this result:

e The first proof works by explicitly comparing the relations the different matrices satisfy:
Let w € U and u = Zle x;u; be the expansion of u into the basis C = {u1,- - ,u},
where k = dim U, and similarly let S(u) = " | y;v; and T(S(u)) = > i% | zyw; be the
expansions of S(u) and T'(S(u)) into the bases B = {v1,--- ,v,} and A = {wy, - wy},
respectively. Then the vectors of coefficients x = (z1,--- ,z), ¥y = (y1, - ,yn) and
z = {z1,--+ ,2m) are related by y = Mpc(S)x, z = Map(T)y and z = Myc(T o
S)x. Combining the first two relations gives z = Magp(T)y = Map(T)Mpc(S)x and
comparing this with the third relation yields Mac(T o S) = Mag(T)Mpc(S).

e The second proof is based on the representation (7.17), we have M5(T) = T;l oToTg
and Mpc(S) = Tgl 0.5 oT¢ and hence

Mag(T)Mpc(S) =T o T o Tl ' 0oSoTe =T "' oToSoTe=Muc(ToS).
O

We can illustrate this theorem as well with another commutative diagram analogous to
(7.18),

v 2. v L. ow
TCT TBT TTA (7.19)
F¢F ——— F» ——— ™

Mec4(S) Map(T)

Examples:

e Let us choose U = Py, the space of first order polynomials, V = P, and W = P; and
D : V — W the differentiation map as in the previous example. Now in addition we
choose S : U — V as S(p) = zp(x), i.e., multiplication by a power z, and C = {u; =
1,ug = x}. The bases A and B are chosen as in the previous example. Then S(uj) = vy
and S(ug) = vs, so we have

0
Mpe(S) = |1
0

= o O

On the other hand D(S(u1)) = D(v2) = $wi — sws and D(S(uz)) = D(v3) = 2z =
w1 + wo and therefore

D[

Mue(DoS) = (—5 1) .

To compare with the theorem we have to compute

MAB(D)MBC(S):<8 _11//22 1)

O = O
= o O
|
N
IMM—A
N[ —
— =
N———
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which indeed gives M ac(D o S).

e We have D o Int = I and so for the matrices from our previous set of examples we

expect Mpy_ By (D)MpyBy_,(Int) = M, _,Bx_,(I) = In, where I is the N X N unit
matrix. And indeed for N = 4 we find

01 0 00 ? 8 8 8
00 2 00
Mgy By (D)MpyBy_,(Int) = 000 3 0 0 1/2 0 0 =1 .
0 0 0 0 4 0 0 13 0
0 0 0 1/4
On the other hand side
0 O 0 0 00 0 00O
1 0 0 0 8 (1) g 8 8 01 0 00
MpyBy_ Unt)Mpy By (D) =10 1/2 0 0 0003o0l~ 00 1 00
0 0 1/3 0 000 0 4 00 010
0 0 0 1/4 00 0 01

and that the right hand side is not the identity matrix is related to the fact that if we
differentiate a polynomial the information about the constant term is lost and cannot
be recovered by integration.

This means differentiation is a left inverse for integration, but not a right inverse, i.e.,
DolInt=1but IntoD # 1.

To connect this with the change of coordinates we discussed in the last section let us

consider the case V.= W and T = I, then the definition of the matrix M 45(I) reduces to the
definition of Cyz:

Mag(I) = Cag . (7.20)

This observation together with Theorem 7.54 provides the proof of Theorem 7.51.

We can now give the main result on the effect of a change of bases on the matrix repre-

senting a map.

Theorem 7.55. Let V,W be finite dimensional vector spaces over ', T : V. — W a linear
map, and A, A" C W and B,B' CV be bases of W and V', respectively. Then

MA'B’ (T) = CA’AMAB(T)CBB’ .

Proof. This follows from M4p(I) = C 45 and Theorem 7.54 applied twice:

Mg (T) = Map (T o )
= Mup(T)Mpp (I)
= Muap(IoT)Mpp (1)
= Maa(I)Mas(T)Mpp (I) = CaraMas(T)Cppr -
O]

Now we turn to the question if we can chose special bases in which the matrix of a given

map looks particularly simple. We will not give the most general answer, but the next result

gives us an answer for isomorphisms.
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Theorem 7.56. Let T : V. — W be an isomorphism, let B = {vy,--- ,v,} CV be a basis of
Vand A=T(B) ={T(v1), - ,T(vn)} C W the image of B under T, which is a basis in W
since T is an isomorphism. Then

Mas(T) =1 .

Proof. 1If w; = T'(v;) the the matrix coefficients a;; are 1 if i = j and 0 otherwise. O

So the matrix becomes the simplest possible, but all the information about the map T is
now in the relation of the bases A and B. If T is no longer an isomorphism one can derive
similarly simple representations.

But a more interesting question is what happens if W = V and A = B, because if T is
a map of a space into itself it seems more natural to expand a vector and its image under T’
into the same basis. So the question becomes now:

Is there a basis B such that Mpg(T) is particularly simple?

This question leads to the concept of an eigenvector:

Definition 7.57. Let V' be a vector space over F and T : V. — V a linear map. Then a
vector v € V with v # 0 is called an eigenvector of T if there exits a X € ¥ such that

T(v) = Av .
The number X\ is the called an eigenvalue of T.

This might look like a rather strange concept, and it is not clear if and why such vectors

should exist. So let us look at some examples: Let V = C? and T : C? — C? be given by
T(e1) = 2e; and T'(e2) = —3ey, i.e., the matrix of T is Mgg(T) = <g _03> Then e; and ey
are eigenvector with eigenvalues A\; = 2 and Ay = —3, respectively.
0 1
10
can check that v;1 = e; + eg is an eigenvector with eigenvalue \; = 1 and vo = e; — eg is an
eigenvector with eigenvalue Ay = —1.

In both these examples the eigenvectors we found actually formed a basis, and so we can
ask how the matrix of a map looks in an basis of eigenvectors.

A less obvious example is T'(e;) = eg and T'(e2) = ey, i.e., Mee(T) = ( ) Then one

Theorem 7.58. Let V' be a vector space over I with dimV =mn andT : V — V a linear
map. Then if V has a basis B = {v1,--- ,v,} of eigenvectors of T, i.e., T'(v;) = A\jv;, then

MBB(T) - dia‘g(/\h ) An) )

where diag(A1, -+ , An) denotes the diagonal matriz with elements A1, Aa, -+ , Ay, on the diag-
onal. Vice versa, if B = {v1, -+ ,vn} is basis such that Mpg(T) = diag(A1,- -+, \n) for some
numbers \; € I, then the vectors in the basis are eigenvectors of T with eigenvalues ;.

The proof follows directly from the definition of Mpp(T) so we leave as an exercise.

The theorem shows that the question if a map can be represented by a diagonal matrix is
equivalent to the question if a map has sufficiently many linearly independent eigenvectors.
We will study this question, and how to find eigenvalues and eigenvectors, in the next section.
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Let us give one more application of the formalism we introduced. If we have a map T :
V — V and a basis B, then we defined the matrix Mpgp(T'), and we can form its determinant

det Mpp (T) .

The question is if this determinant depends on T only, or as well on the choice of the basis
B. Surprisingly it turns out that B is irrelevant.

Theorem 7.59. Let V' be a finite dimensional vector space, A, B C V bases of V and T :
V — V a linear map. Then

det Mpp(T) = det Ma4(T) ,

and so we can define
det T := det Mpp(T) .

Proof. We have by Theorem 7.55 and Theorem 7.51
Mpp(T) = CpaMaa(T)Cas
and CpaCap = I, so using the factorisation of determinants

det(Mpp(T)) = det (CpaMaa(T)Cas)
= det O det M4 (T) det Cyp
= det M4(T) det(CpaCup) = det M g4(T) .
O

This gives us another criterium for when a map 7 : V — V is an isomorphism, i.e.,
bijective.

Theorem 7.60. Let V be a finite dimensional vector space and T : V. — V a linear map.
Then T is an isomorphism if detT £ 0.
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Eigenvalues and Eigenvectors

In the previous sections we introduced eigenvectors and eigenvalues of linear maps as a tool to
find a simple matrix representing the map. But these objects are of more general importance,
in many applications eigenvalues are the most important characteristics of a linear map. Just
to give a couple of examples,

e critical points of functions of several variables are classified by the eigenvalues of the
Hessian matrix which is the matrix of second partial derivatives of the function at the
critical point.

e The stability of dynamical system near equilibrium points is characterised by the eigen-
values of the linearised system.

e In quantum mechanics, physical observables are represented by linear maps, and the
eigenvalues of the map give the possible outcomes of a measurement of that observable.

In this section we will learn how to compute eigenvalues and eigenvectors of matrices.

Definition 8.1. Let T : V. — V be a linear map, we call the set of eigenvalues of T the
spectrum specT of T'.

