Package ‘lctools’

April 15, 2015

Version 0.2-2
Date 2015-04-15
Type Package
Title Local Correlation, Spatial Inequalities and Other Tools
Author Stamatis Kalogirou [aut, cre]
Maintainer Stamatis Kalogirou <skalo@hua.gr>
Depends R (>= 3.1.1), reshape (>= 0.8.5), weights (>= 0.80)
Description The main purpose of lctools is to assist researchers and educators to use user friendly tools for calculating key spatial statistics. These include: Local Pearson and Geographically Weighted Pearson Coefficients, Spatial Inequality Measures (Gini, Spatial Gini, LQ, Focal LQ), Spatial Autocorrelation (Global and Local Moran’s I) and other Spatial Analysis tools (Geographically Weighted Statistics, Inferential Statistics). This package also contains functions for statistical inference for each statistic calculated.
License GPL (>= 2)
VignetteBuilder knitr
URL http://gisc.gr
Suggests knitr, rgdal, sp
NeedsCompilation no
Repository CRAN
Date/Publication 2015-04-15 22:05:16

R topics documented:

 lctools-package .. 2
 acc ... 3
 FLQ ... 4
 GR.Municipalities ... 5
 gw_variable .. 7
 l.moransI .. 8
 lcorrel ... 10
 mc.lcorrel ... 11
Description

The main purpose of lctools is to assist spatial analysis researchers and educators to use simple, yet powerful, transparent and user friendly tools for calculating key spatial statistics. Lctools was originally created to help testing the existence of local multi-collinearity among the explanatory variables of local regression models. The main function (lcorrel) allows the computation of Local Pearson and Geographically Weighted Pearson Correlation Coefficients and their significance. However, it can also be used for examining the existence of local association between pairs of variables. As spatial analysis techniques develop, this package has other spatial statistical tools: spatial decomposition of the Gini, spatial/Focal LQ, global and local Moran’s I and tools that help to compute variables for Spatial Interaction Models. This package also contains functions for statistical inference for each statistic calculated. The package comes with two datasets one of which refers to the local authorities in Greece.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>lctools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.2-2</td>
</tr>
<tr>
<td>Date</td>
<td>2015-04-15</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>

Note

Acknowledgement: I am grateful to the University of Luxembourg and would like to personally thank Ass. Professor Geoffrey Caruso and Professor Christian Schulz for their support during my research visit at the Institute of Geography and Spatial Planning (Sept. 2013 - Feb. 2014) where this package was originally developed.

Author(s)

Stamatis Kalogirou
Maintainer: Stamatis Kalogirou <skalo@hua.gr>
References

acc

Spatial Interaction Models: Destination Accessibility

Description

Destination accessibility or centrality or competition is a variable that when added to a destination choice model forms the competing destinations choice model. A simple formula for this variable is:

\[A_j = \Sigma \left(W_m / D_{jm} \right) \mid m <> j \]

where \(A_j \) is the potential accessibility of destination \(j \) to all other potential destinations \(m \), \(W_m \) is a weight generally measured by population, and \(D_{jm} \) is the distance between \(j \) and \(m \).

Usage

`acc(x, y, pop, power=1)`

Arguments

- **X**: a numeric vector of x coordinates
- **Y**: a numeric vector of y coordinates
- **Pop**: a numeric vector of the weights, usually a population variable
- **Power**: a power of the distance; default is 1

Value

`AccMeasure` a single column numeric matrix of accessibility scores
Note

X,Y should be Cartesian coordinates for the distances to be measured in meters. In the sample dataset GreeceLas the projection used is the EPSG:2100 (GGRS87 / Greek Grid)

Author(s)

Stamatis Kalogirou <skalo@hua.gr>

References

Examples

data(GR.Municipalities)
attr<-GR.Municipalities@data
aMeasure<-acc(attr$X[1:100], attr$Y[1:100],attr$PopTot01[1:100],1)

<table>
<thead>
<tr>
<th>FLQ</th>
<th>Focal Location Quotient</th>
</tr>
</thead>
</table>

Description

This is the implementation of the Focal Location Quotients proposed by Cromley and Hanink (2012). The function calculates the standard LQ and the Focal LQ based on a kernel of nearest neighbours. Two weighted schemes are currently supported: binary and bi-square weights for a fixed number of nearest neighbours set by the user.

