Package 'nnTensor'

May 13, 2024
Type Package
Title Non-Negative Tensor Decomposition
Version 1.3.0
Depends R (>= 3.4.0)
Imports methods, MASS, fields, rTensor, plot3D, tagcloud, ggplot2
Suggests knitr, rmarkdown, testthat, dplyr
Description Some functions for performing non-negative matrix factorization, non-negative CANDE-COMP/PARAFAC (CP) decomposition, non-negative Tucker decomposition, and generat-ing toy model data. See Andrzej Cichock et al (2009) and the reference sec-tion of GitHub README.md https://github.com/rikenbit/nnTensor, for de-tails of the methods.
License MIT + file LICENSE
URL https://github.com/rikenbit/nnTensor
VignetteBuilder knitr
NeedsCompilation no
Author Koki Tsuyuzaki [aut, cre],Itoshi Nikaido [aut]
Maintainer Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp
Repository CRAN
Date/Publication 2024-05-13 14:03:06 UTC
R topics documented:
nnTensor-package 2
GabrielNMF 4
jNMF 5
kFoldMaskTensor 8
NMF 8
NMTF 11
NTD 13
NTF 15
plot.NMF 17
plotTensor2D 18
plotTensor3D 18
recTensor 19
siNMF 20
toyModel 22
Index 23
nnTensor-package Non-Negative Tensor Decomposition

Description

Some functions for performing non-negative matrix factorization, non-negative CANDECOMP/PARAFAC (CP) decomposition, non-negative Tucker decomposition, and generating toy model data. See Andrzej Cichock et al (2009) and the reference section of GitHub README.md https://github.com/rikenbit/nnTensor, for details of the methods.

Details

The DESCRIPTION file:

Package:	nnTensor
Type:	Package
Title:	Non-Negative Tensor Decomposition
Version:	1.3 .0
Authors@R:	c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@ hotmail.co.jp"), person("Ito
Depends:	R (>=3.4.0)
Imports:	methods, MASS, fields, rTensor, plot3D, tagcloud, ggplot2
Suggests:	knitr, rmarkdown, testhat, dplyr
Description:	Some functions for performing non-negative matrix factorization, non-negative CANDECOMP/PARAFAC
License:	MIT + file LICENSE
URL:	https://github.com/rikenbit/nnTensor
VignetteBuilder:	knitr
Author:	Koki Tsuyuzaki [aut, cre], Itoshi Nikaido [aut]
Maintainer:	Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp

Index of help topics:

GabrielNMF	Gabriel-type Bi-Cross-Validation for Non-negative Matrix Factorization Non-negative Matrix Factorization Algorithms (NMF)
NMF	Non-negative Matrix Tri-Factorization Algorithms (NMTF) Non-negative Tucker Decomposition Algorithms
NTD	Non

NTF	(NTD) Non-negative CP Decomposition Algorithms (NTF)
jNMF	Joint Non-negative Matrix Factorization
Algorithms (jNMF)	
nnTensor-package	Mask tensors generator to perform k-fold cross validation
plot. NMF	Non-Negative Tensor Decomposition
plotTensor2D	Plot function of the result of NMF function Plot function for visualization of matrix data
plotTensor3D	structure Plot function for visualization of tensor data structure
recTensor	Tensor Reconstruction from core tensor (S) and factor matrices (A)
siNMF	Simultaneous Non-negative Matrix Factorization Algorithms (siNMF)
toyModel	Toy model data for using NMF, NTF, and NTD

Author(s)

NA
Maintainer: NA

References

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations. John Wiley \& Sons, Ltd

Keigo Kimura, (2017). A Study on Efficient Algorithms for Nonnegative Matrix/Tensor Factorization. Hokkaido University Collection of Scholarly and Academic Papers
Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta Divergence. IEEE ICASSP 2007
Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical Alternating Least Squares Algorithm (HALS). NOLTA2008
Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Yong-Deok Kim et. al., (2007). Nonnegative Tucker Decomposition. IEEE Conference on Computer Vision and Pattern Recognition
Yong-Deok Kim et. al., (2008). Nonneegative Tucker Decomposition With Alpha-Divergence. IEEE International Conference on Acoustics, Speech and Signal Processing

