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Abstract
The mathematical theory of the powder diffraction intensity function is presented in the

form accessible to the theoretical crystallography audience. The theory elucidates how a-
priori estimates and values of certain averages, or moments of the intensity function bear
witness to the fractal dimension and symmetry structure of the material under investigation.

While peak analysis is today’s key method of processing the diffraction data, this paper
stresses the importance of the moments of the intensity function. The moments are easy to
compute and are robust to noise and errors. On the other hand, they represent a unique
signature of a particular underlying symmetry type and generally tend to increase with the
extent of the order in the material’s crystal structure. Supposedly, the moments reach a
maximum in the case of the cubic lattice, and this is closely related to the Erdös distance
conjecture in combinatorics and analysis which has been open for almost sixty years.
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1 Introduction

Powder diffraction is one of the most widely used material characterization methods. Over the
last 50 years it has been routinely used for crystalline phase ”finger-printing”. See, for example,
[17], and the reference contained therein. Recently, cheap and powerful computers, and dedicated
2nd and 3rd generation X-ray synchrotron sources have transformed powder diffraction into a
very potent structural tool.

The principal limitation of powder diffraction is the fact that a three-dimensional set of spots
obtained from a single crystal experiment is condensed into one dimension. This leads to both
accidental and exact peak overlaps, and complicates the determination of exact peak intensities.
As a consequence, crystal symmetry cannot be seen directly from diffraction pattern. See, for
example, [16] and [1] for the discussion of the errors involved.

The purpose of this article is to present to the audience of theoretical crystallographers the
state-of-the art of the theory of the n-dimensional1 powder diffraction intensity function. The
latter is a real-valued non-negative function of one non-negative real variable. Over the past
twenty years, it has been an important object of intense mathematical study in the context of
distance sets theory in geometric combinatorics and measure theory. In many cases, mathemati-
cians who conducted these investigations did not even suspect that the object of their analysis
has such interesting and profound physical significance. Below, we review and conceptualize sev-
eral important estimates of the intensity function, some with and others without proofs. This
paper will introduce the reader to the extensive body of mathematical literature on the subject,
and some most recent results are presented here for the first time.

Our basic object of study is a sample, represented by a set E ⊂ Rn. The length scale is
chosen so that E lies in the unit cube [0, 1]n, and the diameter of E is also approximately one.
First we will consider the case when E is a discrete set, and we later move on to the continuous
case. In both situations, µE is a normalized measure supported on E. In the discrete case, µE

is the sum of δ-functions, normalized by the number of elements in E. In the continuous case it
is typically a density function, whose integral over E equals one. The structure function of E is
represented by the Fourier transform

FE(ξ) =
∫
e−2πiξ·xdµE(x). (1.1)

Since only the absolute value of FE(ξ) is observable in a diffraction experiment, define

IE(ξ) = |FE(ξ)|2, (1.2)

a non-negative real-valued function to be the intensity function. Our objective is to show how
the structure of E is encoded into certain averages of the intensity function. In particular, within

1We keep n as a parameter to emphasize that the results presented are not confined to the case n = 3.
Moreover, from the mathematical point of view, the most difficult dimension is n = 2, while the case n > 4 may
be easier. See the discussion in the main body of the paper.
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a class of sets E under consideration, which ones maximize the value of the intensity function
IE(ξ) in a suitable sense?

We shall primary study the spherical average

σE(r) =
∫
IE(ξ)dωξ (1.3)

where dωξ is the surface area measure on the unit sphere Sn−1 in the reciprocal space.
Of course, in real powder diffraction experiments, the variable is the angle θ inside the cone

of X-ray radiation, scattered by the crystalline powder. The radiation has fixed wavelength λ,
which is equivalent to fixing ‖ξ‖ in (1.3). However, from the mathematical point of view, in
order to study the direction average which occurs during powder diffraction, it is important to
allow λ, or rather its surrogate ‖ξ‖ to vary. Indeed, the variables λ and θ relate to each other
via the Bragg formula.

Spherical averages of the squares of the Fourier transforms of measures constitute the core
of harmonic analysis, and have numerous applications in number theory and related disciplines.
See for example, [15], [13], and the references contained therein. The quantity σE(r) is also the
main feature of this article.

Observe that the spherical average is interesting only for r > 1, as IE equals 1 at the origin
(the integral

∫
dµE) and approximately 1 for small r, by the uncertainty principle.

If the set E is suitably random, the spherical average σE(r) is quite regular in the sense
that it tends to 0 as r−β for some β ∈ (0, n) which depends on the dimension of E. On the
flip side, if the set E possesses a lattice structure, the quantity σE(r) displays peaks, which
are usually narrow and well separated from one another to ensure that on average over large
intervals of r, the spherical average still has mean decay ∼ r−β. However the point-wise estimate
σE(r) ≤ const.r−β for all r > 1 is no longer valid.

This underlies the peak analysis, routinely performed by the practitioners of powder diffrac-
tion in order to document or identify different crystalline phases. Namely, the quantity σE(r) is
analyzed point-wise. From the mathematical point of view, point-wise analysis of functions is
most difficult, and is often eschewed in favor of certain averages, or moments. If we extend the
function σE(r) to the whole space Rn by viewing it as a radially symmetric function of ξ ∈ Rn,
then let for l = 1, 2, . . .

