
Multivariate emulation for North American
mid-Holocene temperature reconstructions

Jonathan Rougier

Department of Mathematics
University of Bristol, UK

with Tamsin Edwards, Mat Collins,
and other members of the PalaeoQUMP team

MPI für Meteorologie, Hamburg, 16 Mar 2011



Palaeoclimate reconstruction

1. ‘Pseudo-observations’ based on proxy measurements have a
high spatial resolution, but sparse coverage, and can be rather
inaccurate

2. Climate simulator runs have full coverage but low spatial
resolution, and there is the problem of simulator limitations

. . . Can we construct a synthesis of these two sources of
information which combines their strengths?

This is a very generic problem. A statistical solution emphasises
the assessment and role of uncertainty, represented probabilistically.



Pseudo-obs for pointwise reconstructions

Mid-Holocene MTWA anomalies.
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HadCM3 runs

Standard parameterisation and some of our ensemble members
(n.b. different colour scale to the previous picture).

Simulator run, standard inputs
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HadCM3 runs

Standard parameterisation and some of our ensemble members
(n.b. different colour scale to the previous picture).

Simulator run, standard inputs
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A natural method which is not quite going to work

Imagine that HadCM3 was very fast to run. We could use the
following approach:

1. Sample millions of candidates for the collection of simulator
parameters, and for each one:

a. Run the simulator under palaeo-forcing to equilibrium, and
b. Score the result by comparison with the pseudo-obs.

2. Create a weighted average of the sample.

Unfortunately for us:

I Each run of HadCM3 takes weeks/months

I We have inherited an ensemble of runs that is not any kind of
sample.

The solution is to use the ensemble to construct an emulator of
the climate simulator, i.e. a statistical model of the simulator that
allows us to predict its output at arbitrary parameterisations.
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Three steps to an emulator for HadCM3

1 or 2. Consider the simulator f (r) to be the sum of a smooth
component m(r) plus internal variability, and estimate
S ≈ Var(internal variability).

2 or 1. Dimensionally-reduce the simulator output, keeping only those
linear combinations that we trust, D (only a few columns).

3. Estimate the mean and variance functions for the low-dim
smooth component, [DTm](r), using the ensemble and S .

Step 3 produces

a mean function µ(r) := E{[DTm](r)}
and variance function Σ(r) := Var{[DTm](r)}.

Then our emulator for f (r) has mean function (D+)Tµ(r) and
variance function (D+)TΣ(r)D+; D+ is the Moore-Penrose inverse
of D.
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1. Separate out the internal variability

I We think of the simulator as

f (r) = m(r) + e(r)

where m(r) is a smooth function, and e(r) is a very rough
function, representing internal variability.

I Now we make a strong assertion in order to proceed:

I For each r , the simulator has an ‘ergodic’ attractor, which may
vary in location according to r but does not vary (very much)
in its gross shape.

The variance of internal variability is a summary of the shape
of the attractor.

I This strong assertion allows us to estimate the variance of the
internal variability at any r , denoted S , using one long
‘control run’ at the standard setting of the parameters.
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2. Dimensionally reduce the simulator output

I Project the smooth component m(r) onto the column-space
of a matrix of basis vectors D (few columns), such that

actual climate ≈ (DD+)Tm(r)

where D+ is the Moore-Penrose inverse of D.

I We can, equivalently, write

actual climate ≈ (D+)T [DTm](r)

where [DTm](r) is a low-dimensional smooth function.

I We are going to emulate [DTm](r) for arbitrary r . Then we
recover actual climate by pre-multiplying by (D+)T .

(Note that we are ‘throwing away’ the simulator’s internal variability: we
do not consider it relevant for reconstructing mean climate.)
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3. Emulate [DTm](r)

I Suppose we were to write [DTm](r) = BT r , where B is a
matrix of unknown regression coefficients. Then we would
have, starting from F = M + E ,

FD = MD + ED = RB + ED,

where R is the matrix of different parameter settings, F the
matrix of simulator outputs (one row per run), and E is the
matrix of internal variability.

I Since we know the variance of ED, namely

Var(vec ED) = (DTSD)⊗ I

it is a standard calculation to update the mean and variance
of β := vec B using the values R, F , D, and S .
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3. Emulate [DTm](r) (cont)

I Once we have the updated mean and variance of β, then the
mean and variance functions for [DTm](r) follow immediately:

µ(r) = (I ⊗ r)T EF (β)

Σ(r) = (I ⊗ r)T VarF (β)(I ⊗ r).

Note that in general Σ(r) > 0; µ(r) is not claiming to be a
perfect surrogate for m(r).

I In practice, we don’t use [DTm](r) = BT r , but

[DTm](r) = BTg(r),

where g(r) is a more general vector-valued function of r .