We start with some general observations. If v is an eigenvector of 1" with eigenvalue A,
then for any a € I, av is as well an eigenvector of T with eigenvalue A, since

T(av) = aT(v) = alv = Aaw) .

And if vy, v9 are eigenvectors of 1" with the same eigenvalue A the the sum vy +v5 is as well an
eigenvector with eigenvalue A, so the set of eigenvectors with the same eigenvalue, together
with v = 0, form a subspace. We could have seen this as well from writing the eigenvalue

equation Tv = Av in the form
(T —X)v=0,

where I denotes the identity map, because then v € ker(7' — AI).
Definition 8.2. Let V' be vector space over F and T : V — V be a linear map,

e if dimV < oo the characteristic polynomial of T' is defined as

pr(A) :=det(T — AI) .

117
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o if A € IF is an eigenvalue of T the corresponding eigenspace is defined as

Vy:=ker(T' — \I) .

On an eigenspace the action of the map T is extremely simple, it is just multiplication by
the eigenvalue A, since for v € V), Tv = \v. lLe.,

Tly, = Al

A more geometric formulation of our goal to find a basis of eigenvectors is to try to decompose
the vector space into eigenspaces, and on each eigenspace the map 7' is then just multiplication
by an eigenvalue.

Theorem 8.3. A linear map T : V — V has a basis of eigenvectors if and only if V can be
decomposed into a direct sum of eigenspaces

V=V, oVy,® &V

where Ty, = NI.

Proof. If we have such a decomposition than we can choose a basis B; of each eigenspace and
the union of these bases B = |J B; will be a basis of V' which consists of eigenvectors. On the
other hand, if we have a basis of eigenvectors then the direct sum of the eigenspaces is equal
to V. O

But now let us become a bit more concrete and try to find ways to compute eigenvalues
and eigenvectors. The equation
Tv=Mv

has the disadvantage that it contains both A and v. If we chose a basis in V' and represent T’
by an n X n matrix and v by an n-component vector, then this becomes a linear system of n
equations for the components of v, and these equations contain A as a parameter. Since we
are looking for v # 0, we are looking for values of A for which this system of equations has
more then one solution, hence for which the associated matrix is not invertible. And since the
determinant of a matrix is 0 only if it is non-invertible, we get the condition det(7 — AI) = 0
or pr(A) =0.

Theorem 8.4. Let T : V — V be a linear map and dimV < oo, then X\ € IF is an eigenvalue
of T if and only if
pr(A) =0.

Proof. X is an eigenvalue if dim V), > 0, i.e., if ker(T — AI) # {0}, which means that (T"— \I)
is not invertible, and so det(7 — A\I) = 0. O

Let us remark that by playing around a bit with the properties of the determinant one
n

can show that pr()) is a polynomial of degree n = dim V' with leading coefficient (—1)",
pT()\) = (—1)")\”+an_1)\"71—i—‘--—i-al)\—i—ao a; €.

This theorem allows us to compute the eigenvalues of a map T first, and then we solve
the system of linear equations (7" — AI)v = 0 to find the corresponding eigenvectors. Let us
look at a few simple examples, here we will take V = IF? with the standard basis & = {e1, e}
and so T is given by a 2 X 2 matrix.
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10
-T= <0 2),them

pT()\):det<<(1) g)(g g)):det<16>\ QE)\>:(1)\)(2)\),

and so we see that the condition pp(\) = 0 gives A1 = 1 and Ay = 2 as eigenvalues of
T. To find an eigenvector v; = (z,y) with eigenvalue A\; = 1 we have to find a solution
to (T'— MI)v = (T — I)v = 0 and this gives

b 1))

which gives the condition y = 0, hence any vector v; = (x,0) with x # 0 is an eigenvec-
tor, so we can choose for instance = 1. Similarly for A2 = 2 we want to find vo = (z, )

with (T' — 2I)vy = 0 which gives
-1 0\ (=
(0 0 ()=

and so z = 0, so any vector v = (0,y) with any y # 0 is an eigenvector and to
pick one we can choose for instance y = 1. So we found that T has two eigenvalues
A1 = 1 and Ay = 2 with corresponding eigenvectors v; = (1,0) and v = (0,1). The
eigenvalues are uniquely determined, but the eigenvectors are only determined up to
a multiplicative constant, the corresponding eigenspaces are Vi = {(z,0), z € F} and

Vé:{((],y),yGF}

0 -1
T= <1 0>,thenweﬁnd

. -A =1\ 9
pT()\)—det<1 )\>—)\ +1

and so the characteristic polynomial has the two roots Ay =iand Ay = —i. Soif F = R,
then this map has no eigenvalues in I, but if IF contains i, for instance if ' = C, then
we have two eigenvalues. To find an eigenvector v; = (x,y) with eigenvalue A\; =i we
have to solve (T' —i)v = 0 which is

(o) ()=

and so —iz —y = 0 and x — iy = 0. But the second equation is just —i times the first
equation, so what we find is that y = —iz, so any (x, —ix) is an eigenvector, and we can
choose for instance z = 1 and v; = (1, —i). Similarly we get for Ao = —i that

¢ 6

has the solutions (y,iy), and so choosing y = 1 gives vy = (1,1).
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T = <? Bl>, then pr(\) = A% — 1, so there are two eigenvalues A\ = 1 and A\ = —1.

The eigenvectors corresponding to Ay = 1 are determined by

-1 —i x
() 6) -
which gives —x — iy = 0 and iz — y = 0 and so y = iz, choosing x = 1 gives v; = (1,1),
similarly we find for A = —1 that v = (i, 1) is an eigenvector.

11
—T—<0 1>,them
. 1—A 1 oy 12
pT(/\)—det< 0 1)\>—()\ 1)

and so we have one eigenvalue A\; = 1. The corresponding eigenvectors are determined

’ ()0

which gives the one condition y = 0. Hence any vector (x,0) (z # 0) is an eigenvectors
and we can choose for instance v; = (1,0). In this example, contrary to the previous
ones, we found only one eigenvalue and a one-dimensional eigenspace.

- T = g g) , here pr()\) = (2 —\)2, so A1 = 2 is the only eigenvalue, but now we have

two linearly independent eigenvectors V3 = e; and vy = e, since T' — 21 = 0.

This set of examples gives a good overview over different cases which can occur. E.g.,
even when the matrix elements are real, the eigenvalues need not be real, that means a map
can have no eigenvalues when we look at it over F = R but it has eigenvalues if F = C. But
a matrix with complex entries can still have only real eigenvalues, but the eigenvectors are
complex then. In all the cases where we had two eigenvalues the eigenvectors actually formed
a basis. The last two examples concerned the case that we only found one eigenvalue, then in
the first case we found only a one-dimensional eigenspace, so there is no basis of eigenvectors,
whereas in the second case we found two linearly independent eigenvectors and so they form
a basis of V.

In order to gain a more systematic understanding of eigenvalues and eigenvectors we need
to know more about the roots of polynomials. The following list of properties of polynomials
will be proved in courses on complex analysis and algebra, we will only quote them here.

A polynomial of degree n over C is an expression of the form

p()‘) = an)\n + anfl)\n_l + -t a A+ agp
with an,an—1,---,a1,a0 € C and a, # 0.
e )\; € C is called a root of p(\) if p(A;) = 0. A; is a root of multiplicity m; € IN if

dp d™m1p

dax (M) =0
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which is equivalent to the existence of a polynomial ¢(\) of degree n — my such that
p(A) = (A= A1) q(A)
with g(A1) # 0.

e every polynomial of degree n has exactly n roots in C, counted with multiplicity. IL.e.,
for every polynomial of degree n there exist Ai,Ag, -+ , A\ € C, mq,mo,--- ,mp € N
and a € C with

PA) = (A = A)™H (A = A2)™2 - (A = Ap)™

where
mp+ma+---+mg=n.

These results are only true over C, and the crucial fact that every polynomial has at least
one root in C is called the Fundamental Theorem of Algebra, from this all the other facts
claimed above follow.

From these facts about roots of polynomials we can now draw a couple of conclusions
about eigenvalues. First of all, an immediate consequence is that if ' = C, then any linear
map 7' : V — V has at least one eigenvalue.

Theorem 8.5. Let V' be a vector space with dimV =n, and T : V — V a linear map, then
T has at most n different eigenvalues.

Proof. The characteristic polynomial of T is of order n = dim V, so it has at most n different
roots. U

Definition 8.6. Let )\ € specT’, we say that
e \ has geometric multiplicity mgy(\) € IN if dim V), = mgy(\)
e ) has algebraic multiplicity m,(\) € IN if X is a root of multiplicity mq(X\) of pr(X).

One often says that an eigenvalue is simple if its multiplicity is 1 and multiple if the
multiplicity is larger than 1.
We quote the following without proof:

Theorem 8.7. Assume X € specT, then mg(X) < mg(A).

In the examples above, in almost all cases we had mgy(A) = mq(A) for all eigenvalues,

é D where A = 1 was the only eigenvalue and we had my(1) =1

except for the map T = <
but my(1) = 2.

