
Package ‘parameters’
May 14, 2024

Type Package

Title Processing of Model Parameters

Version 0.21.7

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Utilities for processing the parameters of various
statistical models. Beyond computing p values, CIs, and other indices
for a wide variety of models (see list of supported models using the
function 'insight::supported_models()'), this package implements
features like bootstrapping or simulating of parameters and models,
feature reduction (feature extraction and variable selection) as well
as functions to describe data and variable characteristics (e.g.
skewness, kurtosis, smoothness or distribution).

License GPL-3

URL https://easystats.github.io/parameters/

BugReports https://github.com/easystats/parameters/issues

Depends R (>= 3.6)

Imports bayestestR (>= 0.13.2), datawizard (>= 0.10.0), insight (>=
0.19.10), graphics, methods, stats, utils

Suggests AER, afex, aod, BayesFactor (>= 0.9.12-4.7), BayesFM, bbmle,
betareg, BH, biglm, blme, boot, brglm2, brms, broom, cAIC4,
car, carData, cgam, ClassDiscovery, clubSandwich, cluster,
coda, coxme, cplm, dbscan, domir (>= 0.2.0), drc, DRR,
effectsize (>= 0.8.6), EGAnet, emmeans (>= 1.7.0), epiR,
estimatr, factoextra, FactoMineR, faraway, fastICA, fixest,
fpc, gam, gamlss, gee, geepack, ggeffects (>= 1.3.2), ggplot2,
GLMMadaptive, glmmTMB, GPArotation, gt, haven, httr, Hmisc,
ivreg, knitr, lavaan, lfe, lm.beta, lme4, lmerTest, lmtest,
logistf, logspline, lqmm, M3C, marginaleffects (>= 0.20.1),
MASS, Matrix, mclogit, mclust, MCMCglmm, mediation, merDeriv,
metaBMA, metafor, mfx, mgcv, mice, mmrm, multcomp, MuMIn,
NbClust, nFactors, nestedLogit, nlme, nnet, openxlsx, ordinal,
panelr, pbkrtest, PCDimension, performance (>= 0.10.8), plm,

1

https://easystats.github.io/parameters/
https://github.com/easystats/parameters/issues

2 R topics documented:

PMCMRplus, poorman, posterior, PROreg (>= 1.3.0), pscl, psych,
pvclust, quantreg, randomForest, rmarkdown, rms, rstanarm,
sandwich, see (>= 0.8.1), serp, sparsepca, survey, survival,
testthat (>= 3.2.1), tidyselect, tinytable (>= 0.1.0), TMB,
truncreg, VGAM, withr, WRS2

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.1

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/website rstudio/bslib, r-lib/pkgdown,
easystats/easystatstemplate

Config/rcmdcheck/ignore-inconsequential-notes true

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>,
@strengejacke),

Dominique Makowski [aut] (<https://orcid.org/0000-0001-5375-9967>,
@Dom_Makowski),

Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>,

@patilindrajeets),
Søren Højsgaard [aut],
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>,

@bmwiernik),
Zen J. Lau [ctb],
Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-1995-6531>,

@vincentab),
Jeffrey Girard [ctb] (<https://orcid.org/0000-0002-7359-3746>,

@jeffreymgirard),
Christina Maimone [rev],
Niels Ohlsen [rev] (@Niels_Bremen),
Douglas Ezra Morrison [ctb] (<https://orcid.org/0000-0002-7195-830X>,

@demstats1),
Joseph Luchman [ctb] (<https://orcid.org/0000-0002-8886-9717>)

Repository CRAN

Date/Publication 2024-05-14 08:13:17 UTC

R topics documented:
bootstrap_model . 4
bootstrap_parameters . 6
ci.default . 8
ci_betwithin . 12

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-7359-3746
https://orcid.org/0000-0002-7195-830X
https://orcid.org/0000-0002-8886-9717

R topics documented: 3

ci_kenward . 13
ci_ml1 . 14
ci_satterthwaite . 16
cluster_analysis . 17
cluster_centers . 20
cluster_discrimination . 21
cluster_meta . 22
cluster_performance . 23
compare_parameters . 24
convert_efa_to_cfa . 29
degrees_of_freedom . 30
display.parameters_model . 32
dominance_analysis . 38
equivalence_test.lm . 41
factor_analysis . 44
fish . 49
format_df_adjust . 49
format_order . 50
format_parameters . 51
format_p_adjust . 52
get_scores . 52
model_parameters . 53
model_parameters.aov . 60
model_parameters.befa . 64
model_parameters.BFBayesFactor . 65
model_parameters.cgam . 67
model_parameters.cpglmm . 71
model_parameters.dbscan . 81
model_parameters.default . 84
model_parameters.DirichletRegModel . 91
model_parameters.glht . 95
model_parameters.glimML . 97
model_parameters.htest . 103
model_parameters.MCMCglmm . 106
model_parameters.mipo . 114
model_parameters.PCA . 116
model_parameters.rma . 120
model_parameters.t1way . 123
model_parameters.zcpglm . 124
n_clusters . 126
n_factors . 130
parameters_type . 133
pool_parameters . 134
predict.parameters_clusters . 136
print.parameters_model . 137
p_calibrate . 142
p_function . 143
p_value . 148

4 bootstrap_model

p_value.BFBayesFactor . 152
p_value.DirichletRegModel . 153
p_value.poissonmfx . 154
p_value.zcpglm . 155
qol_cancer . 156
random_parameters . 156
reduce_parameters . 158
reshape_loadings . 159
select_parameters . 160
simulate_model . 162
simulate_parameters.glmmTMB . 163
sort_parameters . 165
standardize_info . 166
standardize_parameters . 167
standard_error . 171

Index 175

bootstrap_model Model bootstrapping

Description

Bootstrap a statistical model n times to return a data frame of estimates.

Usage

bootstrap_model(model, iterations = 1000, ...)

Default S3 method:
bootstrap_model(

model,
iterations = 1000,
type = "ordinary",
parallel = c("no", "multicore", "snow"),
n_cpus = 1,
verbose = FALSE,
...

)

S3 method for class 'merMod'
bootstrap_model(
model,
iterations = 1000,
type = "parametric",
parallel = c("no", "multicore", "snow"),
n_cpus = 1,
cluster = NULL,

bootstrap_model 5

verbose = FALSE,
...

)

Arguments

model Statistical model.

iterations The number of draws to simulate/bootstrap.

... Arguments passed to or from other methods.

type Character string specifying the type of bootstrap. For mixed models of class
merMod or glmmTMB, may be "parametric" (default) or "semiparametric"
(see ?lme4::bootMer for details). For all other models, see argument sim in
?boot::boot (defaults to "ordinary").

parallel The type of parallel operation to be used (if any).

n_cpus Number of processes to be used in parallel operation.

verbose Toggle warnings and messages.

cluster Optional cluster when parallel = "snow". See ?lme4::bootMer for details.

Details

By default, boot::boot() is used to generate bootstraps from the model data, which are then used
to update() the model, i.e. refit the model with the bootstrapped samples. For merMod objects
(lme4) or models from glmmTMB, the lme4::bootMer() function is used to obtain bootstrapped
samples. bootstrap_parameters() summarizes the bootstrapped model estimates.

Value

A data frame of bootstrapped estimates.

Using with emmeans

The output can be passed directly to the various functions from the emmeans package, to obtain
bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then
be passed to model_parameter() to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivari-
ance: that shape of the sampling distribution is unaffected by the null being true or not. If this
assumption does not hold, p-values can be biased, and it is suggested to use proper permutation
tests to obtain non-parametric p-values.

See Also

bootstrap_parameters(), simulate_model(), simulate_parameters()

6 bootstrap_parameters

Examples

model <- lm(mpg ~ wt + factor(cyl), data = mtcars)
b <- bootstrap_model(model)
print(head(b))

est <- emmeans::emmeans(b, consec ~ cyl)
print(model_parameters(est))

bootstrap_parameters Parameters bootstrapping

Description

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and
p-values.

Usage

bootstrap_parameters(model, ...)

Default S3 method:
bootstrap_parameters(

model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

Arguments

model Statistical model.

... Arguments passed to or from other methods.

iterations The number of draws to simulate/bootstrap.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

bootstrap_parameters 7

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices to compute. Character (vector) with one or more of these options:
"p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. bayestestR::rope()
or bayestestR::p_direction()) and its results included in the summary out-
put.

Details

This function first calls bootstrap_model() to generate bootstrapped coefficients. The resulting
replicated for each coefficient are treated as "distribution", and is passed to bayestestR::describe_posterior()
to calculate the related indices defined in the "test" argument.

Note that that p-values returned here are estimated under the assumption of translation equivari-
ance: that shape of the sampling distribution is unaffected by the null being true or not. If this
assumption does not hold, p-values can be biased, and it is suggested to use proper permutation
tests to obtain non-parametric p-values.

Value

A data frame summarizing the bootstrapped parameters.

Using with emmeans

The output can be passed directly to the various functions from the emmeans package, to obtain
bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then
be passed to model_parameter() to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivari-
ance: that shape of the sampling distribution is unaffected by the null being true or not. If this
assumption does not hold, p-values can be biased, and it is suggested to use proper permutation
tests to obtain non-parametric p-values.

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cam-
bridge university press.

See Also

bootstrap_model(), simulate_parameters(), simulate_model()

Examples

set.seed(2)
model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
b <- bootstrap_parameters(model)

8 ci.default

print(b)

est <- emmeans::emmeans(b, trt.vs.ctrl ~ Species)
print(model_parameters(est))

ci.default Confidence Intervals (CI)

Description

ci() attempts to return confidence intervals of model parameters.

Usage

Default S3 method:
ci(x, ci = 0.95, dof = NULL, method = NULL, ...)

S3 method for class 'glmmTMB'
ci(
x,
ci = 0.95,
dof = NULL,
method = "wald",
component = "all",
verbose = TRUE,
...

)

S3 method for class 'merMod'
ci(x, ci = 0.95, dof = NULL, method = "wald", iterations = 500, ...)

Arguments

x A statistical model.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
dof Number of degrees of freedom to be used when calculating confidence intervals.

If NULL (default), the degrees of freedom are retrieved by calling degrees_of_freedom()
with approximation method defined in method. If not NULL, use this argument
to override the default degrees of freedom used to compute confidence intervals.

method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details.

ci.default 9

... Additional arguments

component Model component for which parameters should be shown. See the documenta-
tion for your object’s class in model_parameters() or p_value() for further
details.

verbose Toggle warnings and messages.

iterations The number of bootstrap replicates. Only applies to models of class merMod
when method=boot.

