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We propose and study a model for local dynamics of a perturbed convex real-analytic Liouville-integrable Hamiltonian
system near a resonance of multiplicity 1+m, m > 0. Physically, the model represents a toroidal pendulum, coupled with
a Liouville-integrable system of n non-linear rotators via a small analytic potential. The global bifurcation problem is
set-up for the n+1 dimensional isotropic manifold, corresponding to a specific homoclinic orbit of the toroidal pendulum.
The splitting of this manifold can be described by a scalar function on the n-torus. A sharp estimate for its Fourier
coefficients is proven. It generalizes to a multiple resonance normal form of a convex analytic Liouville near-integrable
Hamiltonian system. The bound then is exponentially small.

1. Introduction and main result

The main objective of this paper is to create a template to extend the theory for exponentially
small separatrix splitting in Liouville near-integrable Hamiltonian systems near simple resonances,
i. e. resonances of multiplicity 1, to the case of multiple resonances, of multiplicity 1+m, m > 0. The
interest in such a theory is dictated by the fact that the normal form theory and Nekhoroshev theorem,
resulting in exponentially long time stability (see e. g. [10]) are well developed for resonances of all
multiplicities, whereas the exponentially small splitting phenomenon, resulting in similar exponents,
has been quantitatively studied so far only in the special case of multiplicity one resonances.

It is well known (see e. g. [2]) that a convex analytic Liouville near-integrable Hamiltonian system,
with the Hamiltonian

H(p, q) = H0(p) + εH1(p, q), (1.1)

where (p, q) ∈ Rn+1+m × Tn+1+m are the action-angle variables on T ∗Tn+1+m (T = R/2πZ) can be
localized in the action space near a multiplicity 1+m resonant action value p0. Namely suppose p0 is
such that the kernel of the scalar product 〈DH0(p0),k〉, k ∈ Zn+1+m (viewed as a map Zn+1+m 7→ R)
is some 1+m dimensional sublattice in Zn+1+m. In this case without loss of generality one can render
DH0(p0) = (ω, 0) ∈ Rn+1+m. We further assume that ω ∈ Rn is Diophantine, i. e.

∀ k ∈ Zn \ {0}, |〈k, ω〉| > ϑ|k|−τn , (1.2)

for some ϑ > 0 and τn > n− 1 (for n = 1 this obviously boils down to ω 6= 0).
After a canonical change of variables preserving the phase space bundle structure and time scaling

the Hamiltonian (1.1) can be cast into the following normal form:

Hnf(p, q) = 〈 ω√
ε
, ι〉+

1
2
〈p, Qnfp〉+ U(x0, . . . , xm) + [fnf(q) + 〈p, gnf(p, q)〉], (1.3)
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where p = (ι, y0, y1, . . . , ym) ∈ Rn+1+m, q = (ϕ, x0, x1, . . . xm) ∈ Tn+1+m, Qnf is a constant symmetric
matrix, and the pair (fnf , gnf) = O(

√
ε) can be treated as a perturbation when ε (suppressed in

the latter notations) is small enough. Further in the paper, the bold typeface marks the n + 1 + m
dimensional quantities.

If one truncates the normal form Hamiltonian Hnf by dropping the terms fnf and gnf in the
formula (1.3), the action ι is flow-invariant. For ι = 0, one can separate a natural system of 1 + m
degrees of freedom, whose Hamiltonian can be written as

K(y0, . . . ym) + U(x0, . . . xm), (1.4)

where K(y) is a symmetric positive definite quadratic form in y ∈ R1+m and U(x) – a scalar function
on T1+m. In the sequel, saying that some function is a “function on a torus” implies 2π-periodicity of
this function in the corresponding variables.

In the simple resonance case m = 0, one can show that inherent in the normal form dynamics is
the exponentially small separatrix splitting phenomenon, see [10], [13].

In order to show how the exponentially small splitting theory can be built in the multiple resonance
case m > 1, let us consider a simple model, which generalizes the so-called Thirring model for a simple
resonance, see [8].

Namely, we study the following model Hamiltonian:

Hµ(p, q) = 〈ω, ι〉+
1
2

n∑

j=1

ι2j + H1+m(y0, . . . , ym, x0, . . . , xm) + µV (ϕ, x0, . . . , xm), (1.5)

where ω is Diophantine, V is a real-analytic function on Tn+1+m and µ is a small parameter. (There
is no reason why V should not depend on the momenta, except making the model more “physical”
and the technique more transparent.) Specifically, for some strictly increasing sequence of positive
reals l0, l1, . . . lm, let H1+m(y, x) have the following form:

H1+m(y, x) = K1+m(y) + U1+m(x),

K1+m(y0, y1, . . . , ym) = 1
2

∑m
i=0

y2
i

l2i
,

U1+m(x0, x1, . . . , xm) =
∑m

i=0 li

(∏m
j=i cosxj − 1

)
.

(1.6)

Geometrically, the natural system (1.6) can be visualized as a “toroidal” pendulum, i. e. a particle of
unit mass, confined to move on the surface of a ”vertically standing” in R2+m torus of dimension 1+m,
with principal radii lm, . . . , l0, under the influence of gravity with the free fall acceleration equal to 1.
Mechanically, the case m = 1 can be realized as a double pendulum, whose shorter arm of length l0 is
attached to the terminal point of the longer arm of length l1 and moves in a circle, which rests upon
the longer arm.

On the energy level H−1
1+m(0), the origin O = (0, 0) is a single hyperbolic fixed point, with the

characteristic exponents

λi =
1
li

√√√√
i∑

j=0

lj , i = 0, . . . ,m. (1.7)

Suppose the sequence lj grows rapidly enough to ensure

λ0 > max(λ1, . . . , λm). (1.8)
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In addition, we have to assume that

inf
k∈Zm

+

∣∣∣∣∣∣
λ0 −

m∑

j=1

kjλj

∣∣∣∣∣∣
> 0, (1.9)

where Z+ denotes non-negative integers. This assumption is discussed in more detail further in the
paper and appears to be indispensable beyond technicality.

The origin O is connected to itself by a family of homoclinic orbits, in fact there exist homoclines
representing each homotopy class on T1+m for the geodesic flow generated by the corresponding Jacobi
metric, degenerate at x = 0, see [3]. Some of these homoclinic orbits, or separatrices, are patently
obvious: let xj = yj = 0, ∀j ∈ {0, . . . , m} \ {i}, while xi(t) = 4 arctan e±λit. These orbits correspond
to homoclinic geodesics forming the basis of the fundamental group of the torus T1+m (modulo the
sign in the exponential which bears witness to the reversibility of H1+m, identifying the upper or lower
separatrix branch, where yi retains its sign). Consider the orbit with i = 0, call it γ. This orbit leaves
and arrives back to the fixed point in the maximum expansion/contraction direction, corresponding
to the Lyapunov exponent λ0. In order to take both of the orbit’s branches into account, let us
represent γ as follows:

γ = {x1 = . . . = xm = y1 = . . . = ym = 0,
y0 = 2 sin(x0/2) ≡ ψ(x0), x0 ∈ (0, 2π) ∪ (2π, 4π)} .

(1.10)

Observe that the existence of the two branches of γ, on each of which y0 retains its sign, is reflected
by 2π-antiperiodicity of the “separatrix function” ψ: ψ(x0) = −ψ(x0 +2π). To reflect this fact, it will
be further convenient to deal with

x0 ∈ T2 ≡ R/4πZ,

rather than T = R/2πZ. In particular, the addition of values of x0 is further meant to be mod (4π).
Clearly, the orbit γ belongs to both the unstable and the stable 1 + m dimensional invariant

Lagrangian manifolds W u,s
O of the fixed point at the origin. If m > 1, the flow of the Hamiltonian H1+m

is non-integrable1.
Global geometry of the manifolds W u,s

O is complicated. Locally near the origin however, the
germs W u,s

O,loc of the manifolds W u,s
O are diffeomorphic to m + 1 disks, tangent at O to the unstable

and stable manifolds of the flow, linearized near the origin.
We shall further show that γ arises as a transverse intersection of the manifolds W u,s

O . Let us
call W u,s

γ the localizations of these manifolds in the neighborhood of γ. As the orbit γ takes off
from/arrives at the fixed point in the maximum expansion/contraction direction, it itself turns out
to be hyperbolic within the manifolds W u,s

γ . Indeed, on the “vertical torus” in R2+m, the coordinate
directions x1, . . . , xm are the main curvature directions away from γ.