Let us look at the case that we have at least two different eigenvalues, A1 # A2, then the
corresponding eigenvectors have to be linearly independent. To see this let us assume vy, vo
are linearly dependent, but two vectors are linearly dependent if they are proportional to
each other, so they both lie in the same one-dimensional subspace. That means that if two
eigenvectors are linearly dependent, then the intersection of the corresponding subspaces is
at least one-dimensional, V), NVy, # {0}. But if v # 0 is in V), NV}, then \jv = T'(v) = Agv
and this can only happen if Ay = A3. So two eigenvectors with different eigenvalues are always
linearly independent. And this is true for more than two eigenvectors:
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Theorem 8.8. Let T : V. — V be a linear map, dimV = n and {vy,va, -+ ,vx} a set of
eigenvectors with different eigenvalues. Then the set {vi,va,--- , v} is linearly independent.

Proof. The proof is by induction, assume that {vq,vg,- - ,vk_1} is linearly independent, then
the equation
Qv+ Qp_1Vg—1 + apvp =0

can only have non-trivial solutions if o # 0, i.e., if v is a linear combination of the other
vectors. So setting 5; = —a;/ay gives

vk = Pror + o+ Bro1vg—1 - (8.1)

Applying T to this equation and using that the v; are eigenvectors with eigenvalues \; gives
the first of the following two equations

AUk = MPB1vr + - Agm1Br—10Vk—1
AUk = AB1v1 + - -+ AeBr—1Vk—q

and the second is (8.1) multiplied by Ag. Subtracting the two equations from each other yields

(M = Ag)Brvr + - (Ag—1 — A) Be—1vk—1 =0

and since the eigenvalues are all different and {v1,--- ,vx_1} are linearly independent, we
must have 3; = 0, which contradicts (8.1) and hence {vy, -+ ,vx} is linearly independent. [J

This gives us one important criterium to decide when a map has a basis of eigenvectors.

Theorem 8.9. Assume V is a vector space over C, dimV =mn, and T : V — V has n
different eigenvalues, then T has a basis of eigenvectors.

Proof. If T has n different eigenvalues, then by the previous theorem the corresponding
eigenvectors are linearly independent, but n = dim V' linearly independent vectors form a
basis in V. O

So the possible obstruction to the existence of enough linearly independent eigenvectors
is that the characteristic polynomial can have roots of multiplicity larger then 1. Then the
condition for the existence of a basis of eigenvectors becomes

mq(X) =mg(A), forall A€ specT .

Unfortunately in general this condition can only be checked after one has computed all the
eigenvectors.

Let us now summarise the method of how to compute eigenvalues and eigenvectors for
maps on finite dimensional vector spaces. We always assume that we have chosen a fixed
basis in which the map 7' is given by a n X n matrix.

(i) The first step is to compute the characteristic polynomial

pr(A) =det(T — A1) .
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(ii) Then we have to find all roots of pr(\) with multiplicity. We know that there are n of
them in C. If we have n distinct roots and they all lie in the field ' C C, then we know
already that we can find a basis of eigenvectors. If there are less than n roots, counted
with multiplicity, in the field IF, then we can not find a basis of eigenvectors. Finally if
all roots are in I (which is always the case if ' = C), but some have higher multiplicity
than 1, then we cannot decide yet if there is a basis of eigenvectors.

(iii) To find the eigenvectors we have to solve for each eigenvalue A the system of n linear
equations

(T—M)v=0.

This we can do by Gaussian elimination and only if we can find for each A € specT
mq(A) linearly independent solutions then the eigenvectors form a basis of V.

If we have found a basis of eigenvectors {vy, v, -+ , v, } then we can diagonalise the matrix
for T'. This we showed using the general theory relating linear maps and their representations
by a matrix via the choice of a basis. But it is instructive to derive this result one more
time more directly for matrices. Let V = C" and we will choose the standard basis, i.e.,

we will write vectors as v = (x1, - ,2p), and let A € M, ,(C) be an n X n matrix with
complex elements. If the matrix A has a n linearly independent eigenvectors vy, - -+ , v, with
eigenvalues A1, -+, Ap, i.e., Av; = \;u;, then the matrix

C: ('l)l,"' 71)71) )
which has the eigenvectors as columns, is invertible. But furthermore, by the rules of matrix
multiplication, we have AC = (Avy,---, Av,) = (A1, -+, A\yvp) where we have used that
v; are eigenvectors of A, and, again by the rules of matrix multiplication, (Ajv1, -+, A\yvp) =

(v1, -+ ,vp) diag(Ag, -+, \y) = Cdiag(A1, -+, A\). So we have found
AC = Cdiag(M,+ , )

and multiplying this with C !, this is the point where the linear independence of the eigen-
vectors comes in, we get

C™LAC = diag( M1, -, M) -

This is what we mean when we say that a matrix A is diagonalisable, there exist a
invertible matrix C, such that C~'AC is diagonal. One can reverse the above chain of
arguments and show that if A is diagonalisable, then the column vectors of the matrix C
must be eigenvectors, and the elements of the diagonal matrix are the eigenvalues. Since the
eigenvalues are uniquely determined, the diagonal matrix is unique up to reordering of the
elements on the diagonal. But the matrix C' is not unique, since one can for instance multiply
any column by an arbitrary non-zero number, and still get an eigenvector.

Let us look at 2 examples of 3 x 3 matrices to see how this works.

The first example is given by the matrix

4 1
A=(2 5 =2
11 2
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The first step is to compute the characteristic polynomial and its roots:

4—A 1 -1
pa(N\) = det(A — \I) = det 2 55—\ =2
1 1 2—A

5—-XA =2 2 =2 2 5-=A
—(4>\)det< 1 2_)\>det(1 2_)\>det(1 1 )

=@A=-N[G-N2-N+21-22-N)—-2-2+5B-2N)
=4=NB=-N2=N+24-X)-8+22+(5-))
=(B-N[E-N2-))+1]

= (B5=AN=6A+9=(5B-NA-13)?

What we have done is computing the determinant by expanding into the first row, and then
we didn’t multiply out all terms immediately, but tried to find a factorisation which gives
us the roots immediately. We see that the eigenvalues are given by Ay = 5 and Ay = 3, and
that 5 has algebraic multiplicity 1 and 3 has algebraic multiplicity 2. So we can’t yet say if
the matrix is diagonalisable, we have to see if there are two linearly independent eigenvectors
with eigenvalue 3.

But let us start with finding an eigenvector vy = (z,y, z) with eigenvalue \; = 5. vy is a
solution to the system of 3 linear equations (A — 5I)v; = 0, and

-1 1 -1 -1 1 -1 -1 1 -1
A-5I=(2 0 -2]=10 2 —4|=|10 2 -4
1 1 =3 0 2 —4 0 0 O

where the = sign means that we have simplified the matrix using elementary row operations,
in the first step we added the first row to the third and added 2 times the first row to the
second. In the second step we just subtracted the second row from the third. So the system
of equations is now —z +y — z = 0 and 2y — 4z = 0 which can be rewritten as

So this gives a one parameter family of solutions, which is what we expect, since eigenvectors
are only defined up to a multiplicative factor. To pick one particularly simple eigenvector we
can choose for instance z = 1 and then

vy = (1,2,1) .

To find the eigenvectors for Ay = 3 we proceed along the same lines, we have to find solutions
to (A —3I)v =0 and this gives

1 1 -1 1 1 -1
A-3I=(2 2 -2|=1|0 0 O
1 1 -1 0 0 O

where we have subtracted row one from row three and two times row one from row two. So
this give just the one equation
r=z-—vy,
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which means that we have two free parameters in the solution, any vector of the form

U:(Z—y,y,Z)

for arbitrary (z,y) # 0 is an eigenvector. So they form a two dimensional space and we just
have to pick two which form a basis, this is done for instance by y =1,z =0andy =0,z =1,
SO

vy =(—1,1,0), w3 =1(1,0,1)

form a basis of the eigenspace Vs .
We have found three linearly independent eigenvectors, and therefore A is diagonalisable
with

2 —1 1
c=11 1 0
1 0 1

and
5 0 0
C'AC=(0 3 0
00 3

Notice that C' depends on the choices we made for the eigenvectors. If we had chosen different
eigenvectors the matrix C' would look different, but it would still diagonalise A.
The second example we like to look at is given by

3 -1 1
B=|7 -5 1
6 —6 2

—5—2A 1 7 1 7 =5—-2A
pp(A) = det 7T =5-=A _1 :(3—)\)det< 6 2_)\>+det<6 2_)\>+det<6 6 >

=B -N[-G+AN2-AN)+6]+7(2—X)—6—42+6(5+))
=—B-NG+N2-A)+T7(2-N
=2-N[T7T-B=XN)(bB+N)]

= (2= N[\ +2) -8
=—2-N2-MNA+4)=—-2-N3(N+4)

so the eigenvalues are \; = —4 with multiplicity 1 and A9 = 2 with algebraic multiplicity 2.

