Package ‘expp’

February 19, 2015

Type Package
Title Spatial analysis of extra-pair paternity
Version 1.1
Date 2014-Aug-01
Author Mihai Valcu, Lotte Schlicht
Maintainer Mihai Valcu <valcu@orn.mpg.de>
Depends R (>= 3.0.0), methods, sp, spdep, rgeos, deldir
Suggests knitr, spatstat, lme4
VignetteBuilder knitr
Description Tools and data to accompany Schlicht, Valcu and Kempenaers "Spatial patterns of extra-pair paternity: beyond paternity gains and losses"
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-05 09:12:20

R topics documented:

expp-package ... 2
bluetit_boundary ... 3
bluetit_breeding .. 3
bluetit_epp .. 4
DirichletPolygons ... 5
epp .. 6
eppMatrix .. 9
eppSimDat ... 10
neighborsDataFrame 11
SpatialPointsBreeding 12

Index 14
expp-package

Tools and data to accompany Schlicht, Valcu and Kempenaers "Spatial patterns of extra-pair paternity: beyond paternity gains and losses"

Description

The expp package provides classes and functions for the investigation of the probability of having extra-pair young within local networks of breeding pairs including both realized and potential extra-pairings.

Details

Package: expp
Type: Package
Version: 1.0
Date: 2014-Aug-04
License: GPL-3

See help(epp) and vignette('expp')

Functions

epp
Final data-transformation to male-female combinations and their extra-pair levels

eppSimDat
"Toy"-dataset creation to investigate potential Type I error rate inflations for models where

DirichletPolygons
Territory calculation via Dirichlet tessellation

eppMatrix
data.frame to eppMatrix object

neighborsDataFrame
nb object to data.frame

SpatialPointsBreeding
data.frame to SpatialPointsBreeding object

Author(s)

Mihai Valcu and Lotte Schlicht
Maintainer: Mihai Valcu <valcu@orn.mpg.de>

References

Schlicht, Valcu and Kempenaers "Spatial patterns of extra-pair paternity: beyond paternity gains and losses" (in prep.)
bluetit_boundary

Study area boundary.

Description

SpatialPolygonsDataFrame

Usage

data(bluetit_boundary)

Format

A SpatialPolygonsDataFrame with 12 SpatialPolygons.

year_ numeric. The year of the observation.

Examples

data(bluetit_boundary)
summary(bluetit_boundary)

bluetit_breeding

Blue Tit breeding data.

Description

Breeding data recorded for two Blue Tit populations in Kolbeterberg, Vienna, Austria (1998 through 2004) and Westerholz, Bavaria, Germany (2007 through 2011). The data set contains breeding attempts locations, the respective social pair, and several individual and nest parameters.

Usage

data(bluetit_breeding)

Format

A data frame with 1025 observations on the following 10 variables.

year_ numeric. The year of the observation.
id numeric. The identity of the nest box in which the breeding attempt took place.
x numeric. The east-west location of the nest box.
y numeric. The north-south location of the nest box.
female character. The identity of the female.
male character. The identity of the male.

layingDate numeric. The day of the year when the first egg was produced.

male_age character. The age class of the male ('juv' = 1st year breeder; 'adult' = older)

male_tarsus numeric. tarsus length (mm))

study_area character. The study area name.

Examples

data(bluetit_breeding)
head(bluetit_breeding)

bluetit_epp Blue tit extra-pair paternity data.

Description
data.frame Extra-pair paternity data recorded for two Blue Tit populations in Kolbeterberg, Vienna, Austria (1998 through 2004) and Westerholz, Bavaria, Germany (2007 through 2011).

Usage
data(bluetit_epp)

Format
A data frame with 425 observations on the following 3 variables.

year numeric. The year of the observation.

female character. The female involved in the respective EPP event.

male character. The male involved in the respective EPP event.