ME,2l =
∫
σ2l

E (ξ)dξ =
∫ ∞

0
σ2l

E (r)rn−1dr (1.4)

if the integrals converge. If they do not, we will restrict integration to the interval of length
R� 1 in the last integral and study the dependence of the result on the parameter R.

We will show that the second moment ME,2 (corresponding to l = 1) represents a very
important characteristic of the distance set of E, defined as

∆(E) = {‖x− y‖ : x,y ∈ E}, (1.5)
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where ‖ · ‖ denotes the Euclidean distance. In particular, the greater ME,2, the smaller the
distance set ∆(E) may be. In the discrete case, if E is a “typical” set of N elements, one can
expect to have some N(N − 1)/2 distinct distances in the distance set ∆(E). However, if E is
translation-invariant, the distance set gets considerably smaller. It is conjectured that of all the
discrete sets of N elements (clearly modulo rigid motions and scalings), the minimum number
of distances occurs in the case of the n

√
N × . . . n

√
N integer grid.

The fourth and higher moments of the spherical average also turn out to to be indicative
of translation-invariant structure, and perhaps in a more explicit way than the second moment.
To this effect, we shall show that if the 2lth, for l = 2, 3, . . . moment is large enough, then the
set belongs to a finite union of lattices. As a counterpart to this result, we shall show that sets
with no translation-invariant structure have small fourth moments.

The main theme of this paper is that averages of the intensity function alluded to above are
still sensitive to the fundamental geometric properties of the sample set E and should be useful
for material fingerprinting and related purposes whenever powder diffraction is involved. While
they contain less general information than the whole function σE(r), they are easier to compute,
store and compare, and, being averages, are relatively insensitive to noise and other errors.

This paper is organized as follows. The first section deals with the discrete case, with allusions
to the Erdös distance conjecture, which has been a major unsolved problem in geometrical
combinatorics since 1946. In Section 3 we will study the continuous case, in particular the
case when the set E can be characterized by some fractal dimension α ∈ (0, n). Throughout
the discussion we emphasize the synthesis of the ideas we present, and prospects for further
mathematical development of this rich and important area of modern physics.

2 Discrete case

In this section we operate on the length scale where an average distance between the atoms in
the sample studied is approximately one.

We shall make use of the following terminology.

Definition 2.1. An infinite discrete set A ⊂ Rn is a Delaunay set if

i. there exists a constant cA > 0 such that ‖a−a′‖ ≥ cA for every pair of different elements
a,a′ ∈ A,

ii. there exists a constant CA > cA such that every cube of side-length CA contains at least
one element of A.

Without loss of generality we may assume that a Delaunay set A contains exactly one point
in each cube of the form

[0, 1]n +m, m ∈ Zn.

We shall assume in the sequel that A is of this form.
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Let q � 1 and Aq = A ∩ [0, q]n be a truncation of A. I.e. the sample set E is 1
qAq. In

view of the general discussion in the introduction, the corresponding measure, normalized by
the number of elements is

µAq =
1
qn

∑
a∈A

δ(x− a),

resulting in the intensity function

IAq(ξ) =
1
q2n

∣∣∣∣∣∣
∑

a∈Aq

e2πia·ξ

∣∣∣∣∣∣
2

.

It is further more convenient however (due to the fact that the diameter of Aq is O(q) rather
than 1) to multiply the intensity by qn, so we shall further refer to its definition as follows

IAq(ξ) =
1
qn

∣∣∣∣∣∣
∑

a∈Aq

e2πia·ξ

∣∣∣∣∣∣
2

=
1
qn

∑
a,a′∈Aq

e2πi(a−a′)·ξ. (2.1)

2.1 Averaging

We are now ready to introduce different types of averages of the intensity function. First consider
the so-called solid average: for R� 1 let

ĪAq =
1

cnRn

∫
R≤‖ξ‖≤2R

IAq(ξ)dξ ≈ 1
Rn

∫
IAq(ξ)ψ(ξ/q)dξ. (2.2)

The constant cn above is the volume of the unit ball in Rn; in the sequel the value of cn may
vary, but will depend on the dimension only. For simplicity we shall suppress such constants
(not characteristic of the sample set E; in particular this includes constants appearing after
integration) by using the ≈ symbol instead of the equality (e.g.

∫ R
0 rn−1dr ≈ Rn). In the

same fashion we shall use the symbols . and & to suppress such constants in inequalities. In
addition, the integration in (2.2) has been extended to the whole Rn by incorporating a radially
symmetric (henceforth we will simply say radial) infinitely differentiable function2, which is
identically equal to 1 in the spherical shell ‖x‖ ∈ [1, 2] and vanishes outside a slightly larger
shell, say ‖x‖ ∈ [.9, 1.1]. Writing out the definition of IAq in (2.2), we see that

ĪAq = q−n
∑

a,a′∈Aq

ψ̂(R(a− a′)), (2.3)

2Cutoff C∞ functions are routinely used further in the paper, always being denoted as ψ. One can also use
Gaussians as cutoff functions. In both cases the “tails” beyond the effective supports of the functions themselves
or their Fourier transforms are negligible and will not be estimated.
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where
ψ̂(ξ) =

∫
Rn

e−2πix·ξψ(x)dx,

the Fourier transform of ψ. By the uncertainty principle, ψ̂(R(a − a′)) is concentrated in the
set

{(a,a′) ∈ Aq ×Aq : ‖a− a′‖ ≤ R−1}.
That, for large R, leaves out the case a 6= a′ in the double sum in (2.3).