The eigenvectors for \y = —4 are determined from (B + 41)v = 0, hence
7T -1 1 7T -1 1 0 6 —6
B4+4lI=|7 -1 1] =0 0 0]=10 0 0
6 —6 6 1 -1 1 1 -1 1

which gives the two equations y = z and © = y — z = 0 so any vector (0, z,z) with z # 0 is
an eigenvector, and choosing z = 1 gives v; = (0,1, 1).
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The eigenvectors for Ay = 2 are determined by (B — 2)v = 0, and

1 -1 1 1 -1 1 1 -1 1
B-2=B=|7 -7 1|=(0 0 —-6]=10 0 -1
6 —6 0 0 0 -6 0 0 O

which gives the equations y = 0 and « + z = 0, which is only a one parameter family, i.e.,
y is fixed, and once we have chosen z, the value of z is fixed, too. So the eigenspace V5 is

one-dimensional and spanned by
V2 = (170a _1) )

so the geometric multiplicity of Ao = 2 is 1. This means B does not have a basis of eigenvectors,
and can not be diagonalised.

The second matrix B gave us an example which can not be diagonalised. The drawback of
our approach is that only at the very end of our computation we actually found out that the
matrix is not diagonalisable. It would be much more efficient if we had some criteria which
tell us in advance if a matrix is diagonalisable. Such criteria can be given if we introduce
additional structure, namely an inner product. This will be the subject of the next chapter.



Chapter 9

Inner product spaces

Recall that in R™ we introduced the dot product and the norm of a vectors

n n 1
2
x-y:inyi, ||X||:\/X'X:<ZZE%> ,

i=1 i=1

which allowed to measure length of vectors and angles between them, and in particular gave
the notion of orthogonality.

In this section we want to discuss generalisations of the notion of a dot product. To give
a motivation, one way one can generalise the dot product is by the following expression

n
Xy = E ;Y
i=1

where «; > 0 are a fixed set of positive numbers. We can use this modified dot product to
introduce as well a modified norm ||x[| := /X - X, and so in this modified norm the standard
basis vectors have length ||e;|lo = a;. So we can interpret this modified dot product as a way
to introduce different length scales in different directions. For instance in optical materials
it is natural to introduce the so called optical length which is defined in terms of the time it
takes light to pass through the material in a given direction. If the material is not isotropic,
then this time will depend on the direction in which we send the light through the material,
and we can model this using a modified dot product.

But we want to extend the notion of dot product and norm as well to complex vector
spaces, e.g., C™, and since the norm should be a positive real number a natural extension is

the expression
n
X-y:= Z Ty
i=1

where T denotes complex conjugation.
All the generalisations of the dot product share some key features which we take now to
define the general notion of an inner product.

Definition 9.1. Let V' be a vector space over C, an inner product on V is a map
(,):V xV — C which has the following properties

(i) (v,v) >0 and (v,v) =0 if and only if v =0

127
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(ii) (v, w) = (w,v)
(iii) (v,u~+ w) = (v,u) + (v,w) and (v, \w) = X\(v,w)
for all u,v,w €V and A € C.
In the case that V is a vector space over R we have

Definition 9.2. Let V' be a vector space over R, an inner product on V is a map
(,):V xV — C which has the following properties

(i) (v,v) >0 and (v,v) =0 if and only if v =0
(id) (v, 1) = {w,v)
(i1i) (v,u+ w) = (v,u) + (v,w) and (v, \w) = (v, w)
for allu,v,w eV and A € R.
The only difference is in property (ii). Examples:

(i) we discussed already the standard example V = C" and
n

(x,y) = Zfzyz =X-y.
i=1

(i) Let A € M,,(R) be a matrix which is symmetric (A = A) and positive, i.e., x - Ax > 0
for all x € R™\{0}, then

n
(x,y)a=x Ay = > ariy
ij=1

defines an inner product on V' = R".

(iii) Let V = M, (R) and define for A € V, the trace as

tr(A) == z”: @
i=1
i.e., the sum of the diagonal of A, then
(A, B) :=tr(A'B)
defines an inner product on V.

(iv) Let V. =Cla,b] :={f : [a,b] — C, f is continuous }, then

b
(f.9) = / F(@)g(x) de

defines an inner product.



129

Definition 9.3. A vector space V with an inner product () defined on it is called an inner
product space (V,(,)). If the field is C we call it a complex inner product space and if it is
R we call it a real inner product space.

Let us note now a few simple consequence of the definition:
Proposition 9.4. Let (V,(,)) be an inner product space over C, then
(u+w,v) = (u,v) + {(w,v) , Aw,v) = Mw,v),
for all u,v,w €V and A € C.

Proof. This follows from combining (ii) and (iii) in the definition of (,). Let us show the
second assertion: (Aw,v) = (v, \w) = A(v,w) = A(v,w) = X\(w,v). O

If (V,(,)) is a real inner product space than we have instead (Av, q) = A(v, w).
These properties can be extended to linear combinations of vectors, we have

k
<Z Aivia
=1

Having an inner product we can define a norm.

k

i(vi,w) and Z)\ w;) = Z i{v,wr) . (9.1)

=1

||M»

Definition 9.5. Let (V,(,)) be an inner product space, then we define an associated norm by
o]l == v/ (v, v) .

For the above examples we get

a>wuz(ziwmﬂé

1
2

() Il = ( £y aizs )

n 1/2
(ifi) [|A] = or(ATA) = (27 lay2)Y

@) 111 = (@R ar)

We used the dot product previously to define as well the angle between vectors. But on
a complex vector space the inner product gives usually a complex number, so we can’t easily
define an angle, but the notion of orthogonality can be extended directly.

Definition 9.6. Let (V,(,)) be an inner product space, then
(i) v,w € V are orthogonal, v | w, if (v,w) =0,

(ii) two subspaces U,W C V are called orthogonal, U L W, if u L w for alluw € U and
weWw.

Examples:
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(i) Let V = C2 with the standard inner product (x,y) = X-y, then v; = (1,i) and vy = (i, 1)
are orthogonal.
(ii) Continuing with (i), U = span{v;} and W = span{vs} are orthogonal.

(iii) Let V = C[0,1] and ex(x) := e*™ for k € Z, then for k # [ and k,l € Z we get

1
. 1 .
_ 2ri(l—k)x dr = 2ri(l—k)z |1 _
(e, er) /0 e x Sil = k)e lo=0

SOGkJ_elifk‘#l.

Definition 9.7. Let (V, (,)) be an inner product space, and W C V' a subspace. The orthog-
onal complement is defined as

Wht={veV,vLwforalweW}.
We have as well a Pythagoras theorem for orthogonal vectors.

Theorem 9.8. Let (V,(,)) be an inner product space and v,w € V, then v L w implies
lo +wl* = [lol* + Jw]* .

Proof. We have |[v +w||? = (v + w,v + w) = (v,v) + (w,w) + (v,w) + (w,v) = ||Jv]|* + ||w]?.
So if v L w, then ||v +wl|? = |jv]|? + |Jw]||?. O

One of the advantage of having an inner product on a vector space is that we can introduce
the notion of an orthonormal basis

Definition 9.9. Let (V,(,)) be an inner product space, a basis B = {vy,va,--- ,v,} is called
a orthonormal basis (often abbreviated as ONB) if
1 i=j
Vi, V5) = 045 1= .
(vi, vj) = i {0 i

Examples:

(i) On V = C" with the standard inner product, the standard basis &€ = {e1,ea, - ,e,} is
orthonormal.

(iil) On V = R™ with (,)4, where A = diag(aq, - ,a,) the set B = {vy,---,v,} with
v; = (ai)*1/2ei, i=1,2,--- ,n is an orthonormal basis.

(iii) On V = C? with the standard inner product, v; = %(1,1) and v; = %(i, 1) form a
orthonormal basis.

(iv) On V = C[0,1] the ex(x), k € Z form an orthonormal set, so for instance on Ty :=
span{ey , |k| < N} C V the set {e ,|k| < N} is an ONB.

Theorem 9.10. Let (V, (,)) be an inner product space and B = {v1,ve, -+ ,v,} a orthonormal
basis, then for any v,w € V we have

(i) v= ZZT‘L:1 (vi, v)v;
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(“) <U’ w> = Z?:l <Ui’ U> <Uiv w>

i) ol = (Sl o))

Proof. Since B is a basis we know that there are A1, Aa, -, A\, € C such that v = Z?:] Ajvj,
now we consider the inner product with v;,

(i, 0) = {vi, Yy Ajui) = D Aj{vi,v) = D Ny = Ai -
j=1 j=1 j=1

This is (i), for (ii) we use v = Y _;_; (vg, v)vy and get

n

<’U,’LU> = <Z<vk7v>vk7w> = <vkvv><vk7w>

k=1 k=1

3

Then (iii) follows from (ii) by setting v = w. O

The formula in (i) means that if we have an ONB we can find the expansion of any vector
in that basis very easily, just by using the inner product. Let us look at some examples:

(i) In V = C? the vectors v| = % <i> and vy = % <}> form and ONB. If we want to

. Z1 . . .
expand an arbitrary vector v = | that basis we just have to compute (vi,v) =
2
—iz1422 — z1—izg :
—r and (vo, V) o and obtain
—iz1 + 29 z1 — 129
vV = Vi1 Vo .