Usage

FLQ(Coords, Bandwidth, e, E, Denominator, WType = "Bi-square")

Arguments

<table>
<thead>
<tr>
<th>Coords</th>
<th>a numeric matrix or vector or dataframe of two columns giving the X,Y co-ordinates of the observations (data points or geometric / population weighted centroids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>a positive value that defines the number of nearest neighbours for the calculation of the weights</td>
</tr>
<tr>
<td>e</td>
<td>a numeric vector of a variable e_i as in the nominator of the Equation 1 (Cromley and Hanink, 2012) referring to the employment in a given sector for each location</td>
</tr>
<tr>
<td>E</td>
<td>a numeric vector of a variable E_i as in the nominator of the Equation 1 (Cromley and Hanink, 2012) referring to the total employment in a given sector for each location</td>
</tr>
</tbody>
</table>
Denominator
A ratio as in the denominator \((e/E)\) of the Equation 1 (Cromley and Hanink, 2012), where \(e\) and \(E\) are total employment in the given sector and overall employment in the reference economy, respectively.

wType
String giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square". Default is "Bi-square".

- **Binary**: weight = 1 for distances less than or equal to the distance of the furthest neighbour (\(H\)), 0 otherwise;
- **Bi-square**: weight = \((1-(ndist/H)^2)^2\) for distances less than or equal to \(H\), 0 otherwise.

Value

FLQ returns a list of 2 vectors

- **LQ**: A numeric vector with the Location Quotient values
- **FLQ**: A numeric vector with the Focal Location Quotient values

Author(s)

Stamatis Kalogirou <skalo@hua.gr>

References

Examples

```r
data(VotesGR)
resFLQ <- FLQ(cbind(VotesGR$X, VotesGR$Y), 4, VotesGR$NDJune12, VotesGR$AllJune12, 0.2966)
boxplot(res)
```

GR.Municipalities
Municipalities in Greece in 2011

Description

Municipality boundaries and socioeconomic variables aggregated to the new local authority geography (Programme Kalikratis).

Usage

```r
data(GR.Municipalities)
```
Format

A data frame with 325 observations on the following 5 variables.

OBJECTID a numeric vector of area IDs
X a numeric vector of x coordinates
Y a numeric vector of y coordinates
Name a character vector of municipality names (in greeklish)
CodeELSTAT a character vector of municipality codes to link with data from the Hellenic Statistical Authority (EL.STAT.)

PopM01 a numeric vector of the total population for males in 2001 (Census)
PopF01 a numeric vector of the total population for females in 2001 (Census)
PopTot01 a numeric vector of the total population in 2001 (Census)
UnemrM01 a numeric vector of unemployment rate for males in 2001 (Census)
UnemrF01 a numeric vector of unemployment rate for females in 2001 (Census)
UnemrT01 a numeric vector of total unemployment rate in 2001 (Census)
PrSect01 a numeric vector of the proportion of economically active working in the primary financial sector (mainly agriculture; fishery; and forestry in 2001 (Census))
Foreig01 a numeric vector of proportion of people who do not have the Greek citizenship in 2001 (Census)
Income01 a numeric vector of mean recorded household income (in Euros) earned in 2001 and declared in 2002 tax forms

Details

The X,Y coordinates refer to the geometric centroids of the new 325 Municipalities in Greece (Programme Kallikratis) in 2011. The boundary data of the original shapefile have been simplified to reduce its detail and size. The polygon referring to Mount Athos has been removed as there is no data available for this politically autonomous area of Greece.

Source

The shapefile of the corresponding polygons is available from the Hellenic Statistical Authority (EL.STAT.) at http://www.statistics.gr/portal/page/portal/ESYE/PAGE-maps. The population, employment, citizenship and employment sector data is available from the Hellenic Statistical Authority (EL.STAT.) at http://www.statistics.gr but were aggregated to the new municipalities by the author. The income data are available from the General Secretariat of Information Systems in Greece at http://www.gsis.gr/ at the postcode level of geography and were aggregated to the new municipalities by the author.

