SOME APPLICATIONS OF CAUCHY-SCHWARZ INEQUALITY

The Cauchy-Schwarz inequality states that
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It is often used in the particular case when every b; = 1, then, after squaring, and calling the summation
variable as x and a; as a(z) it becomes

N 2 N
(2) (Z a(w)) < NZa(w)Q.
=1 =1
The Cauchy-Schwarz inequality has many rather spectacular applications for some combinatorial
estimates. Here are some.

Set intersections. Let N be a large number. For a finite set S, let |S| denote the cardinality, i.e. the
number of elements in S. Let N be a large integer. Let § € (0, 1) be small. Namely, § being small means
that we will still regard 1 — 46 as being reasonably close to 1, and N being large that N? is much bigger
than N. We shall also regard N to any power between 0 and 1 as integer. Otherwise, we would have to
take integer part of such numbers, which would only necessitate more notations, without violating the
estimates that follow.

Suppose, there are N1~ distinct subsets S; of S, such that every |S;| = N'~°. Note that ‘I%” =N,
which is still a small number, so each S; alone is only a very small fraction of S. But there are many of
them. So, let us show that
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(3) J non-equal i,j : [S; N S;| > §N1 .

Le., the intersection S; N S; is also quite big in size; as for the constant % multiplying the “important
term” in the right-hand side of the estimate, it can be anything smaller than 1 and going to 1, for IV
large enough. In the sequel, 4, always run from 1 to N'=% and the variable = runs over S, without
putting this explicitly.

Let us introduce characteristic functions f;(z) of sets S; as follows: for any =z,

| 1lifz e S,
(4) fi(z) = { 0 otherwise.
Note some of their properties:

(5) fix) = fi@), D L) =15, D file)fi(z) = |Sin Sl

In particular,

SN fia) = i = N2
Hence,
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Now apply (2) to the summation in x above, with a(x) being the expression in brackets:
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There are two options in the double sum: ¢ = j and ¢ # j, and the number of terms with ¢ # j is much

bigger than with i = j. If i = j, >, S, N S;| = 32, |Si] = N?2720_ This times N is much less than the
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left-hand side N*=%9. So, as N is large, we can continue, with any constant C' > 1 in the right-hand
side, as

(6) N9 <y |Sin Sl
i#]
Now, we use the “pigeonhole principle”. If 13 pigeons are to sit on 12 pigeonholes, there must be a
pigeonhole with more than one pigeon sitting on it. In other words, there is a pigeonhole with at least
the average number of pigeons on it. Apply this principle to (6). For different i # j, we have the sum
of N2720 — N% > ¢N272% terms, where ¢ can be any constant < 1 and going to 1 for large N. This sum
is > éN 3-40 for any C' > 1. So, there must be a term, which has at least the average magnitude, that
is for some (i, 7):
CN3—45 1
|SZ‘QS]“ > W > §N1 25,
because C can be as close to 1 from above as we please, and ¢ can be as close to 1 as we please from
below.

Point-line incidence bound. Suppose we have a large number N of points, as well as N straight lines
in the plane. In the sequel, let’s call the set of points P and the set of lines L. Lowercase p,[ will denote
individual members of these sets, respectively. The aim is to get is a reasonable upper bound for the
number of incidences I between lines in L and points in P, defined as

- ' [ lifpel,
I = zl: 5pl with 5101 - { 0 otherwise.
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In other words, if n(p) is the number of lines from L passing through a point p € P, or n(l) is the number
of points of P supported on the line [ € L, then I = an(p) = >, n(l).
A straightforward estimate, thinking that every point belongs to every line is

(7) I < N2

But we can do better than that. Apply Cauchy-Schwartz (2) as follows:
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The sum over [,l’ is the sum over all ordered pairs (I,1') of lines. Given a pair (I,1’), the quantity
Zp dpidpr is the number of points of P which lie simultaneously on ! and on .
There are again two cases: [ =1" and [ #1’. If | =1, then

> (Z 5pl5pz'> = ; (,Z 5pl> =1
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Otherwise, given a pair [ # I/, the maximum number of points of P lying on both [ and I’ is 1, because
any two distinct lines intersect at no more than one point. Thus (8) becomes
IP<NI+NY 1<2N?
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because of (7) and the fact that the number of pairs (I,1'), I # I’ is certainly bounded by N2. So, we
have.

I <V2Nz,
which is much better than (7), and it’s easy to show that the constant /2 can be replaced by any C > 1.
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Fat elephant inequality. Consider a set S of N points in R? and look at the projections of S on the
coordinate planes zy (the projection going along the z-axis), yz (along the z-axis), and zz (along the
y-axis). Let us show that at least one of the projections is such that its size is not less than N 2/3, (A
fat elephant cannot look thin from all the three directions — it must have at last one fat projection.)

Introduce the characteristic function f(x,y,z) of the set S, which equals 1 if the point (x,y,z) €
S and f(x,y,z) = 0 otherwise. In the same fashion, let fi(z,y), f2(y,2), f3(z,2) be characteristic
functions of the projections of the set S onto the zy, yz, zz-planes, respectively. We will use the fact
that characteristic functions squared still equal themselves.

Then the starting point is the claim

(9) f(ZE,y,Z) < fl(xvy)fQ(yaZ)fiﬁ(zvx)'
This merely says: a member of S has its projections. Namely, f(x,y,z) = 1 only if each
fi(z,y), fa(y, ), f3(z,z) equals 1 (it is not necessarily true the other way around). Besides,

(10) > flwy,z) =N
xT,Y,z
Here x belongs to the finite set of abscissae of the points of S, y is in the finite set of ordinates of these
points, and so on, but we will never have to deal with these sets explicitly.
Let us use (9, 10) and Cauchy-Scwartz (1) applied twice:
First, we apply (1) to summation in (z,y):
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In the first multiplier,
D Sy =) filay) = [Poy(S)],
T,y T,y

where | Py, (S)| denotes the size of the projection of S onto the xy-plane.
In the second multiplier, given (z,y) apply (1) to the summation in z:

(Zfé Y, 2 f3256> <Zf2 y.2) Y [3(zm) =) faly,2) ) fa(zx)

So, we have

> (Z fo(y, 2) f3(z, 2 ) < ZZ]& v:2)- > fa(z2) =) faly2) - Y f3(2,2) = |Pya(S)]| P ()],
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where |P,.(S)|, |Pyz(5)] denote the size of the projection of S onto the yz and zz-planes respectively.
Thus, altogether
N? < |Pay (S)||1Py=(5)]| Pu=(S)]
the product of the sizes of the three projections, hence one of them must be is greater than N 2/3,
Note, the inequality is sharp, take S as the “lattice cube” [1,...,M] x [1,..., M] x [1,...,M]. The
size of each projection is M?, while S itself has size M3.