Examples

data(bluetit_epp)
head(bluetit_epp)
DirichletPolygons

Description

Computes the Dirichlet polygons using a `SpatialPointsBreeding` object and optionally a boundary `SpatialPolygons` or a vector containing id-s located at the boundary.

Methods

- `signature(x = "SpatialPointsBreeding", boundary = "SpatialPolygons")` a boundary polygon
- `signature(x = "SpatialPointsBreeding", boundary = "missing")` boundary is inferred using `rip ras` in spatstat
- `signature(x = "SpatialPointsBreeding", boundary = "numeric")` a vector of integers containing the id-s located at the boundary. The boundary is defined using a 'Follow-The-Dots' strategy. The width argument passed to `gBuffer` defines the distance between boundary boxes and the boundary polygon; it is set by default to half of the average distance between boundary boxes.

Examples

```r
# Create a data frame
x = c(4, 17, 16, 41, 41, 43, 86, 62, 71, 92, 95, 53, 34, 27, 53),
y = c(3, 18, 36, 6, 18, 50, 3, 21, 40, 43, 57, 62, 62, 45, 37),
id = 1:15, male = paste0('m', '1:15), female = paste0('f', '1:15),
stringsAsFactors=FALSE)

b = SpatialPointsBreeding(d, id = 'id', breeding = ~ male + female)

# boundary is inferred based on the Ripley-Rasson estimate of the spatial domain
dp1 = DirichletPolygons(b)
plot(dp1)

# boundary is given
brdy2 = readWKT("POLYGON((28 71,67 68,70 49,84 49,90 74,111 65,107  36,78 28,98 15,98 -4,74 -7,-2 -8,0 31,28 71))")
dp2 = DirichletPolygons(b, boundary = brdy2)
plot(dp2)

# boundary is inferred based on the boundary id-s.
# define boundary id-s using a 'Follow-The-Dots' strategy.
brdy3 = as.integer(c(1, 2, 4, 7, 9, 10, 11, 12, 13, 14, 3))
dp3 = DirichletPolygons(b, boundary = brdy3)
plot(dp3)

# setting width manually
dp4 = DirichletPolygons(b, boundary = brdy3, width = 2)
```
epp

Description

epp combines a SpatialPointsBreeding, a SpatialPolygons* as obtained from DirichletPolygons and a eppMatrix to create the spatial context for every potential and realized extra-pair male-female combination.

Usage

epp(breedingDat, polygonsDat, eppDat, maxlag = 3)
as.data.frame(x)
S4 method for signature 'epp,missing'
plot(x, zoom, maxlag = 3, zoom.col = 'grey', ...)
S4 method for signature 'epp'
barplot(height, relativeValues = FALSE, ...)

Arguments

breedingDat A SpatialPointsBreeding object, created by the SpatialPointsBreeding function
polygonsDat A SpatialPolygons* object as obtained by calling DirichletPolygons function
eppDat An object of class eppMatrix
maxlag A numeric value indicating the maximum breeding distance for which male-female combinations should be calculated. When plotting it defines the outermost row of neighbors plotted around a focal id set by zoom
x, height an epp object
zoom a SpatialPointsBreeding id which is used for subsetting prior to plot
zoom.col background color of the id (and hence the polygon) set by zoom
relativeValues Defines the unit of the y-axis. TRUE plots proportions, FALSE absolute numbers.
... further arguments to pass to plot.SpatialPointsBreeding and plot.SpatialPolygons*
Details

'plot' plots the territories, the identity of males ('m...') and females ('f...') at breeding sites (numbers), and the extra-pair events (dashed red arrows). Individuals that had extra-pair offspring are marked red. The parameter 'zoom' can be used to make a detailed visual check of a specific location (nestbox) and its surroundings.

'barplot' displays the distribution of extra-pair events over different breeding distances between the partners (in the number of territories) as vertical bars. Note that the distribution of all potential extra-pair partners is displayed as a dashed line only if the argument 'relativeValues' is TRUE.