References

Examples

```r
data(GR.Municipalities)
boxplot(GR.Municipalities$Income)
hist(GR.Municipalities$PrSect)
```

gw_variable
Spatial Interaction Models: gw / regional variable

Description

Regional variables are meant to capture the possible pull effects on internal out-migration caused by conditions elsewhere in the country (Fotheringham et al., 2002; 2004). For example (see code below), the regional variable of the total population is calculated as an index that compares the total population in a zone with the total population of the surrounding zones weighted by a second power of distance. It is used to capture a pull effect produced when an origin is surrounded by very populous zones that draw migrants from the origin (Kalogirou, 2013). Nearby locations are weighted more heavily in the calculation than more distant ones, adopting the idea of the Tobler’s first law of Geography. Thus, this variable could be referred to as gw (geographically weighted) variable.

Usage

```r
gw_variable(coords, inputvariable)
```

Arguments

- `coords` a numeric matrix or vector or dataframe of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)
- `inputvariable` a numeric vector of a variable

Value

- `Regional` a single column numeric matrix of the regional variable

Note

This code has been tested with Cartesian coordinates for the distances to be measured in meters. In the sample dataset Greece.LAs the projection used is the EPSG:2100 (GGRS87 / Greek Grid)
Author(s)
Stamatis Kalogirou <skalo@hua.gr>

References

Examples

data(GR.Municipalities)
GrCoords<-cbind(GR.Municipalities@data$X[1:100], GR.Municipalities@data$Y[1:100])
Regional.Population <- gw_variable(GrCoords,GR.Municipalities@data$PopTot01[1:100])

Description
The local Moran’s I proposed by Anselin (1995). The formula to calculate the local I_i which is now used in most textbooks and software is:

\[I_i = \frac{(x_i - \text{mean}(x))}{m_2} \times (\sum w_{ij} \times z_j) \]

where n is number of observations, w_{ij} are the weights, z_j=x_j - mean(x), x being the value of the variable at location i and mean(x) being the mean value of the variable in question, and

\[m_2 = \frac{\sum (x_i - \text{mean}(x))^2}{n} \]

Usage
1.moransI(Coords, Bandwidth, x, WType='Binary')
Arguments

- **Coords**: a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)
- **Bandwidth**: a positive integer that defines the number of nearest neighbours for the calculation of the weights
- **x**: a numeric vector of a variable
- **wType**: string giving the weighting scheme used to compute the weights matrix. Options are: "Binary" and "Bi-square". Default is "Binary".
 - Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
 - Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise.

Details

The interpretation of the local I_i is similar to that of the global Moran’s I.

Value

Returns the calculated local Moran’s I and a list of statistics for the latter’s inference: the expected E_i, the variance V_i, the X_i scores and the p-values for the randomization null hypotheses. It also returns the standardized value and the standardized lagged value of the variable to allow creating the Moran’s I scatter plot and the classified values for creating the cluster map similar to those available in GeoDa (Anselin et al., 2006).

- **ID**: Numeric index from 1 to n
- **I_i**: Classic lobal Moran’s I_i statistic
- **E_i**: The expected local Moran’s I_i
- **V_i**: The variance of I_i
- **Z_i**: The z score calculated for the randomization null hypotheses test
- **p.value**: The p-value (two-tailed) calculated for the randomization null hypotheses test
- **Xi**: The standardised value of the variable x
- **wXj**: The standardised value of the lagged x (weighted some of nearest neighbours)
- **Cluster**: The class each observation belongs based on the sign of Xi and wXj as well as the non-significant local Moran’s I values

Note

Please note that the weights are row standardised.

Author(s)

Stamatis Kalogirou <skalo@hua.gr>
References

Examples

data(GR.Municipalities)
l.moran<-l.moransI(cbind(GR.Municipalities$X, GR.Municipalities$Y),6,GR.Municipalities$Income01)
boxplot(l.moran$II)

lcorrel

Local Pearson and GW Pearson Correlation

Description

This function computes Local Pearson and Geographically Weighted Pearson Correlation Coefficients and tests for their statistical significance. Because the local significant tests are not independent, under the multiple hypotheses testing theory, a Bonferroni correction of the local coefficients takes place. The function results in tables with results for all possible pairs of the input variables.