Value

A data frame containing the CI bounds.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

10 ci.default

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

ci.default 11

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

Examples

library(parameters)
data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(

count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)

ci(model)
ci(model, component = "zi")

12 ci_betwithin

ci_betwithin Between-within approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "between-within" heuristic.

Usage

ci_betwithin(model, ci = 0.95, ...)

dof_betwithin(model)

p_value_betwithin(model, dof = NULL, ...)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

... Additional arguments

dof Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom:
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in
mixed models when the number of clusters is small (even if the sample size of level-1 units is
high). In such cases it is recommended to approximate a more accurate number of degrees of
freedom for such inferential statistics (see Li and Redden 2015). The Between-within denom-
inator degrees of freedom approximation is recommended in particular for (generalized) linear
mixed models with repeated measurements (longitudinal design). dof_betwithin() implements
a heuristic based on the between-within approach. Note that this implementation does not return
exactly the same results as shown in Li and Redden 2015, but similar.

Degrees of Freedom for Longitudinal Designs (Repeated Measures):
In particular for repeated measure designs (longitudinal data analysis), the between-within heuris-
tic is likely to be more accurate than simply using the residual or infinite degrees of freedom,
because dof_betwithin() returns different degrees of freedom for within-cluster and between-
cluster effects.

Value

A data frame.

ci_kenward 13

References

• Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

• Li, P., Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38. doi:10.1186/s12874015-
0026x

See Also

dof_betwithin() is a small helper-function to calculate approximated degrees of freedom of
model parameters, based on the "between-within" heuristic.

Examples

if (require("lme4")) {
data(sleepstudy)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
dof_betwithin(model)
p_value_betwithin(model)

}

ci_kenward Kenward-Roger approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Kenward-Roger (1997) approach.

Usage

ci_kenward(model, ci = 0.95)

dof_kenward(model)

p_value_kenward(model, dof = NULL)

se_kenward(model)

Arguments

model A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom.

https://doi.org/10.1186/s12874-015-0026-x
https://doi.org/10.1186/s12874-015-0026-x

14 ci_ml1

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In
such cases it is recommended to approximate a more accurate number of degrees of freedom for
such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1),
the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with
cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models,
while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 983-997.

See Also

dof_kenward() and se_kenward() are small helper-functions to calculate approximated degrees of
freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach.

dof_satterthwaite() and dof_ml1() approximate degrees of freedom based on Satterthwaite’s
method or the "m-l-1" rule.

Examples

if (require("lme4", quietly = TRUE)) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_kenward(model)

}

ci_ml1 "m-l-1" approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "m-l-1" heuristic as suggested by Elff et al. (2019).

Usage

ci_ml1(model, ci = 0.95, ...)

dof_ml1(model)

p_value_ml1(model, dof = NULL, ...)

ci_ml1 15

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

... Additional arguments

dof Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom:
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in
mixed models when the number of clusters is small (even if the sample size of level-1 units is
high). In such cases it is recommended to approximate a more accurate number of degrees of
freedom for such inferential statistics (see Li and Redden 2015). The m-l-1 heuristic is such
an approach that uses a t-distribution with fewer degrees of freedom (dof_ml1()) to calculate
p-values (p_value_ml1()) and confidence intervals (ci(method = "ml1")).

Degrees of Freedom for Longitudinal Designs (Repeated Measures):
In particular for repeated measure designs (longitudinal data analysis), the m-l-1 heuristic is
likely to be more accurate than simply using the residual or infinite degrees of freedom, because
dof_ml1() returns different degrees of freedom for within-cluster and between-cluster effects.

Limitations of the "m-l-1" Heuristic:
Note that the "m-l-1" heuristic is not applicable (or at least less accurate) for complex multi-
level designs, e.g. with cross-classified clusters. In such cases, more accurate approaches like
the Kenward-Roger approximation (dof_kenward()) is recommended. However, the "m-l-1"
heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Sat-
terthwaite are limited to linear mixed models only.

Value

A data frame.

References

• Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

• Li, P., Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38. doi:10.1186/s12874015-
0026x

See Also

dof_ml1() is a small helper-function to calculate approximated degrees of freedom of model pa-
rameters, based on the "m-l-1" heuristic.

https://doi.org/10.1186/s12874-015-0026-x
https://doi.org/10.1186/s12874-015-0026-x

16 ci_satterthwaite

Examples

if (require("lme4")) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_ml1(model)

}

ci_satterthwaite Satterthwaite approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Satterthwaite (1946) approach.

Usage

ci_satterthwaite(model, ci = 0.95, ...)

dof_satterthwaite(model)

p_value_satterthwaite(model, dof = NULL, ...)

se_satterthwaite(model)

Arguments

model A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

... Additional arguments

dof Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In such
cases it is recommended to approximate a more accurate number of degrees of freedom for such
inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the
Satterthwaite approximation is also applicable in more complex multilevel designs. However, the
"m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger
or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

cluster_analysis 17

References

Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biomet-
rics Bulletin 2 (6):110–4.

See Also

dof_satterthwaite() and se_satterthwaite() are small helper-functions to calculate approx-
imated degrees of freedom and standard errors for model parameters, based on the Satterthwaite
(1946) approach.

dof_kenward() and dof_ml1() approximate degrees of freedom based on Kenward-Roger’s method
or the "m-l-1" rule.

Examples

if (require("lme4", quietly = TRUE)) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_satterthwaite(model)

}

cluster_analysis Cluster Analysis

Description

Compute hierarchical or kmeans cluster analysis and return the group assignment for each observa-
tion as vector.

Usage

cluster_analysis(
x,
n = NULL,
method = "kmeans",
include_factors = FALSE,
standardize = TRUE,
verbose = TRUE,
distance_method = "euclidean",
hclust_method = "complete",
kmeans_method = "Hartigan-Wong",
dbscan_eps = 15,
iterations = 100,
...

)

18 cluster_analysis

Arguments

x A data frame (with at least two variables), or a matrix (with at least two columns).

n Number of clusters used for supervised cluster methods. If NULL, the number of
clusters to extract is determined by calling n_clusters(). Note that this argu-
ment does not apply for unsupervised clustering methods like dbscan, hdbscan,
mixture, pvclust, or pamk.

method Method for computing the cluster analysis. Can be "kmeans" (default; k-means
using kmeans()), "hkmeans" (hierarchical k-means using factoextra::hkmeans()),
pam (K-Medoids using cluster::pam()), pamk (K-Medoids that finds out the
number of clusters), "hclust" (hierarchical clustering using hclust() or pvclust::pvclust()),
dbscan (DBSCAN using dbscan::dbscan()), hdbscan (Hierarchical DBSCAN
using dbscan::hdbscan()), or mixture (Mixture modeling using mclust::Mclust(),
which requires the user to run library(mclust) before).

include_factors

Logical, if TRUE, factors are converted to numerical values in order to be in-
cluded in the data for determining the number of clusters. By default, factors
are removed, because most methods that determine the number of clusters need
numeric input only.

standardize Standardize the dataframe before clustering (default).

verbose Toggle warnings and messages.
distance_method

Distance measure to be used for methods based on distances (e.g., when method
= "hclust" for hierarchical clustering. For other methods, such as "kmeans",
this argument will be ignored). Must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". See dist() and pvclust::pvclust()
for more information.

hclust_method Agglomeration method to be used when method = "hclust" or method = "hkmeans"
(for hierarchical clustering). This should be one of "ward", "ward.D2", "single",
"complete", "average", "mcquitty", "median" or "centroid". Default is
"complete" (see hclust()).

kmeans_method Algorithm used for calculating kmeans cluster. Only applies, if method = "kmeans".
May be one of "Hartigan-Wong" (default), "Lloyd" (used by SPSS), or "MacQueen".
See kmeans() for details on this argument.

dbscan_eps The eps argument for DBSCAN method. See n_clusters_dbscan().

iterations The number of replications.

... Arguments passed to or from other methods.

Details

The print() and plot() methods show the (standardized) mean value for each variable within
each cluster. Thus, a higher absolute value indicates that a certain variable characteristic is more
pronounced within that specific cluster (as compared to other cluster groups with lower absolute
mean values).

Clusters classification can be obtained via print(x, newdata = NULL, ...).

cluster_analysis 19

Value

The group classification for each observation as vector. The returned vector includes missing values,
so it has the same length as nrow(x).

Note

There is also a plot()-method implemented in the see-package.

References

• Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) cluster: Cluster Analysis
Basics and Extensions. R package.

See Also

• n_clusters() to determine the number of clusters to extract.

• cluster_discrimination() to determine the accuracy of cluster group classification via
linear discriminant analysis (LDA).

• performance::check_clusterstructure() to check suitability of data for clustering.

• https://www.datanovia.com/en/lessons/

Examples

set.seed(33)
K-Means ==
rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
rez # Show results
predict(rez) # Get clusters
summary(rez) # Extract the centers values (can use 'plot()' on that)
if (requireNamespace("MASS", quietly = TRUE)) {

cluster_discrimination(rez) # Perform LDA
}

Hierarchical k-means (more robust k-means)
if (require("factoextra", quietly = TRUE)) {

rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
rez # Show results
predict(rez) # Get clusters

}

Hierarchical Clustering (hclust) ===========================
rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
rez # Show results
predict(rez) # Get clusters

K-Medoids (pam) ==
if (require("cluster", quietly = TRUE)) {

rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
rez # Show results
predict(rez) # Get clusters

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

20 cluster_centers

}

PAM with automated number of clusters
if (require("fpc", quietly = TRUE)) {

rez <- cluster_analysis(iris[1:4], method = "pamk")
rez # Show results
predict(rez) # Get clusters

}

DBSCAN ==
if (require("dbscan", quietly = TRUE)) {

Note that you can assimilate more outliers (cluster 0) to neighbouring
clusters by setting borderPoints = TRUE.
rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
rez # Show results
predict(rez) # Get clusters

}

Mixture ==
if (require("mclust", quietly = TRUE)) {

library(mclust) # Needs the package to be loaded
rez <- cluster_analysis(iris[1:4], method = "mixture")
rez # Show results
predict(rez) # Get clusters

}

cluster_centers Find the cluster centers in your data

Description

For each cluster, computes the mean (or other indices) of the variables. Can be used to retrieve the
centers of clusters. Also returns the within Sum of Squares.