Value

Returns an S4-class epp-object with 5 slots:

- breedingDat: Input breeding data-set.
- polygonsDat: Either polygons are estimated automatically using Thiessen Polygons, or input breeding polygons.
- eppDat: Input data.frame with all male-female combinations that had EPP together.
- maxlag: Input rank. Defaults to 3.
- EPP: data.frame containing columns for the focal male and female ("male", "female"), their breeding distance ("rank"), and the parameters associated either with the male (column with prefix ".MALE") or the female (column with prefix ".FEMALE") territory.

See Also

vignette(expp)

Examples

```r
### Simple example with three breeding pairs

# create raw data
set.seed(1310)
b = data.frame(id = as.integer(10:12), x = rnorm(3), y = rnorm(3),
        male = paste0("m",1:3), female = paste0("f",1:3), xx = rnorm(3), stringsAsFactors=FALSE )
eppPairs = data.frame(male = c("m1", "m2", "m3"), female=c("f1", "f2", "f3") )

# prepare data
breedingDat = SpatialPointsBreeding(b, id = 'id', coords = ~ x + y, breeding = ~ male + female)
polygonsDat = DirichletPolygons(breedingDat)
eppDat = eppMatrix(eppPairs, pairs = ~ male + female)
plot(breedingDat, eppDat)

# convert to epp class
x = epp(breedingDat, polygonsDat, eppDat, maxlag = 3)
as.data.frame(x)
```
plot
plot(x)

Example on a random data set with \(n \) breeding pairs and \(n/2 \) extra-pair paternity rate

create raw data
set.seed(123)
\(n = 20 \)
b = data.frame(id = 1:n, \(x = \text{rnorm}(n) \), \(y = \text{rnorm}(n) \),
male = paste0("m", 1:n), female = paste0("f", 1:n), xx = \text{rnorm}(n), stringsAsFactors = FALSE)
eppPairs = data.frame(male = \text{sample}(b$male, round(n/2)), female = \text{sample}(b$female, round(n/2)))

prepare data
breedingDat = SpatialPointsBreeding(b, id = 'id', coords = ~ x + y, breeding = ~ male + female)
polygonsDat = DirichletPolygons(breedingDat)
eppDat = eppMatrix(eppPairs, pairs = ~ male + female)

convert to epp class
x = epp(breedingDat, polygonsDat, eppDat, maxlag = 10)

plot
plot(x)
barplot(x)
barplot(x, relativeValues = TRUE)

Not run:
Real data example
Raw datasets
data(bluetit_breeding)
data(bluetit_epp)
select one year
year = 2010
b = bluetit_breeding[bluetit_breeding$year_ == year,]
eppPairs = bluetit_epp[bluetit_epp$year_ == year,]

prepare data
breedingDat = SpatialPointsBreeding(b, id = 'id', coords = ~ x + y, breeding = ~ male + female)
polygonsDat = DirichletPolygons(breedingDat)
eppDat = eppMatrix(eppPairs, pairs = ~ male + female)

convert to epp class
x = epp(breedingDat, polygonsDat, eppDat, maxlag = 20)

plot
plot(x)
barplot(x)
plot zoom
plot(x, zoom = 120, maxlag = 2)

run model on epp probability
data = as.data.frame(x)
nrow(data[data$epp == 1, c('male', 'female')])

\begin{verbatim}
 nrow(unique(eppPairs))
 if(require(lme4))
 (summary(glmer(epp ~ rank + male_age_MALE + (1|male) + (1|female),
 data = dat, family = binomial)))

 # End(Not run)

eppMatrix \hspace{1cm} \textit{Convert a data.frame to an eppMatrix object.}

Description

Converts a data.frame to a eppMatrix object using a \texttt{~male+female} formula.

Usage

eppMatrix(data, pairs = ~ male + female)

Arguments

data \hspace{1cm} a data.frame
pairs \hspace{1cm} a formula indicating the extra-pair male and the extra-pair female in that order.