Usage

lcorrel(DFrame, bw, Coords)

Arguments

DFrame A numeric Data Frame of at least two variables
bw A positive value between 0 and 1 to define the proportion of the total observations for the local sample for which each time the local coefficients are calculated for. This can be also the result of bandwidth selection algorithms of local regression techniques such as the Geographically Weighted Regression (GWR)
Coords a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric centroids)

Details

The degrees of freedom for the local t-student test is Round(bw * Number of Observations) - 2.

Value

lcorrel returns a list of 7 Data Frames

LPCC A numeric data frame with the Local Pearson Correlation Coefficients (LPCCs) for each possible pair of the input variables in DFrame
LPCC_t A numeric data frame with the t-student test statistics for all LPCCs
mc.lcorrel

LPCC_sig A numeric data frame with level of significance (p-value) for all LPCCs
LPCC_sig_BF A numeric data frame with level of significance (p-value) for all LPCCs adjusted using the conservative Bonferroni correction to account for false positives under the multiple hypothesis testing theory
GWPCC A numeric data frame with the Geographically Weighted Pearson Correlation Coefficients (GWPCCs) for each possible pair of the input variables in DFrame
GWPCC_sig A numeric data frame with level of significance (p-value) for all GWPCCs
GWPCC_sig_BF A numeric data frame with level of significance (p-value) for all GWPCCs adjusted using the conservative Bonferroni correction to account for false positives under the multiple hypothesis testing theory

Author(s)
Stamatis Kalogirou <skalo@hua.gr>

References

Examples
```
data(VotesGR)
local.cor<-lcorrel(VotesGR[5:6],0.1,cbind(VotesGR$X, VotesGR$Y))
plot(local.cor$LPCC[,2],local.cor$GWPCC[,2])
```

mc.lcorrel Monte Carlo simulation for the significance of the local correlation coefficients

Description
In order to assess if the spatial variation of the local correlation coefficients is statistically significant this function computes original and simulated statistics. LPCCs and GWPCCs can be calculated for a fixed bandwidth for the original locations of the observations as well as for a user-defined number of geographical reallocations of the observations. The latter is a simple Monte Carlo simulation proposed by Hope (1968) and adopted by Fotheringham et al. (2002) who assess if local parameter estimates in a Geographically Weighted Regression model exhibit spatial non-stationarity. First, the variances of LPCCs and GWPCCs, respectively, are computed for observed and simulated local correlation coefficients. Then, a pseudo p-value is calculated as \(p = \frac{1+C}{1+M} \) where \(C \) is the number of cases in which the variance of the simulated LPCCs and GWPCCs is equal to or higher than the variance of the observed LPCCs and GWPCCs, respectively of each test, and \(M \) is the number of permutations. If \(p \leq 0.05 \) it can be argued that the spatial variation of the local correlation coefficients is statistically significant. For this approach, a minimum of 19 permutations is required.
Usage

```
mc.lcorrel(Nsim=99, bwSIM, CorVars, Coord.X, Coord.Y)
```

Arguments

- **Nsim**: a positive integer that defines the number of the simulation’s iterations
- **bwSIM**: A positive value between 0 and 1 to define the proportion of the total observations for the local sample for which each time the local correlation coefficients will be calculated for.
- **CorVars**: A data frame of two variables for which observed and simulated local correlation coefficients (LPCCs and GWPCCs) will be calculated for.
- **Coord.X**: a numeric vector giving the X coordinates of the observations (data points or geometric centroids)
- **Coord.Y**: a numeric vector giving the Y coordinates of the observations (data points or geometric centroids)

Details

For a 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim>=19) is required. We recommend at least 99 and at best 999 iterations.

Value

Returns a list of summary statistics for the simulated values of LPCCs and GWPCCs, the observed LPCCs and GWPCCs and the pseudo p-value of significance for the spatial variation of the LPCCs and GWPCCs, respectively.