I In most cases we can use a ‘vague’ initial mean and variance
for β, namely Var(β)−1 → 0.
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4. There is no step four

That’s it!

We focus our attention on:

1. Deriving a robust estimate for internal variability;

2. Specifying the reliable linear combinations of the simulator;

3. Choosing regressors to represent the smooth component.

Everything else is just technique.



Our choice of filtering matrix, D
Mean Lat1 Lat2 Lat3

Orog PKF1 PKF2 PKF3

PKF4 PKF5 PKF6 PKF7



Our choice of filtering matrix, D
Run afcrh (Cp), Original Run afcrh (Cp), Filtered Run aenwp (Cp), Original Run aenwp (Cp), Filtered

Run afcrl (Cp), Original Run afcrl (Cp), Filtered Run afcrk (Cp), Original Run afcrk (Cp), Filtered

Run aetwc (Sb), Original Run aetwc (Sb), Filtered Run aetwh (Sb), Original Run aetwh (Sb), Filtered

Run aezwc (Sb), Original Run aezwc (Sb), Filtered Run aeuwc (Sb), Original Run aeuwc (Sb), Filtered



Checking the emulator

Diagnostic information based on leave-one-out; displayed as zonal
means to indicate the emulator’s prediction envelope.

afcrh (Cp)

30 50 70 90

−
4

0
2

4
6

●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●

●

● Actual value
Predicted (+/− 3sd)

aenwp (Cp)

30 50 70 90
−

4
0

2
4

6
●●●

●●
●

●
●

●●●●●●●●●●●●●●●●●●
●

●

●

afcrl (Cp)

30 50 70 90

−
4

0
2

4
6

●
●●

●
●

●
●
●●●●●●●

●
●●●●●●●●●●●●

●
●

afcjg (Sl)

30 50 70 90

−
4

0
2

4
6

●●●
●●●●●●●●●●●●●●●●●

●●●●●

●●●●

aetwc (Sl)

30 50 70 90

−
4

0
2

4
6

●
●●

●
●

●●●
●

●
●●●●●●●●●

●●●●●●
●●●

●

aetwh (Sl)

30 50 70 90
−

4
0

2
4

6

●
●

●

●
●

●
●

●
●

●
●●

●
●

●

●
●

●
●●

●
●●●●

●
●●

●

aezwb (Sl)

30 50 70 90

−
4

0
2

4
6

●
●●

●
●

●
●

●
●●●●●

●
●

●●●●●●●●●●
●

●●●

aeuwc (Sl)

30 50 70 90

−
4

0
2

4
6

●
●

●
●●

●●

●
●

●

●●●●
●

●
●

●

●

●
●

●
●

●●
●

●
●

●

aezwe (Sl)

30 50 70 90

−
4

0
2

4
6

●
●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●



Combined reconstruction

Reminder:
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Combined reconstruction (cont)

I We separate the parameters into Control parameters (e.g. switching
between the slab and dynamical ocean) and Uncertain parameters
(e.g. the entrainment rate in the convection scheme), r = (rc , ru).

I We link the simulator and the pseudo-obs together in a statistical
model:

pseudo-obs = H (m(rc ,Ru) + discrepancy)︸ ︷︷ ︸
actual climate

+obs. error

where H is the incidence matrix and Ru ∼ π(ru | rc).
I We can find the mean and variance of m(rc ,Ru) by integrating Ru

out of the emulator for m(r):

E(m(rc ,Ru)) = E(µ(rc ,Ru)), and

Var(m(rc ,Ru)) = E(Σ(rc ,Ru)) + Var(µ(rc ,Ru))

(only the first few moments of Ru are likely to be relevant).

I Now we update the mean and variance of actual climate using the
values of the pseudo-obs. We need to specify H, π(ru | rc),
Var(discrepancy), and Var(obs. error).
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Var(discrepancy), and Var(obs. error).
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Combined reconstruction (cont)
Initial mean field

−6 −4 −2 0 2 4 6

Initial SD field

0.5 1 1.5 2 2.5

Adjusted mean field

−6 −4 −2 0 2 4 6

Adjusted SD field

0.5 1 1.5 2 2.5



Summary

REM: Statistics does not provide ‘numbers’—it provides a
framework within which we can examine the impact of our
judgements on our conclusions and actions. One important role of
this framework is to clarify the questions.

1. Emulating a climate simulator like HadCM3

I How to get a robust estimate of internal variability?
I What linear combinations of high-dimensional spatial outputs

are ‘trustworthy’?
I How to choose the regression functions for the simulator

smooth component?

2. Linking HadCM3 to reality

I What is a good probabilistic description for parametric
uncertainty?

I How to assess and quantify structural uncertainty?
I How to present fully-probabilistic information about spatial

(and spatial/temporal) reconstructions?
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