Let us further change the notations (x0, y0) to (x, y), (x1, . . . , xm) to z and (y1, . . . , ym) to z̄, and
restrict |z| 6 r0 for some 0 < r0 < 1. Then

H1+m(y, z̄, x, z) =
y2

2l20
+ l0(cosx− 1) +

m∑

i=1


 z̄2

i

2l2i
−


l0 cosx +

i∑

j=1

lj


 z2

i

2


 + O4(z;x), (1.11)

The semicolon in the symbol O4(z; x0) means that the term in question is O(‖z‖4), uniformly in x0,
‖ · ‖ standing further for the Euclidean norm, to be used intermittently with the sup-norm | · |. This

1The flow of H1+m should possess no global analytic first integral other than the energy, unless K1+m is diagonal
and U1+m separated, see [4]. Transversality of the intersection of the manifolds W u,s

O along γ (to be shown) is in turn
an onset for non-integrability, see [5]. For the general variational approach to homoclinic trajectories in natural systems
see [3].
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notational convention will be used further on, the parameters following the semicolon often being
omitted.

Before formulating the main result, let us give some geometric description of what we are going
to claim. Lifted into the phase space of the Hamiltonian Hµ, truncated by letting µ = 0, the orbit γ
gives rise to an isotropic n + 1 dimensional invariant manifold, which is topologically a cylinder over
the n-torus. Let us denote this cylinder as CO. Along CO, there intersects – degenerately in n
directions corresponding to the rotators’ variable ϕ – a pair of invariant Lagrangian manifolds Wu,s

O ,
both containing an invariant whiskered n-torus TO, located at (p, x, z) = (0, 0, 0). On the torus itself,
the truncated flow is quasiperiodic, with the Diophantine frequency ω. Owing to the fact that CO has
two branches, plus the fact that the trajectories on CO are bi-asymptotic to the invariant torus TO, we
shall technically refer to CO as a “bi-infinite bi-cylinder” (yet tending to avoid this not so mellifluous
rhetoric as much as possible).

We study how the presence of the coupling term V in (1.5) is to affect the above described
geometric structure and obtain qualitative estimates for the degeneracy removal effect. As far as the
Hamiltonian H1+m is concerned, the condition (1.8) results in local hyperbolicity of the orbit γ within
the manifolds W u,s

O (recall that their localizations near γ are denoted as W u,s
γ ). I. e. the germs W u,s

O,loc

will be contained in the closure of W u,s
γ for the unstable/stable manifolds respectively. Let us denote

Wu,s
γ

∼= Tn × W u,s
γ , the lifting of the manifolds W u,s

γ into the phase space of the Hamiltonian Hµ,
truncated by letting µ = 0. The manifolds Wu,s

γ can be represented by their generating functions
Su,s

γ (x, z) as graphs over the configurations space variables (ϕ, x, z), where ϕ ∈ Tn, |z| < r (for
some small enough r to be determined) and x ∈ T2 \ (2π − δ, 2π + δ) = [−2π + δ, 2π − δ], for some
positive δ < 1.

Then in the perturbed problem (when µ 6= 0) we are going to prove the existence of Lagrangian
manifolds Wu,s representing the analogs of the manifolds Wu,s

γ , as far as the Hamiltonian Hµ is
concerned. Moreover, the homoclinic, or bi-infinite cylinder CO in the truncated system will give rise
to a pair of semi-infinite cylinders Cu,s in the perturbed system, each perturbed cylinder containing
the invariant whiskered torus T , the cylinders Cu,s themselves being contained in the Lagrangian
manifolds Wu,s respectively. The phase trajectories on Wu will approach Cu in negative time; in turn
the trajectories on Cu, in negative time will approach T at a faster rate. Similar orbit behavior will
occur onWs and Cs in positive time. This is the content of the structural stability theorem, Theorem 2
further in the paper.

Moreover, the perturbed Lagrangian manifolds Wu,s can be represented as graphs over the con-
figuration space variables, by adding to the unperturbed generating functions Su,s

γ (x, z) respectively,
some quantities Su,s

µ (ϕ, x, z), which are both O(µ). Then let

Su,s(ϕ, x, z) = Su,s
γ (x, z) + Su,s

µ (ϕ, x, z) (1.12)

denote the generating functions of the perturbed manifolds Wu,s, respectively.
In order to find these generating functions, we shall describe a series of canonical transformations,

each of which explicitly takes advantage of the fact that the phase space is a cotangent bundle. In
the sequel, any canonical transformation Ψ will be determined by some automorphism a and closed
one-form dS on the base space. I. e. all the canonical transformations dealt with herein have the
following structure:

Ψ = Ψ(a, S) :
{

q = a(q′),
p = t(da)−1p′ + dS(q),

(1.13)

where t(·)−1 denotes the transposed inverse of a linear map. Observe that there is a natural semidirect
product structure on the pairs (a, S), induced by composition.

Hyperbolicity of the orbit γ does not suffice to prove Theorem 2 however: we also need a special non-
resonance (yet not very restrictive) assumption (1.9) on the stability exponents of H1+m at the origin,
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built into the choice of the arm lengths {lj}j=0,...,m. The latter assumption appears to be a very
special case of the problem of analytic conjugacy between linearized and non-linear dynamics near
a hyperbolic fixed point, see e. g. [11], although for our purposes it suffices separating the dynamics in
a single chosen direction only.

The whiskered torus TO and its local unstable and stable manifolds Wu,s
O,loc are known to survive

small perturbations without the assumption (1.9), by the theorem of Graff, see [9], [14]. Namely,
in the normal form (1.3), as long as ω is Diophantine, U possesses a single non-degenerate absolute
maximum, plus the upper left n × n minor of the matrix Qnf is nonzero, there exists a perturbed
torus T where the flow is conjugate to the linear flow on its prototype in the case µ = 0.

We further study the splitting of the unperturbed cylinder CO. In order to do so, we introduce
the “splitting function”

D(ϕ, x, z) = Su(ϕ, x, z)− Ss(ϕ, x− 2π, z), (1.14)

which will be well defined for ϕ ∈ Tn, x ∈ [−2π + δ,−δ] ∪ [δ, 2π − δ] (recall that the addition of x is
understood as mod (4π)), and |z| < r. A critical point of D would yield a homoclinic connection to
the torus T , the gradient dD being the “splitting distance”.

As the manifolds W u,s
γ for the Hamiltonian H1+m intersect transversely at z = 0, the critical

points of D will lie close to z = 0, and therefore, the magnitude of the splitting of the cylinder CO can
be evaluated in terms of the derivatives Dx,ϕD(ϕ, x, z) at z = 0, in the properly adjusted coordinate
chart2.

The forthcoming Theorem 1 makes these claims precise. In order to formulate the theorem, let us
introduce some notation and summarize the analyticity properties that are required of the pertur-
bation V (ϕ, x, z).

For real r, σ > 0 and j = 1, 2, . . . (j = 1 usually being omitted) let

Bj
r

def= {ζ ∈ Cj : ‖ζ‖ 6 r},
Tj

σ
def= {ζ ∈ Cj : Rζ ∈ Tj , |Iζ| 6 σ}.

For x ∈ T2, define a conformal map s and some associated quantities as follows:

s(x) =
∫ x

π

dζ

ψ(ζ)
, χ(s) = ψ[x(s)], e = yχ(s). (1.15)

Recall, in the model studied ψ(x) = 2 sin(x/2). The map s(x) takes (0, 4π) to R ∪ R + iπ, and the
change (x, y) → (s, e) is canonical. The function x(s) is 2πi-periodic and has singularities at s = ±π

2 i.
Fix some T0 À 1. By construction of the map s, for any and ρ ∈ (0, π/2) any T ∈ [T0/2, T0],

the quantities x(s), χ(s) are holomorphic functions in the set Π̌T ,ρ ⊂ C/2πi, obtained by throwing out
of C horizontal rectangles with half-axes (2T0 − T )× (π/2− ρ), centered at ±π

2 i. Namely, let

Π̌T ,ρ = ΠT ,ρ ∪ −ΠT ,ρ,

ΠT ,ρ = {Rs 6 T, |Is| 6 ρ} ∪ {Rs 6 T, |Is− π| 6 ρ} ∪ {Rs 6 T − 2T0}; also let

Π̂T ,ρ = {s ∈ C : |Rs| 6 T, |Is| 6 ρ}.

(1.16)

The domains ΠT ,ρ are further referred to as semi-infinite bi-strips, their size increasing with (T, ρ),
with ρ < π

2 . Bi-strips Π̌T ,ρ are bi-infinite, while Π̂T ,ρ is simply an origin-centered horizontal rectangle
in C, with semi-axes (T, ρ).

2This is the only instant in the argument of this paper, where the built into the model transversality of the intersection
of the “unperturbed” manifolds W u,s

γ comes into play.
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Let
Cσ,T ,ρ = Tn

σ ×ΠT ,ρ, Cσ,T ,ρ,r = Cσ,T,ρ × Bm
r (1.17)

(and in the same fashion Čσ,T,ρ, Čσ,T ,ρ,r or Ĉσ,T,ρ, Ĉσ,T ,ρ,r) be referred to as complex semi-infinite
(bi-infinite or finite) bi-cylinders for C and extended bi-cylinders for the notations C. In qualitative
argument, the analyticity indices as well as the “bi-” rhetoric are avoided.

Let us now quote the main assumption.