We see from the expression (2.3) that

ĪAq ≈ q−n ·#Aq ≈ 1,

As far as the solid average is concerned, all Delaunay sets of the same density are the same.
In order to obtain a more interesting dependence on geometry, consider the spherical average

σAq(r) =
∫
IAq(rx)dωx, (2.4)

where the integral is taken with respect to the surface measure on the unit sphere, cf. (1.3).

We now average over the length of the wave vector over the relevant range ‖ξ‖ ≤ q. By the
uncertainty principle, this would correspond to the case when the actual atom size is of order
q−1 (on the scale when the atomic spacing is of order 1). As we have mentioned earlier, the
quantity σAq(r) is not interesting for small r, so we can once again fix a smooth cut-off function
ψ (this time of one variable on the non-negative real axis), such that ψ(r) ≡ 1 for r ∈ [0, 1] and
vanishes for r > 1.1. Let the second moment

MAq ,2 =
1
qn

∫ ∞

0
σ2

Aq
(r)ψ̂(r/q)rn−1dr, (2.5)

cf. (1.4) Observe that the presence of the cutoff function ψ in the integral effectively means that
integration is performed up to r ≈ q, hence the factor 1

qn plays the normalization role.
In order to understand the meaning of the second moment, let us introduce the distance

multiplicity function by the formula

m 1
q
(r) = #

{
(a,a′) : r ≤ ‖a− a′‖ ≤ r +

1
q

}
. (2.6)

The main result in this section is the following theorem.

Theorem 2.2. We have
MAq ,2 ≈ 1 +Gq, where

Gq = 1
q3n−1

∑
r

(
m 1

q
(r)

r
n−1

2

)2

,

(2.7)

with the sum being taken over a maximal 1
q -separated subset of ∆(Aq)\0.
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Before we present the proof of Theorem 2.2, let us point out that the quantity under the
summation sign is calculated as follows. For each a ∈ Aq one takes a spherical shell of radius r
and thickness 1

q centered at the point a and counts the number of elements of Aq in this shell,
weighted by 1

r
n−1

2
. Then the summation over the choice of the center a is effected. Further, the

result gets squared and summed over all r’s which are multiples of 1
q .

The formula (2.7) shows that MAq ,2 tends to get larger when the distance multiplicity func-
tion m 1

q
(r) deviates a lot from its expected value, which as it’s easy to see is approximately

qn · (q−1rn−1). Hence, if the set Aq is random, one can expect that

Gq ≈ q−3n+1 · q2n−2 · q
∫ q

0
rn−1dr ≈ 1. (2.8)

However, if A has a translation-invariant structure, the distance multiplicity function m 1
q
(r)

can deviate from its expected value considerably, at least for n = 2, 3.

Remark 2.3. In particular, if A = Zn, it is well known that the quantity q−nm 1
q
(r) can be as

large as some quantity dn(r), which for n = 2 equals the maximum number of divisors an integer
r can have (which is asymptotically smaller any positive power of r but greater than any power
of log r). For n = 3 it cam be as large as r log r. For n = 4 it is O(r2). For n ≥ 5 it is known that
if a sphere of radius r has an integer point on it, the total number of points of Zn is guaranteed
to be ≈ rn−2. See [11] and [7] for details.

For the practical purpose of processing the powder diffraction data, an experimental outcome
when the quantity (2.7) is fairly small, should signal the lack of translation-invariant structure in
the sample. On the other hand, different types of crystal structure should yield different values
of the second moment. In particular, its value for the cubical lattice largely exceeds the value
one gets for the tetrahedral lattice. The latter, although optimal from the packing point of view
is far from optimal from the point of view of the distance multiplicity function second moment.

2.2 Proof of Theorem 2.2

We have
σAq(r) =

∫
IAq(rx)dωx

= cn + q−n
∑

a 6=a′
∫
e2πi(a−a′)·rxdωx

= cn + q−n
∑

a 6=a′ ω̂(r(a− a′)).

(2.9)
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Henceforth, ω̂ denotes the Fourier transform of the surface measure on the unit sphere.3 Note
that the first term corresponds to the choice a = a′ in the intensity definition (2.1). The constant
cn is now the surface area of the unit sphere, to be absorbed into the ≈ symbol, i.e we’ll further
assume ω̂(0) = 1.

It follows that

MAq ,2 ≈ 1 + q−2n
∑

a 6=a′
∫∞
0 ω̂(r(a− a′))rn−1ψ(r/q)dr

+ q−3n
∑

a 6=a′;b6=b′
∫∞
0 ω̂(r(a− a′))ω̂(r(b− b′))ψ2(r/q)rn−1dr

= 1 + Yq + Xq.