Anh Huy Phan, (2008). Fast and efficient algorithms for nonnegative Tucker decomposition. $A d$ vances in Neural Networks - ISNN2008

Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neurocomputing

Jean-Philippe Brunet. et. al., (2004). Metagenes and molecular pattern discovery using matrix factorization. PNAS

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION

Attila Frigyesi. et. al., (2008). Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes. Cancer Informatics
Haesun Park. et. al., (2019). Lecture 3: Nonnegative Matrix Factorization: Algorithms and Applications. SIAM Gene Golub Summer School, Aussois France, June 18, 2019

Chunxuan Shao. et. al., (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics

Paul Fogel (2013). Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix

Philip M. Kim. et. al., (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. Genome Research

Lucie N. Hutchins. et. al., (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics
Patrik O. Hoyer (2004). Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning 5
N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses, Scientific Report

Art B. Owen et. al., (2009). Bi-Cross-Validation of the SVD and the Nonnegative Matrix Factorization. The Annals of Applied Statistics

```
See Also
toyModel,NMF,NTF,NTD,recTensor,plotTensor3D
```


Examples

ls("package:nnTensor")

```
GabrielNMF
```

Gabriel-type Bi-Cross-Validation for Non-negative Matrix Factorization

Description

The input data is assumed to be non-negative matrix. GabrielNMF devides the input file into four matrices (A, B, C, and D) and perform cross validation by the prediction of A from the matrices B, C, and D.

Usage

GabrielNMF (X, J = 3, nx = 5, ny = 5, ...)

Arguments

X
J
$n x \quad$ The number of hold-out in row-wise direction $(2<n x<N)$.
ny \quad The number of hold-out in row-wise direction $(2<n y<M)$.
$\ldots \quad$ Other parameters for NMF function.

Value

TestRecError : The reconstruction error calculated by Gabriel-style Bi-Cross Validation.

Author(s)

Koki Tsuyuzaki

References

Art B. Owen et. al., (2009). Bi-Cross-Validation of the SVD and the Nonnegative Matrix Factorization. The Annals of Applied Statistics

Examples

```
if(interactive()){
    # Test data
    matdata <- toyModel(model = "NMF")
    # Bi-Cross-Validation
    BCV <- rep(0, length=5)
    names(BCV) <- 2:6
    for(j in seq(BCV)){
        print(j+1)
        BCV[j] <- mean(GabrielNMF(matdata, J=j+1, nx=2, ny=2)$TestRecError)
    }
    proper.rank <- as.numeric(names(BCV)[which(BCV == min(BCV))])
    # NMF
    out <- NMF(matdata, J=proper.rank)
}
```

jNMF Joint Non-negative Matrix Factorization Algorithms (jNMF)

Description

The input data objects are assumed to be non-negative matrices. jNMF decompose the matrices to two low-dimensional factor matices simultaneously.

Usage

jNMF (X, M=NULL, pseudocount=.Machine\$double.eps,
initW=NULL, initV=NULL, initH=NULL, fixW=FALSE, fixV=FALSE,
fixH=FALSE,
L1_W=1e-10, L1_V=1e-10, L1_H=1e-10,
L2_W=1e-10, L2_V=1e-10, L2_H=1e-10,
J = 3, w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"),
$\mathrm{p}=1$, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz $=$ FALSE,
figdir $=$ NULL, verbose $=$ FALSE)