Assumption 1 Assume the conditions (1.2), (1.8), and (1.9). Suppose the real-analytic function
V (ϕ, x, z) is such that V (ϕ, x(s), z) is holomorphic and uniformly bounded by 1 in Čσ0,T0,ρ0,r0 for some
initial set (σ0, T0, ρ0, r0) of analyticity parameters.

The main result of the paper is the following theorem.

Theorem 1. Under Assumption 1, take T = T0−1 and any positive ρ < ρ0, σ < σ0, let δ ∼ log T .
Suppose

r < c1 min[(ρ0 − ρ), (σ0 − σ)], µ < c2[rϑ|ω|−1(σ0 − σ)τn ]2, (1.18)

for some constants c1,2 > 0, determined by the separatrix function ψ as well as the quanti-
ties n, τn,m, σ0, T0, ρ0, r0, l0, . . . lm. Then:

i. Some level set of Hµ, with energy O(µ), contains an invariant partially hyperbolic n-torus T ,
where the flow is conjugate to linear, with the rotation vector ω. At the torus T , there intersects
a pair of isotropic manifolds Cu and Cs. The manifolds Cu and Cs are contained respectively in
a pair of Lagrangian manifolds Wu,s, which are graphs of closed one-forms, with the generating
functions Su,s(ϕ, x, z), as in (1.12) respectively, such that the quantities Su,s

µ (ϕ, x(s), z) (brought
in by the perturbation) are holomorphic and uniformly bounded by O(µ) for (ϕ, x, z) ∈ Cσ,T ,ρ,r.
The one-forms dSu,s belong to the same cohomology class ξµ = ξu,s ∈ H1(Tn,R) ∼= Rn.

ii. The distance between the manifolds Wu,s can be measured by the exact one-form dD, defined
by (1.14). There exists a coordinate chart (ϕ′, x′, z′) ∈ Tn× [δ, 2π− δ]×Bm

r , obtained by a near-
identity change of variables (ϕ′, x′, z′) = a(ϕ, x, z) from the original coordinates in (1.5), such
that in the chart (ϕ′, x′, z′), the function D satisfies the following PDE:

ψ(x′)
∂D
∂x′

+ 〈ω,
∂D
∂ϕ′

〉+ 〈z′, L′[D]〉 = 0, (1.19)

where L′ is a linear first order differentiation operator.

iii. In the above chart, namely for (ϕ′, x′, z′) ∈ Ĉσ,T,ρ,r, the function D(ϕ′, x′, z′) is bounded by O(µ).
Let D(ϕ′, x′, z′) = D0(x′, ϕ′)+O(z′). Then the quantity D0(x′, ϕ′) can be written as a 2π-periodic
function on Tn of

α = ϕ′ − ωs(x′), i. e. D0(x′, ϕ′) = S(α). (1.20)

iv. The manifolds Wu and Ws intersect at least 2n + 2 orbits, biasymptotic to T .

Let us show for the moment that the conclusions (iii) and (iv) of Theorem 1 are straightforward
consequences of (i) and (ii). Indeed, (1.19) implies that D0(x′, ϕ′) has to satisfy the linear PDE

ψ(x′)
∂D0

∂x′
+ 〈ω,

∂D0

∂ϕ′
〉 = 0,

and ψ(x′) ∂
∂x′ = ∂

∂s , where s(x′) comes from (1.15). Then D0(x′, ϕ′) = S(α) follows, as the form dD0 is
exact, i. e. D0(x′, ϕ′) is 2π-periodic in ϕ′ ∈ Tn. It follows that the set of critical points of the function
S(α) in the coordinate plane z′ = 0 determines the trajectories, biasymptotic to the torus T . The
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minimum number n + 1 of critical points of S is the Ljusternik-Schnirelmann characteristic of Tn,
which equals n + 1. It gets doubled in the statement (iv), because one can restrict x ∈ [−2π + δ,−δ],
considering the lower separatrix branch and replicate the statement (ii).

Theorem 1 has an immediate corollary, implying exponential smallness of the splitting distance
if ω → ω√

ε
for a small ε.

Corollary 1. For k ∈ Zn \ {0}, the Fourier coefficients Sk for of the function S(α) satisfy the
estimate

|S′
k| 6 O(µ) · e−ρ|k·ω|−|k|σ. (1.21)

If (ϕ, x, z) are the original coordinates and (ϕ′, x′, z′) = a′(ϕ, x, z) is the change of variables, described
by Theorem 1 (ii), then for all (ϕ, x, z) ∈ Tn × [δ, 2π − δ]× [−r, r]m, one has a uniform bound

|D0 ◦ a′(ϕ, x, z)| 6 O(µ) ·
∑

k∈Zn\{0}
e−ρ|k·ω|−|k|σ.

Observe that Theorem 1 is also valid in the simple resonance case m = 0, when the manifolds C
and Cu,s are Lagrangian, rather than isotropic. The simple resonance case has been exposed in detail
in [13], where the reader is referred for a number of technical issues. The proof of how Corollary 1
follows form Theorem 1 can also be found there, as well as in [10].

Remark 1. Similar to the simple resonance case, one can set-up the Melnikov integrals and study them
(see e. g. [10] and references therein). The theory developed further suggests that there are no extra difficulties
arising in this respect in the multiple resonance case. Also observe that multiple resonances have been usually
approached via the averaging method. The latter technique (see [10], [12]) is not very explicit geometrically,
however as [12] points out, it does enable one to obtain exponentially small upper estimates with sharp constants,
which come from dynamical considerations regarding the analyticity domains, if not to relate these estimates
directly to the splitting of separatrices.

2. Unperturbed system analysis

In this section, for the sake of clarity, we confine ourselves to the case m = 1 only; the extension
to m > 1 is transparent. Thus, in this section, let l0 = 1, l1 = l > 1. Let us further assume that l is
such that λ =

√
1+l
l < 1 and for k ∈ Z+

|kλ− 1| > λ

10
, ∀ k ∈ Z+, (2.1)

a particular case of the condition (1.9).
The Hamiltonian H1+m given by (1.11), for m = 1 turns into

H2(y, z̄, x, z) =
y2

2
+ (cosx− 1) +

z̄2

2l2
− (l + cosx)

z2

2
+ O4(z; x). (2.2)

Let us further change y → ±ψ(x) + y, recall that ψ(x) = 2 sin(x/2). Clearly, the choice of the
sign as + corresponds to localization near the orbit γ as part of the unstable manifold of the fixed
point O, while the − sign would imply doing it near γ as part of the stable manifold. Let us call the
resulting Hamiltonians H2,±ψ as follows:

H2,±ψ(y, z̄, x, z) = ±yψ(x) +
y2

2
+

z̄2

2l2
− (l + cosx)

z2

2
+ O4(z; x). (2.3)

Observe that the Hamiltonians H2,±ψ have resulted from H2 after canonical changes with generating
functions

S±ψ = ±
∫ x

0
ψ(ζ)dζ, (2.4)
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with the + sign for the stable and the − sign for the unstable manifolds, respectively. Further
calculations will be quoted for mostly H2,+ψ ≡ H2,ψ only.

The Hamiltonian H2,ψ is now a function of x ∈ T2 = R/4πZ, rather than T, with two singular
points, where x = 0, 2π. To identify them H2,ψ, retains a symmetry:

H2,ψ(y, z̄, x, z) = H2,ψ(y + 2ψ(x), z̄, x + 2π, z). (2.5)

This symmetry will be instrumental to prove the claim ξu = ξs of Theorem 1.
To identify the unstable/stable manifolds W u,s

γ of the orbit γ, we will be looking along the x-axis
at the unstable/stable manifold of the singular point at x = 0 for the Hamiltonians H2,±ψ, respectively.
This proves convenient and suggests that in general the regular description of the manifolds W u,s

γ is
likely to fail in the neighborhood of x = 2π.

Let us linearize the flow of the Hamiltonian H2,ψ near the orbit γ, whereupon x(t) ≡ x0(t) =
= ±4 arctan et. For the infinitesimal increments (x̂, ŷ, ẑ, ˆ̄z), one gets the system of equations

˙̂x = Dψ[x0(t)]x̂ + ŷ, ˙̂y = −Dψ[x0(t)]ŷ, (2.6)

˙̂z = ˆ̄z/l2, ˙̄̂z = (l − 1 + tanh2 t)ẑ. (2.7)

The tangent space to W u
γ at the points on γ will be spanned by the vectors – solutions of the latter

system of linear ODEs, which vanish as t → −∞.
The two pairs of equations (2.6), (2.7) are uncoupled. As far as (2.6) is concerned, there is an

obvious solution x̂(t) = ẋ0(t) ∼ 1/ cosh t, ŷ(t) = 0, which vanishes at both t → ∓∞. I. e. one tangent
direction to W u

γ at a point (x, z, y, z̄) = (x, 0, 0, 0) is always (1, 0, 0, 0), in the direction collinear with γ
itself.