Usage

cluster_centers(data, clusters, fun = mean, ...)

Arguments

data A data.frame.

clusters A vector with clusters assignments (must be same length as rows in data).

fun What function to use, mean by default.

... Other arguments to be passed to or from other functions.

Value

A dataframe containing the cluster centers. Attributes include performance statistics and distance
between each observation and its respective cluster centre.

cluster_discrimination 21

Examples

k <- kmeans(iris[1:4], 3)
cluster_centers(iris[1:4], clusters = k$cluster)
cluster_centers(iris[1:4], clusters = k$cluster, fun = median)

cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups

Description

Computes linear discriminant analysis (LDA) on classified cluster groups, and determines the good-
ness of classification for each cluster group. See MASS::lda() for details.

Usage

cluster_discrimination(x, cluster_groups = NULL, ...)

Arguments

x A data frame

cluster_groups Group classification of the cluster analysis, which can be retrieved from the
cluster_analysis() function.

... Other arguments to be passed to or from.

See Also

n_clusters() to determine the number of clusters to extract, cluster_analysis() to compute a
cluster analysis and performance::check_clusterstructure() to check suitability of data for
clustering.

Examples

Retrieve group classification from hierarchical cluster analysis
clustering <- cluster_analysis(iris[, 1:4], n = 3)

Goodness of group classification
cluster_discrimination(clustering)

22 cluster_meta

cluster_meta Metaclustering

Description

One of the core "issue" of statistical clustering is that, in many cases, different methods will give
different results. The metaclustering approach proposed by easystats (that finds echoes in con-
sensus clustering; see Monti et al., 2003) consists of treating the unique clustering solutions as a
ensemble, from which we can derive a probability matrix. This matrix contains, for each pair of
observations, the probability of being in the same cluster. For instance, if the 6th and the 9th row
of a dataframe has been assigned to a similar cluster by 5 our of 10 clustering methods, then its
probability of being grouped together is 0.5.

Usage

cluster_meta(list_of_clusters, rownames = NULL, ...)

Arguments

list_of_clusters

A list of vectors with the clustering assignments from various methods.

rownames An optional vector of row.names for the matrix.

... Currently not used.

Details

Metaclustering is based on the hypothesis that, as each clustering algorithm embodies a different
prism by which it sees the data, running an infinite amount of algorithms would result in the emer-
gence of the "true" clusters. As the number of algorithms and parameters is finite, the probabilistic
perspective is a useful proxy. This method is interesting where there is no obvious reasons to prefer
one over another clustering method, as well as to investigate how robust some clusters are under
different algorithms.

This metaclustering probability matrix can be transformed into a dissimilarity matrix (such as the
one produced by dist()) and submitted for instance to hierarchical clustering (hclust()). See the
example below.

Value

A matrix containing all the pairwise (between each observation) probabilities of being clustered
together by the methods.

Examples

data <- iris[1:4]

rez1 <- cluster_analysis(data, n = 2, method = "kmeans")

cluster_performance 23

rez2 <- cluster_analysis(data, n = 3, method = "kmeans")
rez3 <- cluster_analysis(data, n = 6, method = "kmeans")

list_of_clusters <- list(rez1, rez2, rez3)

m <- cluster_meta(list_of_clusters)

Visualize matrix without reordering
heatmap(m, Rowv = NA, Colv = NA, scale = "none") # Without reordering
Reordered heatmap
heatmap(m, scale = "none")

Extract 3 clusters
predict(m, n = 3)

Convert to dissimilarity
d <- as.dist(abs(m - 1))
model <- hclust(d)
plot(model, hang = -1)

cluster_performance Performance of clustering models

Description

Compute performance indices for clustering solutions.

Usage

cluster_performance(model, ...)

S3 method for class 'kmeans'
cluster_performance(model, ...)

S3 method for class 'hclust'
cluster_performance(model, data, clusters, ...)

S3 method for class 'dbscan'
cluster_performance(model, data, ...)

S3 method for class 'parameters_clusters'
cluster_performance(model, ...)

Arguments

model Cluster model.
... Arguments passed to or from other methods.
data A data.frame.
clusters A vector with clusters assignments (must be same length as rows in data).

24 compare_parameters

Examples

kmeans
model <- kmeans(iris[1:4], 3)
cluster_performance(model)
hclust
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)

rez <- cluster_performance(model, data, clusters)
rez

DBSCAN
model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)

rez <- cluster_performance(model, iris[1:4])
rez

Retrieve performance from parameters
params <- model_parameters(kmeans(iris[1:4], 3))
cluster_performance(params)

compare_parameters Compare model parameters of multiple models

Description

Compute and extract model parameters of multiple regression models. See model_parameters()
for further details.

Usage

compare_parameters(
...,
ci = 0.95,
effects = "fixed",
component = "conditional",
standardize = NULL,
exponentiate = FALSE,
ci_method = "wald",
p_adjust = NULL,
select = NULL,
column_names = NULL,
pretty_names = TRUE,
coefficient_names = NULL,
keep = NULL,
drop = NULL,
include_reference = FALSE,

compare_parameters 25

groups = NULL,
verbose = TRUE

)

compare_models(
...,
ci = 0.95,
effects = "fixed",
component = "conditional",
standardize = NULL,
exponentiate = FALSE,
ci_method = "wald",
p_adjust = NULL,
select = NULL,
column_names = NULL,
pretty_names = TRUE,
coefficient_names = NULL,
keep = NULL,
drop = NULL,
include_reference = FALSE,
groups = NULL,
verbose = TRUE

)

Arguments

... One or more regression model objects, or objects returned by model_parameters().
Regression models may be of different model types. Model objects may be
passed comma separated, or as a list. If model objects are passed with names or
the list has named elements, these names will be used as column names.

ci Confidence Interval (CI) level. Default to 0.95 (95%).
effects Should parameters for fixed effects ("fixed"), random effects ("random"), or

both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

component Model component for which parameters should be shown. See documentation
for related model class in model_parameters().

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

26 compare_parameters

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

ci_method Method for computing degrees of freedom for p-values and confidence intervals
(CI). See documentation for related model class in model_parameters().

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

select Determines which columns and and which layout columns are printed. There
are three options for this argument:

1. Selecting columns by name or index
select can be a character vector (or numeric index) of column names that
should be printed. There are two pre-defined options for selecting columns:
select = "minimal" prints coefficients, confidence intervals and p-values,
while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. However, it is possible to create multiple
columns as well. Following tokens are replaced by the related coefficients
or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p}
and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}.
Furthermore, a | separates values into new cells/columns. If format =
"html", a
 inserts a line break inside a cell. See ’Examples’.

3. A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:

• "ci": Estimates and confidence intervals, no asterisks for p-values.
This is equivalent to select = "{estimate} ({ci})".

• "se": Estimates and standard errors, no asterisks for p-values. This is
equivalent to select = "{estimate} ({se})".

• "ci_p": Estimates, confidence intervals and asterisks for p-values. This
is equivalent to select = "{estimate}{stars} ({ci})".

• "se_p": Estimates, standard errors and asterisks for p-values. This is
equivalent to select = "{estimate}{stars} ({se})"..

compare_parameters 27

• "ci_p2": Estimates, confidence intervals and numeric p-values, in two
columns. This is equivalent to select = "{estimate} ({ci})|{p}".

• "se_p2": Estimate, standard errors and numeric p-values, in two columns.
This is equivalent to select = "{estimate} ({se})|{p}".

For model_parameters(), glue-like syntax is still experimental in the case of
more complex models (like mixed models) and may not return expected results.

column_names Character vector with strings that should be used as column headers. Must be of
same length as number of models in

pretty_names Can be TRUE, which will return "pretty" (i.e. more human readable) parameter
names. Or "labels", in which case value and variable labels will be used as
parameters names. The latter only works for "labelled" data, i.e. if the data used
to fit the model had "label" and "labels" attributes. See also section Global
Options to Customize Messages when Printing.

coefficient_names

Character vector with strings that should be used as column headers for the
coefficient column. Must be of same length as number of models in ..., or
length 1. If length 1, this name will be used for all coefficient columns. If
NULL, the name for the coefficient column will detected automatically (as in
model_parameters()).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.
include_reference

Logical, if TRUE, the reference level of factors will be added to the parameters
table. This is only relevant for models with categorical predictors. The coef-
ficient for the reference level is always 0 (except when exponentiate = TRUE,
then the coefficient will be 1), so this is just for completeness.

groups Named list, can be used to group parameters in the printed output. List elements
may either be character vectors that match the name of those parameters that be-
long to one group, or list elements can be row numbers of those parameter rows
that should belong to one group. The names of the list elements will be used
as group names, which will be inserted as "header row". A possible use case

28 compare_parameters

might be to emphasize focal predictors and control variables, see ’Examples’.
Parameters will be re-ordered according to the order used in groups, while all
non-matching parameters will be added to the end.

verbose Toggle warnings and messages.

Details

This function is in an early stage and does not yet cope with more complex models, and probably
does not yet properly render all model components. It should also be noted that when including
models with interaction terms, not only do the values of the parameters change, but so does their
meaning (from main effects, to simple slopes), thereby making such comparisons hard. Therefore,
you should not use this function to compare models with interaction terms with models without
interaction terms.

Value

A data frame of indices related to the model’s parameters.

Examples

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
compare_parameters(lm1, lm2)

custom style
compare_parameters(lm1, lm2, select = "{estimate}{stars} ({se})")

custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}
({se})|{p}")
print_html(result)

data(mtcars)
m1 <- lm(mpg ~ wt, data = mtcars)
m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
compare_parameters(m1, m2)

exponentiate coefficients, but not for lm
compare_parameters(m1, m2, exponentiate = "nongaussian")

change column names
compare_parameters("linear model" = m1, "logistic reg." = m2)
compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))

or as list
compare_parameters(list(m1, m2))
compare_parameters(list("linear model" = m1, "logistic reg." = m2))

convert_efa_to_cfa 29

convert_efa_to_cfa Conversion between EFA results and CFA structure

Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analy-
sis (CFA) lavaan-ready structure.

Usage

convert_efa_to_cfa(model, ...)

S3 method for class 'fa'
convert_efa_to_cfa(
model,
threshold = "max",
names = NULL,
max_per_dimension = NULL,
...

)

efa_to_cfa(model, ...)

Arguments

model An EFA model (e.g., a psych::fa object).

