Partial residuals with the package LMMstar

Brice Ozenne

May 12, 2024

This vignette details how partial residuals can be used to illustrate model fit in a linear regression and a linear mixed model when using the package LMMstar. We thus start by loading the necessary packages:

library(LMMstar)
library(ggplot2)

1 Univariate linear regression

To illustrate the use of partial residuals we will use the state.x77 dataset:

head(df1,4)

	lifeExp	illiteracy	income	murder	edu
Alabama	69.05	2.1	3.624	15.1	(0,50]
Alaska	69.31	1.5	6.315	11.3	(60,100]
Arizona	70.55	1.8	4.530	7.8	(50,60]
Arkansas	70.66	1.9	3.378	10.1	(0,50]

which contains information about life expectancy (lifeExp), income (income), illeteracy (illiteracy), murder rate (murder), and the percentage of high-school graduates (as categorical variable) in various states in the USA. For later use we display a few descriptive for each covariate value:

	outcome	observed	missing	mean	min	max	sd
1	lifeExp	50	0	70.8786	67.960	73.600	1.34239
2	illiteracy	50	0	1.1700	0.500	2.800	0.60953
3	income	50	0	4.4358	3.098	6.315	0.61447
4	murder	50	0	7.3780	1.400	15.100	3.69154
5	edu:(50,60]	50	0	0.5600	0.000	1.000	0.50143
6	edu:(60,100]	50	0	0.1600	0.000	1.000	0.37033

and check there are no missing values. Here for the categorical covariates the mean indicates the relative frequency of occurrence (56% and 16%) and other columns like sd should be ignored.

1.1 No interaction

Suppose we are interested in relating life expectancy (Y) to income (X). We cannot directly illustrate this relationship, as it could be confounded by other variables such as illiteracy (Z_1) , murder rate (Z_2) . and education (Z_3) . We will therefore use a linear model to control for those variables $(\mathbf{Z} = (Z_1, Z_2, Z_3))$ where, for simplicity, we assume a linear effect for all variables:

$$Y = \alpha + \beta X + \gamma_1 Z_1 + \gamma_2 Z_2 + \gamma_2 Z_3 + \varepsilon$$

```
e.lm <- lmm(lifeExp \sim income + illiteracy + murder + edu, data = df1) model.tables(e.lm)
```

	estimate	se	df	lower	upper	p.value
(Intercept)	71.57828	1.138488	44.009	69.28382	73.87274	0.0000e+00
income	0.19270	0.252649	44.009	-0.31648	0.70188	4.4971e-01
illiteracy	0.17590	0.320967	44.009	-0.47096	0.82276	5.8644e-01
murder	-0.27822	0.047855	44.009	-0.37467	-0.18178	6.3280e-07
edu(50,60]	0.30141	0.414015	44.009	-0.53298	1.13580	4.7046e-01
edu(60,100]	0.77306	0.513118	44.009	-0.26105	1.80718	1.3906e-01

Note that the estimates are nearly identical to the ones of the lm function:

 $coef(e.lm) - coef(lm(lifeExp \sim income + illiteracy + murder + edu, data = df1))$

```
(Intercept) income illiteracy murder edu(50,60] edu(60,100]
-2.7001e-13 2.0345e-13 -2.9035e-13 6.3283e-15 -4.2277e-13 -5.3091e-13
```

A graphical display can now be obtained by modifying the original outcome, life expectancy, had every state had the same illiteracy and murder rate:

```
df1$pres <- residuals(e.lm, type = "partial", variable = c("(Intercept)","income"))
head(df1)</pre>
```

	lifeExp	illiteracy	income	murder	edu	pres
Alabama	69.05	2.1	3.624	15.1	(0,50]	72.882
Alaska	69.31	1.5	6.315	11.3	(60,100]	71.417
Arizona	70.55	1.8	4.530	7.8	(50,60]	72.102
Arkansas	70.66	1.9	3.378	10.1	(0,50]	73.136
California	71.71	1.1	5.114	10.3	(60,100]	73.609
Colorado	72.06	0.7	4.884	6.8	(60,100]	73.056

By default, the partial residuals are computed substracting the effect of the covariates, i.e. had each state got no illiteracy, no murder, and the lowest education level:

c(69.05 - 0.17590 * 2.1 - (-0.27822) * 15.1, 69.31 - 0.17590 * 1.5 - (-0.27822) * 11.3 - 0.77306)

[1] 72.882 71.417

The element "(Intercept)" was specified in the variable argument to avoid to substract the mean value from the outcome and keep a plausible range of values for the outcome.