Equations (2.7) will clearly have no solutions vanishing at both t = ±∞, as the coefficients therein
retain their sign for all t. However the system certainly does have a solution (ẑu(t), ˆ̄zu(t)), defined
for t 6 T0 for some T0 À 1, which as t → −∞ approaches the trivial (ẑ, ˆ̄z) ≡ (0, 0) (as well as another
solution, which is defined for t > −T0 and vanishes at t → +∞).

To construct the unstable solution (ẑu(t), ˆ̄zu(t)), one may set d
dt = ψ(x) d

dx , 1−tanh2 t = cosx and
construct the germ of the solution in question locally as a Taylor series in x near x = 0; by linearity of
the equations (2.7) and boundedness of their coefficients, the continuation of these germs over a finite
time interval does not itself pose any problem.

Observe that given (ẑu(t), ˆ̄zu(t)), one can let (ẑs(t), ˆ̄zs(t)) = (ẑu(−t)−2π,−ˆ̄zu(−t)) for the result
of the similar procedure with respect to the Hamiltonian H2,−ψ. For no t ∈ [−T0, T0] can the vectors
(ẑu(t), ˆ̄zu(t)) and (ẑs(t)+2π, ˆ̄zs(t)) be parallel, or there would exist a solution of (2.7), biasymptotic to
zero. For the Hamiltonian H2 from (2.2), the existence and transversality of the intersection along the
orbit γ of a pair of manifolds W u,s

γ (defined in the neighborhood of γ) essentially follow. A quantitative
statement of this fact is to be given shortly. So far observe by comparing the coefficients in the linear
equations (2.7) that both vectors (ẑu(t), ˆ̄zu(t)) and (ẑs(t), ˆ̄zs(t)) in the (z, z̄) plane never have a slope
too close to horizontal. More precisely, the absolute value of their slope is contained in the interval
[l
√

l − 1, l
√

l + 1], which can be seen from (2.10) below.
Let us show how the manifold W u

γ can be constructed, the analysis for W s
γ gets modified in the

obvious way. Make a change z̄ → z̄ + λu(x)z, where λu(x) determines the direction of the solution
vector, vanishing at x = 0 (i. e. t → −∞). The quantity λu(x) ∈ [l

√
l − 1, l

√
l + 1] is well defined

for x ∈ T2 \ (2π − δ, 2π + δ) for some 0 < δ < 1, where δ ≈ ln T0.
The change z̄ → z̄ + λu(x)z is not canonical, to make up for it one also has to change y → y +

+ 1
2

dλu(x)
dx z2. In other words, this is a canonical change with the generating function

Su
γ,0(x, z) =

1
2
λu(x)z2. (2.8)
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Then the Hamiltonian H2,ψ in (2.3) transforms to

H2,u(x, y) = yψ(x) +
y2 + l−2z̄2

2
+

1
2
λ̃u(x)z2 + l−2λu(x)zz̄ + yO2(z;x) + O4(z; x), (2.9)

where
λ̃(x) = ψ(x)

dλu(x)
dx

− (l + cosx) + l−2λ2
u(x). (2.10)

It follows by construction – or directly from (2.7) – that λ̃u(x) ≡ 0. Thus the quantity Λu(x) ≡
l−2λu(x) multiplying zz̄ in (2.9) is always positive, never exceeding λ = Λu(0); recall that λ < 1, also
cf. (2.1).

Finally, the last two terms in (2.9) can be regarded as a perturbation, provided that r is small
enough.

The phase space of the Hamiltonian H2,u is T ∗(T2\(2π−δ, 2π+δ))× [−r, r]). If there were no two
last terms in (2.9), the manifold W u

γ would be given by the zero section (y, z) = (0, 0) of the bundle.
However, for small r, the last two terms in (2.9) can be regarded as a perturbation and dispensed
with, owing to the following lemma.

Lemma 1. Given ρ < ρ0, T 6 T0 − 1, there exists a constant c1 > 0, depending only on the
parameter set (ρ0, T0, r0) and λ, such that for r < c1(ρ0 − ρ), there exists some reals δ, κ = O(1)
in (0, 1) and a canonical near-identity transformation Ψu

r , such that the Hamiltonian (2.9) can be cast
into the following normal form:

Hγ,u(y, z̄, x, z) = yψ(x) + Λu(x)zz̄ + O2(y, z̄), (2.11)

valid for |y|, |z̄| 6 κ, |z| 6 r, and x such that Rx ∈ [−2π + δ, 2π − δ], and s(x) ∈ ΠT,ρ.
The transformation Ψu

r , for p = (y, z̄) and q = (x, z) can be written in the following form:

Ψu
r = Ψu

r (bu
r ,Su

r ) :
{

q = q′ + bu
r (q′),

p = t[id + dbu
r (q′)]−1p′ + dSu

r (q),
(2.12)

where the quantities bu
r (x, z) and Su

r (x, z) are both O2(|x|+ |z|).
We omit the proof of the Lemma, as it follows as a particular case of the forthcoming Theorem 2,

in the case when there are no ϕ-dependencies. The smallness condition r < c1(ρ0 − ρ) follows after
a routine, but careful examination of the proof of Theorem 2, see also the quantitative estimates in
Theorem 2′. As a matter of fact, Lemma 1 still holds if the term O4(z; x) in (2.9) gets replaced
by O3(z; x).

Observe that repeating the argument for the Hamiltonian H2,−ψ, the latter would be cast in the
following form:

Hγ,s(y, z̄, x, z) = −yψ(x)− Λs(x)zz̄ + O2(y, z̄), (2.13)

where Λs(x) > 0 and equals λ at x = 0. In order to get (2.13), the analog of Lemma 1 would be
preceded by a canonical transformation with the generating function Ss

γ,0(x, z) = 1
2λs(x)z2, cf. (2.8).

Let us summarize the results of the analysis in this section by the following proposition.

Proposition 1. For r small enough, the unstable/stable manifolds W u,s
γ for the Hamiltonian (2.2)

can be represented as graphs over the variables (x, z), via the generating functions

Su,s
γ = S+,−

ψ + Su,s
γ,0 + Su,s

r , (2.14)

respectively, the representation being valid for Rx ∈ T2\(2π−δ, 2π+δ), s(x) ∈ Πρ,T , δ ∼ log T and z ∈
Bm

r . Both Su,s
γ vanish to the second order at (x, z) = (0, 0). The intersection of the manifolds W u,s

γ

along the orbit γ is transverse, for x ∈ [δ, 2π − δ] ∪ [2π + δ, 2π − δ].
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The Hamiltonian (2.2) can be cast into the forms (2.11), (2.13) via canonical changes Ψu,s
γ re-

spectively, where Ψu,s
γ = Ψu,s

γ (au,s
r ,Su,s

γ ), with the near-identity diffeomorphisms au,s
r = id + bu,s

r such
that bu,s

r both vanish to the second order at (x, z) = (0, 0).

The next and most important step towards proving Theorem 1 is to get the generating func-
tions Su,s

µ in (1.12) by developing the structural stability theory for a class of Hamiltonians, which
would include

Hu,s = 〈ω, ι〉+
1
2

n∑

j=1

ι2j + Hγ,· + Vu,s(ϕ, x, z), (2.15)

with · = u, s, respectively, and the perturbations Vu,s satisfy Assumption 1. We can also assume that
we can estimate the partial derivatives of Dx,zVu,s at (x, z) = (0, 0) in terms of the norm of Vu,s,
as Vu,s itself should be analytic for |x| 6 δ and |z| 6 r0.

3. Structural stability theory

It was proposed in [13] that a proper geometric object, in the spirit of KAM theory, to look at in
order to set up the splitting problem near a simple resonance is a semi-infinite cylinder over a torus.
Here we deal with ”extended cylinders”, see (1.17), which appear to be the proper geometric objects
to study in order to describe the separatrix splitting at multiple resonances.

As this section is the most technical one, the notations in it (hence also in section 5 and the
Appendix) are largely self-contained. We study the following Hamiltonian, with (p, q) = (ι, y, z̄, ϕ, x, z)
(to justify the earlier made claim that it suffices to consider m = 1, let us now take z = (z1, . . . , zm),
for any m):

Hω(p, q) = λ0ψ(x)y + 〈ω, ι〉+ 〈z,Λ(x)z̄〉+ O2(p; q), (3.1)

under the following basic assumptions:

i. ω is Diophantine, for all ϕ, the matrix D2
ιιHω(0, 0, 0, ϕ, 0, 0) is non-degenerate.

ii. For all x ∈ T2\(2π−δ, 2π+δ), the real parts of the eigenvalues of the diagonalizable matrix Λ(x)
lie in the interval (0, λ0); moreover Λ(0) = diag(λ1, . . . , λm) and the condition (1.9) is satisfied.

Clearly, the simultaneous change (λ0,Λ) to (−λ0,−Λ) is not going to violate the principal conclusions
of this section.

Notation

Technically it proves convenient to deal with the non-compact “energy-time” coordinates (e, s), in-
troduced by (1.15), rather than the coordinates (y, x); some notation and formalism are being set up
further.