Arguments

X	A list containing input matrices ($\mathrm{X} _\mathrm{k},\left\langle\mathrm{N}^{*} \mathrm{Mk}\right\rangle, \mathrm{k}=1 . . \mathrm{K}$).
M	A list containing the mask matrices ($\left.\mathrm{X} _\mathrm{k},<\mathrm{N} * \mathrm{Mk}\right\rangle, \mathrm{k}=1 . . \mathrm{K}$). If the input matrix has missing values, specify the element as 0 (otherwise 1).
pseudocount	The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon).
initW	The initial values of factor matrix W , which has N -rows and J -columns (Default: NULL).
initV	A list containing the initial values of multiple factor matrices $\left(\mathrm{V} _\mathrm{k},\langle\mathrm{N} * \mathrm{~J}\rangle\right.$, k=1..K, Default: NULL).
inith	A list containing the initial values of multiple factor matrices $\left(\mathrm{H}_{-} \mathrm{k},<\mathrm{Mk}^{*} \mathrm{~J}\right\rangle$, k=1..K, Default: NULL).
fixW	Whether the factor matrix W is updated in each iteration step (Default: FALSE).
fixV	Whether the factor matrices Vk are updated in each iteration step (Default: FALSE).
fixH	Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).
L1_W	Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L1_V	Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L1_H	Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L2_W	Paramter for L2 regularitation (Default: 1e-10).
L2_V	Paramter for L2 regularitation (Default: 1e-10).
L2_H	Paramter for L2 regularitation (Default: 1e-10).
J	Number of low-dimension (J < N, Mk).
w	Weight vector (Default: NULL)
algorithm	Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").
p	The parameter of Probabilistic Latent Tensor Factorization ($\mathrm{p}=0$: Frobenius, $\mathrm{p}=1: \mathrm{KL}, \mathrm{p}=2$: IS)

thr When error change rate is lower than thr, the iteration is terminated (Default: $1 \mathrm{E}-10$).
num.iter \quad The number of interation step (Default: 100).
viz If viz == TRUE, internal reconstructed matrix can be visualized.
figdir the directory for saving the figure, when viz == TRUE.
verbose If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). V : A list which has multiple elements containing N -rows and J -columns $(\mathrm{J}<\mathrm{N}, \mathrm{Mk}) . \mathrm{H}$: A list which has multiple elements containing Mk-rows and J-columns matrix ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocomputing 13:279-290

Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research 40(19), 9379-9391

Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics 32(1), 1-8
Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference on Latent Variable Analysis and Signal Separation 346-353
N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses, Scientific Report

Examples

```
matdata <- toyModel(model = "siNMF_Hard")
out <- jNMF(matdata, J=2, num.iter=2)
```

kFoldMaskTensor Mask tensors generator to perform k-fold cross validation

Description

The output multiple mask tensors can be immediately specified as the argument M for NTF() or NTD().

Usage

kFoldMaskTensor (X, k=3, seeds=123, sym=FALSE)

Arguments

X
k
seeds
sym

An rTensor object.
Number of split for k-fold cross validation (Default: 3).
Random seed to use for set.seed() (Default: 123).
Data will be dropped symmetrically (available only when matrix is specified, Default: FALSE).

Author(s)

Koki Tsuyuzaki

Examples

tensordata <- toyModel(model = "CP")
$\operatorname{str}(\mathrm{kFoldMaskTensor}($ tensordata, $\mathrm{k}=5)$)
NMF Non-negative Matrix Factorization Algorithms (NMF)

Description

The input data is assumed to be non-negative matrix. NMF decompose the matrix to two lowdimensional factor matices. This function is also used as initialization step of tensor decomposition (see also NTF and NTD).

Usage

```
NMF(X, M=NULL, pseudocount=.Machine$double.eps, initU=NULL, initV=NULL,
    fixU=FALSE, fixV=FALSE,
    L1_U=1e-10, L1_V=1e-10, L2_U=1e-10, L2_V=1e-10, J = 3,
    rank.method=c("all", "ccc", "dispersion", "rss", "evar", "residuals",
        "sparseness.basis", "sparseness.coef", "sparseness2.basis",
        "sparseness2.coef", "norm.info.gain.basis", "norm.info.gain.coef",
        "singular", "volume", "condition"), runtime=30,
    algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman",
        "Alpha", "Beta", "ALS", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP",
        "Orthogonal", "OrthReg"), Alpha = 1, Beta = 2,
    eta = 1e-04, thr1 = 1e-10, thr2 = 1e-10, tol = 1e-04,
    num.iter = 100, viz = FALSE, figdir = NULL, verbose = FALSE)
```