One may wish to compute the life expectancy had every state got a specific illiteracy, murder rate, and education. Say the most common in the sample: 1.17, 7.378, and (50,60] based on the descriptive statistics. This can be obtained by specifying these values in the argument **at**:

	lifeExp	illiteracy	income	murder	edu	pres	pres2
Alabama	69.05	2.1	3.624	15.1	(0,50]	72.882	71.336
Alaska	69.31	1.5	6.315	11.3	(60,100]	71.417	69.871
Arizona	70.55	1.8	4.530	7.8	(50,60]	72.102	70.557
Arkansas	70.66	1.9	3.378	10.1	(0,50]	73.136	71.590
California	71.71	1.1	5.114	10.3	(60,100]	73.609	72.064
Colorado	72.06	0.7	4.884	6.8	(60,100]	73.056	71.510

or doing the calcuation by hand:

c(69.05	- 0.17590	*	(2.1-1.170)	-	(-0.27822)	*	(15.1-7.378)	+	0.30141,	
69.31	- 0.17590	*	(1.5-1.170)	-	(-0.27822)	*	(11.3-7.378)	+	0.30141 - 0.77306)	

[1] 71.336 69.871

Note that changing in counterfactual only shifts the partial residuals by a constant, here:

unique(df1\$pres2 - df1\$pres)

[1] -1.5455

so does not affect the relation between the counterfactual outcome (here lifeExp) and the exposure of interest (here income). One can then get a graphical display either manually using ggplot:

or directly via the plot function:

These can be compared to displaying the observed outcome vs. income:

```
gg.obs <- ggplot(df1) + geom_point(aes(x=income, y=lifeExp))
gg.obs <- gg.obs + ggtitle("(A) observed")
gg.obs</pre>
```

where it is apparent that by using the partial residuals, the data has been normalized and exhibit less variability.

The output of the plot method is a list containing an element plot with the ggplot object and an element data with the dataset. To avoid actually displaying the graph one can use the method **autoplot** to only save the ggplot object:

```
ls.plot <- autoplot(e.lm, type = "partial", variable = c("(Intercept)","income"))
lapply(ls.plot, class)</pre>
```

\$data [1] "residuals_lmm" "data.frame"

\$plot [1] "gg" "ggplot"

One can re-create the plot based on the data argument or modify the existing plot, e.g. displaying with the y axis between 68 and 74:

ls.plot\$plot + coord_cartesian(ylim=c(68,74))

1.2 What about confidence intervals?

A common question is whether one can display confidence intervals for the regression line. It is possible to add confidence intervals on the plot either via the argument ci.alpha:

plot(e.lm, type = "partial", variable = c("(Intercept)","income"), ci.alpha = 0.25) ## E

or by requesting confidence intervals for the fitted lines via the argument pres.ci when calling residuals:

	lifeExp	illiteracy	income	murder	edu	fitted	fitted.lower	fitted.upper	r.partial
1	69.05	0	3.624	0	(0,50]	72.277	71.115	73.439	72.882
2	69.31	0	6.315	0	(0,50]	72.795	71.107	74.483	71.417
3	70.55	0	4.530	0	(0,50]	72.451	71.253	73.649	72.102
4	70.66	0	3.378	0	(0,50]	72.229	71.046	73.413	73.136
5	71.71	0	5.114	0	(0,50]	72.564	71.254	73.874	73.609
6	72.06	0	4.884	0	(0,50]	72.519	71.261	73.778	73.056

which can be added to the previous graphical display, e.g.:

The first plot is displayed in the left panel of the figure below. A similar partial residual plot but now for the **murder** variable is displayed in the right panel.

In many case the uncertainty represented here is of little interest, since it is the uncertainty of the intercept plus the exposure effect. This is why even though the murder variable was highly significant (p<0.001) whereas the income variable was not significant (p=0.45) the confidence intervals looks large in both cases. To only capture the uncertainty relative to the income or murder variable one should remove the intercept value, e.g. by omitting "(Intercept)" from the var argument:

```
plot(e.lm, type = "partial", variable = "income", ci.alpha = 0.25) ## F
plot(e.lm, type = "partial", variable = "murder", ci.alpha = 0.25) ## G
```


The unpleasant side effect is that the range of values on the y-axis appears unrealistic now. The statistical uncertainty may therefore be better communicated otherwise, e.g. reporting confidence intervals or p-values related to the covariate effect and keeping the partial residual plot free of confidence intervals.