Let Bσ(Tj) be the Banach space of bounded 2π-periodic scalar functions in each variable, real
analytic in Tj

σ, with the sup-norm.
Let x ∈ T2. Rather than dealing with a fixed ψ(x) = 2 sin(x/2), let us introduce it axiomatically,

as a real-analytic function, such that ψ(0) = 0, Dψ(0) = 1. Suppose ψ(x+2π) = −ψ(x) and ψ(x) has
no other zeroes on the real line, but integer multiples of 2π.

Define a conformal map s(x) via (1.15). The map s(x) takes (0, 4π) to R∪R+ iπ and the change
(x, y) → (s, e) is canonical.

By construction of the map s, there exist some Tψ À 1 and ρ ∈ (0, π/2) such that for
any T ∈ [Tψ/2, Tψ] the quantities x(s), χ(s) are holomorphic functions in the set Π̌T ,ρ ⊂ C/2πi,
defined by (1.16). In addition, and this is possible by the properties of ψ(x), let us suppose that ρ is
such that for any s ∈ Π̌T ,ρ, there exists a pair of constants cψ, Cψ, such that

cψe−|s| 6 |χ(s)| 6 Cψe−|s|. (3.2)
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To deal with Hamiltonian functions in T ∗C let us introduce some function spaces. For more details,
see [13].

The function spaces will be characterized in terms of the analyticity parameters, accommodated
into parameter vectors p as follows. Let p = (σ, T, ρ) ∈ R3

++. Introduce partial order p′ = (σ′, T ′, ρ′) 6
p if σ′ 6 σ, T ′ 6 T, ρ′ 6 ρ. If p′ 6 p and |p−p′| ≡ inf(σ−σ′, T −T ′, ρ−ρ′) > 0, write p′ < p. Addition
of parameter vectors, as well as multiplication by positive reals is defined component-wise, as well
as the difference p − p′ for p′ < p. For ∆ ∈ (0, |p|), the notation p′ = p − ∆ means that ∆ has been
subtracted from each component of p. In the sequel the components and dimension of the parameter
vectors p may vary; more often than ever we will have p = (σ, T, ρ, r) ∈ R4

++.
Let B

j
p(C) be the Banach space – with the sup-norm – of bounded holomorphic functions u

on Cσ,T,ρ, such that u(ϕ, s) = u[ϕ, s(x)] = ũ(ϕ, x), where ũ is bounded and holomorphic in the
Cartesian product of Tσ and the pre-image of the strip ΠT,ρ under the map s(x), and ũ(ϕ, x) vanishes
to the jth order at x = 0 (the index j = 0 being omitted). Component-wise sup-norm | · |p or the
equivalent Euclidean norm ‖ · ‖p is used for vector functions.

If u(ϕ, s) ∈ B
j
p(C), a multiplier χj(s) can be factored out, i. e.

u(ϕ, s) = χj(s)v(ϕ, s), v ∈ Bp(C), |v|p ≈ |u|p, (3.3)

with constants depending on the fixed quantity χ being henceforth absorbed into the symbols ., ≈,
see also (3.2). For u ∈ Bp(C), there exists a unique decomposition

u(ϕ, s) = u0(ϕ) + u1(ϕ, s), where u0 ∈ Bσ(Tn), u1 ∈ B1
p(C). (3.4)

Using it, define the average 〈u〉 “at infinity” as

〈u〉 def=
∫

Tn

u0(ϕ)dϕ. (3.5)

For u ∈ B1
p(C), there is an estimate:

|u(ϕ, s)| . eRe s|u|p. (3.6)

Let us also introduce a function space B∧
p (C) ∼= Bσ(Tn) × Bp(C) of functions unbounded at

infinity as follows:

u(ϕ, s) ∈ B∧
p (C) iff u(ϕ, s) =

v(ϕ, s)
χ(s)

, v(ϕ, s) ∈ Bp(C). (3.7)

The norm on B∧
p (C) is defined as |v|p. By (3.4) and (3.7), for u ∈ B∧

p (C) there is a decomposition

u(ϕ, s) = v0(ϕ)/χ(s) + v1(ϕ, s), for some v1 ∈ Bp(C). Also let B
(n,∧)
p (C) = [Bp(C)]n × B∧

p (C). An
element of this space describes a vector field on C as well as a map a(ϕ, s) of Cp into Cp′ , (with p < p′

for the map to be well defined). Namely, if g ∈ B
(n,∧)
p (C) is a vector field and a is such a map, then

the ”new” vector field da−1g ◦ a is in B
(n,∧)
p′ (C), see [13]. It is legitimate to use the Cauchy formula to

estimate partial derivatives of u ∈ B∧
p (C), i. e. |du|p′ . ∆

−1|u|p, where ∆ = p− p′.
All the above notations extend in an obvious way to functions on C, by adding a component r to the

parameter vector p, and considering absolutely convergent Taylor series in z ∈ Bm
r with the coefficients

in the corresponding spaces of functions on C. For instance Bp(C) (with p = (σ, T, ρ, r)) becomes an
extension of the space Bp(C) (with p = (σ, T, ρ)), and the notation B

(n,∧,m)
p (C) extends B

(n,∧)
p (C).

The norm in the extended spaces, such as Bp(C) is the sum of the Taylor series in z, where the
moduli suprema have been taken for all the coefficients. The quantity r will not appear explicitly
in the estimates in this section, getting absorbed in the . symbols, e. g. for u ∈ Bp(C), we have
|Dzu|z=0 . |u|p. To bring it to terms with the fact that r in Theorem 1 is actually quite small, cf. (1.18),

REGULAR AND CHAOTIC DYNAMICS, V. 11, №1, 2006, pp. 83–102 93



M.RUDNEV, V. TEN

observe that r would further come into play only when the functions’ derivatives are evaluated at z =
= 0 via the Cauchy inequality. But for the functions Theorem 1 is dealing with, these derivatives
can be estimated in terms of the quantity r0, which is O(1). The same should be said about the
parameters (σ, T, ρ) which are all supposed to be independent of the parameter characterizing the
perturbation size.

The notation 〈u〉 for u ∈ Bp(C) implies that z has been set to zero, cf. (3.5). Thus, for u ∈ B1
p(C),

there is a uniform estimate, cf. (3.6):

|u(ϕ, s, z)| . eRe s|u|p. (3.8)

Hamiltonian functions on T ∗C are given by absolutely convergent Taylor series with coefficients
in Bp(C), in p̃ = (ι, y, z̄) = (ι, e/χ(s), z̄), inside a complex ball Bn+1+m

κ . Notation-wise (e, s) = (0,−∞)
corresponds to y = 0. Let Bκ,p(T ∗C) be the space of such Hamiltonians, the norm being the sum of
the Taylor series in p̃, where the norms have been taken for all the coefficients.

Structural stability theorem

What follows is a non-technical formulation of the theorem to keep its content transparent.

Theorem 2. Consider the following Hamiltonian Hω ∈ Bκ,p(T ∗C):

Hω(ι, e, z̄;ϕ, s, z) = const. + λ0e + 〈z,Λ(s)z̄〉+ 〈ω, ι〉+ O2(p̃; q), (3.9)

with p̃ = (ι, y/χ(s), z̄). Assume the following:

i. ω ∈ Rn is Diophantine and the matrix D2
ιιHω(0, 0, 0;ϕ,−∞, 0), ∀ϕ is non-degenerate.

ii. λ0 > 0, the real parts of all the eigenvalues of Λ(s) ∈ Bp(C), ∀s lie in the interval (0, λ0);

iii. in the decomposition Λ(s) = Λ0 + Λ1(s), with Λ1(s) ∈ B1
p(C), one has Λ0 = diag(λ1, . . . , λm),

with 0 < Rλj < λ0, ∀j = 1, . . . , m, and the condition (1.9) is satisfied by {λ0, . . . , λm}.

Then Hω is structurally stable, via a canonical transformation

Ψ = Ψ(a, S) :
{

q = a(q′),
p = t(da)−1p′ + dS,

(3.10)

and for any p′ < p, the transformation a = id + b, with b ∈ B
(n,∧,m)
p′ (C). The one-form dS is defined

by the generating function S(q) = 〈ξ, ϕ〉+ S0(ϕ, s), with ξ ∈ Rn, S0 ∈ Bp′(C).

Let
H = Hω + V,

V (p, q) = f(q) + 〈g(q), p〉 (3.11)

be a small perturbation of the Hamiltonian (3.9). In the perturbation, suppose f ∈ Bp(C) and g ∈
B

(n,∧,m)
p (C). How small the perturbation should be is stated in the forthcoming technical version of

Theorem 2, Theorem 2′.

Remark 2. An important consequence of the analytic set-up to be used further is local uniqueness. I. e.
given the pair (Hω, V ), the pair (a, S) defining the conjugacy transformation Ψ in (3.10) is unique.