Arguments

X
M The mask matrix which has N-rows and M-columns. If the input matrix has missing values, specify the elements as 0 (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon).
initU The initial values of factor matrix U , which has N-rows and J-columns (Default: NULL).
initV The initial values of factor matrix V, which has M-rows and J-columns (Default: NULL).
fixU Whether the factor matrix U is updated in each iteration step (Default: FALSE).
fixV Whether the factor matrix V is updated in each iteration step (Default: FALSE).
L1_U Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L1_V Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .

L2_U Paramter for L2 regularitation (Default: 1e-10).
L2_V Paramter for L2 regularitation (Default: 1e-10).
J
rank.method The rank estimation method (Default: "all"). Only if the J option is specified as a numerical vector longer than two, this option will be active.
runtime The number of trials to estimate rank (Default: 10).
algorithm NMF algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "Alpha", "Beta", "ALS", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP", "Orthogonal", and "OrthReg" are available (Default: "Frobenius").
Alpha The parameter of Alpha-divergence.
Beta The parameter of Beta-divergence.

eta	The stepsize for PGD algorithm (Default: 0.0001).
thr1	When error change rate is lower than thr1, the iteration is terminated (Default:
thr2	1E-10).
If the minus-value is generated, replaced as thr2 (Default: 1E-10). This value is	
used within the internal function .positive().	
tol	The tolerance parameter used in GCD algorithm.
num.iter	The number of interation step (Default: 100).
viz	If viz == TRUE, internal reconstructed matrix can be visualized.
figdir	The directory for saving the figure, when viz == TRUE.
verbose	If verbose == TRUE, Error change rate is generated in console window.

Value

$\mathrm{U}:$ A matrix which has N-rows and J-columns ($\mathrm{J}<\{\mathrm{N}, \mathrm{M}\}$). V : A matrix which has M-rows and J-columns ($\mathrm{J}<\{\mathrm{N}, \mathrm{M}\}$). $\mathrm{J}:$ The number of dimension $(\mathrm{J}<\{\mathrm{N}, \mathrm{M}\})$. RecError : The reconstruction error between data tensor and reconstructed tensor from U and V . TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error. Trial : All the results of the trials to estimate the rank. Runtime : The number of the trials to estimate the rank. RankMethod : The rank estimation method.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations. John Wiley \& Sons, Ltd

Keigo Kimura, (2017). A Study on Efficient Algorithms for Nonnegative Matrix/ Tensor Factorization. Hokkaido University Collection of Scholarly and Academic Papers

Examples

```
if(interactive()){
    # Test data
    matdata <- toyModel(model = "NMF")
    # Simple usage
    out <- NMF(matdata, J=5)
    # Rank estimation mode (single method)
    out2 <- NMF(matdata, J=2:10, rank.method="ccc", runtime=3)
    plot(out2)
    # Rank estimation mode (all method)
    out3 <- NMF(matdata, J=2:10, rank.method="all", runtime=10)
    plot(out3)
}
```


Description

The input data is assumed to be non-negative matrix. NMTF decompose the matrix to three lowdimensional factor matices.