1.3 Interaction with a categorical variable

Suppose that we are now interested in relating life expectancy (Y) to both income (X_1) for various level of education $(X_2 \in \{a, b, c\})$, adjusting for other variables such as illiteracy (Z_1) and murder rate (Z_2) . As before we assume a linear effect for all variables:

$$Y = \alpha + \beta_{1a} X_1 \mathbb{1}_{X_2 = a} + \beta_{1b} X_1 \mathbb{1}_{X_2 = b} + \beta_{1c} X_1 \mathbb{1}_{X_2 = c} + \gamma_1 Z_1 + \gamma_2 Z_2 + \varepsilon$$

where $\mathbb{1}_x$ denotes the indicator variable taking value 1 when x is true and 0 otherwise. This model can be estimated with the following R code

```
e.lmI <- lmm(lifeExp \sim income:edu + illiteracy + murder, data = df1) model.tables(e.lmI)
```

	estimate	se	df	lower	upper	p.value
(Intercept)	71.78584	1.209517	44.009	69.34823	74.22344	0.0000e+00
illiteracy	0.12870	0.319145	44.009	-0.51449	0.77189	6.8871e-01
murder	-0.27940	0.048208	44.009	-0.37656	-0.18224	6.7276e-07
income:edu(0,50]	0.17147	0.297725	44.009	-0.42855	0.77149	5.6760e-01
income:edu(50,60]	0.22526	0.252110	44.009	-0.28284	0.73335	3.7646e-01
<pre>income:edu(60,100]</pre>	0.30377	0.236929	44.009	-0.17373	0.78126	2.0652e-01

<u>Note</u>: this model is the same as lmm(lifeExp ~ income*edu + illiteracy + murder, data = df1) but uses a different parametrisation.

Similarly as before, we can use the plot function to display the partial residuals with respect to both income and edu:

```
plot(e.lmI, type = "partial", variable = c("(Intercept)","income","edu")) ## H
```

which can be compared to a plot assuming no interaction:

```
plot(e.lm, type = "partial", variable = c("(Intercept)","income","edu")) ## I
```


The partial residuals can also be output via the **residuals** method:

```
residuals(e.lmI, type = "partial", variable = c("(Intercept)","income","edu"))[1:5]
```

[1] 72.999 72.274 72.498 73.237 74.446

and one can check that they are evaluated by substracting the effect of the other variables (here illiteracy and murder), e.g.:

```
c(69.05 - 0.12870 * 2.1 - (-0.27940) * 15.1,
69.31 - 0.12870 * 1.5 - (-0.27940) * 11.3)
```

[1] 72.999 72.274

Here we computed partial residuals representing the life expectancy in the states had there be no murder nor illiteracy. We could also consider the case of average murder rate and illiteracy:

[1] 71.088 70.363 70.587 71.327 72.535

which we can also retrieve by hand:

```
c(69.05 - 0.12870 * (2.1-1.170) - (-0.27940) * (15.1-7.378),
69.31 - 0.12870 * (1.5-1.170) - (-0.27940) * (11.3-7.378))
```

[1] 71.088 70.363

2 Linear mixed model

To illustrate the use of partial residuals we will use data from a two-arm randomized trial comparing the quality of the vision over time of patients under placebo vs. active drug. We first re-shape the data:

and notice that the outcome (visual) and the covariate lesion can be missing:

```
summarizeNA(armd.long)
```

frequency	missing.pattern	n.missing	subject	lesion	line0	<pre>treat.f</pre>	miss.pat	week.num	visual	id	week
1106	00000000	0	0	0	0	0	0	0	0	0	0
89	000000100	1	0	0	0	0	0	0	1	0	0
1	01000000	1	0	1	0	0	0	0	0	0	0
4	010000100	2	0	1	0	0	0	0	1	0	0

This is why a warning is displayed when fitting the linear mixed model:

e.lmm <- lmm(visual \sim week*treat.f + lesion, data = armd.long, repetition = \sim week|subject)

Warning message:

```
In .lmmNormalizeData(as.data.frame(data)[unique(stats::na.omit(var.all))], :
   Can only handle missing values in the outcome variable visual.
   5 observations with missing values in "lesion" have been removed.
   1 cluster has been removed.
```

To visualize the model fit, we can display the fitted mean for each level of baseline lesion:

plot(e.lmm, facet = ~lesion, labeller = label_both, facet_ncol = 4)

We can retrive the fitted values from the estimated coefficients:

<pre>round(coef(e.lmm),2)</pre>			
(Intercept)	week4	week12	week24
61.33	-1.28	-2.35	-6.03
week52	treat.fActive	lesion	week4:treat.fActive
-11.31	-0.84	-3.19	-2.19
week12:treat.fActive	<pre>week24:treat.fActive</pre>	<pre>week52:treat.fActive</pre>	
-3.47	-3.03	-4.84	

- in the Placebo group with lesion=1, the estimated average baseline mean is (Intercept)+1*lesion,
 i.e. 61.33-3.19=58.14. When lesion=4, the estimated average baseline mean is (Intercept)+4*lesion,
 i.e. 61.33-4*3.19=48.57.
- the estimated average baseline mean in the Active group is shifted by treat.fActive i.e. -0.84 from the Placebo group.
- in the Placebo group with lesion=1, the estimated average week 52 mean is (Intercept)+week52+1*lesion, i.e. 61.33-11.31-3.19=46.83.
- the estimated average week 52 mean in the Active group is shifted by treat.fActive+week52:treat.fActive i.e. -0.84-4.84=-5.68 from the Placebo group.