To evaluate that quantity Yq let us view the test function ψ as a radial function of a variable
ξ ∈ Rn, rewrite the integral for Yq as an integral over Rn and apply Plancherel’s theorem∫

f̂(ξ)ĝ(ξ)dξ =
∫
f(x)g(x)dx.

and the convolution theorem

f̂ ĝ = f̂ ∗ g, where f ∗ g(x) =
∫
f(x− y)g(y)dy.

We get
q2nYq ≈

∑
a 6=a′

∫
ω̂(ξ‖a− a′‖)ψ(ξ/q)dξ

=
∑

a 6=a′
qn

‖a−a′‖n−1

∫ ∫ (∫
ψ̂[q(x− y)]dω‖a−a′‖−1y

)
dx

(2.10)

Above, dω‖a−a′‖−1y is the surface measure on the sphere of radius ‖a−a′‖. Hence, we integrate
first in x, and for each y we have the following situation. By the uncertainty principle, the Fourier
transform of the test function ψ(ξ) is a radial function which vanishes faster than any inverse
power of the distance from the origin. Effectively, one can substitute ψ̂ by the characteristic
function of the unit ball. Then, for each y, integration in x can be effectively restricted to the
ball of radius 1

q around y. Therefore,

q2nYq ≈
∑

a 6=a′
1

‖a−a′‖n−1

∫
dω‖a−a′‖−1y

=
∑

a 6=a′ 1 ≈ q2n.

(2.11)

3A calculation yields

ω̂(ξ) = 2π
Jn

2−1(‖ξ‖)

‖ξ‖
n−1

2

,

where Jn
2−1 is the Bessel function of order n

2
− 1. However, this formula will not be used.
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It follows that Yq = O(1).
The quantity Xq is evaluated in the same way. To simplify matters, there is no harm

writing ψ(r/q) instead of ψ2(r/q) in the integral for Xq, by the properties of the test function
ψ. Then writing the integral as an integral over Rn and applying the Plancherel theorem and
the convolution theorem we have

q3nXq =
∑

a 6=a′, b6=b′
∫

( ω̂[‖a− a′‖ξ]ψ(ξ/q) )∧ (x) ·
(
ω̂[‖b− b′‖ξ]

)∧ (x)dx

=
∑

a 6=a′, b6=b′
1

(‖a−a′‖‖b−b′‖)n−1

∫
[dω‖a−a′‖−1y ∗ (qnψ(qy))](x)dω‖b−b′‖−1x

≈
∑

a 6=a′, b6=b′
1

(‖a−a′‖‖b−b′‖)n−1

∫
S(‖a−a′‖, 1

q
) q dω‖b−b′‖−1x.

(2.12)

Above, S(‖a− a′‖, 1
q ) denotes a spherical shell of radius ‖a− a′‖ and thickness 1

q .
Indeed, ω‖a−a′‖−1y is the surface measure on the sphere of radius ‖a−a′‖, and its convolution

with qnψ(qy) (which as in has been done in the estimate for Yq, can be thought to be supported
in the ball of radius 1

q and apart from that integrates into approximately one) is effectively a
density, supported in the shell S(‖a − a′‖, 1

q ), of the value of approximately q. As dω‖b−b′‖−1x

is the surface measure on the sphere of radius ‖b− b′‖, the integral in the last line of (2.12) will
be non-zero only if ∣∣‖a− a′‖ − ‖b− b′‖

∣∣ . 1
q
.

If this is the case, the integral will be approximately q‖a − a′‖n−1, and we can set ‖a − a′‖ =
‖b− b′‖ = r in the pre-integration factor, as far as the formula (2.7) is concerned. Furthermore,
for each r, which can be assumed to run a discrete sequence of values, which are multiples of 1

q ,
up to r = q, is nothing but the square of the quantity m 1

q
(r), which has been defined by (2.6).

This proves Theorem 2.2.2

2.3 Connections with geometric combinatorics

We start out by briefly recalling basic definitions from the theory of distance sets. See, for
example, [14] and the references contained therein for a thorough treatment of this old and
beautiful subject.

Let A be a Delaunay set. Define ∆(Aq), following (1.5). The Erdös Distance Conjecture
(EDC) says that

#∆(Aq) ' q2, (2.13)

where # gives cardinality of a finite set. Here and throughout the paper, X / Y with respect
to the controlling parameter q means that for every ε > 0 there exists a constant Cε > 0 such
that X ≤ Cεq

εY . Accordingly, X ' Y means that for every ε > 0 there exists a constant cε > 0
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such that X ≥ cεq
−εY . In the case when A = Zn, the classic number theory calculation (see for

example [11] and [7]) shows that

#∆(Aq) ≈ q2√
log(q)

when n = 2,

and
#∆(Aq) ≈ q2 when n ≥ 3.

In particular, in the case n = 2 the squares of the distances are those integers in the interval
[0, 2q2], which can be represented as sums of two squares. The average density of such integers
in the interval above is proportional to q2√

log(q)
.