Usage

NMTF (X, M=NULL, pseudocount=.Machine\$double.eps, initU=NULL, initS=NULL, initV=NULL, fixU=FALSE, fixS=FALSE, fixV=FALSE, L1_U=1e-10, L1_S=1e-10, L1_V=1e-10, L2_U=1e-10, L2_S=1e-10, L2_V=1e-10, orthU=FALSE, orthV=FALSE, rank $=c(3,4)$, algorithm = c("Frobenius", "KL", "IS", "ALS", "PG", "COD", "Beta"), Beta $=2$, root $=$ FALSE, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

$X \quad$ The input matrix which has N-rows and M-columns.
M The mask matrix which has N-rows and M-columns. If the input matrix has missing values, specify the elements as 0 (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon).
initU The initial values of factor matrix U , which has N-rows and J1-columns (Default: NULL).
initS The initial values of factor matrix S, which has J1-rows and J2-columns (Default: NULL).
initV The initial values of factor matrix V, which has M-rows and J2-columns (Default: NULL).
fixU Whether the factor matrix U is updated in each iteration step (Default: FALSE).
fixs Whether the factor matrix S is updated in each iteration step (Default: FALSE).
fixV Whether the factor matrix V is updated in each iteration step (Default: FALSE).
L1_U Paramter for L1 regularitation (Default: 1e-10).
L1_S Paramter for L1 regularitation (Default: 1e-10).
L1_V Paramter for L1 regularitation (Default: 1e-10).
L2_U Paramter for L2 regularitation (Default: 1e-10).
L2_S Paramter for L2 regularitation (Default: 1e-10).
L2_V Paramter for L2 regularitation (Default: 1e-10).

orthU	Whether the column vectors of matrix U are orthogonalized (Default: FALSE).
orthV	Whether the column vectors of matrix V are orthogonalized (Default: FALSE).
rank	The number of low-dimension ($\mathrm{J} 1(<\mathrm{N}$) and $\mathrm{J} 2(<\mathrm{M})$) (Default: $\mathrm{c}(3,4)$).
algorithm	NMTF algorithms. "Frobenius", "KL", "IS", "ALS", "PG", "COD", and "Beta" are available (Default: "Frobenius").
Beta	The parameter of Beta-divergence (Default: 2, which means "Frobenius").
root	Whether square root is calculed in each iteration (Default: FALSE).
thr	When error change rate is lower than thr, the iteration is terminated (Default: $1 \mathrm{E}-10$).
num.iter	The number of interation step (Default: 100).
viz	If $\mathrm{viz}==$ TRUE, internal reconstructed matrix can be visualized.
figdir	The directory for saving the figure, when viz == TRUE.
verbose	If verbose $==$ TRUE, Error change rate is generated in console window.

Value

U : A matrix which has N-rows and J1-columns $(\mathrm{J} 1<\mathrm{N})$. S : A matrix which has J1-rows and J2-columns. V : A matrix which has M-rows and J2-columns (J2 $<\mathrm{M}$). rank : The number of lowdimension ($\mathrm{J} 1(<\mathrm{N})$ and $\mathrm{J} 2(<\mathrm{M})$). RecError : The reconstruction error between data tensor and reconstructed tensor from U and V. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error. algorithm: algorithm specified.

Author(s)

Koki Tsuyuzaki

References

Fast Optimization of Non-Negative Matrix Tri-Factorization: Supporting Information, Andrej Copar, et. al., PLOS ONE, 14(6), e0217994, 2019
Co-clustering by Block Value Decomposition, Bo Long et al., SIGKDD'05, 2005
Orthogonal Nonnegative Matrix Tri-Factorizations for Clustering, Chris Ding et. al., 12th ACM SIGKDD, 2006

Examples

```
if(interactive()){
    # Test data
    matdata <- toyModel(model = "NMF")
    # Simple usage
    out <- NMTF(matdata, rank=c(4,4))
}
```


Description

The input data is assumed to be non-negative tensor. NTD decompose the tensor to the dense core tensor (S) and low-dimensional factor matices (A).