V2 V2

Without the help of an inner product we would have to solve a system of two linear
equations to obtain this result.

(ii) An example of an ONB in V = R? is
2 1

]_ _
1 1 1
— 1], va=—|0], vi=—|[-5 9.2

V1 =

as one can easily check by computing (v;,v;) for 4,j = 1,2,3. If we want to expand a

T
vector v = | y | in that basis we would have previously had to solve a system of three
z
equations for three unknowns, but now, with (vi,v) = %\/222, (va,v) = % and
(v3,v) = z_j%% , we immediately get
T+ y+ 2z —2x+z T — by + 2z

V9 V3 .

VST YT V30
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(iii) If we take V' = C" with (x,y) = X -y, then e, - - ,e, is an ONB, and we have for
x = (21, ,2,) 7 that (ej,x) = x;, hence the expansion formula just gives

X =T1€1 +x2€2 + -+ Tpey .

This result in (ii) means that if we consider the expansion coefficients x; = (v;,v) as
coordinates on V, then in these coordinates the inner product becomes the standard inner
product on C”, i.e. ,if v = x1v1 + - -+ xpv, and w = Yyyv1 + - - - + YUy, With x;, y; € C, then

n
(v, w) = Zi’z‘yi =X'y.
i=1

Or if we use the isomorphism T : C" — V, introduced in (7.4), we can rewrite this as

(Tp(x), Ts(y)) =%y .

Let us make one remark about the infinite-dimensional case. When we introduced the
general notion of a basis we required that every vector can be written as a linear combination
of a finite number of basis vectors. The reason for this is that on a general vector space
we cannot define an infinite sum of vectors, since we have no notion of convergence. But if
we have an inner product and the associated norm ||v|| the situation is different, and for an
infinite sequence of vy, vy, vs3, -+ and Ay, Ag, -+ we say that

oo
v = E )\ﬂ}i,
i=1
i.e. the sum > 2, \;v; converges to v, if

lim =0.
N—oo

N
vV — E )\ivi
i=1

We can then introduce a different notion of basis, a Hilbert space basis, which is an orthonormal
set of vectors {v1,vg, -} such that every vector can be written as

o0

v= Z(Ui,v>’u@' .

=1

An example is the set {ey(x), k € Z} which is a Hilbert space basis of C[0,1]!, in this case
the sum
F(@) = (ex, fre()
keZ
is called the Fourier series of f.
We want to introduce now a special class of linear maps which are very useful in the study
of inner product spaces.

Definition 9.11. Let (V,(,)) be an inner product space, a liner map P :V — V is called an
orthogonal projection if

'T am cheating here slightly, I should take instead what is called the completion of C([0, 1], which is L?[0, 1].
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(i) P2=P
(ii) (Pv,w) = (v, Pw) for all v,w € V.

Recall that we studied projections already before, in Section 7.8, and that we had in

particular that
V=kerP®&ImP ,

if V is finite dimensional. The new property here, which makes a projection orthogonal, is
(7i), and we will see below that this implies ker P L Im P.
Let us look at a few examples:

(a) Let V = C? with the standard inner product. Then

10 1/1 1
Pl‘(o o>’ P2_2<1 1>

are both orthogonal projections.
(b) Let wg € V be a vector with ||wp|| = 1, then
P(v) := (wg, v)wy (9.3)

is an orthogonal projection. Bot previous examples are special cases of this construction:

if we choose wy = (1,0) then we get Py, and if we choose wg = %(1, 1) then we get P.

The second example can be generalised and gives a method to construct orthogonal pro-
jections onto a given subspace.

Proposition 9.12. Let (V, (,)) be an inner product space, W C V a subspace, and wy,--- ,wy €
W an ONB of W. Then the map Py : V — V defined by
k
Py (v) := Z(wi,z})wi , (9.4)
i=1

s an orthogonal projection.

Proof. Let us first show (i7). We have (Py (v),u) = <Zf:1<wi,v>wi,u) = Zle (wi, v) (Wi, u)

and similarly (v, Py (u)) = Zle(v, wj) (w;, u), and since (w;, v) = (v, w;) we have (P (v), u) =

(v, Pw (u)).
To see (i) we use that Py (w;) = w;, for i = 1,---  k, by the orthonormality of the
wi, -+ ,wg. Then

k k k

Py (P (v)) = > (wi, Pw(v))w; = Y (P (wi), v)w; = Y (w;, v)w; = Py (v) ,

=1 =1 i=1

where we used as well (7).

The following result collects the main properties of orthogonal projections.
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Theorem 9.13. Let (V,(,)) be an inner product space (with dimV < o0o) and P:V — V an
orthogonal projection. Then we have

(a) Pt :=1— P is as well an orthogonal projection and P+ P+ =1.

(b) ker P L Im P and V =ker P @ Im P.

(¢) (Im P)* =ker P, hence V = (Im P)* @ Im P.

(d) Im P 1 Im P+

Proof. (a) It is clear that P + Pt = I and we know already from Section 7.8 that P+
is a projection. To check the other claim we compute (Ptv,w) = (v + Pv,w) =
(v, w) + {Pv,w) = (v,w) + (v, Pw) = (v,w + Pw) = (v, Prw).

(b) Assume w € Im P, then there exist a w’ such that Pw’ = w, so if v € ker P we get
(v,w) = (v, Pw') = (Pv,w’) = (0,w’) =0, hence w L v.

(c) We know by (b) that ker P C (Im P)*. Now assume v € (Im P)*, i.e, (v, Pw) = 0 for
all w € V, then (Pv,w) = 0 for all w € V and hence Pv = 0, so v € ker P. Therefore
Imp)+ = ker P and the second results follows from V = ker P @ Im P (see Section 7.8).

(d) (Pv, Ptw) = (Pv, (I — P)w) = (v, P(I — P)w) = (v, (P — P*)w) = (v,0w) = 0. -

By (a) we have for any v € V that v = Pv + Ptu, if P is an orthogonal projection, and
combining this with (d) and Pythagoras gives

lo]|* = [[Pol|* + [|[PHo]? . (9-5)

This can be used to give a nice proof of the Cauchy Schwarz inequality for general inner
product spaces.

Theorem 9.14. Let (V,(,)) be an inner product space, then
(v, w)| < [Jvf[[Jw]] -
Proof. By the relation (9.5) we have for any orthogonal projection P that
[ Pv]| < [lv]

for any v € V. Let us apply this to (9.3) with wy = w/||w||, this gives |(wo,v)| < ||[v|| and so
[{v, W) < Jvff|w]- O

Using the definition of (,) and Cauchy Schwarz we obtain the following properties of the
norm whose proof we leave as an exercise.

Theorem 9.15. Let (V,(,)) be an inner product space, then the associated norm satisfies
(i) ||v|]| =0 if and only if v =10
(i) || Av|| = [Alllv]

(iii) ||o +w| <ol + [[wl].
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We can use orthogonal projectors to show that any finite dimensional inner product space
has a orthonormal basis. The basis idea is contained in the following

Lemma 9.16. Let (V,(,)) be an inner product space, W C V a subspace and vy,---vg €
W an ONB of W with Py the orthogonal projector (9.4). Assume ugyqy € V\W, then
U1y 5 Uk V41 with

1

= =1 Pvuen
1Pyt |

Vk+1 -
is an orthonormal basis of Wy := span{vy, -+ , vk, ugs1}

Proof. We know that Pdf/“k.i_l = 0 is equivalent to upy; € ker PI*/ = Im Py = W, hence
P‘J/[}Uk+1 # 0 and therefore vy is well defined. By part (d) of Theorem 9.13 PV%,ukH 1
Im Py = W, and so {vy, - ,vk, ups1} is an orthonormal set, and hence an ONB of its
span. ]

Theorem 9.17. Let (V,(,)) be an inner product space, dimV = n, then there exist an
orthonormal basis of V.