A possible approach to EDC, exploited by several authors in recent years, is the following.
Let

m(r) = #{(a,a′) ∈ Aq ×Aq : ‖a− a′‖ = r}, (2.14)

cf. (2.6).
Suppose that we could show that∑

r∈∆(Aq)\0

m2(r)r−(n−1) / q3n−1. (2.15)

Since ∑
r∈∆(Aq)\0

m(r) ≈ q2n, (2.16)

by definition of m(r), Cauchy-Schwartz inequality implies that

q4n ≈
(∑

r∈∆(Aq)\0m(r) · 1
)2

≤
∑

r∈∆(Aq)\0 1 ·
∑

r∈∆(Aq)\0m
2(r)[qn−1r−(n−1)]

/ q4n−2 ·#∆(Aq),

(2.17)

and EDC follows.
Equivalently, in the notation of Theorem 2.2, if we assume that MAq ,2 / 1, we are guaranteed

to have ' q2 distinct 1
q -separated distances in the distance set ∆(Aq).

2.4 Maximum Intensity Conjecture

Theorem 2.2 and the argument in the estimates (2.15–2.17) in the previous section suggest that
in the accuracy level built into the /, ' symbols (i.e. more accurately than up to an arbitrarily
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small positive power of the controlling parameter q) the distance set estimate (2.13) is equivalent
to the appropriate upper bound

MAq ,2 / 1. (2.18)

The quantity MAq ,2 can be computed explicitly in cases when the underlying set A possesses
translational symmetry. Further in this section we shall do it for the lattice Zn.

This leads us to conjecture that in the the class A of Delaunay sets under consideration, one
should have MAq ,2 / 1, and

sup
A∈A

MAq ,2 = MZn
q ,2, (2.19)

where Zn
q = Zn ∩ [0, q]n.

We shall further refer to this conjecture as the Maximum Intensity Conjecture (MIC). It says
that if we bombard a crystalline powder with X-rays, the second moment defined by (1.4) of the
powder diffraction intensity will be the greatest if the identical atoms of the crystal were arranged
in the nodes of the cubic lattice. The Maximum Intensity Conjecture would immediately lead
to the resolution of the Erdös Distance Conjecture for Delaunay sets, and many other problem
in geometric combinatorics and analysis.

If we accept the Maximum Intensity Conjecture, we can deduce the EDC if we can show
that

MZn
q ,2 / 1. (2.20)

This fact results immediately from Theorem 2.2, the calculation (2.8) that follows it and
Remark 2.3. Note that according to Remark 2.3, in dimensions 4 and higher one would have
a . estimate instead of /. It is not clear whether for n = 3 one can strengthen (2.20) to
MZn

q ,2 . 1. On the one hand, the best one can prove is that MZ3
q ,2 . log q (this follows from

Remark 2.3). On the other hand, it is known that #∆(Z3
q) & q2. Hence it is not clear whether

log q is intrinsic or is an artifact of the Cauchy-Schwartz inequality application in (2.17) and the
supremum estimate q3r log r for the quantity m 1

q
(r).

As a matter of fact, we can prove a stronger statement:

σAq(r) . q
r , for r ≥ 1, n ≥ 4,

σAq(r) / q
r , for r ≥ 1, n = 2, 3.

(2.21)

First off, note that from (2.9), for r . 1
q we have σAq(r) ≈ qn. Observe that the contribution of

the interval r . 1
q into (2.5) is then O(1).

Now let us assume r & 1
q . Return to (2.9) where we can drop the first term and use the

translational invariance of the lattice to reduce the double sum to a one index sum as follows:

σZn
q
(r) ≈

∑
a∈Zn

q

ω̂(ra) ≈
∑

a∈Zn

ω̂(ra)ψ̂(a/q). (2.22)
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Above, we have extended the summation over the whole lattice Zd by using a radial test function
ψ, which is supported in the unit ball and is identically one in unit ball of radius 1

3 . Without
loss of generality ψ̂(ξ) can be though non-negative (e.g. ψ can be chosen as a convolution of
some radial function with itself) and by the uncertainty principle it vanishes faster than any
power of ‖ξ‖ beyond the unit ball. Now we can apply the Poisson summation formula4

∑
a∈Λ

ψ(a) =
1
|Λ|

∑
a∈Λ∗

ψ̂(a),

where Λ is any lattice, Λ∗ is the reciprocal lattice and |Λ| is the volume of the basic element of
the lattice. Using the convolution theorem we obtain

σZn
q
(r) .

1
rn−1

∑
a∈Zn

∫
qdψ[q(a− x)]dωr−1x ≈

q

rn−1
#{a ∈ Zn : ‖a‖ = r}. (2.23)

Remark 2.3 gives one the upper bound for the number of the lattice points on the sphere of
radius r. Namely

#{a ∈ Zn : ‖a‖ = r} / rn−2,

and in n ≥ 4 one can strengthen the estimate with . rather than /. This proves the estimate
(2.21) which in turn immediately implies that

MAq ,2 . 1, for n ≥ 4,

MAq ,2 / 1, for n = 2, 3.
(2.24)

2.5 Anysotropic distances

We would like to briefly point out an issue that instead of averaging with respect to the unit
sphere Sn−1 in (1.3) and (2.4) one might consider anisotropic averages, defined as follows.

Let K ∈ Rn be a strictly convex body of unit volume, with the smooth boundary ∂K and
such that the curvature on ∂K is bounded away from zero. The in (1.3) and (2.4) above we can
think that dωx is the surface measure on ∂K, thus speaking about K-averages and moments
(1.4, 2.5). Note that the reciprocal body K∗ to K is defined as

{ξ ∈ Rn : sup
x∈K

ξ · x ≤ 1}.