Value

An object of class eppMatrix with two slots.

Slots

male: Object of class "character": extra-pair male ID
female: Object of class "character":extra-pair female ID

See Also

epp

Examples

eppPairs = data.frame(male = c("m1", "m2", "m1"), female=c("f3", "f1", "f2")
 e = eppMatrix(eppPairs, pairs = ~ male + female)
 class(e)
 showClass("eppMatrix")

data(bluetit_breeding)
data(bluetit_epp)
b = bluetit_breeding[bluetit_breeding\$year_ == 2010,]
\end{verbatim}
Description

A helper function to perform Type I error rate simulations.

Usage

```r
eppSimDat(N, meanClutch, eppRate, eppMax, eppMales, nLags)
```

Arguments

- `N`: Number of breeding pairs; default value is 10
- `meanClutch`: Mean clutch size (integer); clutch size it is assumed to be Poisson distributed; default is 10
- `eppRate`: Proportion of extra-pair young in population; default is 0.10
- `eppMax`: Maximum number of extra-pair young by male; default is 12
- `eppMales`: Proportion of extra-pair males in population; default is 0.35
- `nLags`: maxlag parameter to pass to DirichletPolygons

Details

All default values match the values found in one of our study populations ('Westerholz').

Value

An object of class `epp` The data frame of the EPP slot contains two variable (trait_MALE trait_FEMALE) simulated independent from the epp variable.