Proof. Choose a u; € V with u; # 0 and set vy := W uy and Vi = span{v;}. Then either
Vi =V and v; is an ONB, or there is an ug € V\V; and we can apply the previous Lemma
which gives an ONB v1, vy of Vo = span{uj,us}. We iterate this procedure and the dimension
of V}, increases each step by one, until V;, =V and we are done. ]

A variant of the previous proof is called the Gram Schmidt orthogonalisation procedure.
We start with an arbitrary basis A = {u1, - ,u,} of V and to turn it into an orthonormal
one in the following way. We set

1
V] = Uy
[Jua |
Ly — (or, un)r)
b2 := ug — (v1, ug)v
? g — (v, u2)v1| 2 L2/
1
U3 = us — (Vg, u3)ve — (v1, usdv
’ ”U3—<Uz,u3>vz—<v1,u3)v1||( 3 = (v2,u3)v2 = (v1, u3)v1)
: (1 — on 1, 00) (or, unyon)
Un -= U — AU 1w 1 — e — (v v
n Hun_<vn—17un>vn—l_"‘_<1}1,un>’ulH n n—1, Un)Un—1 1, Un)V1

and this defines a set of n orthonormal vectors, hence an orthonormal basis.
One of the advantages of having an inner product is that it allows for any subspace W C V
to find a unique complementary subspace consisting of all orthogonal vectors.

Theorem 9.18. Let (V,{,)) be an inner product space and W C V a subspace, then
V=WaoWw".

Proof. By Theorem 9.17 there exist an ONB of W, hence the orthogonal projector Py associ-
ated with W by Proposition 9.12 is well defined. Then by Theorem 9.13 we have W = ker Py
and V =ker Py @ImPyy = WL aW. O
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The existence of an orthonormal basis for any subspace W C V', and the construction of
an associated orthogonal projector Py, in Proposition 9.12, give us a correspondence between
subspaces and orthogonal projections. This is actually a one-to-one correspondence, namely
assume that P is another orthogonal projection with Im P = W, then by Theorem 9.13
ker P = W+ and so ker P = ker Pyy. So we have V.= W+ @& W and P = Py on W+ and
P = Py on W, hence P = Py.

Let us finish this section by discussing briefly one application of orthogonal projections.
Let V be an inner product space, and W C V a subspace and we have an orthogonal projection
Py : V — V with Im Piy = W. Assume we have given a vector v € V and want to know the
vector w € W which is closest to v, we can think of this as the best approximation of v by a
vector from W.

Theorem 9.19. Let (V,(,)) be an inner product space, P :V — V an orthogonal projection
and W =1Im P, then we have
o —wl| > [lv — Po]

forallwe W .

This proof of this is left as an exercise. But it means that Pv € W is the vector in W
closest to v and that the distance from v to W is actually

|lv — Pvl| .

Let us look at an example. Let V' = C|0, 1], the space of continuous functions on [0, 1], and
let W = T := span{ey(z); |k| < N}, where e, (z) = ™%, We know that {ey(z); |k| < N}
form an orthonormal basis of T and so by Proposition 9.12 the following is an orthogonal

projection onto W = T,
N

Py(f)(z):= Y (e flew(x) .

k=—N

So if we want to approximate continuous functions f(z) by trigonometric polynomials, i.e., by
functions in T, then the previous result tells us that for a given function f(x) the function

N

1
fn(x) == Pn(f)(z) = Z (ek,f>ek(x) , with <ek,f) = /0 f(x)e_%rikm dx

k=—N

is the best approximation in the sense that ||f — fn|| is minimal among all functions in Ty.
This is called a finite Fourier series of f. In Analysis one shows that

lim |[f — fx|| =0

i.e., that one can approximate f arbitrary well by trigonometric polynomials if one makes N
large enough.



Chapter 10

Linear maps on inner product
spaces

We now return to our study of linear maps and we will see what the additional structure of
an inner product can do for us. First of all, if we have an orthonormal basis, the matrix of a
linear map in that basis can be computed in terms of the inner product.

Theorem 10.1. Let (V,(,)) be an inner product space with dimV =n, and T : V — V a
linear map. Then if B = {v1--- ,v,} is an orthonormal basis of V, then the matriz of T in
B is given by

Mpp(T) = ((vi, Tv;)) .

Proof. The matrix is in general defined by Tv; = ), ajvk, taking the inner product with v;
gives a;; = (v;, Tvj). O

Notice that for a general basis the existence and uniqueness of the matrix was guaranteed
by the properties of a basis, but to compute them can be quite labour consuming, whereas in
the case of an orthonormal basis all we have to do is to compute some inner products.

Examples:
1 3 0 I

(i) Let us take V. = R3, and T'(x) := [0 1 0 x2 | (this is the matrix of T in
0 2 -1 T3

the standard basis). Now we showed in the example after Theorem 9.10 that B =
{Vl,VQ,Vg} with

-2 1
, Vo= —( 0 s, V3= —F/—— -5 (101)

is an orthonormal basis. In order to compute Mpp(T') we first compute

1 4 1 -2 1 —14
T(v1) = Ak T(v2) = VAR T(vs) = Vel B
0 -1 —12

137
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and then obtain the matrix elements a;; = v; - T'(v;) as

5 —4 =43
MBB(T): \/?10 54 @ . (10.2)
6v/5 5/6 30

So we had to compute 9 inner products, but this was still more direct and easier then
for a general (non-orthonormal) basis.

10.1 Complex inner product spaces

We will focus in this section on complex inner product spaces of finite dimension. The reason
for this is that in this case any linear map has at least one eigenvalue, since any polynomial
has a at least one root over C. So from now on we assume that IF = C in this section.

The following is a very important definition, although in the beginning it might look a bit
obscure.

Definition 10.2. Let (V,(,)) be an inner product space and T : V' — V a linear map. The
adjoint map 7™ : V — V is defined by the relation

(T*v,w) = (v, Tw) .

A very simple example is the map Tv = Av, i.e., just multiplication by a fixed number
A € C, then
(v, Tw) = (v, \w) = Mv,w) = v, w) ,

and hence T* = M.

The first question which comes to mind when seeing this definition is probably why T*
exist, and if it exists, if it is unique. One can develop some general arguments answering both
questions affirmatively, but the quickest way to get a better understanding of the adjoint is
to look at the matrix in an orthonormal basis.

Theorem 10.3. Let (V,(,)) be an inner product space and T : V. — V a linear map. If B
is an orthonormal basis and T has the matriz Mpg(T) = (a;j) in that basis, then T has the
matric

Mps(T*) = (aji) ,

in that basis, i.e, all elements are complex conjugated and rows and columns are switched.

Proof. We have a;; = (v;, Tvj) and Mpg(T*) = (bi;) with

bij = <’Ui,T*Uj> = (T*vj,vi> = <Uj,T’UZ'> = Qjj -

It is worthwhile to give this operation on matrices an extra definition.

Definition 10.4. Let A = (a;;) € M, m(C) be an m x n matriz with complex elements, then
the matriz A* = (a;;) € My, n(C) is called the adjoint matrix.
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Let us look at some more examples now, for the matrices

) ) . . 3 21 e
A:(%j11;&> B:(Q'E) C:1<i?> D= o i3
! ! V2 ! 11i—1 12 =

we find

3 0 —-11i—-1
L (241 i . (0 —i L1 /=i . o
w=(Taa) #o(0) ol ) g e

™

Notice that in particular B* = B, and after a short computation one can see C*C' = I.
Let us notice a few direct consequences of the definition of the adjoint.

Theorem 10.5. Let (V,(,)) be an inner product space and T, S : V — V linear maps, then
(i) (S+T) =S*"+T*
(i) (ST)* =T*S* and (T*)* =T

(iii) if T is invertible, then (T~1)* = (T*)~L.

We leave the proof as an exercise. Let us just sketch the proof of (ST)* = T*S* because
it illustrates a main idea we will use when working with adjoints. We have ((ST)*v,w) =
(v, (ST )w) = (v, S(Tw)) = (S*v, Tw) = (T*S*v, w) where we just repeatedly used the defi-
nition of the adjoint. Hence (ST)* = T*S*.

Definition 10.6. Let (V,(,)) be an inner product space and T : V — V a linear map, then
we say

(i) T is hermitian, or self-adjoint, if T* =T.
(i) T is unitary if T*T =1

(iii) T is normal if T*T = TT*.

The same definitions hold for matrices in general. In the previous examples, B = (? Bl>

is hermitian, and C' = % (i }) is unitary. If a matrix is hermitian can be checked rather
quickly, one just has to look at the elements. To check if a matrix is unitary or normal,
one has to do a matrix multiplication. Notice that both unitary and hermitian matrices are
normal, so normal is some umbrella category which encompasses other properties. It will turn
out that being normal is exactly the condition we will need to have a orthonormal basis of
eigenvectors.

We saw examples of hermitian and unitary matrices, since normal is a much broader

category it is maybe more useful to see a matrix which is not normal. For instance for

()
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. (10
v ()

. (21 L (11
AA_<1 1), AA_<1 2)
hence AA* # A*A.

Another example we have already encountered are the orthogonal projections, property
(ii) in the definition 9.11 means that P* = P, i.e., an orthogonal projection is hermitian.

We will return now to the study of eigenvalues and eigenvectors and look at consequence
of the above definitions for them.

We start with hermitian maps.

we find

and so

Theorem 10.7. Let (V,(,)) be an inner product space and T : V' — V a hermitian linear
map, then all eigenvalues of T are real valued.