(I.e in the direction d, the boundary ∂K is 1
‖xd‖ away from the origin, where xd is the point on

∂K where the direction of the normal is d.)
4Have we been dealing with some other lattice other than Zn (which is self-dual) the summation in (2.23)

would be taken over the reciprocal lattice

12



We would like to point out that the analytical machinery of this and the subsequent section
does apply to this situation with the following changes.

i. The constants absorbed in the ≈, etc. symbols now depend on K.

ii. Theorem 2.2 holds, except in the multiplicity function (2.6, 2.14) one should change ‖a−a′‖
to ‖a− a′‖K∗ , where ‖0‖K = 0 and for x 6= 0,

‖x‖K = r : r−1x ∈ ∂K.

iii. Despite Remark 2.3 no longer applies and the point-wise estimate (2.21) can no longer be
established (one can construct explicit counterexamples at least in n = 2), the conclusion
(2.24) of the preceding section still holds, although it requires a more intricate proof, which
goes through if n ≥ 3, without using number theory. The dimension n = 2, for a general
K, is an open problem however.

For details, see [9], [10] and the references contained therein. Note in particular that the case of
the class of convex bodies K used in place of the unit sphere automatically covers the situation
when K = Sn−1, but any other parallelepipedal lattice is used in Section 2.4 instead of Zn.

3 Continuous case

Let us now discuss the continuous situation. The general set-up is the compact set E ⊂ [0, 1]n,
of dimension α ∈ (0, n). To give a “physical” definition of dimension, suppose that there exists
a measure µ supported on E, such that for any x in the support of µ, one has

µ(B(x, δ)) ≈ δα, (3.1)

for all sufficiently small δ > 0; the notation B(x, δ) stands for a n-dimensional ball of the radius
δ centered at x.

Physically however, δ → 0 should mean that δ ≥ δ0, the latter being, say the atomic size.
From this point of view, the set E = 1

qAq (i.e Aq, which gets scaled into the unit cube) discussed
in the previous section has dimension α = n

2 . Indeed, we can construct the measure µ as follows.
Let ψ(x) be the characteristic function of the unit ball. Let

dµq(x) =
1
qn

∑
a∈ 1

q
Aq

[q2nψ(q2x)]dx. (3.2)

Then
∫
dµq(x) ≈ 1 and it is an easy calculation to verify that the definition (3.1) is satisfied

with α = n
2 , for δ & 1

q2 . Recall that this dimension corresponded to “thickening” each point
of Aq into a ball of radius ≈ 1

q , or the “physical” assumptions that atomic sizes are some q

13



times smaller that the spacing between the atoms. If one substitutes [q2nψ(q2x)] in the formula

(3.2) with q
n2

α ψ(q
n
α x), one would get a “fractal” measure of dimension α in the sense that the

definition (3.1) holds for all δ & q−
n
α . Moreover, if one denotes Eq the support of the measure

µq, then after taking a sequence of q′s, which rapidly enough goes to infinity, the set
⋂

q Eq

will represent a bona fide fractal of dimension α, with the bona fide fractal measure µ∞ on it
(obtained as a limit of the measures µq), which satisfies (3.1) for all 1 > δ > 0.

Conversely, if one takes the fractal measure µ∞ and convolves it with the quantity q
n2

α ψ(q
n
α x)

(which integrates approximately into one) the density resulting from the convolution will satisfy
(3.1), but only for δ & q−

n
α . See [4], [8] for details.

3.1 Falconer distance problem

Returning to the general fractal dimensional set up, from (3.1) it follows that the α-energy

Iα(µ) =
∫ ∫

dµxdµy

‖x− y‖α
= O(1). (3.3)

Rewriting (3.3) by Plancherel’s theorem and passing to polar coordinates we obtain

Iα(µ) =
∫

|µ̂(ξ)|2

‖ξ‖n−α
=
∫ ∞

0
rα−1σE(r)dr, (3.4)

where σE(r) has been defined by (1.3) and models the observable intensity in power diffraction
experiments.

It follows that on average σE(r) is smaller than r−α. However, it does not necessarily happen
for all r, as the examples constructed by Sjölin ([18] and the authors ([10]) indicate.

By compactness of E ⊂ [0, 1]d it follows that the expression (3.3) will not change if we
multiply, say dµx in (3.3) by a cutoff function ψ(x) which equals 1 on [0, 1]d and is supported
on a slightly larger set. By the convolution theorem and the uncertainty principle, this implies
that for r � 1

σE(r) ≈ 1
rn−1

∫
rn−α |µ̂(ξ)|2

‖ξ‖n−α
χS(r,1)(ξ)dξ . r1−αIα(µ).

Above, χS(r,1) denotes the characteristic function of the spherical shell S(r, 1) of radius r and
thickness 1.

Hence, one has the general bound

σE(r) . r−α+1. (3.5)

It turns out that the quantity σE(r) is closely related to the distance set ∆(E). To this effect,
there is a continuous analog of the Erdös distance conjecture, known as the Falconer distance
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problem, which was first formulated in ([5]). It states that that if α > n
2 , then the Lebesgue

measure of the distance set ∆(E) is positive.
The relation between the spherical average σE(r) and the distance set ∆(E) gets established

via the machinery developed by Mattila ([12]). The discussion in the previous section presented
in fact a discrete analog of this machinery; the continuous situation can be summarized as
follows.