The proof of Theorem 2 is given in section 5. Let us now discuss some implications of the theorem,
in the coordinates (ϕ, x, z), cf. (1.15), where ϕ ∈ Tn, x ∈ T2 \ (2π − δ, 2π + δ), |z| 6 r. Let S̃, S̃0 be
the expressions for the generating functions S̃, S̃0 from Theorem 2 in these coordinates.
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Corollary 2. The Hamiltonian H in (3.11), as a function of (ι, y, z̄, ϕ, x, z), on some energy
level, possesses an invariant Lagrangian manifold C, given by the graph of the closed one-form dS̃,
where

S(ϕ, x, z) = 〈ξ, ϕ〉+ S̃0(ϕ, x, z), (3.12)

and S̃0 is 2π-periodic in the variable ϕ. The manifold C contains a partially hyperbolic invariant torus
T , which in turn is contained in an invariant cylinder C ∼= Tn × [−2π + δ, 2π − δ].

If the perturbation (f(ϕ, x(s), z)), g(ϕ, x(s), z)) in (3.11) is such that f = O2(|x| + |z|) and g =
= O1(|x| + |z|), then ξ = 0 and the energy value on the manifold C coincides with the value of the
unperturbed Hamiltonian Hω thereon.

Indeed, the first claim follows from (3.9) and (3.10) by setting in the latter formula p′ = 0.
Furthermore, if S̃(ϕ, x(s), z) = S(ϕ, s, z), where the latter comes from Theorem 2, then the invariant
cylinder C arises by letting z′ = 0 in S′(ϕ′, s′, z′) = S ◦a−1(ϕ′, s′, z′), where the transformation a also
comes from Theorem 2. The torus T arises by further setting s′ = −∞.

The second claim follows by observing that a special perturbation, as described in the Corollary,
does not affect the invariant torus at (p, x, z) = 0 and local uniqueness. Alternatively, one can verify
this claim by carefully inspecting the proof of Theorem 2.

4. Conclusion of the proof of Theorem 1

Combining the claims of Proposition 1, Theorem 2, as well as Corollary 2 applied to the Hamiltoni-
ans Hu,s in (2.15), one immediately establishes the claim (i) of Theorem 1, but for the fact that the
invariant manifolds Wu,s lie on the same energy level and the fact of equality of the cohomology class
representatives ξu,s ∈ Rn ∼= H1(Tn,R). Both facts easily follow by observing that all the generating
functions in (2.14) vanish to the second order at (x, z) = (0, 0), where the unperturbed invariant torus
is located, so one can use Corollary 2.

Namely, let au,s
γ extend the diffeomorphisms au,s

r in Proposition 1, acting as the identity on the
ϕ-variables; let Ψu,s

γ (au,s
γ ,Su,s

γ ), be the corresponding canonical transformations. Let Ψu,s
µ (au,s

µ ,Su,s
µ )

be supplied by Theorem 2, being applied to the Hamiltonians (2.15), where the quantities au,s
µ ,Su,s

µ

are viewed as the functions of (ϕ, x, z) rather than (ϕ, s, z). Let Hu,s
ω be the results of conjugacy:

Hu,s
ω = Hµ ◦Ψu,s

γ ◦Ψu,s
µ ,

respectively for the unstable and the stable manifolds.
Consider the Hamiltonian

H ′ = Hu
ω ◦ (Ψu

γ)−1 ◦Ψs
γ .

By the properties of the pair (au,s
r ,Su,s

γ ) described by Proposition 1, it follows that H ′ = H ′
ω + V ′,

where V ′ = (f ′, g′) is such that f vanishes to the second order and g′ to the first order at (x, z) =
= (0, 0), while H ′

ω can be regarded as unperturbed Hamiltonian, in the sense of Theorem 2. This
implies that by Theorem 2 and Corollary 2, there exists a transformation Ψ′(a′, S′), which nullifies
the perturbation V ′, and the one-form dS′ is exact, i. e. the corresponding ξ′ = 0.

Thus
H ′ ◦Ψ′ = (Hµ ◦Ψs

γ) ◦ [(Ψs
γ)−1 ◦Ψu

γ ◦Ψu
µ ◦ (Ψu

γ)−1 ◦Ψs
γ ◦Ψ′],

i. e., by uniqueness, the application of Theorem 2 to the “stable manifold” Hamiltonian Hs = Hµ ◦Ψs
γ

is effected via the canonical transformation

(Ψs
γ)−1 ◦Ψu

γ ◦Ψu
µ ◦ (Ψu

γ)−1 ◦Ψs
γ ◦Ψ′.

This transformation is still of the form (1.13). Besides, the corresponding generating function will
contain a single “non-exact” term 〈ξu, ϕ〉, supplied by Ψu

µ, as (in the sense of the template (1.13))
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the rest of the transformations in the above chain are effected by exact one-forms. This proves the
claim (i) of Theorem 1.

To prove the claim (ii) of the theorem, substitute p = dSu(q) and p = dSs(q) into the Hamil-
tonian (1.5), subtract the result of the latter substitution from the result of the former one. After
substraction has been done, all the momentum-independent terms are gone, and introducing the
splitting function D as in (1.14), we arrive in the relation

[ψ(x) + O(µ)]
∂D
∂x

+ 〈ω + O(µ),
∂D
∂ϕ

〉+ O(µ)
∂D
∂z

+ 〈z, L[D]〉 = 0, (4.1)

where the quantities O(µ) as well as the coefficients of the first order linear differential operator L
depend on Su,s. To prove the claim now, it suffices to solve the vector field conjugacy problem,
which ensures the structural stability of the vector field x0 =

(
∂
∂s , 〈ω, ∂

∂ϕ〉, 0
)

on Ĉσ,ρ,T,r. The same
conjugacy problem, only without the variable z, was dealt with in [10], [13]. However, as there is no
differentiation in z in the “unperturbed” vector field x0, the quantity z enters the conjugacy problem
as a parameter, and hence the resolution of the conjugacy is solely based on the invertibility of the
operator ∂

∂s + 〈ω, ∂
∂ϕ〉 on Ĉσ,ρ,T . Thus, the proof that the equation (4.1) can be conjugated to (1.19)

reproduces the proof of Lemma 4.4 in [13] verbatim; we skip it, referring the reader to the latter or in
fact any of the three above-mentioned papers. The rest of the claims of Theorem 1 have been shown
earlier in section 1.

5. Proof of Theorem 2

The proof follows the skeleton of the proof of the KAM theorem for semi-infinite cylinders in [13].
Consider the differentiation operators

Dω = 〈ω, Dϕ〉, Dλ0,ω = λ0Ds + Dω. (5.1)

The standard KAM theory depends on solvability of linear PDEs with the operator Dω, in [13] the
operator Dλ0,ω was dealt with.

Consider a perturbation of Hω as in (3.11). The principal step in proving the structural stability
of Hamiltonian the (3.9) is establishing the fact that the Hamiltonian Hω is stable infinitesimally.
This is done by solving the homological equation in the functional linearization of the problem (i. e.
vindicating an “iterative lemma”). The standard Newton iteration follows, see [15], [16]. Parameter
dependencies and smallness conditions were worked out for the case m = 0 in [13]; the case m > 0
makes no difference in this respect, see the Appendix.

To show that the unknowns (S, b) in (3.10) exist, one has to solve the following equations:

[Dλ0,ω + 〈z, ΛDz〉] Ŝ0 = −f − 〈ω, ξ̂〉+ ĉ,

[Dλ0,ω + 〈z, ΛDz〉] b̂ = g + D2
ppHω(p, q)|p=0(dŜ0 + ξ̂) + B(ϕ, x, z)b̂− λ̂0 − Λ̂

T
0 z.

(5.2)

The system (5.2) arises by direct substitution of (3.10) into (3.9) and omitting terms which are O2(|S|+
+ |b|+ |V |). As far as the notation is concerned, ξ̂ = (ξ̂, 0, 0), λ̂0 = (0, λ̂0, 0) are n + 1 + m constant
column-vectors and Λ̂

T
0 = (0, 0, Λ̂T

0 ) is a constant (n + 1 + m)×m matrix.
The role of the parameters ĉ, λ̂0, Λ̂0 (in addition to ξ̂) is to ensure solvability of (5.2) within the

framework of propositions in the Appendix, i. e. to guarantee that the right hand side is in the com-
plement to the kernel of the operator Dλ0,ω + 〈z, ΛDz〉 on Bp(C) for the first equation and B

(n,∧,m)
p (C)
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for the second one. Equivalently, after the canonical transformation Ψ(â, Ŝ), the momentum-linear
part of the Hamiltonian Hω would acquire a term

Ĥω = ĉ + λ̂0e + 〈z, Λ̂0z̄〉. (5.3)

The term B(x, z)b̂ can be described as follows. If b̂ = (β̂, b̂, [̂), describing the transformation of
the (ϕ, x, z) variables respectively, then B(x, z)b̂ contributes to the equation for the quantity [̂ only,
where it results in the term

ΛT (s)[̂ + b̂DsΛT (s)z (5.4)

in the right hand side.
In order to solve the first equation in (5.2), ĉ is to be found, depending on the still unknown ξ̂,

such that the right hand side, call it vŜ0
, have zero ϕ-mean 〈vŜ0

〉 = 0, cf. (3.5). Recall that the mean
it is taken by setting (s, z) = (−∞, 0).