... Arguments passed to or from other methods.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

names Vector containing dimension names.
max_per_dimension

Maximum number of variables to keep per dimension.

Value

Converted index.

Examples

library(parameters)
data(attitude)
efa <- psych::fa(attitude, nfactors = 3)

30 degrees_of_freedom

model1 <- efa_to_cfa(efa)
model2 <- efa_to_cfa(efa, threshold = 0.3)
model3 <- efa_to_cfa(efa, max_per_dimension = 2)

suppressWarnings(anova(
lavaan::cfa(model1, data = attitude),
lavaan::cfa(model2, data = attitude),
lavaan::cfa(model3, data = attitude)

))

degrees_of_freedom Degrees of Freedom (DoF)

Description

Estimate or extract degrees of freedom of models parameters.

Usage

degrees_of_freedom(model, ...)

Default S3 method:
degrees_of_freedom(model, method = "analytical", ...)

dof(model, ...)

Arguments

model A statistical model.

... Currently not used.

method Can be "analytical" (default, DoFs are estimated based on the model type),
"residual" in which case they are directly taken from the model if available
(for Bayesian models, the goal (looking for help to make it happen) would be
to refit the model as a frequentist one before extracting the DoFs), "ml1" (see
dof_ml1()), "betwithin" (see dof_betwithin()), "satterthwaite" (see dof_satterthwaite()),
"kenward" (see dof_kenward()) or "any", which tries to extract DoF by any
of those methods, whichever succeeds. See ’Details’.

Details

Methods for calculating degrees of freedom:

• "analytical" for models of class lmerMod, Kenward-Roger approximated degrees of free-
doms are calculated, for other models, n-k (number of observations minus number of param-
eters).

degrees_of_freedom 31

• "residual" tries to extract residual degrees of freedom, and returns Inf if residual degrees
of freedom could not be extracted.

• "any" first tries to extract residual degrees of freedom, and if these are not available, extracts
analytical degrees of freedom.

• "nokr" same as "analytical", but does not Kenward-Roger approximation for models of
class lmerMod. Instead, always uses n-k to calculate df for any model.

• "normal" returns Inf.
• "wald" returns residual df for models with t-statistic, and Inf for all other models.
• "kenward" calls dof_kenward().
• "satterthwaite" calls dof_satterthwaite().
• "ml1" calls dof_ml1().
• "betwithin" calls dof_betwithin().

For models with z-statistic, the returned degrees of freedom for model parameters is Inf (unless
method = "ml1" or method = "betwithin"), because there is only one distribution for the related
test statistic.

Note

In many cases, degrees_of_freedom() returns the same as df.residuals(), or n-k (number
of observations minus number of parameters). However, degrees_of_freedom() refers to the
model’s parameters degrees of freedom of the distribution for the related test statistic. Thus, for
models with z-statistic, results from degrees_of_freedom() and df.residuals() differ. Further-
more, for other approximation methods like "kenward" or "satterthwaite", each model param-
eter can have a different degree of freedom.

Examples

model <- lm(Sepal.Length ~ Petal.Length * Species, data = iris)
dof(model)

model <- glm(vs ~ mpg * cyl, data = mtcars, family = "binomial")
dof(model)

if (require("lme4", quietly = TRUE)) {
model <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
dof(model)

}

if (require("rstanarm", quietly = TRUE)) {
model <- stan_glm(
Sepal.Length ~ Petal.Length * Species,
data = iris,
chains = 2,
refresh = 0

)
dof(model)

}

32 display.parameters_model

display.parameters_model

Print tables in different output formats

Description

Prints tables (i.e. data frame) in different output formats. print_md() is a alias for display(format
= "markdown"), print_html() is a alias for display(format = "html"). print_table() is for
specific use cases only, and currently only works for compare_parameters() objects.

Usage

S3 method for class 'parameters_model'
display(
object,
format = "markdown",
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
footer_digits = 3,
ci_brackets = c("(", ")"),
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
font_size = "100%",
line_padding = 4,
column_labels = NULL,
include_reference = FALSE,
verbose = TRUE,
...

)

S3 method for class 'parameters_sem'
display(
object,
format = "markdown",
digits = 2,
ci_digits = digits,
p_digits = 3,
ci_brackets = c("(", ")"),

display.parameters_model 33

...
)

S3 method for class 'parameters_efa_summary'
display(object, format = "markdown", digits = 3, ...)

S3 method for class 'parameters_efa'
display(
object,
format = "markdown",
digits = 2,
sort = FALSE,
threshold = NULL,
labels = NULL,
...

)

S3 method for class 'equivalence_test_lm'
display(object, format = "markdown", digits = 2, ...)

S3 method for class 'parameters_model'
format(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
ci_width = NULL,
ci_brackets = NULL,
zap_small = FALSE,
format = NULL,
groups = NULL,
include_reference = FALSE,
...

)

S3 method for class 'parameters_model'
print_html(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,

34 display.parameters_model

digits = 2,
ci_digits = digits,
p_digits = 3,
footer_digits = 3,
ci_brackets = c("(", ")"),
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
groups = NULL,
font_size = "100%",
line_padding = 4,
column_labels = NULL,
include_reference = FALSE,
verbose = TRUE,
...

)

S3 method for class 'parameters_model'
print_md(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
footer_digits = 3,
ci_brackets = c("(", ")"),
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
groups = NULL,
include_reference = FALSE,
verbose = TRUE,
...

)

print_table(x, digits = 2, p_digits = 3, theme = "default", ...)

Arguments

object An object returned by model_parameters(), simulate_parameters(), equivalence_test()
or principal_components().

format String, indicating the output format. Can be "markdown" or "html".

display.parameters_model 35

pretty_names Can be TRUE, which will return "pretty" (i.e. more human readable) parameter
names. Or "labels", in which case value and variable labels will be used as
parameters names. The latter only works for "labelled" data, i.e. if the data used
to fit the model had "label" and "labels" attributes. See also section Global
Options to Customize Messages when Printing.

split_components

Logical, if TRUE (default), For models with multiple components (zero-inflation,
smooth terms, ...), each component is printed in a separate table. If FALSE, model
parameters are printed in a single table and a Component column is added to the
output.

select Determines which columns and and which layout columns are printed. There
are three options for this argument:

1. Selecting columns by name or index
select can be a character vector (or numeric index) of column names that
should be printed. There are two pre-defined options for selecting columns:
select = "minimal" prints coefficients, confidence intervals and p-values,
while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. However, it is possible to create multiple
columns as well. Following tokens are replaced by the related coefficients
or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p}
and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}.
Furthermore, a | separates values into new cells/columns. If format =
"html", a
 inserts a line break inside a cell. See ’Examples’.

3. A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:

• "ci": Estimates and confidence intervals, no asterisks for p-values.
This is equivalent to select = "{estimate} ({ci})".

• "se": Estimates and standard errors, no asterisks for p-values. This is
equivalent to select = "{estimate} ({se})".

• "ci_p": Estimates, confidence intervals and asterisks for p-values. This
is equivalent to select = "{estimate}{stars} ({ci})".

• "se_p": Estimates, standard errors and asterisks for p-values. This is
equivalent to select = "{estimate}{stars} ({se})"..

• "ci_p2": Estimates, confidence intervals and numeric p-values, in two
columns. This is equivalent to select = "{estimate} ({ci})|{p}".

• "se_p2": Estimate, standard errors and numeric p-values, in two columns.
This is equivalent to select = "{estimate} ({se})|{p}".

For model_parameters(), glue-like syntax is still experimental in the case of
more complex models (like mixed models) and may not return expected results.

caption Table caption as string. If NULL, depending on the model, either a default caption
or no table caption is printed. Use caption = "" to suppress the table caption.

36 display.parameters_model

subtitle Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is
printed, unless it is stored as attributes (table_title, or its alias table_caption,
and table_subtitle). If x is a list of data frames, caption may be a list of ta-
ble captions, one for each table.

footer Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to
print the default footer, or a string. The latter will combine the string value with
the default footer.

align Only applies to HTML tables. May be one of "left", "right" or "center".
digits, ci_digits, p_digits

Number of digits for rounding or significant figures. May also be "signif" to
return significant figures or "scientific" to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4"
to have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

footer_digits Number of decimal places for values in the footer summary.

ci_brackets Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

show_sigma Logical, if TRUE, adds information about the residual standard deviation.

show_formula Logical, if TRUE, adds the model formula to the output.

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

font_size For HTML tables, the font size.

line_padding For HTML tables, the distance (in pixel) between lines.

column_labels Labels of columns for HTML tables. If NULL, automatic column names are
generated. See ’Examples’.

include_reference

Logical, if TRUE, the reference level of factors will be added to the parameters
table. This is only relevant for models with categorical predictors. The coef-
ficient for the reference level is always 0 (except when exponentiate = TRUE,
then the coefficient will be 1), so this is just for completeness.

verbose Toggle messages and warnings.

... Arguments passed to or from other methods.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

labels A character vector containing labels to be added to the loadings data. Usually,
the question related to the item.

x An object returned by model_parameters().

ci_width Minimum width of the returned string for confidence intervals. If not NULL and
width is larger than the string’s length, leading whitespaces are added to the
string. If width="auto", width will be set to the length of the longest string.

display.parameters_model 37

groups Named list, can be used to group parameters in the printed output. List elements
may either be character vectors that match the name of those parameters that be-
long to one group, or list elements can be row numbers of those parameter rows
that should belong to one group. The names of the list elements will be used
as group names, which will be inserted as "header row". A possible use case
might be to emphasize focal predictors and control variables, see ’Examples’.
Parameters will be re-ordered according to the order used in groups, while all
non-matching parameters will be added to the end.

theme String, indicating the table theme. Can be one of "default", "grid", "striped",
"bootstrap" or "darklines".

Details

display() is useful when the table-output from functions, which is usually printed as formatted
text-table to console, should be formatted for pretty table-rendering in markdown documents, or if
knitted from rmarkdown to PDF or Word files. See vignette for examples.

print_table() is a special function for compare_parameters() objects, which prints the output
as a formatted HTML table. It is still somewhat experimental, thus, only a fixed layout-style is
available at the moment (columns for estimates, confidence intervals and p-values). However, it is
possible to include other model components, like zero-inflation, or random effects in the table. See
’Examples’. An alternative is to set engine = "tt" in print_html() to use the tinytable package
for creating HTML tables.

Value

If format = "markdown", the return value will be a character vector in markdown-table format. If
format = "html", an object of class gt_tbl. For print_table(), an object of class tinytable is
returned.