Proof. Let A € C be an eigenvalue of T', and let v € V) be an eigenvector with ||v|| = 1, then
(v, Tv) = (v, W) = Mv,v) = A, so

A= (v,Tv) .
Now A = (v,Tv) = (T*v,v) = (Tv,v) = (Av,v) = Mv,v) = A, where we used T = T* and
|lv]| =1, hence A = ), i.e., A € R. O

So eigenvalues of hermitian maps are real, but we can say as well something about eigen-
vectors:

Theorem 10.8. Let (V,(,)) be an inner product space and T : V' — V a hermitian linear
map, then eigenvectors with different eigenvalues are orthogonal, i.e., if Ay # As, then

Vi, L W, .

Proof. Let v € V), and vy € V), i.e,, Tv; = A\v1 and Tva = Agva, then consider (vi, Tvs).
On the one hand side we have
(v1, Tva) = Aa(v1,v2) ,

on the other hand side, since T* =T,
(v1, Twa) = (Tv1,v2) = A1 (v1,0v2) ,

SO )\2<U1,U2> = )\1<01,U2> or
(A1 = A2)(v1,v2) =0,

and if A; # Ao we must conclude that (vq,vs) = 0. ]

We had seen previously that eigenvectors with different eigenvalues are linearly indepen-
dent, here a stronger property holds, they are even orthogonal. These two results demonstrate
the usefulness of an inner product and adjoint maps when studying eigenvalues and eigenvec-
tors.

Example: To illustrate the results above let us look at the example of an orthogonal
projection P:V — V.
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e we noticed already above that P = P*. Now let us find the eigenvalues. Assume
Pv = )\, then by P? = P we obtain A?v = Av which gives (A2 — \)v = 0, hence
A=
Therefore P can have as eigenvalues only 1 or 0.

e Let us now look at the eigenspaces Vy and Vi. If v € V, then Pv = 0, hence Vj = ker P.
If v € V1 then v = Pv and this means v € Im P, on the other hand side, if v € Im P
then v = Pv by Lemma 7.43, hence V; = Im P. Finally Theorem 9.13 gives us

V=Waol.

The following summarises the main properties of unitary maps.
Theorem 10.9. Let (V,(,)) be an inner product space and T,U : V' — V unitary maps, then
(i) U= and UT and U* are unitary, too.
(i) ||Uv|| = ||v]| for any v e V.
(ii3) if A is an eigenvalue of U, then |A| = 1.
We leave this and the following as an exercise.

Theorem 10.10. Let U € M, (C), then U is unitary if and only if the column vectors of U
form an orthonormal basts.

The proof of this theorem follows from the observation that the matrix elements of U*U
are u; - uj, where u;, 2 = 1,--- ,n, are the column vector of U.

Eigenvectors of unitary maps with different eigenvalues are orthogonal, too, but we will
show this for the more general case of normal maps. As a preparation we need the following
result

Theorem 10.11. Let (V,(,)) be an inner product space and T : V' — V' a normal map. Then
if v is an eigenvector of T' with eigenvalue A, i.e., Tv = Av, then v is an eigenvector of T™
with eigenvalue A, i.e., T*v = lv.

Proof. T is normal means that T7T* = T*T, and a short calculations shows that then
S:=T -\
is normal, too. Using S5* = §*S we find for an arbitrary v € V
|Sv||* = (Sv, Sv) = (v, 5*Sv) = (v, SS*v) = (S*v, S*v) = ||S*v|?

and now if v is an eigenvector of 7" with eigenvalue A, then [[Sv|| = 0 and so ||S*v|| = 0 which
means S*v = 0. But since S* = T* — A\I this implies

T v = \v .
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Theorem 10.12. Let (V,(,)) be an inner product space and T : V — V a normal map, then
if A1, Ao are eigenvalues of T with \1 # Ay we have

Va, LV, .

Proof. The proof is almost identical to the one in the hermitian case, but now we use T*v; =
A1vi. We consider (vy, Tva), with vy € V), and vy € V), on the one hand side

(v1, Tva) = Aa(v1,v2)
and on the other hand side
(v1, Tva) = (T*v1,v2) = (Av1,v2) = A {v1,v2) ,
50 (A1 — A2)(v1,v2) = 0 and hence (vq,v2) = 0. O

This result implies the previous result about hermitian maps and shows as well that the
eigenvectors of unitary maps are orthogonal.

We come now to the central result about normal maps which will imply that they can be
diagonalised.

Theorem 10.13. Let (V,(,)) be a finite dimensional complez inner product space and T :
V — V' a normal map with specT = {\1,--- , A}, then

V:VAI@VAQ@-“@VM,
and Vy, J_V)\j ifi#£ 4.

Proof. Let usset W =V, @ V), ®--- @ V), what we have to show is that V' = W, i.e., that
V' can be completely decomposed into eigenspaces of T', so that there is nothing left. Since
V =W @ W+ by Theorem 9.18, we will do this by showing that W+ = {0}.

Since eigenvectors of T are eigenvectors of T, too, we know that W is invariant under
T*, ie., T*(W) C W. But that implies that W is invariant under T, to see that, consider
w € W and v € W+, then (Tv,w) = (v, T*w) = 0, because T*w € W, and since this is true
for any w € W and v € W+ we get T(W+) c W+,

So if W+ # {0} then the map 7 : W+ — W+ must have at least one eigenvalue (here we
use that I = C, i.e, that the characteristic polynomial has at least one root in C!), but then
there would be an eigenspace of T in W+ but by assumption all the eigenspaces are in W, so
we get a contradiction, and hence W+ = {0}. O

We can now choose in each V), an orthonormal basis, and since the V), are orthogonal
and span all of V, the union of all these bases is an orthonormal basis of V' consisting of
eigenvectors of T'. So we found

Theorem 10.14. Let (V,(,)) be a finite dimensional complex inner product space and T :
V — V a normal map, then V has an orthonormal basis of eigenvectors of T.

This answers our general question, we found some criteria on a map which guarantee the
existence of a basis of eigenvectors. Any normal map, or in particular any hermitian and any
unitary map, has a basis of eigenvectors, and hence is diagonalisable.

Let us spell out in more detail what this means for matrices.
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Theorem 10.15. Let A € M, (C) be a normal n x n matriz with complex elements, i.e.,
A*A = AA*, then there exist a unitary matriz U € M, (C) such that

U*AU = diag(A1, Az, -+, An)

where A1, Ao, -+, An are the eigenvalues of A, counted with multiplicity, and U has an or-
thonormal basis of eigenvectors of A as columns.

Let us relate this to our previous results, we learned that if we have a basis of eigenvectors
and form the matrix C' with the eigenvectors as columns, then C~1AC = diag(A1, A2, -+ , Ay ).
Now we know that we even have an orthonormal basis of eigenvectors, and we showed above
that the matrix C' = U with these as columns is unitary, this is why we renamed it U. Having
a unitary matrix has the advantage that C~! = U*, and this gives the result above.

A very simple example of a hermitian matrix is the following

which we already discussed at the beginning of Section 8. The eigenvalues are A; = 1 and
A2 = —1 and a set of corresponding eigenvectors is v; = (1,i) and vy = (i,1). We can build

a matrix C' = <i i) which will diagonalise A, but this matrix is not unitary, since the

eigenvectors where not normalised, i.e., ||v;|| # 1. But if we choose normalised eigenvectors
0 = %(1, i) and 0y = %(i, 1), then the corresponding matrix

-5 )

e (10
UAU(O _1>.

One can discuss more general examples, but the actual process of finding eigenvalues and
eigenvectors for hermitian, unitary or in general normal matrices is identical to the examples
discussed in Chapter 8. The only difference is that the eigenvectors are orthogonal, and
if choose normalised eigenvectors, then the matrix U is unitary. The additional theory we
developed does not really help us with the computational aspect, but it tells us in advance if
it is worth starting the computation.

At the end we want to return to the more abstract language of linear maps, and give
one more reformulation of our main result about the existence of an orthogonal basis of
eigenvectors for normal maps. This formulation is based on orthogonal projections and is the
one which is typically used in the infinite dimensional case, too.

We can think of an orthogonal projector P as a linear map representing the subspace
Im P, and given any subspace W C V' we can find a unique orthogonal projector Py defined

by
v fveWw
P =
we {o if v e Wt

is unitary and diagonalises A,

and since V=W @ W+ any v € V can be written as v = w + u with w € W and v € W+
and then Pyv = w.
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So if we have a normal map 7' : V — V and an eigenspace V) of T, then we can associate
a unique orthogonal projector
P/\ = PV)\

with it. Since Pyv € V), for any v € V, we have in particular
TP\, = \Py .

We can now state the abstract version of the fact that normal matrices are diagonalisable,
this is sometimes called the ”Spectral Theorem for Normal Operators”.