Unfortunately, the display of the fitted value becomes overwhelming with considering more covariates or more covariate levels. Instead can visualize the partial residuals, e.g. here the outcome and fitted values had there be no lesion:

• on the same panel with a difference color for each treatment group:

• on a separate panel for each timepoint:

```
plot(e.lmm, type = "partial", variable = c("(Intercept)","week","treat.f"),
    facet =~week, facet_nrow = 1, time.var = "treat.f", color = FALSE,
    at = data.frame(lesion = 2))
```


The calculation of the partial residuals is similar to the univariate regression:

	subject	lesion	line0	<pre>treat.f</pre>	<pre>miss.pat</pre>	week.num	visual	id	week	pres
1.0	1	3	12	Active	XX	0	59	1	0	62.187
2.0	2	1	13	Active		0	65	2	0	61.813
3.0	3	4	8	Placebo	X	0	40	3	0	46.373
4.0	4	2	13	Placebo		0	67	4	0	67.000
5.0	5	1	14	Active	XXXX	0	70	5	0	66.813
6.0	6	3	12	Active		0	59	6	0	62.187

here substract the estimated lesion effect from the observed outcome:

c(59 - (-3.19) * (3-2),	
65 - (-3.19) * (1-2))	

[1] 62.19 61.81

In particular, the partial residuals for patient with lesion equal to two is the observed outcome.

3 R session

Details of the R session used to generate this document:

```
sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
        /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
BLAS:
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
 [1] LC_CTYPE=en_US.UTF-8
                                LC_NUMERIC=C
                                                            LC_TIME=en_US.UTF-8
 [4] LC_COLLATE=en_US.UTF-8
                                LC_MONETARY=en_US.UTF-8
                                                            LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8
                                LC_NAME=C
                                                            LC ADDRESS=C
[10] LC_TELEPHONE=C
                                LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/Copenhagen
tzcode source: system (glibc)
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
                                                                 base
other attached packages:
[1] lava_1.8.0
                  nlme_3.1-163 LMMstar_1.1.0 lme4_1.1-35.2 Matrix_1.6-5 ggpubr_0.6.0
[7] ggplot2_3.5.1
loaded via a namespace (and not attached):
 [1] utf8_1.2.4
                         future_1.33.2
                                              generics_0.1.3
                                                                   tidyr_1.3.1
 [5] rstatix_0.7.2
                         lattice_0.22-5
                                              listenv_0.9.1
                                                                   digest_0.6.35
 [9] magrittr_2.0.3
                                                                   survival_3.5-8
                         grid_4.3.3
                                              backports_1.4.1
[13] gridExtra_2.3
                         purrr_1.0.2
                                              fansi_1.0.6
                                                                   scales_1.3.0
[17] numDeriv_2016.8-1.1 codetools_0.2-19
                                              abind_1.4-5
                                                                   cli_3.6.2
[21] rlang_1.1.3
                         parallelly_1.37.1
                                              future.apply_1.11.2 cowplot_1.1.3
[25] munsell_0.5.1
                         splines_4.3.3
                                              withr_3.0.0
                                                                   tools_4.3.3
[29] parallel_4.3.3
                         nloptr_2.0.3
                                              ggsignif_0.6.4
                                                                  minqa_1.2.6
[33] dplyr_1.1.4
                         colorspace_2.1-0
                                              boot_1.3-30
                                                                   globals_0.16.3
[37] broom_1.0.5
                                              R6_2.5.1
                         vctrs_0.6.5
                                                                   lifecycle_1.0.4
[41] car_3.1-2
                         MASS_7.3-60.0.1
                                              pkgconfig_2.0.3
                                                                  pillar_1.9.0
[45] gtable_0.3.5
                         glue_1.7.0
                                              Rcpp_1.0.12
                                                                   tibble_3.2.1
                         farver_2.1.1
[49] tidyselect_1.2.1
                                              labeling_0.4.3
                                                                   carData_3.0-5
[53] compiler_4.3.3
```