No matter what ξ̂, such ĉ clearly exists, so we can assume that the right hand side of the first
equation has zero mean. Then Ŝ0 exists, in any space Bp′(C), with p′ < p, by Proposition A.3. Observe
that Ŝ0 is independent of ξ̂.

The second equation in (5.2) comprises three (systems of) equations: for the quantities β̂, b̂ and [̂.
First one considers the equation for β̂ and finds ξ̂ such that the right-hand side, call it vβ̂, has zero
ϕ-mean, i. e. 〈vβ̂〉 = 0. Note that the last three terms in the second equation in (5.2) do not appear

in the equation for β̂. Hence by the non-degeneracy assumption,

ξ̂ = −〈D2
ιιHω(p, q)p=0〉−1ṽβ̂,

where ṽβ̂ embraces the first n components of the n + 1 + m vector g + D2
ppHω(p, q)|p=0dS0, member

of the space ∈ B
(n,∧,m)
p′ (C), for any p′ < p. This also determines the constant ĉ in (5.3).

Furthermore, the (scalar) b̂-component of the second equation in (5.2) is resolved by Proposi-
tion A.5. The equation is not soluble without the condition (1.9). (The term constant λ̂0e is the only
thing here to be added to Hamiltonian Hω, because under condition (1.9) constants exhaust the kernel
of the operator Dλ0,ω + 〈z, ΛDz〉 on the space B∧

p (C)).
Eventually, the equation for the quantity [̂ is solved. This equation deserves special attention, so

let us write it down explicitly as follows:

[Dλ0,ω + 〈z, ΛDz〉 − ΛT ]̂[ = v
[̂
. (5.5)

Let
v
[̂
(ϕ, s, z) = v

[̂,0
(ϕ, z) + v

[̂,1
(ϕ, s, z),

[̂(ϕ, s, z) = [̂0(ϕ, z) + [̂1(ϕ, s, z),

where the quantity v
[̂,1

(ϕ,−∞, z) = 0, and so it satisfies the estimate (3.8). Therefore, the quantity

[̂1(ϕ, s, z) ∈ [B1
p′(C)]m, corresponding to the right-hand side v

[̂,1
exists, by Proposition A.4.

It remains to determine [̂0(ϕ, z). Let

[̂0(ϕ, z) = [̂0,0(ϕ) + 〈z, [̂0,1(ϕ)〉+ O2(z; ϕ),

do the same expansion for the right-hand side v
[̂,0

. Then [̂0,0 is found by Proposition A.2, cf. (A.6).

As for the term [̂0,1(ϕ), it is easy to see that the quantity 〈z, const.〉 is in the kernel of the operator in
square brackets in (5.5). Hence the quantity Λ̂0 is introduced to ensure that the right hand side v

[̂
do

not contain a constant multiple of z. This having been done, for all z, the right hand side 〈z, v
[̂,0,1

(ϕ)〉,
where v

[̂,0,1
(ϕ) has zero mean, can be resolved by Proposition A.1, (i).
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Finally, the component v
[̂,0,2

= O2(z; ϕ) in the right-hand side v
[̂

of equation (5.5) gets taken

care of as follows. Consider a monomial zk1
1 . . . zkm

m uk(ϕ), with |k| = k1 + . . . + km > 2. Under
the action of the operator 〈z,Λ0Dz〉 − ΛT

0 , taking into account the fact that Λ0 is diagonal, one
gets some zk1

1 . . . zkm
m Λ̃0uk(ϕ), where the constant matrix Λ̃0 is diagonal and by the condition (1.9) is

such that the real part of each diagonal entry is strictly positive, bounded away from zero uniformly
in (k1, . . . , km) by some λ > 0, which may be set equal to, say one tenth of the infimum in the right-
hand side of (1.9). Then the equation gets resolved term by term in the same way as is (A.3) in
Proposition A.2, the bound for the norm being uniform for all powers of z.

The proof of infinitesimal stability of Hamiltonian Hω will be complete after diagonalizing the
constant matrix Λ0 + Λ̂0 by the linear transformation z → Lz, where L is a constant near-identity
matrix, such that L−1(Λ0 + Λ̂0)L is diagonal. This is possible as long as Λ̂0 is small enough.

As we have mentioned earlier, this suffices to prove Theorem 2, as one can now switch on the
Newton iteration procedure, see [15], [16]. For the estimates, which would result in the forthcoming
qualitative version of the theorem, with the smallness condition and parameter dependencies, see [13].

Quantitative statement of Theorem 2

We now present a quantitative statement of Theorem 2. The qualitative assumptions naturally look
somewhat tighter than as stated in Theorem 2.

Assumption 2′ Suppose ∃p = (σ, T, ρ, r) > 0, as well as (µ, ν) : 0 6 µ < ν ¿ 1, such that Hω ∈
Bκ,p(T ∗C) and in the perturbation (3.11) one has

f ∈ Bp(C), g ∈ B
(n,∧,m)
p (C), |f |p 6 µ, |g|p 6 µν−1. (5.6)

Regarding the terms in the expression (3.9) for Hω, suppose

i. ω ∈ Rn satisfies (1.2);

ii. ∃λ > 0, such that ∀s ∈ ΠT,ρ the eigenvalues λ1(s), . . . , λm(s) of Λ(s) = Λ0 + Λ1(s) satisfy
λ 6 min(Rλj(s)) 6 max(Rλj(s)) 6 λ0 − λ, j = 1, . . .m;

iii. Λ0 = diag(λ0,1, . . . , λ0,m), and ∀k ∈ Zm
+ ,

∣∣∣∣∣∣

m∑

j=1

kjλ0,j − λ0

∣∣∣∣∣∣
> λ;

iv. for any constant m×m matrix Λ̃, with ‖Λ̃‖ < λ, the matrix Λ0 + Λ̃ is diagonalizable;

v. ∃R, M > 0, such that ∀ (p̃, q) ∈ Bn+1+m
κ × Cp, ‖〈D2

ιιO2(p̃; q)〉−1‖ 6 R−1, ‖D2
p̃p̃O2(p̃; q)‖ 6 M .

Let 0 < p′ < p. Further without loss of generality assume that the quantities δ = σ − σ′, ∆ = |p −
− p′|, λ, R, M−1, |ω|−1 6 1. Theorem 2 now vindicates the existence of a canonical transformation Ψ
such that (Hω + V ) ◦Ψ = H ′

ω, where H ′
ω ∈ Bκ′;p′(T ∗C) satisfies Assumption 2′ with slightly modified

parameters λ′0, Λ
′(s), R′,M ′. The quantitative results and parameter relations, cf. Assumption 2′, can

be summarized as follows.

Theorem 2′. Under Assumption 2′, let κ′ = κ/2 and

ς = inf(γδτn , λ), η = R inf(M−1ς∆, ν). (5.7)

There exists a constant C, depending only on ψ, as well as the quantities n, τn, ψ, p, κ, such that if

µ 6 C−2η2 . (R/M)2∆
2[inf(ς, ν)]2, (5.8)
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the following estimates hold:

|S|p′ 6 Cµς−1, |b̂|p′ 6 Cµ(ης)−1,

λ−1
0 |λ′0 − λ0| 6 Cµ(ηλ)−1, λ−1

0,j |λ′0,j − λ0,j | 6 Cµ(ηλ)−1,

R−1|R′ −R| 6 Cµ(ης∆)−1, M−1|M ′ −M | 6 Cµ(ης∆)−1.

(5.9)

The condition (5.8) is essentially the same as in [13], It comes straight from the estimates in the
Appendix.

6. Appendix

The appendix contains a series of propositions necessary to resolve the infinitesimal conjugacy problem
in the proof of Theorem 2. The first result is adopted from [13] (see also the references contained
therein). The frequency ω is assumed to satisfy (1.2), in the context of the operator Dω.

Proposition A.1.

i. For a function v ∈ Bσ(Tn) with 〈v〉 = 0, the solution of the equation Dωu = v exists in the space
Bσ′(Tn) for any σ′ < σ. If σ − σ′ = δ, ς = γδτn, then

|u|σ′ . ς−1|v|σ.

ii. Let p = (σ, T, ρ) and v ∈ Bp(C), with 〈v〉 = 0. The solution of the equation Dλ0,ωu = v exists
in Bp′(C) for any p′ = (σ′, T, ρ) with 0 < σ′ < σ. If σ − σ′ = δ, ς = inf(γδτn , λ0), then

|u|p′ . ς−1|v|p. (A.1)

iii. For v ∈ B∧
p (C), there exists a real constant c, |c| . |v|p, such that the solution of the equation

Dλ0,ωu = v − c exists in B∧
p′(C) and for the same ς as in (ii) one has the estimate (A.1).