Usage

NTD (X, M=NULL, pseudocount=.Machine\$double.eps, initS=NULL, initA=NULL, fixS=FALSE, fixA=FALSE, L1_A=1e-10, L2_A=1e-10, rank $=\operatorname{rep}(3$, length=length $(\operatorname{dim}(X)))$, modes = seq_along $(\operatorname{dim}(X))$, algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha", "Beta", "NMF"), init = c("NMF", "ALS", "Random"), nmf.algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman",
"Alpha", "Beta", "ALS", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP",
"Orthogonal", "OrthReg"),
Alpha = 1,
Beta $=2$, thr $=1 \mathrm{e}-10$, num.iter $=100$, num.iter2 $=10$, viz $=$ FALSE, figdir $=$ NULL, verbose $=$ FALSE)

Arguments

X
M
pseudocount
initS
initA A list containing the initial values of K factor matrices (A_k, $\left.<\mathrm{Ik}^{*} \mathrm{Jk}\right\rangle, \mathrm{k}=1 . . \mathrm{K}$, Default: NULL).
fixs \quad Whether the core tensor S is updated in each iteration step (Default: FALSE).
fixA Whether the factor matrices Ak are updated in each iteration step (Default: FALSE).

L1_A Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L2_A Paramter for L2 regularitation (Default: 1e-10).
rank The number of low-dimension in each mode (Default: 3 for each mode).
modes \quad The vector of the modes on which to perform the decomposition (Default: 1:K <all modes>).

algorithm	NTD algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha", "Beta", "NMF" are available (Default: "Frobenius").
nmf.algorithm	NMF algorithms, when the algorithm is "NMF". "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "Alpha", "Beta", "ALS", "PGD", "HALS", "GCD", "Projected", "NHR", "DTPP", "Orthogonal", and "OrthReg" are available (Default: "Frobenius").
init	The initialization algorithms. "NMF", "ALS", and "Random" are available (Default: "NMF").
Alpha	The parameter of Alpha-divergence.
Beta	The parameter of Beta-divergence.
thr	When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10).
num.iter	The number of interation step (Default: 100).
num.iter2	The number of NMF interation step, when the algorithm is "NMF" (Default: 10).
viz	If viz == TRUE, internal reconstructed tensor can be visualized.
figdir	the directory for saving the figure, when viz == TRUE (Default: NULL).
verbose	If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

S : K-order tensor object, which is defined as S 4 class of rTensor package. A : A list containing K factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Yong-Deok Kim et. al., (2007). Nonnegative Tucker Decomposition. IEEE Conference on Computer Vision and Pattern Recognition
Yong-Deok Kim et. al., (2008). Nonneegative Tucker Decomposition With Alpha-Divergence. IEEE International Conference on Acoustics, Speech and Signal Processing
Anh Huy Phan, (2008). Fast and efficient algorithms for nonnegative Tucker decomposition. Advances in Neural Networks - ISNN2008
Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neurocomputing

See Also

plotTensor3D

Examples

```
    tensordata <- toyModel(model = "Tucker")
    out <- NTD(tensordata, rank=c(2,2,2), algorithm="Frobenius",
    init="Random", num.iter=2)
```


Description

The input data is assumed to be non-negative tensor. NTF decompose the tensor to the diagonal core tensor (S) and low-dimensional factor matices (A).

Usage

NTF (X, M=NULL, pseudocount=.Machine\$double.eps, initA=NULL, fixA=FALSE, L1_A=1e-10, L2_A=1e-10, rank = 3, algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", "Beta"), init = c("NMF", "ABS-SVD", "ALS", "Random"), Alpha = 1, Beta $=2$, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X
M
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon).
initA A list containing the initial values of K factor matrices $\left(\mathrm{A} _\mathrm{k},<\mathrm{Ik} * \mathrm{Jk}>, \mathrm{k}=1 . . \mathrm{K}\right.$, Default: NULL).
fixA Whether the factor matrices Ak are updated in each iteration step (Default: FALSE).
L1_A Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L2_A Paramter for L2 regularitation (Default: 1e-10).
rank The number of low-dimension in each mode (Default: 3).
algorithm NTF algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", and "Beta" are available (Default: "Frobenius").
init The initialization algorithms. "NMF", "ABS-SVD", "ALS", and "Random" are available (Default: "NMF").
Alpha The parameter of Alpha-divergence.