See Also

print.parameters_model()

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)
display(mp)

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lm3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
out <- compare_parameters(lm1, lm2, lm3)

print_html(
out,
select = "{coef}{stars}|({ci})",

https://easystats.github.io/parameters/articles/model_parameters_formatting.html

38 dominance_analysis

column_labels = c("Estimate", "95% CI")
)

line break, unicode minus-sign
print_html(

out,
select = "{estimate}{stars}
({ci_low} \u2212 {ci_high})",
column_labels = c("Est. (95% CI)")

)

data(iris)
data(Salamanders, package = "glmmTMB")
m1 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
m2 <- lme4::lmer(

Sepal.Length ~ Petal.Length + Petal.Width + (1 | Species),
data = iris

)
m3 <- glmmTMB::glmmTMB(

count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
out <- compare_parameters(m1, m2, m3, effects = "all", component = "all")
print_table(out)

dominance_analysis Dominance Analysis

Description

Computes Dominance Analysis Statistics and Designations

Usage

dominance_analysis(
model,
sets = NULL,
all = NULL,
conditional = TRUE,
complete = TRUE,
quote_args = NULL,
contrasts = model$contrasts,
...

)

dominance_analysis 39

Arguments

model A model object supported by performance::r2(). See ’Details’.

sets A (named) list of formula objects with no left hand side/response. If the list has
names, the name provided each element will be used as the label for the set.
Unnamed list elements will be provided a set number name based on its position
among the sets as entered.
Predictors in each formula are bound together as a set in the dominance analysis
and dominance statistics and designations are computed for the predictors to-
gether. Predictors in sets must be present in the model submitted to the model
argument and cannot be in the all argument.

all A formula with no left hand side/response.
Predictors in the formula are included in each subset in the dominance analy-
sis and the R2 value associated with them is subtracted from the overall value.
Predictors in all must be present in the model submitted to the model argument
and cannot be in the sets argument.

conditional Logical. If FALSE then conditional dominance matrix is not computed.
If conditional dominance is not desired as an importance criterion, avoiding
computing the conditional dominance matrix can save computation time.

complete Logical. If FALSE then complete dominance matrix is not computed.
If complete dominance is not desired as an importance criterion, avoiding com-
puting complete dominance designations can save computation time.

quote_args A character vector of arguments in the model submitted to model to quote()
prior to submitting to the dominance analysis. This is necessary for data masked
arguments (e.g., weights) to prevent them from being evaluated before being
applied to the model and causing an error.

contrasts A named list of contrasts used by the model object. This list is required in
order for the correct mapping of parameters to predictors in the output when the
model creates indicator codes for factor variables using insight::get_modelmatrix().
By default, the contrast element from the model object submitted is used. If
the model object does not have a contrast element the user can supply this
named list.

... Not used at current.

Details

Computes two decompositions of the model’s R2 and returns a matrix of designations from which
predictor relative importance determinations can be obtained.

Note in the output that the "constant" subset is associated with a component of the model that does
not directly contribute to the R2 such as an intercept. The "all" subset is apportioned a component of
the fit statistic but is not considered a part of the dominance analysis and therefore does not receive
a rank, conditional dominance statistics, or complete dominance designations.

The input model is parsed using insight::find_predictors(), does not yet support interactions,
transformations, or offsets applied in the R formula, and will fail with an error if any such terms are
detected.

40 dominance_analysis

The model submitted must accept an formula object as a formula argument. In addition, the model
object must accept the data on which the model is estimated as a data argument. Formulas submit-
ted using object references (i.e., lm(mtcars$mpg ~ mtcars$vs)) and functions that accept data as
a non-data argument (e.g., survey::svyglm() uses design) will fail with an error.

Models that return TRUE for the insight::model_info() function’s values "is_bayesian", "is_mixed",
"is_gam", is_multivariate", "is_zero_inflated", or "is_hurdle" are not supported at current.

When performance::r2() returns multiple values, only the first is used by default.

Value

Object of class "parameters_da".

An object of class "parameters_da" is a list of data.frames composed of the following elements:

General A data.frame which associates dominance statistics with model parameters. The vari-
ables in this data.frame include:

Parameter Parameter names.
General_Dominance Vector of general dominance statistics. The R2 ascribed to variables in

the all argument are also reported here though they are not general dominance statistics.
Percent Vector of general dominance statistics normalized to sum to 1.
Ranks Vector of ranks applied to the general dominance statistics.
Subset Names of the subset to which the parameter belongs in the dominance analysis. Each

other data.frame returned will refer to these subset names.

Conditional A data.frame of conditional dominance statistics. Each observation represents a
subset and each variable represents an the average increment to R2 with a specific number of
subsets in the model. NULL if conditional argument is FALSE.

Complete A data.frame of complete dominance designations. The subsets in the observations
are compared to the subsets referenced in each variable. Whether the subset in each variable
dominates the subset in each observation is represented in the logical value. NULL if complete
argument is FALSE.

Author(s)

Joseph Luchman

References

• Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing pre-
dictors in multiple regression. Psychological Methods, 8(2), 129-148. doi:10.1037/1082-
989X.8.2.129

• Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative
importance of predictors in multiple regression. Psychological Bulletin, 114(3), 542-551.
doi:10.1037/0033-2909.114.3.542

• Groemping, U. (2007). Estimators of relative importance in linear regression based on vari-
ance decomposition. The American Statistician, 61(2), 139-147. doi:10.1198/000313007X188252

equivalence_test.lm 41

See Also

domir::domin()

Examples

data(mtcars)

Dominance Analysis with Logit Regression
model <- glm(vs ~ cyl + carb + mpg, data = mtcars, family = binomial())

performance::r2(model)
dominance_analysis(model)

Dominance Analysis with Weighted Logit Regression
model_wt <- glm(vs ~ cyl + carb + mpg,

data = mtcars,
weights = wt, family = quasibinomial()

)

dominance_analysis(model_wt, quote_args = "weights")

equivalence_test.lm Equivalence test

Description

Compute the (conditional) equivalence test for frequentist models.

Usage

S3 method for class 'lm'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "classic",
verbose = TRUE,
...

)

S3 method for class 'merMod'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "classic",

42 equivalence_test.lm

effects = c("fixed", "random"),
verbose = TRUE,
...

)

S3 method for class 'ggeffects'
equivalence_test(
x,
range = "default",
rule = "classic",
test = "pairwise",
verbose = TRUE,
...

)

Arguments

x A statistical model.

range The range of practical equivalence of an effect. May be "default", to automat-
ically define this range based on properties of the model’s data.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

rule Character, indicating the rules when testing for practical equivalence. Can be
"bayes", "classic" or "cet". See ’Details’.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or
both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

test Hypothesis test for computing contrasts or pairwise comparisons. See ?ggeffects::test_predictions
for details.

Details

In classical null hypothesis significance testing (NHST) within a frequentist framework, it is not
possible to accept the null hypothesis, H0 - unlike in Bayesian statistics, where such probability
statements are possible. "... one can only reject the null hypothesis if the test statistics falls into the
critical region(s), or fail to reject this hypothesis. In the latter case, all we can say is that no signif-
icant effect was observed, but one cannot conclude that the null hypothesis is true." (Pernet 2017).
One way to address this issues without Bayesian methods is Equivalence Testing, as implemented
in equivalence_test(). While you either can reject the null hypothesis or claim an inconclusive
result in NHST, the equivalence test - according to Pernet - adds a third category, "accept". Roughly
speaking, the idea behind equivalence testing in a frequentist framework is to check whether an es-
timate and its uncertainty (i.e. confidence interval) falls within a region of "practical equivalence".
Depending on the rule for this test (see below), statistical significance does not necessarily indicate
whether the null hypothesis can be rejected or not, i.e. the classical interpretation of the p-value
may differ from the results returned from the equivalence test.

https://strengejacke.github.io/ggeffects/reference/test_predictions.html

equivalence_test.lm 43

Calculation of equivalence testing:
• "bayes" - Bayesian rule (Kruschke 2018)

This rule follows the "HDI+ROPE decision rule" (Kruschke, 2014, 2018) used for the Bayesian
counterpart(). This means, if the confidence intervals are completely outside the ROPE,
the "null hypothesis" for this parameter is "rejected". If the ROPE completely covers the
CI, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null
hypothesis. Desirable results are low proportions inside the ROPE (the closer to zero the
better).

• "classic" - The TOST rule (Lakens 2017)
This rule follows the "TOST rule", i.e. a two one-sided test procedure (Lakens 2017). Fol-
lowing this rule, practical equivalence of an effect (i.e. H0) is rejected, when the coefficient
is statistically significant and the narrow confidence intervals (i.e. 1-2*alpha) include or ex-
ceed the ROPE boundaries. Practical equivalence is assumed (i.e. H0 "accepted") when the
narrow confidence intervals are completely inside the ROPE, no matter if the effect is statis-
tically significant or not. Else, the decision whether to accept or reject practical equivalence
is undecided.

• "cet" - Conditional Equivalence Testing (Campbell/Gustafson 2018)
The Conditional Equivalence Testing as described by Campbell and Gustafson 2018. Ac-
cording to this rule, practical equivalence is rejected when the coefficient is statistically sig-
nificant. When the effect is not significant and the narrow confidence intervals are completely
inside the ROPE, we accept (i.e. assume) practical equivalence, else it is undecided.

Levels of Confidence Intervals used for Equivalence Testing:
For rule = "classic", "narrow" confidence intervals are used for equivalence testing. "Narrow"
means, the the intervals is not 1 - alpha, but 1 - 2 * alpha. Thus, if ci = .95, alpha is assumed
to be 0.05 and internally a ci-level of 0.90 is used. rule = "cet" uses both regular and narrow
confidence intervals, while rule = "bayes" only uses the regular intervals.

p-Values:
The equivalence p-value is the area of the (cumulative) confidence distribution that is outside of
the region of equivalence. It can be interpreted as p-value for rejecting the alternative hypothesis
and accepting the "null hypothesis" (i.e. assuming practical equivalence). That is, a high p-value
means we reject the assumption of practical equivalence and accept the alternative hypothesis.

Second Generation p-Value (SGPV):
Second generation p-values (SGPV) were proposed as a statistic that represents the proportion of
data-supported hypotheses that are also null hypotheses (Blume et al. 2018, Lakens and Delacre
2020). It represents the proportion of the confidence interval range that is inside the ROPE.