Theorem 10.16. Let (V,(,)) be a complex inner product space, and T : V — V be a normal
map, then for any eigenvalue \ € specT there exist a orthogonal projector Py such that

(Z) ZAESpecT PA =1

(”) T= Z)\GspecT )‘PA

Proof. By Theorem 10.13 we have Vy, @ --- @ V), = V and this implies Z/\EspeCTP,\ = 1.
Then applying T to this identity and using TPy, = AP gives the second result. O

To connect this to the previous formulations, if we choose an orthonormal basis of T,
which exists as a consequence of Theorem 10.13, then in this basis the matrix of a projector
P, is diagonal with as dim V) times the number 1 on the diagonal and the rest 0’s. So
T =) \espeer APA = diag(A1,- -+, Ay) in that basis.

One of the advantages of the above formulation of the result is that we do not have to use
a basis. We rather represent the map 7' as a sum of simple building blocks, the orthogonal
projections.

As an application let us look at powers of T'. Since P\Py = 0 if X # X we get

= > NP
AespecT

and more generally
"= 3" APy,
AespecT

That means if we have a function f(z) = 7, az* which is defined by a power series, then
we can use these results to get

FT) =) axTr = Y fNPy,
k=0 AespecT

and more generally we can use this identity to define f(7") for any function f : specT — C.

10.2 Real matrices

We have focused on complex matrices so far, because if we work over C then we always have
n eigenvalues, including multiplicity. But in many applications one has real valued quantities
and likes to work with matrices with real elements. We now want to give one result about
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diagonalisation in that context. If a matrix is hermitian then all eigenvalues are real, so that
seems to be a good class of matrices for our purpose, and when we further assume that the
matrix has only real elements then we arrive at the condition A’ = A, where A! denotes the
transposed matrix defined by A* = (aj;) if A = (a;5). So a real symmetric n x n matrix A has
n real eigenvalues Ay, Ao, -+, Ay, counted with multiplicity. The corresponding eigenvectors
are solutions to

(A — /\J)vi =0

but since this is a system of linear equations with real coefficients, the number of linearly
independent solutions over R is the same as over C. That means that we can choose dim V),
orthogonal eigenvectors with real components, and so we can find a orthonormal basis of real
eigenvectors vy, - - - v, € R™ of A, and so then the matrix

O = (vy,-+-vyp)
will diagonalise A. So we have found

Theorem 10.17. Let A € M,,(R) be a symmetric, real matriz, i.e., A® = A, then there exits
a matriz O € My, (R) such that

O'AO = diag(A1,- -, \n)

where \1,- -+ , A\, € R are the eigenvalues of A, and O = (v1,---vy,) has an orthonormal basis
of eigenvectors v; € R™ as columns. Here orthonormal means v; - v; = 6;; and the matriz O
satisfies OO = 1.

The matrices appearing in the Theorem have a special name:

Definition 10.18. Matrices O € M,(R) which satisfy O'O = I are called orthogonal
matrices.

Theorem 10.19. O € M, (R) is an orthogonal matriz if the column vectors vy, -+ , vy, of O
satisfy v; - v; = &;5, i.e., form an orthonormal basis. Furthermore if O1,02 are orthogonal
matrices, then 0102 and 01_1 = O are orthogonal, too

We leave the proof as an exercise.
A simple example of this situations is

A:(‘f é) .

This matrix has eigenvalues A\; = 1 and A2 = —1 and normalised eigenvectors v, = %(1, 1)
and vy = %(1, —1) and so

and
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A typical application of this result is the classification of quadratic forms. A function
G : R™ — R is called a quadratic form if

gx) = 3x- @

where Q € M,(R) is a symmetric matrix. We want to find a simple representation of this
function which allows us for instance to determine if x = 0 is a maximum or a minimum of
g(x), or neither of the two. By Theorem 10.17 there exist an orthogonal matrix O such that
O'QO = diag(\1,- -+ , \n), where Ay, -+, A, are the eigenvalues of the map Q : R"* — R™. So
if we introduce new coordinates y by y = O'x, or x = Oy, then

1 1
G(y) :=9(0y) = 5y - 0'Q0y = §(>\1y% + A+ 4 Ayl)

So the behaviour of the quadratic form is completely determined by the eigenvalues. E.g.,
if they are all positive, then x = 0 is a minimum, if they are all negative then x = 0 is a
maximum, and if some are negative and some are positive, then x = 0 is a generalised saddle
point.

This is used for instance in the study of critical points of functions of several variables.
Let f: R™ — R be a function, we say that f has a critical point at xg € R™ if

Vf(Xo) =0

where Vf = (fuy, -+, fz,) is the vector of first order partial derivatives of f. We want to
know what the behaviour of f is near a critical point, for instance if x¢ is a local maximum,
or a local minimum or something else. The idea is to use Taylor series to approximate the
function near the critical point, so let

(S
Hy:= <dxidxj (XO)>

be the Hessian matrix of f at x = x¢, i.e., the matrix of second derivatives of f. Since the
order of the second derivates does not matter the Hessian matrix is symmetric. The theory
of Taylor seres tells us now that

f(xo0) + %(X —xo) - Hp(x — x0)

is a good approximation for f(x) for x close to xg.

Now we can use the above result, namely there exist a matrix O such that O'HyO =
diag(A1,--- , An) where A, -+, A\, € R are the eigenvalues of Hy. If we introduce now new
coordinates y € R"” by x — xg = Oy, i.e., x = x¢ + Oy, then we get

%(x —x0) - (Hf(x —x0)) = %(OY) - (H;0y)

1
= -y - (O'H;O)y

2
1 )
= §y ~diag(A1, -, An)y
A1 A
=Sut S
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But that means the behaviour of f near a critical point is determined by the eigenvalues of
the Hessian matrix. For instance if all eigenvalues are positive, then f has a local minimum,
if all eigenvalues are negative, its has a local maximum. If some are positive and some are
negative, then we have what is called a generalised saddle point.
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Erratum

List of missprints:

10.

11.

12.

13.

14.

15.
16.

17.

. page 8, tan(f) = x/y should read tan(f) = y/x.

page 12, near the bottom should read "We nd in particular that we...
page 19: In the proof for Thm 2.10, It should be ||x||? instead of ||y||?

page 22, c), i). instead of being 1 = 271 4 72, it should be 1 = 71 + 272 | and (1,0,0)
instead of (1,1,1) notin V

. page 30, Thm 3.7, C(A+ B) = CA + CB instead of CA+ AB

page 57: In the first paragraph under the proof, it should be ”we always choose” instead
of ”we always chose”

page 66: in Def 6.1 (ML) (1) at the end, the second al is an a2.

page 58: Thm 5.9 I think it should be "and f-1 is bijective too” instead of "and f is
bijective too”

page 59, Thm 5.12 in the last line it should be Im 7T = R™

page 63, proof of Thm 5.19: there was an extra + in equation (5.12) and in the penul-
timate line of the proof an index k should be an n.

page 65, a double ”of” in second paragraph and the ”this disadvantage” instead of ”the
disatvantage”

page 66, Def 6.1, (ML) al,a2,bl instaed of al,al,bl

page 69 regarding the determinant of the matrix: al= (-10, 0, 2), a2=(2, 1, 0), a3=(0,
2, 0), gives an answer of 4. It should be 8.

page 74, Definition of Laplace expansion into row i contains an error of the subscript of
the second element in the row, should be i instead of 1

page 84, The last line is missing the letter M.
page 85, The first paragraph is missing the word ’are’ before 'n - k’.

page 85, The first paragraph is missing the word ’be’ before ’chosen arbitrarily’.
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18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

CHAPTER 10. LINEAR MAPS ON INNER PRODUCT SPACES

page 87, In the description of Theorem 7.6, the word ’be’ should be after W.

page 89, In the Definition 7.8 of a subspace, the opening line should read 'Let V be
a vector space’. This same mistake was copy and pasted multiple times afterwards in
Theorem 7.9, Theorem 7.10, Definition 7.11 and Theorem 7.12.

page 93: Thm 7.18 under ”Furthermore...”, I think it should be ”and T?L(U’, U)”
instead of "R?L(U’, U)”

page 98, Beneath 7.6 Direct Sums, it should read ’Let V be a vector space”

page 98, In Theorem 7.33, the intersection listed should be between U & W not V &
W. The same mistake is copied into Theorem 7.34

page 117, In Definition 8.1, the word ’the’ is erroneously repeated.

page 120, At the bottom of the page, describing the roots of a polynomial, the ?1 should
come from the field C not an undefined set C.

page 124, v; = (1,2,1) not (2,1, 1).

pages 129,130, In Definition 9.3, there should be ’an’ instead of ’a’ before the word
inner’ and the same thing occurs in Theorem 9.10

page 132, Definition of a Hilbert space basis using summation notation involved a sub-
script 1 of v which should instead be i.

page 136, In Theorem 9.19, V is defined as the inner product space when it should be
(Vi i) Also in the theorem, the word ’and’ should be replaced with ’an’

page 14 | In Theorem 10.14, the word ’then’ should be used instead of 'the’ and the
word ’an’ instead of ’a’.