Mattila proves that for α ≥ n
2 , if

ME,2 =
∫ ∞

0
σ2

E(r)rn−1dr <∞, (3.6)

then the Lebesgue measure of ∆(E) is positive, using the continuous version of the argument in
(2.14-2.17).

Mattila considers the pull-forward ν on ∆(E) of the measure µ × µ on E × E, under the
distance map, defined as follows: for a test function ψ(r) on the non-negative real axis,∫

ψ(r)dνr =
∫ ∫

ψ(‖x− y‖)dµxdµy.

Then by the Cauchy-Schwartz inequality and Plancherel theorem,

1 .

(∫
dνr

)2

≤ |∆(E)| ·
∫
|ν̂(t)|2dt, (3.7)

as long as ν has an L2 density. |∆(E)| above denotes the Lebesgue measure of the distance set.
Mattila then shows that if ν̂ denotes the one-dimensional Fourier transform of the distance

set measure ν, it turns out that

ν̂(t) ≈ t
n−1

2

∫
|µ̂(ξ)|2dωξ. (3.8)

I.e. the spherical average represents a weighted Fourier transform of the distance measure, whose
discrete analog is the distance multiplicity function m(r), cf. (2.14). See [12] for details.

Observe that rewriting the integral (3.6) as an integral over Rn and using the bound (3.5)
for σE(r) it follows that

ME,2 .
∫
|µ̂(ξ)|2‖ξ‖−n+(n−α+1)dξ

≈
∫ ∫

‖x− y‖−(n−α+1)dµxdµy

≡ In+1−α(µ).

(3.9)

This answers affirmatively to the question posed in the Falconer distance problem, provided that
α ≥ n+1

2 .
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The question arises whether the improvement towards the desired α > n
2 can be gained by

strengthening the bound (3.5).
The best known result in this direction is due to Wolff ([19]), in n = 2, and Erdog̃an ([2]) in

higher dimensions. The result implies that the Lebesgue measure of ∆(E) is indeed positive if
the Hausdorff dimension of E is greater than n

2 + 1
3 .

It is based on the following estimate:

σE(r) . r−β, ∀β <


α, for α ≤ n−1

2 ,

n−1
2 for n−1

2 ≤ α ≤ n
2 ,

n+2α−2
4 for n

2 ≤ α ≤ n+1
2 .

(3.10)

It is interesting that due to a counterexample of Sjölin ([18]) the bounds (3.10) cannot be
improved in n = 2. However, they are are not likely to be optimal for α > n−1

2 and n ≥ 3.
For n = 3 the same counterexample shows that the Falconer conjecture cannot be resolved by
improving the bound (3.10) alone. However, it may be possible (see [2]) in dimensions n ≥ 4,
cf. Remark (2.3).

3.2 On additive structure of measures

We have shown earlier that the second moment ME,2 is indicative of the distance structure of
the set E. In this final section we would like to discuss how higher moments are indicative
of the presence of additive, or translation-invariant structure and translational symmetry and
therefore should represent a certain signature thereof.

We shall content ourselves with the fourth moment ME,4 only and point out two principal
facts:

i. Large ME,4 indicate the presence of an additive structure;

ii. The total lack of additive structure results in very small values of ME,4; in particular the
Falconer conjecture holds for sets with the total lack of additive structure.

Let us first show how the fourth moment is indicative of translations. Let us confine ourselves
to the critical case α = n

2 .
Define a ≈δ b if ‖a − b‖ ≤ δ. Let X = (x1,x2) ∈ R2n, Y = (y1,y2) ∈ R2n and µ∗ =

µX × µY = µ× µ× µ× µ.
Suppose, ψ is a radial cut-off function which is supported in the spherical shell {ξ : .9 ≤

‖ξ‖ ≤ 2.1}, and is identically one for 1 ≤ ‖ξ‖ ≤ 2. Let R� 1. Consider the following variation
of the fourth moment:

ME,4(R) =
∫

R≤r≤2R
σ4

E(r)rn−1dr =
∫

R≤‖ξ‖≤2R
|µ̂(ξ)|4dξ. (3.11)
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By the Fubini theorem,

ME,4(R) ≈
∫ ∫ [∫

e−2πiz·ξψ(ξ/R)dξ
]
dµXdµY

= Rn
∫ ∫

ψ̂(Rz)dµXdµY ,

(3.12)

where z = x1 + x2 − y1 − y2. Hence, since ψ̂ decays rapidly, we get

ME,4(R) ≈ Rn · µ∗{(x1,x2,y1,y2) : x1 + x2 ≈δ y1 + y2}, (3.13)

where δ ≈ 1
R .