Examples

```r
d = eppSimDat()
plot(d)
```

```r
# Not run:
# Type I error rate simulation```
require(lme4)
pval_glmer = vector(mode = "numeric", length = 0)
pval_glm = vector(mode = "numeric", length = 0)

for(i in 1:500) {
  x = as.data.frame(eppSimDat(N = 120, meanClutch = 10, eppRate = 0.10, eppMax = 12, 
                      eppMales = 0.35, nLags = 3))

  fm1glmer = glmer(epp ~ rank + trait_MALE + trait_FEMALE + (1 | male) + (1 | female), 
                   data = x, family = binomial, nAGQ = 0)
  fm0glmer = update(fm1glmer, epp ~ 1 + (1 | male) + (1 | female))
  pval_glmer[i] = anova(fm0glmer, fm1glmer)$"Pr(>Chisq)"[2]

  fm1glm = glm(epp ~ rank + trait_MALE + trait_FEMALE, data = x, family = binomial)
  fm0glm = update(fm1glm, epp ~ 1)
  pval_glm[i] = anova(fm0glm, fm1glm, test = "Chisq")$"Pr(>Chi)"[2]

  print(i)
}

# Type I error rate of glmer models
table(pval_glmer<0.05)[2]/length(pval_glmer)

# TRUE
# 0.038

# Type I error rate of the equivalent glm models
table(pval_glm<0.05)[2]/length(pval_glm)

# TRUE
# 0.078

## End(Not run)

neighborsDataFrame

Convert a nb object to data.frame.

Description

Convert an object of class nb in package spdep or a list of nb objects to data.frame.

Usage

neighborsDataFrame(nb)
higherNeighborsDataFrame(nb, maxlag)
SpatialPointsBreeding

Arguments

nb an object of class nb
maxlag maximum lag, see nblag

Value
data.frame

SpatialPointsBreeding Converts a data.frame to an object of class SpatialPointsBreeding

Description

Converts a data.frame to a SpatialPointsBreeding object. The SpatialPointsBreeding class extends SpatialPointsDataFrame with three extra slots defining the id (i.e. nest or breeding box) and the pair identity (i.e. male and female), respectively.

Usage

SpatialPointsBreeding(data, proj4string, coords = ~x + y, breeding = ~male + female, id)

Arguments
data a data.frame containing the coordinates (e.g. "x", "y"), the location id, and the pair identity (e.g. "male", "female") together with any other optional variables (e.g. individuals or nest traits).
proj4string A CRS object containing a valid proj4 string. See CRS proj4string for details.
coords Formula specifying which columns in object are the spatial coordinates. Argument passed to coordinates
id Integer specifying the location id (e.g. nest box number, den ID).
breeding Formula defining the male and female ID in that order (in the form of e.g. ~male+female).
SpatialPointsBreeding

x  a SpatialPointsBreeding object
y  an eppMatrix object
pch see plot.default
axes see plot.default
add see plot.default
xlim see plot.default
ylim see plot.default
... further arguments to pass to plot(as(x, "Spatial")
cex see plot.default
col see plot.default
col.epp extra-pair partners color
lwd see plot.default
lty see plot.default
bg see plot.default

Value
Item of the class 'SpatialPointsBreeding' with 8 slots.

id Location ID (see input)
male (Male IDs.)
female Female IDs.
data A data.frame containing all the optional variables (except location and individual ID-s)
coords.nrs see SpatialPoints
coords coordinates
bbox see Spatial
proj4string see CRS

See Also

epp

Examples

d = data.frame(
  x = c(4, 17, 16, 41, 41, 43, 86, 62, 71, 92, 95, 53, 34, 27, 53),
  y = c(3, 18, 36, 6, 18, 50, 3, 21, 40, 43, 57, 62, 62, 45, 37),
  id = 1:15, male = paste0('m', 1:15), female = paste0('f', 1:15),
  stringsAsFactors = FALSE)

b = SpatialPointsBreeding(d, id = 'id', breeding = ~ male+female)

plot(b)
Index

*Topic datasets
  bluetit_boundary, 3
  bluetit_breeding, 3
  bluetit_epp, 4

*Topic package
  expp-package, 2

*Topic spatial
  DirichletPolygons, 5
epp, 6
eppMatrix, 9
neighborsDataFrame, 11
SpatialPointsBreeding, 12

as.data.frame (epp), 6
as.data.frame, epp-method (epp), 6

barplot (epp), 6
barplot, epp-method (epp), 6
bluetit_boundary, 3
bluetit_breeding, 3
bluetit_epp, 4

coordinates, 12
CRS, 12, 13

data.frame, 12
DirichletPolygons, 2, 5, 10
DirichletPolygons, SpatialPointsBreeding, integer-method (DirichletPolygons), 5
DirichletPolygons, SpatialPointsBreeding, missing-method (DirichletPolygons), 5
DirichletPolygons, SpatialPointsBreeding, SpatialPolygons-method (DirichletPolygons), 5
DirichletPolygons-methods (DirichletPolygons), 5

epp. 2, 6, 9, 10, 13
epp-class (epp), 6
eppMatrix, 2, 9
eppMatrix-class (eppMatrix), 9
eppSimDat, 2, 10

expp (expp-package), 2
expp-package, 2
gBuffer, 5

higherNeighborsDataFrame (neighborsDataFrame), 11

nblag, 12
neighborsDataFrame, 2, 11

plot, epp, missing-method (epp), 6
plot, SpatialPointsBreeding, eppMatrix-method (SpatialPointsBreeding), 12
plot, SpatialPointsBreeding, missing-method (SpatialPointsBreeding), 12
plot.epp (epp), 6
plot.SpatialPointsBreeding
  (SpatialPointsBreeding), 12
proj4string, 12

ripras, 5

Spatial, 13
SpatialPoints, 13
SpatialPointsBreeding, 2, 5, 12
SpatialPointsBreeding, integer-method (SpatialPointsBreeding), 12
SpatialPointsBreeding, missing-method (SpatialPointsBreeding), 12
SpatialPointsBreeding, SpatialPolygons-method (SpatialPointsBreeding), 12
SpatialPointsBreeding-class (SpatialPointsBreeding), 12
SpatialPointsDataFrame, 12
SpatialPolygons, 5

14