Package ‘corrgram’

February 19, 2015

Type Package
Title Plot a Correlogram
Version 1.7
Date 2015-02-12
Author Kevin Wright
Maintainer Kevin Wright <kw.stat@gmail.com>
Description Calculates correlation of variables and displays the results graphically. Included panel functions can display points, shading, ellipses, and correlation values with confidence intervals.
Imports graphics, seriation, stats
Suggests knitr, Matrix
License GPL-2
LazyData yes
URL https://github.com/kwstat/corrgram
BugReports https://github.com/kwstat/corrgram/issues/
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-13 07:43:37

R topics documented:

auto .. 2
baseball ... 3
corrgram ... 4
vote ... 6

Index 8
Statistics of 1979 automobile models

Description
The data give the following statistics for 74 automobiles in the 1979 model year as sold in the US.

Usage
data(auto)

Format
A data frame with 74 observations on the following 14 variables.

- **Model**: Make and model of car.
- **Origin**: a factor with levels AEJ
- **Price**: Price in dollars.
- **MPG**: Miles per gallon.
- **Rep78**: Repair record for 1978 on 1 (worst) to 5 (best) scale.
- **Rep77**: Repair record for 1978 on 1 to 5 scale.
- **Hroom**: Headroom in inches.
- **Rseat**: Rear seat clearance in inches.
- **Trunk**: Trunk volume in cubic feet.
- **Weight**: Weight in pounds.
- **Length**: Length in inches.
- **Turn**: Turning diameter in feet.
- **Displa**: Engine displacement in cubic inches.
- **Gratio**: Gear ratio for high gear.

Source
This data frame was created from http://euclid.psych.yorku.ca/ftp/sas/sssg/data/auto.sas.

References

The data is from various sources, primarily *Consumer Reports*, April, 1979, and the United States government EPA statistics on fuel consumption.
Examples

corrgram(auto[,-c(1:2)])

Baseball Hitter’s Data

Description

The data are for 322 Major League Baseball regular and substitute hitters in 1986.

Usage

data(baseball)

Format

A data frame with 322 observations on the following 22 variables.

- **Name** The hitter/player’s name
- **League** Player’s league (American/National) at the beginning of 1987
- **Team** Player’s team at the beginning of 1987
- **Position** Player’s position in 1986: 1B (first base), 2B (second base), 3B (third base), C (catcher), OF (outfield), DH (designated hitter), SS (short stop), UT (utility).
- **Atbat** Number of times at bat in 1986
- **Hits** Number of hits in 1986
- **Homer** Number of home runs in 1986
- **Runs** Number of runs in 1986
- **RBI** Runs batted in during 1986
- **Walks** Number of walks in 1986
- **Years** Number of years in the major leagues
- **Atbatc** Number of times at bat in his career
- **Hitsc** Number of hits in career
- **HomerC** Number of home runs in career
- **Runsc** Number of runs in career
- **RBIC** Number of Runs Batted In in career
- **Walksc** Number of walks in career
- **Putouts** Number of putouts in 1986
- **Assists** Number of assists in 1986
- **Errors** Number of errors in 1986
- **Salary** Annual salary (in thousands) on opening day 1987
- **logSal** Log of salary
Details

The levels of the player's positions have been collapsed to fewer levels for a simpler analysis. See the original data for the full list of positions.

Source

The version of the data used to create this data was found at http://euclid.psych.yorku.ca/ftp/sas/sss/data/baseball.sas.

References

The salary data were taken from Sports Illustrated, April 20, 1987. The salary of any player not included in that article is listed as an NA. The 1986 and career statistics were taken from The 1987 Baseball Encyclopedia Update published by Collier Books, Macmillan Publishing Company, New York.

Examples

```r
vars2 <- c("Assists","Atbat","Errors","Hits","Homers","logSal","Putouts","RBI","Runs","Walks","Years")
corrgram(baseball[,vars2],
        lower.panel=panel.shade, upper.panel=panel.pie)
```

Description

The corrgram function produces a graphical display of a correlation matrix, called a correlogram. The cells of the matrix can be shaded or colored to show the correlation value.