Beta	The parameter of Beta-divergence.
thr	When error change rate is lower than thr1, the iteration is terminated (Default:
num.iter	The number of interation step (Default: 100).
viz	If viz == TRUE, internal reconstructed tensor can be visualized.
figdir	the directory for saving the figure, when viz == TRUE (Default: NULL).
verbose	If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

S : K-order tensor object, which is defined as S4 class of rTensor package. A : A list containing K factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta Divergence. IEEE ICASSP 2007

Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical Alternating Least Squares Algorithm (HALS). NOLTA2008

Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

See Also

```
plotTensor3D
```


Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
```


Description

Only if J is specified as a vector longer than 1 , this function will be active.

Author(s)

Koki Tsuyuzaki

References

Jean-Philippe Brunet. et. al., (2004). Metagenes and molecular pattern discovery using matrix factorization. PNAS

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION

Attila Frigyesi. et. al., (2008). Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes. Cancer Informatics

Haesun Park. et. al., (2019). Lecture 3: Nonnegative Matrix Factorization: Algorithms and Applications. SIAM Gene Golub Summer School, Aussois France, June 18, 2019

Chunxuan Shao. et. al., (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics

Paul Fogel (2013). Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix

Philip M. Kim. et. al., (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. Genome Research

Lucie N. Hutchins. et. al., (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics

Patrik O. Hoyer (2004). Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning 5

Examples

```
methods(class = "NMF")
```


Description

Combined with recTensor function and the result of NTF or NTD, the reconstructed tensor structure can be visullized.

Usage

plotTensor2D(X = NULL, method=c("sd", "mad"), sign=c("positive", "negative", "both"), thr=2)

Arguments

$X \quad$ Matrix object.
method Cutoff method to focus on large/small value in the tensor data (Default: "sd").
sign Direction to cutoff the large/small value in the tensor data (Default: "positive").
thr \quad Threshold of cutoff method (Default: 2).

Author(s)

Koki Tsuyuzaki

Examples

tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, num.iter=2)
tmp <- tempdir ()
png(filename=paste0(tmp, "/NTF.png"))
plotTensor2D (out\$A[[1]])
dev.off()
plotTensor3D
Plot function for visualization of tensor data structure

Description

Combined with recTensor function and the result of NTF or NTD, the reconstructed tensor structure can be visullized.

Usage

plotTensor3D(X = NULL, method=c("sd", "mad"), sign=c("positive", "negative", "both"), thr=2)

Arguments

X
method
sign
thr

Tensor object, which is defined as S4 class of rTensor package.
Cutoff method to focus on large/small value in the tensor data (Default: "sd").
Direction to cutoff the large/small value in the tensor data (Default: "positive").
Threshold of cutoff method (Default: 2).

Author(s)

Koki Tsuyuzaki

Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
tmp <- tempdir()
png(filename=paste0(tmp, "/NTF.png"))
plotTensor3D(recTensor(out$S, out$A))
dev.off()
```

recTensor
Tensor Reconstruction from core tensor (S) and factor matrices (A)

Description

Combined with plotTensor3D function and the result of NTF or NTD, the reconstructed tesor structure can be visullized.

Usage

recTensor $\left(S=N U L L, ~ A=N U L L, ~ i d x ~=~ s e q _a l o n g(d i m(S)), ~ r e v e r s e ~=~ F A L S E\right) ~$

Arguments

S
A
idx The direction of mode-n muliplication (Default: $1: K$). For example idx=1 is defined. $\mathrm{S} x _1 \mathrm{~A}$ is calculated (x_1: mode-1 multiplication).
reverse If reverse $=$ TRUE, $\mathrm{t}(\mathrm{A}[[\mathrm{n}]])$ is multiplicated to $\mathrm{S}($ Default: FALSE $)$.

Value

Tensor object, which is defined as S4 class of rTensor package.