Furthermore, the formula (3.1) vindicates the following discretization. Let N ≈ R be an
integer. There exists a set ΓN ⊂ (NE ∩ Zn) of cardinality ≈ N

n
2 , such that

µ∗{(x1,x2,y1,y2) : x1 + x2 ≈δ y1 + y2}

≈ N−2n #{(a1,a2, b1, b2) ∈ ΓN : a1 + a2 = b1 + b2}.
(3.14)

Observe that the maximum number of solutions of the above discrete equation is . N
3n
2 , as a

specific triple (a1,a2, b1) fixes b2.
In view of this, let us consider the case when the fourth moment is large. Namely assume

that for all R large enough, one has

ME,4(R) & R
n
2 . (3.15)

This condition is tantamount to saying that the discrete equation in (3.14) has the maximum
order of magnitude for the number of solutions: & N

3
2 .

Then we can establish the principal result of this section; before we do this let us introduce
some definitions.

• We say that a finite set A is an arithmetic progression in Zn of dimension k and size L, if
each element of g ∈ A possesses a representation

g = g0 + {r1g1 + · · ·+ rkgk}1≤rj≤Lj
, (3.16)

where each rj is an integer, each gj is a (fixed) element of Zn (called a generator), and
L1 · L2 · · · · · Lk = L. An arithmetic progression is proper if the representation (3.16) is
unique for each g ∈ A.

• Let us call a measure µ, satisfying (3.1) and supported on a compact set E arithmetic
if there exists a positive measure subset E′ ⊂ E, such that for each δ sufficiently small,
E′

δ, the δ-neighborhood of E′ is contained in the δ-neighborhood of a dilate of a proper
arithmetic progression A = A(δ) in Zn. (If α > 0, the progression has to get longer as
δ → 0.)
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Theorem 3.1. If (3.15) holds for all sufficiently large R, the measure µ is arithmetic.

The condition (3.15) is in particular satisfied in the case n = 2, when E is the boundary of
a polygon, which certainly satisfies Theorem 3.1.

Theorem 3.1 will follow from the following classical combinatorial theorem, see [6], [3].

Theorem 3.2 (Freiman’s theorem). Let AN , BN ⊂ Zn such that #AN = #BN = N , and
#(AN +BN ) ≤ CN , where C is independent of N and

AN +BN = {a + b, a ∈ AN , b ∈ BN}.

Then AN is contained in some k-dimensional arithmetic progression in Zn, where k depends
only on C.

Freiman’s theorem can be applied to (3.14, 3.15) as follows. Consider the set

2ΓN = ΓN + ΓN = {u = a + b, a, b ∈ ΓN},

let f(u) be the number of representations u = a + b for each u ∈ 2ΓN . Then the number of
solutions of the discrete equation in (3.14) can be expressed as

N
3
2 .

∑
u∈2ΓN

f2(u) ≤ maxu∈2ΓN
f(u) ·

∑
u∈2ΓN

f(u)

. N
n
2 ·N2·n

2 = N
3n
2 .

(3.17)

From this estimate we conclude that there is a subset ΥN ⊂ 2ΓN of cardinality ≈ N
n
2 , such

that for all u ∈ ΥN we have f(u) & N
n
2 . Indeed,

#ΥN .
Nn

N
n
2

= N
n
2 . #ΓN . (3.18)

Then there exist subsets Γ1,N ,Γ2,N , each of cardinality of ≈ #ΓN ≈ N
n
2 , such that

Γ1,N + Γ2,N = ΥN . (3.19)

Besides, each set Γj,N cannot have a diameter o(N), as this would contradict (3.1): one cannot
have a positive proportion of the elements of ΓN inside a set whose volume is o(1). This proves
Theorem 3.1 and also implies that the set ΓN contains a straight line on which there sit & N of
its members. This also vindicates the Falconer conjecture for sets, such that (3.15) is satisfied,
i.e. sets that have a lot of additive structure.

In conclusion, let us consider the opposite case to a strong additive structure on E. Namely, we
say that a measure µ on E is strictly convex if the equation

x + y = x′ + y′, x,y,x′,y′ ∈ E (3.20)
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has an at most bounded number of non-trivial solutions, i.e. those when x is not equal x′ or y′.
Let us show that the Falconer conjecture holds for strictly convex measures. That is we have

to prove that ME,2 . 1. By the Minkowski integral inequality(∫ (∫
Kp(x,y)dx

) q
p

dy

) 1
q

≤
∫ (∫

Kq(x,y)dy
) 1

q

dx, for 1 < p < q,

we have

ME,2 ≤ME,4 . Rn µ∗{(x,y,x′,y′) : x + y=R−1x′ + y′},

. Rn−2α . 1,
(3.21)

for α ≥ n
2 , as desired. We conclude that an “anti-additive” case, i.e. when the discrete equation

in (3.14) has the minimum number of solutions, the fourth moment ME,4 is extremely small.
The Falconer distance problem gets vindicated in both cases however. The real problem in this
respect is what happens in between.

From the material fingerprinting point of view, the two aspects considered in this section
indicate that the pair of moments ME,2 and ME,4 represent important information regarding
the distance and addition structure of the sample set E, and therefore are likely to identify
promptly different types of translational symmetry of crystal matter.

In conclusion, clearly the same can be said about higher moments ME,2l, l > 2, which would
yield the discrete equation

a1 + . . .+ al = b1 + . . .+ bl,

cf. (3.14). In particular, Theorem 3.1 applies to higher moments with the same estimate
(3.15). In view of this we conjecture that an array of moments {ME,2l}l≥1 should represent an
unambiguous signature of a given material.
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