Usage

```r
corrgram(x, type=NULL, order = FALSE, labels, panel=panel.shade,
        lower.panel=panel, upper.panel=panel, diag.panel=NULL,
        text.panel=textPanel, label.pos=c(0.5, 0.5), label.srt=0, cex.labels=NULL,
        font.labels=1, rowatbbox=TRUE, dir="", gap=0, abs=FALSE,
        col.regions=colorRampPalette(c("red","salmon","white","royalblue","navy")),
        cor.method="pearson",
        ...)
```
Arguments

- **x**: A *tall* data frame with one observation per row, or a correlation matrix.
- **type**: Use 'data' or 'cor'/'corr' to explicitly specify that 'x' is data or a correlation matrix. Rarely needed.
- **order**: Should variables be re-ordered? Use TRUE/"PCA" for PCA-based re-ordering. Options from the 'seriate' package include "OLO" for optimal leaf ordering, "GW", and "HC".
- **labels**: Labels to use (instead of data frame variable names) for diagonal panels
- **panel**: Function used to plot the contents of each panel
- **lower.panel**, **upper.panel**: Separate panel functions used below/above the diagonal
- **diag.panel**, **text.panel**: Panel function used on the diagonal
- **label.pos**: Horizontal and vertical placement of label in diagonal panels
- **label.srt**: String rotation for diagonal labels
- **cex.labels**, **font.labels**: Graphics parameter for diagonal panels
- **row1attop**: TRUE for diagonal like "\", FALSE for diagonal like "/".
- **dir**: Use dir="left" instead of 'row1attop'
- **gap**: Distance between panels
- **abs**: Use absolute value of correlations for clustering? Default FALSE
- **col.regions**: A *function* returning a vector of colors
- **cor.method**: Correlation method to use in panel functions. Default is 'pearson'. Alternatives: 'spearman', 'kendall'

Details

Note: Use the 'col.regions' argument to specify colors. Earlier versions used a function 'col.corrgram' to specify colors.

Non-numeric columns in the data will be ignored.

The off-diagonal panels are specified with `panel.pie`, `panel.shade`, `panel.bar`, `panel.ellipse`, `panel.conf`.

Diagonal panels are specified with `panel.txt`, `panel.minmax`, `panel.density`.

Use a NULL panel to omit drawing the panel.

This function is basically a modification of the `pairs.default` function with the use of customized panel functions.

The `panel.conf` function uses `cor.test` and calculates pearson correlations. Confidence intervals are not available in `cor.test` for other methods (kendall, spearman).

You can create your own panel functions by starting with one of the included panel functions and making suitable modifications. Note that because of the way the panel functions are called inside the main function, your custom panel function must include the arguments shown in the `panel.pie` function, even if the custom panel function does not use those arguments!

TODO: legend, grid graphics version.
Value

No value is returned. A plot is created.

Author(s)

Kevin Wright

References

A SAS macro by Michael Friendly is at http://datavis.ca/sasmacro/corrgram.html.

Examples

To reproduce the figures in Michael Friendly's paper, see the file
'friendly.r' in this package's test directory.

Demonstrate density panel, correlation confidence panel
corrgram(iris, lower.panel=panel.pts, upper.panel=panel.conf,
 diag.panel=panel.density)

Demonstrate panel.shade, panel.pie, principal component ordering
vars2 <- c("Assists","Atbat","Errors","Hits","Homer","logSal",
 "Putouts","RBI","Runs","Walks","Years")
corrgram(baseball[vars2], order=TRUE, main="Baseball data PC2/PC1 order",
 lower.panel=panel.shade, upper.panel=panel.pie)

CAUTION: The latticeExtra package also has a 'panel.ellipse' function
that clashes with the same-named function in corrgram. In order to use
the right one, the example below uses 'lower.panel=corrgram::panel.ellipse'.
If you do not have latticeExtra loaded, you can just use
'lower.panel=panel.ellipse'.

Demonstrate panel.bar, panel.ellipse, panel.minmax, col.regions
corrgram(auto, order=TRUE, main="Auto data (PC order)",
 lower.panel=corrgram::panel.ellipse, upper.panel=panel.bar, diag.panel=panel.minmax,
 col.regions=colorRampPalette(c("darkgoldenrod4", "burlywood1", "darkkhaki", "darkgreen")))

'vote' is a correlation matrix, not a data frame
corrgram(vote, order=TRUE)

vote

Voting correlations

Description

Voting correlations
vote

Usage
data(vote)

Format
A 12x12 matrix.

Details
No details.

Source

References

Examples

corrgram(vote, order=TRUE)
Index

*Topic hplot
 corrgram, 4
auto, 2
baseball, 3
corrgram, 4
 panel.bar (corrgram), 4
 panel.conf (corrgram), 4
 panel.density (corrgram), 4
 panel.ellipse (corrgram), 4
 panel.minmax (corrgram), 4
 panel.pie (corrgram), 4
 panel.pts (corrgram), 4
 panel.shade (corrgram), 4
 panel.shade (corrgram), 4
vote, 6