ROPE range:
Some attention is required for finding suitable values for the ROPE limits (argument range). See
’Details’ in bayestestR::rope_range() for further information.

Value

A data frame.

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

44 factor_analysis

References

• Blume, J. D., D’Agostino McGowan, L., Dupont, W. D., & Greevy, R. A. (2018). Second-
generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses.
PLOS ONE, 13(3), e0188299. https://doi.org/10.1371/journal.pone.0188299

• Campbell, H., & Gustafson, P. (2018). Conditional equivalence testing: An alternative remedy
for publication bias. PLOS ONE, 13(4), e0195145. doi: 10.1371/journal.pone.0195145

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Ad-
vances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304

• Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-
Analyses. Social Psychological and Personality Science, 8(4), 355–362. doi: 10.1177/1948550617697177

• Lakens, D., & Delacre, M. (2020). Equivalence Testing and the Second Generation P-Value.
Meta-Psychology, 4. https://doi.org/10.15626/MP.2018.933

• Pernet, C. (2017). Null hypothesis significance testing: A guide to commonly misunderstood
concepts and recommendations for good practice. F1000Research, 4, 621. doi: 10.12688/f1000research.6963.5

See Also

For more details, see bayestestR::equivalence_test(). Further readings can be found in the
references.

Examples

data(qol_cancer)
model <- lm(QoL ~ time + age + education, data = qol_cancer)

default rule
equivalence_test(model)

conditional equivalence test
equivalence_test(model, rule = "cet")

plot method
if (require("see", quietly = TRUE)) {

result <- equivalence_test(model)
plot(result)

}

factor_analysis Principal Component Analysis (PCA) and Factor Analysis (FA)

Description

The functions principal_components() and factor_analysis() can be used to perform a prin-
cipal component analysis (PCA) or a factor analysis (FA). They return the loadings as a data frame,
and various methods and functions are available to access / display other information (see the De-
tails section).

factor_analysis 45

Usage

factor_analysis(
x,
n = "auto",
rotation = "none",
sort = FALSE,
threshold = NULL,
standardize = TRUE,
cor = NULL,
...

)

principal_components(
x,
n = "auto",
rotation = "none",
sparse = FALSE,
sort = FALSE,
threshold = NULL,
standardize = TRUE,
...

)

rotated_data(pca_results, verbose = TRUE)

S3 method for class 'parameters_efa'
predict(
object,
newdata = NULL,
names = NULL,
keep_na = TRUE,
verbose = TRUE,
...

)

S3 method for class 'parameters_efa'
print(x, digits = 2, sort = FALSE, threshold = NULL, labels = NULL, ...)

S3 method for class 'parameters_efa'
sort(x, ...)

closest_component(pca_results)

Arguments

x A data frame or a statistical model.

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number

46 factor_analysis

of components is selected through n_factors() resp. n_components(). Else,
if n is a number, n components are extracted. If n exceeds number of variables
in the data, it is automatically set to the maximum number (i.e. ncol(x)). In
reduce_parameters(), can also be "max", in which case it will select all the
components that are maximally pseudo-loaded (i.e., correlated) by at least one
variable.

rotation If not "none", the PCA / FA will be computed using the psych package. Possible
options include "varimax", "quartimax", "promax", "oblimin", "simplimax",
or "cluster" (and more). See psych::fa() for details.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

standardize A logical value indicating whether the variables should be standardized (cen-
tered and scaled) to have unit variance before the analysis (in general, such
scaling is advisable).

cor An optional correlation matrix that can be used (note that the data must still be
passed as the first argument). If NULL, will compute it by running cor() on the
passed data.

... Arguments passed to or from other methods.

sparse Whether to compute sparse PCA (SPCA, using sparsepca::spca()). SPCA
attempts to find sparse loadings (with few nonzero values), which improves in-
terpretability and avoids overfitting. Can be TRUE or "robust" (see sparsepca::robspca()).

pca_results The output of the principal_components() function.

verbose Toggle warnings.

object An object of class parameters_pca or parameters_efa

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

names Optional character vector to name columns of the returned data frame.

keep_na Logical, if TRUE, predictions also return observations with missing values from
the original data, hence the number of rows of predicted data and original data
is equal.

digits, labels Arguments for print().

Details

Methods and Utilities:

• n_components() and n_factors() automatically estimates the optimal number of dimen-
sions to retain.

• performance::check_factorstructure() checks the suitability of the data for factor anal-
ysis using the sphericity (see performance::check_sphericity_bartlett()) and the KMO
(see performance::check_kmo()) measure.

factor_analysis 47

• performance::check_itemscale() computes various measures of internal consistencies
applied to the (sub)scales (i.e., components) extracted from the PCA.

• Running summary() returns information related to each component/factor, such as the ex-
plained variance and the Eivenvalues.

• Running get_scores() computes scores for each subscale.
• Running closest_component() will return a numeric vector with the assigned component

index for each column from the original data frame.
• Running rotated_data() will return the rotated data, including missing values, so it matches

the original data frame.
• Running plot() visually displays the loadings (that requires the see-package to work).

Complexity:
Complexity represents the number of latent components needed to account for the observed vari-
ables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would
only load on one factor, a solution with evenly distributed items has a complexity greater than 1
(Hofman, 1978; Pettersson and Turkheimer, 2010).

Uniqueness:
Uniqueness represents the variance that is ’unique’ to the variable and not shared with other vari-
ables. It is equal to 1 communality (variance that is shared with other variables). A uniqueness
of 0.20 suggests that 20% or that variable’s variance is not shared with other variables in the over-
all factor model. The greater ’uniqueness’ the lower the relevance of the variable in the factor
model.

MSA:
MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974)
for each item. It indicates whether there is enough data for each factor give reliable results for the
PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

PCA or FA?:
There is a simplified rule of thumb that may help do decide whether to run a factor analysis or a
principal component analysis:

• Run factor analysis if you assume or wish to test a theoretical model of latent factors causing
observed variables.

• Run principal component analysis If you want to simply reduce your correlated observed
variables to a smaller set of important independent composite variables.

(Source: CrossValidated)

Computing Item Scores:
Use get_scores() to compute scores for the "subscales" represented by the extracted principal
components. get_scores() takes the results from principal_components() and extracts the
variables for each component found by the PCA. Then, for each of these "subscales", raw means
are calculated (which equals adding up the single items and dividing by the number of items).
This results in a sum score for each component from the PCA, which is on the same scale as the
original, single items that were used to compute the PCA. One can also use predict() to back-
predict scores for each component, to which one can provide newdata or a vector of names for
the components.

https://easystats.github.io/see/articles/parameters.html#principal-component-analysis
https://easystats.github.io/see/
https://stats.stackexchange.com/q/1576/54740

48 factor_analysis

Explained Variance and Eingenvalues:
Use summary() to get the Eigenvalues and the explained variance for each extracted component.
The eigenvectors and eigenvalues represent the "core" of a PCA: The eigenvectors (the principal
components) determine the directions of the new feature space, and the eigenvalues determine
their magnitude. In other words, the eigenvalues explain the variance of the data along the new
feature axes.

Value

A data frame of loadings.

References

• Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and Psychological Mea-
surement, 34(1):111–117

• Hofmann, R. (1978). Complexity and simplicity as objective indices descriptive of factor so-
lutions. Multivariate Behavioral Research, 13:2, 247-250, doi:10.1207/s15327906mbr1302_9

• Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation, and simple structure in
personality data. Journal of research in personality, 44(4), 407-420, doi:10.1016/j.jrp.2010.03.002

• Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston:
Pearson Education.

Examples

library(parameters)

Principal Component Analysis (PCA) -------------------
principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)

Automated number of components
principal_components(mtcars[, 1:4], n = "auto")

Sparse PCA
principal_components(mtcars[, 1:7], n = 4, sparse = TRUE)
principal_components(mtcars[, 1:7], n = 4, sparse = "robust")

Rotated PCA
principal_components(mtcars[, 1:7],

n = 2, rotation = "oblimin",
threshold = "max", sort = TRUE

)
principal_components(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

pca <- principal_components(mtcars[, 1:5], n = 2, rotation = "varimax")
pca # Print loadings
summary(pca) # Print information about the factors
predict(pca, names = c("Component1", "Component2")) # Back-predict scores

https://doi.org/10.1207/s15327906mbr1302_9
https://doi.org/10.1016/j.jrp.2010.03.002

fish 49

which variables from the original data belong to which extracted component?
closest_component(pca)

Factor Analysis (FA) ------------------------

factor_analysis(mtcars[, 1:7], n = "all", threshold = 0.2)
factor_analysis(mtcars[, 1:7], n = 2, rotation = "oblimin", threshold = "max", sort = TRUE)
factor_analysis(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

efa <- factor_analysis(mtcars[, 1:5], n = 2)
summary(efa)
predict(efa, verbose = FALSE)

Automated number of components
factor_analysis(mtcars[, 1:4], n = "auto")

fish Sample data set

Description

A sample data set, used in tests and some examples.

format_df_adjust Format the name of the degrees-of-freedom adjustment methods

Description

Format the name of the degrees-of-freedom adjustment methods.

Usage

format_df_adjust(
method,
approx_string = "-approximated",
dof_string = " degrees of freedom"

)

Arguments

method Name of the method.
approx_string, dof_string

Suffix added to the name of the method in the returned string.

50 format_order

Value

A formatted string.

Examples

library(parameters)

format_df_adjust("kenward")
format_df_adjust("kenward", approx_string = "", dof_string = " DoF")

format_order Order (first, second, ...) formatting

Description

Format order.

Usage

format_order(order, textual = TRUE, ...)

Arguments

order value or vector of orders.

textual Return number as words. If FALSE, will run insight::format_value().

... Arguments to be passed to insight::format_value() if textual is FALSE.

Value

A formatted string.

Examples

format_order(2)
format_order(8)
format_order(25, textual = FALSE)

format_parameters 51

format_parameters Parameter names formatting

Description

This functions formats the names of model parameters (coefficients) to make them more human-
readable.

Usage

format_parameters(model, ...)

Default S3 method:
format_parameters(model, brackets = c("[", "]"), ...)

Arguments

model A statistical model.

... Currently not used.

brackets A character vector of length two, indicating the opening and closing brackets.