- **SIM**: a dataframe with simulated values: SIM.ID is the simulation ID, SIM.gwGini is the simulated Gini of neighbours, SIM.nsGini is the simulated Gini of non-neighbours, SIM.SG is the simulated share of the overall Gini that is associated with non-neighbour pairs of locations, SIM.Extr = 1 if the simulated SG is greater than or equal to the observed SG
- **LC.Obs**: list of 7 Data Frames as in lcorrel
- **pseudo.p.lpcc**: pseudo p-value for the significance of the spatial variation of the LPCCs: if this is lower than or equal to 0.05 it can be argued that the spatial variation of the LPCCs is statistically significant.
- **pseudo.p.gwpcc**: pseudo p-value for the significance of the spatial variation of the GWPCCs: if this is lower than or equal to 0.05 it can be argued that the spatial variation of the GWPCCs is statistically significant.

Author(s)

Stamatis Kalogirou <skalo@hua.gr>
mc.spGini

References

Examples

```r
X<-rep(1:14, 4)
Y<-rev(rep(1:4, each=4))
var1<-c(1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4)
var2<-rev(var1)
Nsim= 19
bwSIM<-0.5

SIM20<-mc.lcorrel(Nsim,bwSIM, cbind(var1,var2),X,Y)

SIM20$pseudo.p.lpcc
SIM20$pseudo.p.gwpc
```

Description

This function provides one approach for inference on the spatial Gini inequality measure. This is a small Monte Carlo simulation according to which: a) the data are spatially reallocated in a random way; b) the share of overall inequality that is associated with non-neighbour pairs of locations - SG (Eq. 5 in Rey & Smith, 2013) - is calculated for the original and simulated spatial data sets; c) a pseudo p-value is calculated as p=(1+C)/(1+M) where C is the number of the permutation data sets that generated SG values that were as extreme as the observed SG value for the original data (Eq. 6 in Rey & Smith, 2013). If p<=0.05 it can be argued that the component of the Gini for non-neighbour inequality is statistically significant. For this approach, a minimum of 19 simulations is required.

Usage

```r
mc.spGini(Nsim=99,Bandwidth,x,Coord.X,Coord.Y,WTtype='Binary')
```

Arguments

- `Nsim`: a positive integer that defines the number of the simulation’s iterations
- `Bandwidth`: a positive integer that defines the number of nearest neighbours for the calculation of the weights
- `x`: a numeric vector of a variable
mc.spGini

Coord.X a numeric vector giving the X coordinates of the observations (data points or geometric centroids)

Coord.Y a numeric vector giving the Y coordinates of the observations (data points or geometric centroids)

WType string giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square", "RSBi-square". Default is "Binary".

- Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
- Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise;
- RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix

Details

For 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim>=19) is required. We recommend at least 99 and at best 999 iterations

Value

Returns a list of the simulated values, the observed Gini and its spatial decomposition, the pseudo p-value of significance

SIM a dataframe with simulated values: SIM.ID is the simulation ID, SIM.gwGini is the simulated Gini of neighbours, SIM.nsGini is the simulated Gini of non-neighbours, SIM.SG is the simulated share of the overall Gini that is associated with non-neighbour pairs of locations, SIM.Extr = 1 if the simulated SG is greater than or equal to the observed SG

spGini.Observed Observed Gini (Gini) and its spatial components (gwGini, nsGini)

eo.p pseudo p-value: if this is lower than or equal to 0.05 it can be argued that the component of the Gini for non-neighbour inequality is statistically significant.

Note

Acknowledgement: I would like to thank LI Zai-jun, PhD student at Nanjing Normal University, China for encouraging me to develop this function and for testing this package.

Author(s)

Stamatis Kalogirou <skalo@hua.gr>

References

Moran's I classic statistic for assessing spatial autocorrelation

Description

Moran's I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was first proposed by Moran (1948, 1950). Later, Cliff and Ord (1973, 1981) present a comprehensive work on spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and software:

\[I = \left(\frac{n}{W} \right) \times \left(\sum \sum w_{ij} \times z_i \times z_j / \sum z_i^2 \right) \]

where \(n \) is number of observations, \(W \) is the sum of the weights \(w_{ij} \) for all pairs in the system, \(z_i \equiv x_i - \text{mean}(x) \) where \(x \) is the value of the variable at location \(i \) and \(\text{mean}(x) \) the mean value of the variable in question (Eq. 5.2 Kalogirou, 2003). The implementation here allows only nearest neighbour weighting schemes. Resampling and randomization null hypotheses have been tested following the discussion of Goodchild (1986, pp. 24-26).