Proposition A.2. Let p = (σ, T, ρ) and v ∈ [Bp(C)]m. Consider the equation

[Dλ0,ω − Λ(s)]u = v, (A.2)

where the matrix Λ(s) ∈ [Bp(C)]m2
is such that any eigenvalue of the constant diagonal matrix Λ0 =

= Λ(−∞) = diag(λ1, . . . , λm) satisfies 0 < cλ 6 Rλj 6 Cλ 6 λ0 − cλ for some c, C > 0.
The solution of (A.2) exists in Bp(C); one has the estimate (A.1) with ς = inf(γδτn , λ), and

p′ = p.

Proof. The characteristic flow of Dλ0,ω is φt(ϕ, s) = (ϕ + ωt, s + λ0t); it maps Cp into itself.
Decompose v(ϕ, s) = v0(ϕ)+v1(ϕ, s) (with v0 ∈ [Bσ(Tn)]m and v1 ∈ [B1

p(C)]m) and Λ(s) = Λ0+Λ1(s)
in the sense of (3.4). Seek the solution u(ϕ, s) = u0(ϕ) + u1(ϕ, s), expecting to find u0 ∈ [Bσ(Tn)]m

and u1 ∈ [B1
p(C)]m. Then for u0 we have

(Dω − Λ0)u0 = v0, (A.3)

while u1 should satisfy
Dtu1 − Λ1(φt(s))u1 = v1(φt(ϕ, s)), (A.4)
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where Dt means differentiation along characteristics. The solution of equation (A.3) involves no small
divisors and exists as long as the matrix Λ0 is non-singular and diagonalizable. It is assumed that Λ0

is diagonal, so the system of equations (A.3) gets separated into m equations:

(Dω − λj)u0,j(ϕ) = v0,j(ϕ), j = 1, . . . ,m. (A.5)

This results in an obvious bound |u0|σ . λ−1|v0|σ, as each individual equation in (A.5) gets solved as
the Fourier series with the coefficients

u0,j,k =
v0,j,k

−λj + i〈k, ω〉 , k ∈ Zn. (A.6)

Note that the constants c, C get absorbed into . symbols.
For equation (A.4) let h(ϕ, s, t, t′) solve the homogeneous equation

Dth(ϕ, s, t, t′) = Λ1(φt(ϕ, s))h(ϕ, s, t, t′),

with h(ϕ, s, t, t) = 1. As Λ1(φt(ϕ, s)) = Λ1(s + λ0t), one concludes that h does not depend on ϕ and
moreover h(s, t, t′) = h̃(s + λ0t, s + λ0t

′).
Moreover, for t′ < t < 0 one has the growth condition

|h(s, t, t′)| . eCλ(t−t′). (A.7)

Then, as |v1(ϕ + ωt′, s + λ0t
′)| . es+λ0t′ |v1|p, by definition of the space Bp(C), cf. (3.6), the integral

in the right hand side of the representation

u1(ϕ, s, t) =
∫ t

−∞
h(s, t, t′)v1(ϕ + ωt′, s + λ0t

′)dt′ (A.8)

converges absolutely for all t > 0, uniformly in s, with the bound |u1|p . (λ0 − Cλ)−1‖v1‖p, and u1

will be a member of the space [B1
p(C)]m as is v1.

Proposition A.3. Let p = (σ, T, ρ, r) and v ∈ Bp(C), with 〈v〉 = 0, let Λ(s) be such that for
all s, all its eigenvalues have positive real parts, bounded away from zero by λ > 0. The solution of
the equation

[Dλ0,ω + 〈z, ΛDz〉]u = v (A.9)

exists in Bp′(C) for any p′ = (σ′, T, ρ, r), with the bound (A.1).

Proof. The characteristic flow of the operator in square brackets in (A.9) is φt(ϕ, s, z) = (ϕ +
+ ωt, s + λ0t, ζ(z, s, t)), where ζ(z, s, 0) = z and ζ̇ = ΛT (s + λ0t)ζ. By positivity of λ0 and the
assumption on the eigenvalues of Λ, bounded in terms of λ, the characteristic flow φt is well defined
on (−∞, 0]× Cp, and we have

|ζ(t′)| . e−λ|t−t′||ζ(t)|, t′ < t 6 0. (A.10)

After the decomposition v = v0(ϕ, s) + 〈z, v1(ϕ, s, z)〉 and the same for u, the quantity u0 is found by
Proposition A.1.

Furthermore, v1 ∈ [Bp(C)]m still satisfies |v1|p . |v|fp, besides

(Dλ0,ω + 〈z, ΛDz〉)u1 + Λu1 = v1. (A.11)

Now let h(ϕ, s, t, t′) solve the homogeneous equation

Dth(ϕ, s, z, t, t′) = −Λ(φt(ϕ, s))h(ϕ, s, z, t, t′),
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with h(ϕ, s, z, t, t) = 1; Dt is differentiation along characteristics. For t′ < t < 0 one has

|h(ϕ, s, z, t, t′)| . eλ(t′−t). (A.12)

So one can let

u1(ϕ, s, z) =
∫ 0

−∞
h(ϕ, s, z, 0, t)v1(φt(ϕ, s, z))dt, (A.13)

which guarantees that u1(ϕ, s, z)p . λ−1‖v1‖p as well as the fact that u1 ∈ [Bp(C)]m.
The following Proposition follows immediately from Propositions A.2 and A.3.

Proposition A.4. Let p = (σ, T, ρ, r) and v ∈ [B1
p(C)]m. Consider the equation

[Dλ0,ω + 〈z, Λ(s)Dz〉 − ΛT (s)]u = v, (A.14)

where the matrix Λ(s) ∈ [Bp(C)]m2
is such that for all s all its eigenvalues have positive real parts,

bounded from above by Cλ 6 λ0 − λ, for some λ > 0.
The solution of (A.14) exists in [B1

p(C)]m, with |u|p . λ−1|v|p.
Proof. The characteristic flow φt(ϕ, s, z) = (ϕ + ωt, s + λ0t, ζ(z, s, t)), with ζ(z, s, 0) = z, of

the operator Dt clearly maps Cp into itself. The solution of the homogeneous equation h(ϕ, s, z, t, t′)
satisfies estimate (A.7), so by (3.8) it becomes possible to define

u(ϕ, s, z, t) =
∫ t

−∞
h(ϕ, s, z, t, t′)v(ϕ + ωt′, s + λ0t

′, ζ(z, s, t′))dt′, (A.15)

which satisfies (A.1).

Proposition A.5. Let p = (σ, T, ρ, r), consider equation (A.9), with v ∈ B∧
p (C). Suppose

Λ(s) ∈ [Bp(C)]m2
is such that all its eigenvalues have positive real part, bounded away from zero by

some λ > 0. In addition, suppose Λ(−∞) = Λ0 = diag(λ1, . . . , λm) and for any k ∈ Z+
m one has

|λ0 −
m∑

j=1

kjλj | > λ. (A.16)

There exists a real constant c, |c| . |v|p, such that the solution of (A.9) exists in B∧
p′(C) for any p′ =

= (σ′, T, ρ, r) with the bound (A.1).

Proof. The variation from Proposition A.3 is the fact that

v(ϕ, s, z) =
v0(ϕ, z)

χ(s)
+ v1(ϕ, s, z), v1 ∈ Bp(C). (A.17)

So u also has to have a term u0(ϕ,z)
χ(s) . Substituting this term into (A.9) we get

1
χ(s + t)

(−λ0D ln χ(s + t) + Dt) u0(φt(ϕ, z)) =
1

χ(s + t)
v0(φt(ϕ, z)).

Note that one can represent D ln χ(s) = 1 + χ(s)w(s), with w(s) ∈ Bp(C), so the problem will reduce
to Proposition A.3 if we can solve the equation

(−λ0 + Dω + 〈z,ΛDz〉)u0(φt(ϕ, z)) = v0(φt(ϕ, z)). (A.18)

Try u0 as a monomial u0,k1,...,km(ϕ)zk1
1 . . . zkm

m , with k ∈ Zm
+ , substitute it in the latter equation, with

the monomial v0,k1,...,km(ϕ)zk1
1 . . . zkm

m in the right-hand side. This yields
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Dω +

m∑

j=1

kjλj − λ0


u0,k1,...,km(ϕ) = v0,k1,...,km(ϕ),

which implies |u0|p . λ−1|v0|p, by (A.16), cf. (A.6).
The equation for u1 with the right-hand side v1 from (A.17) is now amenable to Proposition A.3,

the right hand side being ṽ1 = v1 +λ0w(s)u0(ϕ, z). In general 〈v1〉 6= 0 and should be compensated by
the constant c; it is not difficult to show that in fact c = D2ψ(0)〈v0〉+ 〈v1〉 (see [13], Proposition B.4).
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