Author(s)

Koki Tsuyuzaki

See Also

Tensor-class, NTF, NTD

Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
rec <- recTensor(out$S, out$A)
```


Description

The input data objects are assumed to be non-negative matrices. siNMF decompose the matrices to two low-dimensional factor matices simultaneously.

Usage

```
siNMF(X, M=NULL, pseudocount=.Machine$double.eps, initW=NULL, initH=NULL,
    fixW=FALSE, fixH=FALSE,
    L1_W=1e-10, L1_H=1e-10, L2_W=1e-10, L2_H=1e-10, J = 3,
    w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"), p=1,
        thr = 1e-10, num.iter = 100,
        viz = FALSE, figdir = NULL, verbose = FALSE)
```


Arguments

X
M A list containing the mask matrices ($X_{-} k,<N^{*} M k>, k=1 . . K$). If the input matrix has missing values, specify the element as 0 (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon).
initW The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).
inith A list containing the initial values of multiple factor matrices ($\mathrm{H} _\mathrm{k},\langle\mathrm{Mk} * \mathrm{~J}\rangle$, k=1..K, Default: NULL).
fixW Whether the factor matrix W is updated in each iteration step (Default: FALSE).

fixH	Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).
L1_W	Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L1_H	Paramter for L 1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0 .
L2_W	Paramter for L2 regularitation (Default: 1e-10).
L2_H	Paramter for L2 regularitation (Default: 1e-10).
J	Number of low-dimension ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$).
w	Weight vector (Default: NULL)
algorithm	Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").
p	The parameter of Probabilistic Latent Tensor Factorization ($p=0$: Frobenius, $\mathrm{p}=1: \mathrm{KL}, \mathrm{p}=2: \mathrm{IS}$)
thr	When error change rate is lower than thr, the iteration is terminated (Default: 1E-10).
num.iter	The number of interation step (Default: 100).
viz	If $\mathrm{viz}==$ TRUE, internal reconstructed matrix can be visualized.
figdir	the directory for saving the figure, when viz == TRUE.
verbose	If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). H : A list which has multiple elements containing Mk-rows and J-columns matrix ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H . TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocomputing 13:279-290

Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research 40(19), 9379-9391
Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics 32(1), 1-8
Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference on Latent Variable Analysis and Signal Separation 346-353
N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses, Scientific Report

Examples

```
matdata <- toyModel(model = "siNMF_Easy")
out <- siNMF(matdata, J=2, num.iter=2)
```

 toyModel Toy model data for using NMF, NTF, and NTD

Description

The data is used for confirming the algorithm are properly working.

Usage

toyModel(model = "CP", seeds=123)

Arguments

model Single character string is specified. "NMF", "CP", and "Tucker" are available (Default: "CP").
seeds Random number for setting set.seeds in the function (Default: 123).

Value

If model is specified as "NMF", a matrix is generated. Otherwise, a tensor is generated.

Author(s)

Koki Tsuyuzaki

See Also

NMF, NTF, NTD

Examples

```
matdata <- toyModel(model = "NMF", seeds=123)
tensordata1 <- toyModel(model = "CP", seeds=123)
tensordata2 <- toyModel(model = "Tucker", seeds=123)
```


Index

```
* methods
    GabrielNMF,4
    jNMF,5
    kFoldMaskTensor, 8
    NMF, }
    NMTF, 11
    NTD, }1
    NTF,15
    plot.NMF, 17
    plotTensor2D,18
    plotTensor3D,18
    recTensor,19
    siNMF,20
    toyModel, 22
* package
    nnTensor-package, 2
GabrielNMF,4
jNMF,5
kFoldMaskTensor, 8
NMF, 4, 8, 22
NMTF, 11
nnTensor (nnTensor-package), 2
nnTensor-package, 2
NTD, 4, 13, 20, }2
NTF, 4, 15, 20, 22
plot (plot.NMF), 17
plot.NMF,17
plotTensor2D,18
plotTensor3D, 4, 14, 16, 18
recTensor, 4, 19
siNMF,20
toyModel, 4, 22
```