Usage

\[\text{moransI} (\text{Coords}, \text{Bandwidth}, x, \text{WType} = 'Binary') \]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coords</td>
<td>a numeric matrix or vector or data frame of two columns giving the X,Y co-</td>
</tr>
<tr>
<td></td>
<td>ordinates of the observations (data points or geometric / population weighted</td>
</tr>
<tr>
<td></td>
<td>centroids)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>a positive integer that defines the number of nearest neighbours for the cal-</td>
</tr>
<tr>
<td></td>
<td>culation of the weights</td>
</tr>
<tr>
<td>x</td>
<td>a numeric vector of a variable</td>
</tr>
</tbody>
</table>

Examples

```r
data(GR.Municipalities)
Nsim=19
Bd1<-4
x1<-.GR.Municipalities@data$Income01[1:45]
WType1<-'Binary'

SIM20<-mc.spGini(Nsim,Bd1,x1,GR.Municipalities@data$X[1:45], GR.Municipalities@data$Y[1:45],WType1)
SIM20

hist(SIM20$SIM$SIM.nsGini,col = "lightblue", main = "Observed and simulated nsGini", xlab = "Simulated nsGini", ylab = "Frequency",xlim = c(min(SIM20$SIM$SIM.nsGini), SIM20$spGini.Observed[[3]])), abline(v=SIM20$spGini.Observed[[3]], col = 'red')
```
wType

String giving the weighting scheme used to compute the weights matrix. Options are: "Binary" and "Bi-square". Default is "Binary".

- **Binary**: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
- **Bi-square**: weight = \((1-(ndist/H)^2)^2\) for distances less than or equal to H, 0 otherwise.

Details

The Moran’s I statistic ranges from -1 to 1. Values in the interval (-1, 0) indicate negative spatial autocorrelation (low values tend to have neighbours with high values and vice versa), values near 0 indicate no spatial autocorrelation (no spatial pattern - random spatial distribution) and values in the interval (0,1) indicate positive spatial autocorrelation (spatial clusters of similarly low or high values between neighbour municipalities should be expected.)

Value

Returns the weights matrix, the calculated Moran’s I and a list of statistics for the latter’s inference: the expected I \((E[I])\), z scores and p values for both resampling and randomization null hypotheses.

- **W** Weights Matrix
- **Morans.I** Classic global Moran’s I statistic
- **Expected.I** The Expected Moran’s I \((E[I]=-1/(n-1))\)
- **z.resampling** The z score calculated for the resampling null hypotheses test
- **z.randomization** The z score calculated for the randomization null hypotheses test
- **p.value.resampling** The p-value (two-tailed) calculated for the resampling null hypotheses test
- **p.value.randomization** The p-value (two-tailed) calculated for the randomization null hypotheses test

Note

This function has been compared to the function Moran.I within the file Moran.I.R of package ape version 3.1-4 (Paradis et al., 2014). This function results in the same Moran’s I statistic as the one in package ape. The statistical inference in the latter refers to the randomization null hypotheses test discussed above. It is necessary to acknowledge that the code of this function has been assisted by the one in ape package: this is the calculation of statistics S1 and S2 (lines 67 and 69 of the source code) in this function. Another R package with functions for calculating and testing the Moran’s I statistic and its significance is the spdep package (Bivand et al. 2014). The Moran’s I statistic calculated using this function is not the same as the one in OpenGeoDa (Anselin et al., 2006). The latter is another very popular software for calculating spatial autocorrelation statistics.

Author(s)

Stamatis Kalogirou <skalo@hua.gr>
spGini

References

Examples

data(GR.Municipalities)
attr<-GR.Municipalities@data
mI<-moransI(cbind(attr$X, attr$Y), 6, x<-attr$UnemrT01)

mI$Morans.I
mI$Expected.I
mI$z.resampling
mI$p.value.resampling
mI$z.randomization
mI$p.value.randomization

spGini

Spatial Gini coefficient

Description

This is the implementation of the spatial decomposition of the Gini coefficient introduced by Rey and Smith (2013). The function calculates the global Gini and the two components of the spatial Gini: the inequality among nearest (geographically) neighbours and the inequality of non-neighbours. Three weighted schemes are currently supported: binary, bi-square and row standardised bi-square.

Usage

spGini(Coords, Bandwidth, x, WType = 'Binary')
Arguments

Coords
a numeric matrix or vector or dataframe of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)

Bandwidth
a positive integer that defines the number of nearest neighbours for the calculation of the weights

x
a numeric vector of a variable

wtype
string giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square", "RSBi-square". Default is "Binary".

 Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
 Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise;
 RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix

Value

Returns a list of three values Gini=gGini, gwGini=gwGini, nsGini=nsGini

Gini
Global Gini

gwGini
First component of the spatial Gini: the inequality among nearest (geographically) neighbours

nsGini
Second component of the spatial Gini: the inequality among non-neighbours

Author(s)

Stamatis Kalogirou <skalo@hua.gr>

References

Examples

data(GR.Municipalities)
Coords1<-cbind(GR.Municipalities$dataX, GR.Municipalities$dataY)
Bandwidth1<-12
x1<-GR.Municipalities$data$Income01
WType1<-"Binary"
spGini(Coords1,Bandwidth1,x1,WType1)
Description

New Democracy and Total Votes per prefecture in the double parliamentary elections in Greece in May and June 2012, respectively

Usage

data(VotesGR)

Format

A data frame with 51 observations on the following 8 variables.

- MapCode: a numeric vector of codes for joining this data to a map
- NAME_ENG: a alphanumeric vector of prefecture names in greeklish
- X: a numeric vector of x coordinates
- Y: a numeric vector of y coordinates
- NDJune12: a numeric vector of votes for New Democracy in June 2012 parliamentary elections
- NDMay12: a numeric vector of votes for New Democracy in May 2012 parliamentary elections
- AllJune12: a numeric vector of total valid votes in June 2012 parliamentary elections
- AllMay12: a numeric vector of total valid votes in May 2012 parliamentary elections

Details

The X,Y coordinates refer to the geometric centroids of the 51 Prefectures in Greece in 2011. All electoral districts in the Attica Region have been merged to one. The two electoral regions in Thessaloniki have also been merged to a single region matching the NUTS II regions geography.

Source

References

Paper in preparation to be presented in the 10th International Congress of the Hellenic Geographical Society, Thessaloniki, 22-24/10/2014

Examples

```r
data(VotesGR)
plot(VotesGR$NDJune12, VotesGR$NDMay12)
abline(0,1)
```
Index

*Topic FLQ
 FLQ, 4
*Topic Focal Location Quotient
 FLQ, 4
*Topic GWPCCs inference
 FLQ, 4
*Topic GWPC
 FLQ, 4
*Topic Gini
 FLQ, 4
*Topic Inference
 FLQ, 4

*Topic LISA
 FLQ, 4
*Topic Moran’s I Clusters
 FLQ, 4
*Topic Moran’s I significance test
 FLQ, 4
*Topic Moran’s I
 FLQ, 4
*Topic Spatial Gini
 FLQ, 4
*Topic Spatial Inequality
 FLQ, 4
*Topic Spatial autocorrelation
 FLQ, 4

moransI, 15
spGini, 17
accessibility
acc, 3
centrality
acc, 3
datasets
GR.Municipalities, 5
VotesGR, 19
geographically weighted variable
gw_variable, 7
geospatial
lctools-package, 2
local Moran’s I
lctools-package, 2
local multi-collinearity
lctools-package, 2
spatial analysis
lctools-package, 2
spatial inequalities
lctools-package, 2

acc, 3
FLQ, 4
GR.Municipalities, 5
gw_variable, 7
1.moransI, 8
lcorrel, 10
lctools (lctools-package), 2
lctools-package, 2
mc.lcorrel, 11
INDEX

mc.spGini, 13
moransI, 15
spGini, 17
VotesGR, 19