Value

A (names) character vector with formatted parameter names. The value names refer to the original
names of the coefficients.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model.
The number of parameters, and overall performance of the model, can differ or not between a *
b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of
the same model, but other times it gives completely different models (depending on a or b being
factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full
context of the model, which should not be inferred from the parameters table alone - rather, we
recommend to use packages that calculate estimated marginal means or marginal effects, such as
modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may
use print(...,show_formula=TRUE) to add the model-specification to the output of the print()
method for model_parameters().

Examples

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Petal.Length + (Species / Sepal.Width), data = iris)
format_parameters(model)

https://CRAN.R-project.org/package=modelbased
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=ggeffects
https://CRAN.R-project.org/package=marginaleffects

52 get_scores

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
format_parameters(model)

format_p_adjust Format the name of the p-value adjustment methods

Description

Format the name of the p-value adjustment methods.

Usage

format_p_adjust(method)

Arguments

method Name of the method.

Value

A string with the full surname(s) of the author(s), including year of publication, for the adjustment-
method.

Examples

library(parameters)

format_p_adjust("holm")
format_p_adjust("bonferroni")

get_scores Get Scores from Principal Component Analysis (PCA)

Description

get_scores() takes n_items amount of items that load the most (either by loading cutoff or num-
ber) on a component, and then computes their average.

Usage

get_scores(x, n_items = NULL)

model_parameters 53

Arguments

x An object returned by principal_components().

n_items Number of required (i.e. non-missing) items to build the sum score. If NULL, the
value is chosen to match half of the number of columns in a data frame.

Details

get_scores() takes the results from principal_components() and extracts the variables for each
component found by the PCA. Then, for each of these "subscales", row means are calculated (which
equals adding up the single items and dividing by the number of items). This results in a sum score
for each component from the PCA, which is on the same scale as the original, single items that were
used to compute the PCA.

Value

A data frame with subscales, which are average sum scores for all items from each component.

Examples

if (require("psych")) {
pca <- principal_components(mtcars[, 1:7], n = 2, rotation = "varimax")

PCA extracted two components
pca

assignment of items to each component
closest_component(pca)

now we want to have sum scores for each component
get_scores(pca)

compare to manually computed sum score for 2nd component, which
consists of items "hp" and "qsec"
(mtcars$hp + mtcars$qsec) / 2

}

model_parameters Model Parameters

Description

Compute and extract model parameters. The available options and arguments depend on the model-
ing package and model class. Follow one of these links to read the model-specific documentation:

• Default method: lm, glm, stats, censReg, MASS, survey, ...

• Additive models: bamlss, gamlss, mgcv, scam, VGAM, Gam, gamm, ...

• ANOVA: afex, aov, anova, ...

54 model_parameters

• Bayesian: BayesFactor, blavaan, brms, MCMCglmm, posterior, rstanarm, bayesQR,
bcplm, BGGM, blmrm, blrm, mcmc.list, MCMCglmm, ...

• Clustering: hclust, kmeans, mclust, pam, ...

• Correlations, t-tests, etc.: lmtest, htest, pairwise.htest, ...

• Meta-Analysis: metaBMA, metafor, metaplus, ...

• Mixed models: cplm, glmmTMB, lme4, lmerTest, nlme, ordinal, robustlmm, spaMM,
mixed, MixMod, ...

• Multinomial, ordinal and cumulative link: brglm2, DirichletReg, nnet, ordinal, mlm, ...

• Multiple imputation: mice
• PCA, FA, CFA, SEM: FactoMineR, lavaan, psych, sem, ...

• Zero-inflated and hurdle: cplm, mhurdle, pscl, ...

• Other models: aod, bbmle, betareg, emmeans, epiR, ggeffects, glmx, ivfixed, ivprobit,
JRM, lmodel2, logitsf, marginaleffects, margins, maxLik, mediation, mfx, multcomp,
mvord, plm, PMCMRplus, quantreg, selection, systemfit, tidymodels, varEST, WRS2,
bfsl, deltaMethod, fitdistr, mjoint, mle, model.avg, ...

Usage

model_parameters(model, ...)

parameters(model, ...)

Arguments

model Statistical Model.

... Arguments passed to or from other methods. Non-documented arguments are
digits, p_digits, ci_digits and footer_digits to set the number of digits
for the output. If s_value = TRUE, the p-value will be replaced by the S-value in
the output (cf. Rafi and Greenland 2020). pd adds an additional column with the
probability of direction (see bayestestR::p_direction() for details). groups
can be used to group coefficients. It will be passed to the print-method, or can di-
rectly be used in print(), see documentation in print.parameters_model().
Furthermore, see ’Examples’ in model_parameters.default(). For develop-
ers, whose interest mainly is to get a "tidy" data frame of model summaries, it
is recommended to set pretty_names = FALSE to speed up computation of the
summary table.

Value

A data frame of indices related to the model’s parameters.

Standardization of model coefficients

Standardization is based on standardize_parameters(). In case of standardize = "refit",
the data used to fit the model will be standardized and the model is completely refitted. In such
cases, standard errors and confidence intervals refer to the standardized coefficient. The default,

model_parameters 55

standardize = "refit", never standardizes categorical predictors (i.e. factors), which may be a
different behaviour compared to other R packages or other software packages (like SPSS). To mimic
behaviour of SPSS or packages such as lm.beta, use standardize = "basic".

Standardization Methods

• refit: This method is based on a complete model re-fit with a standardized version of the
data. Hence, this method is equal to standardizing the variables before fitting the model. It
is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computation-
ally costly and long (especially for heavy models such as Bayesian models). This method
is particularly recommended for complex models that include interactions or transformations
(e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a ro-
bust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See
standardize() for more details. Note that standardize_parameters(method = "refit")
may not return the same results as fitting a model on data that has been standardized with
standardize(); standardize_parameters() used the data used by the model fitting func-
tion, which might not be same data if there are missing values. see the remove_na argument
in standardize().

• posthoc: Post-hoc standardization of the parameters, aiming at emulating the results obtained
by "refit" without refitting the model. The coefficients are divided by the standard deviation
(or MAD if robust) of the outcome (which becomes their expression ’unit’). Then, the co-
efficients related to numeric variables are additionally multiplied by the standard deviation
(or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the
predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y). This does
not apply to binary variables or factors, so the coefficients are still related to changes in levels.
This method is not accurate and tend to give aberrant results when interactions are specified.

• basic: This method is similar to method = "posthoc", but treats all variables as continuous:
it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors
levels (transformed to integers) or binary predictors. Although being inappropriate for these
cases, this method is the one implemented by default in other software packages, such as
lm.beta::lm.beta().

• smart (Standardization of Model’s parameters with Adjustment, Reconnaissance and Trans-
formation - experimental): Similar to method = "posthoc" in that it does not involve model
refitting. The difference is that the SD (or MAD if robust) of the response is computed on the
relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is
entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the
response at the intercept only. As a results, the coefficients for effects of factors are similar to
a Glass’ delta.

• pseudo (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor
are standardized based on the level of prediction (levels are detected with performance::check_heterogeneity_bias()):
Predictors are standardized based on their SD at level of prediction (see also datawizard::demean());
The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model,
where sqrt(random-intercept-variance) is used for level 2 predictors, and sqrt(residual-variance)
is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-
group variable is found to have access between-group variance.

See also package vignette.

https://easystats.github.io/parameters/articles/standardize_parameters_effsize.html

56 model_parameters

Labeling the Degrees of Freedom

Throughout the parameters package, we decided to label the residual degrees of freedom df_error.
The reason for this is that these degrees of freedom not always refer to the residuals. For certain
models, they refer to the estimate error - in a linear model these are the same, but in - for instance -
any mixed effects model, this isn’t strictly true. Hence, we think that df_error is the most generic
label for these degrees of freedom.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

"kenward"

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

model_parameters 57

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

58 model_parameters

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model.
The number of parameters, and overall performance of the model, can differ or not between a *
b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of
the same model, but other times it gives completely different models (depending on a or b being
factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full
context of the model, which should not be inferred from the parameters table alone - rather, we
recommend to use packages that calculate estimated marginal means or marginal effects, such as
modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may
use print(...,show_formula=TRUE) to add the model-specification to the output of the print()
method for model_parameters().

Global Options to Customize Messages and Tables when Printing

The verbose argument can be used to display or silence messages and warnings for the different
functions in the parameters package. However, some messages providing additional information
can be displayed or suppressed using options():

• parameters_summary: options(parameters_summary = TRUE) will override the summary
argument in model_parameters() and always show the model summary for non-mixed mod-
els.

• parameters_mixed_summary: options(parameters_mixed_summary = TRUE) will override
the summary argument in model_parameters() for mixed models, and will then always show
the model summary.

https://CRAN.R-project.org/package=modelbased
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=ggeffects
https://CRAN.R-project.org/package=marginaleffects

model_parameters 59

• parameters_cimethod: options(parameters_cimethod = TRUE) will show the additional
information about the approximation method used to calculate confidence intervals and p-
values. Set to FALSE to hide this message when printing model_parameters() objects.

• parameters_exponentiate: options(parameters_exponentiate = TRUE) will show the
additional information on how to interpret coefficients of models with log-transformed re-
sponse variables or with log-/logit-links when the exponentiate argument in model_parameters()
is not TRUE. Set this option to FALSE to hide this message when printing model_parameters()
objects.

There are further options that can be used to modify the default behaviour for printed outputs:

• parameters_labels: options(parameters_labels = TRUE) will use variable and value la-
bels for pretty names, if data is labelled. If no labels available, default pretty names are used.

• parameters_interaction: options(parameters_interaction = <character>) will re-
place the interaction mark (by default, *) with the related character.

• parameters_select: options(parameters_select = <value>) will set the default for the
select argument. See argument’s documentation for available options.

• easystats_html_engine: options(easystats_html_engine = "gt") will set the default
HTML engine for tables to gt, i.e. the gt package is used to create HTML tables. If set to tt,
the tinytable package is used.

Note

The print() method has several arguments to tweak the output. There is also a plot()-method im-
plemented in the see-package, and a dedicated method for use inside rmarkdown files, print_md().

For developers, if speed performance is an issue, you can use the (undocumented) pretty_names
argument, e.g. model_parameters(..., pretty_names = FALSE). This will skip the formatting
of the coefficient names and make model_parameters() faster.

References

• Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change.
Routledge.

• Neter, J., Wasserman, W., & Kutner, M. H. (1989). Applied linear regression models.

• Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: replace confidence
and significance by compatibility and surprise. BMC Medical Research Methodology (2020)
20:244.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

60 model_parameters.aov

model_parameters.aov Parameters from ANOVAs

Description

Parameters from ANOVAs

Usage

S3 method for class 'aov'
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...

)

S3 method for class 'afex_aov'
model_parameters(
model,
effectsize_type = NULL,
df_error = NULL,
type = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model Object of class aov(), anova(), aovlist, Gam, manova(), Anova.mlm, afex_aov
or maov.

type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables
using car::Anova() will be returned. (Ignored for afex_aov.)

model_parameters.aov 61

df_error Denominator degrees of freedom (or degrees of freedom of the error estimate,
i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from
mixed models. See ’Examples’. (Ignored for afex_aov.)

ci Confidence Interval (CI) level for effect sizes specified in effectsize_type.
The default, NULL, will compute no confidence intervals. ci should be a scalar
between 0 and 1.

alternative A character string specifying the alternative hypothesis; Controls the type of
CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-
sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section
One-Sided CIs in the effectsize_CIs vignette.

test String, indicating the type of test for Anova.mlm to be returned. If "multivariate"
(or NULL), returns the summary of the multivariate test (that is also given by the
print-method). If test = "univariate", returns the summary of the univariate
test.

power Logical, if TRUE, adds a column with power for each parameter.
effectsize_type

The effect size of interest. Not that possibly not all effect sizes are applicable
to the model object. See ’Details’. For Anova models, can also be a character
vector with multiple effect size names.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

table_wide Logical that decides whether the ANOVA table should be in wide format, i.e.
should the numerator and denominator degrees of freedom be in the same row.
Default: FALSE.

verbose Toggle warnings and messages.
omega_squared, eta_squared, epsilon_squared

Deprecated. Please use effectsize_type.

... Arguments passed to effectsize::effectsize(). For example, to calcu-
late partial effect sizes types, use partial = TRUE. For objects of class htest
or BFBayesFactor, adjust = TRUE can be used to return bias-corrected effect

https://easystats.github.io/effectsize/

62 model_parameters.aov

sizes, which is advisable for small samples and large tables. See also ?effectsize::eta_squared
for arguments partial and generalized; ?effectsize::phi for adjust; and
?effectsize::oddratio for log.

Details

• For an object of class htest, data is extracted via insight::get_data(), and passed to the
relevant function according to:

– A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority",
"u1", "u2", "u3", "overlap".

* For a Paired t-test: depending on type: "rm_rm", "rm_av", "rm_b", "rm_d", "rm_z".

– A Chi-squared tests of independence or Fisher’s Exact Test, depending on type:
"cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h",
"oddsratio", "riskratio", "arr", or "nnt".

– A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w",
"pearsons_c"

– A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon"
-squared, "f", or "f2".

– A McNemar test returns Cohen’s g.

– A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or
one of "p_superiority", "vda", "u2", "u3", "overlap".

– A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".

– A Friedman test returns Kendall’s W. (Where applicable, ci and alternative are taken
from the htest if not otherwise provided.)

• For an object of class BFBayesFactor, using bayestestR::describe_posterior(),

– A t-test depending on type: "cohens_d" (default) or one of "p_superiority", "u1",
"u2", "u3", "overlap".

– A correlation test returns r.

– A contingency table test, depending on type: "cramers_v" (default), "phi", "tschuprows_t",
"cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or
"nnt".

– A proportion test returns p.

• Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default),
"omega" or "epsilon" -squared, "f", or "f2".

• Other objects are passed to parameters::standardize_parameters().

For statistical models it is recommended to directly use the listed functions, for the full range
of options they provide.

Value

A data frame of indices related to the model’s parameters.

https://easystats.github.io/effectsize/reference/eta_squared.html
https://easystats.github.io/effectsize/reference/phi.html
https://easystats.github.io/effectsize/reference/oddsratio.html

model_parameters.aov 63

Note

For ANOVA-tables from mixed models (i.e. anova(lmer())), only partial or adjusted effect sizes
can be computed. Note that type 3 ANOVAs with interactions involved only give sensible and in-
formative results when covariates are mean-centred and factors are coded with orthogonal contrasts
(such as those produced by contr.sum, contr.poly, or contr.helmert, but not by the default
contr.treatment).

Examples

df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)

model_parameters(model, effectsize_type = c("omega", "eta"), ci = 0.9)

model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(

model,
effectsize_type = c("omega", "eta", "epsilon"),
alternative = "greater"

)

model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)

df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)

simple parameters table
model_parameters(model)

parameters table including effect sizes
model_parameters(

model,
effectsize_type = "eta",
ci = 0.9,
df_error = dof_satterthwaite(mm)[2:3]

)

64 model_parameters.befa

model_parameters.befa Parameters from Bayesian Exploratory Factor Analysis

Description

Format Bayesian Exploratory Factor Analysis objects from the BayesFM package.

Usage

S3 method for class 'befa'
model_parameters(
model,
sort = FALSE,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = NULL,
verbose = TRUE,
...

)

Arguments

model Bayesian EFA created by the BayesFM::befa.

sort Sort the loadings.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

verbose Toggle warnings.

... Arguments passed to or from other methods.

model_parameters.BFBayesFactor 65

Value

A data frame of loadings.

Examples

library(parameters)

if (require("BayesFM")) {
efa <- BayesFM::befa(mtcars, iter = 1000)
results <- model_parameters(efa, sort = TRUE, verbose = FALSE)
results
efa_to_cfa(results, verbose = FALSE)

}

model_parameters.BFBayesFactor

Parameters from BayesFactor objects

Description

Parameters from BFBayesFactor objects from {BayesFactor} package.

Usage

S3 method for class 'BFBayesFactor'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
priors = TRUE,
effectsize_type = NULL,
include_proportions = FALSE,
verbose = TRUE,
cohens_d = NULL,
cramers_v = NULL,
...

)

66 model_parameters.BFBayesFactor

Arguments

model Object of class BFBayesFactor.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list

with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,
0.1)) or "default". If "default", the bounds are set to x +- 0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

priors Add the prior used for each parameter.
effectsize_type

The effect size of interest. Not that possibly not all effect sizes are applicable
to the model object. See ’Details’. For Anova models, can also be a character
vector with multiple effect size names.

include_proportions

Logical that decides whether to include posterior cell proportions/counts for
Bayesian contingency table analysis (from BayesFactor::contingencyTableBF()).
Defaults to FALSE, as this information is often redundant.

verbose Toggle off warnings.
cohens_d, cramers_v

Deprecated. Please use effectsize_type.
... Additional arguments to be passed to or from methods.

Details

The meaning of the extracted parameters:

• For BayesFactor::ttestBF(): Difference is the raw difference between the means.
• For BayesFactor::correlationBF(): rho is the linear correlation estimate (equivalent to

Pearson’s r).
• For BayesFactor::lmBF() / BayesFactor::generalTestBF() / BayesFactor::regressionBF()

/ BayesFactor::anovaBF(): in addition to parameters of the fixed and random effects, there
are: mu is the (mean-centered) intercept; sig2 is the model’s sigma; g / g_* are the g parame-
ters; See the Bayes Factors for ANOVAs paper (doi:10.1016/j.jmp.2012.08.001).

https://doi.org/10.1016/j.jmp.2012.08.001

model_parameters.cgam 67

Value

A data frame of indices related to the model’s parameters.

Examples

if (require("BayesFactor")) {
Bayesian t-test
model <- ttestBF(x = rnorm(100, 1, 1))
model_parameters(model)
model_parameters(model, cohens_d = TRUE, ci = .9)

Bayesian contingency table analysis
data(raceDolls)
bf <- contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols")
model_parameters(bf,
centrality = "mean",
dispersion = TRUE,
verbose = FALSE,
effectsize_type = "cramers_v"

)
}

model_parameters.cgam Parameters from Generalized Additive (Mixed) Models

Description

Extract and compute indices and measures to describe parameters of generalized additive models
(GAM(M)s).

Usage

S3 method for class 'cgam'
model_parameters(
model,
ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

68 model_parameters.cgam

)

S3 method for class 'gamm'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
verbose = TRUE,
...

)

S3 method for class 'Gam'
model_parameters(
model,
effectsize_type = NULL,
df_error = NULL,
type = NULL,
table_wide = FALSE,
verbose = TRUE,
...

)

S3 method for class 'scam'
model_parameters(
model,
ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model A gam/gamm model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-

model_parameters.cgam 69

dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter

70 model_parameters.cgam

components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

effectsize_type

The effect size of interest. Not that possibly not all effect sizes are applicable
to the model object. See ’Details’. For Anova models, can also be a character
vector with multiple effect size names.

df_error Denominator degrees of freedom (or degrees of freedom of the error estimate,
i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from
mixed models. See ’Examples’. (Ignored for afex_aov.)

type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables
using car::Anova() will be returned. (Ignored for afex_aov.)

table_wide Logical that decides whether the ANOVA table should be in wide format, i.e.
should the numerator and denominator degrees of freedom be in the same row.
Default: FALSE.

Details

The reporting of degrees of freedom for the spline terms slightly differs from the output of summary(model),
for example in the case of mgcv::gam(). The estimated degrees of freedom, column edf in the
summary-output, is named df in the returned data frame, while the column df_error in the re-
turned data frame refers to the residual degrees of freedom that are returned by df.residual().
Hence, the values in the the column df_error differ from the column Ref.df from the summary,
which is intentional, as these reference degrees of freedom “is not very interpretable” (web).

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("mgcv")) {

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
model_parameters(model)

}

https://stat.ethz.ch/pipermail/r-help/2019-March/462135.html

model_parameters.cpglmm 71

model_parameters.cpglmm

Parameters from Mixed Models

Description

Parameters from (linear) mixed models.

Usage

S3 method for class 'cpglmm'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
include_sigma = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'glmmTMB'
model_parameters(
model,
ci = 0.95,
ci_method = "wald",
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,

72 model_parameters.cpglmm

drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
...

)

S3 method for class 'merMod'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
vcov = NULL,
vcov_args = NULL,
...

)

S3 method for class 'mixed'
model_parameters(
model,
ci = 0.95,
ci_method = "wald",
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,

model_parameters.cpglmm 73

verbose = TRUE,
include_sigma = FALSE,
...

)

S3 method for class 'MixMod'
model_parameters(
model,
ci = 0.95,
ci_method = "wald",
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
...

)

S3 method for class 'lme'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
vcov = NULL,

74 model_parameters.cpglmm

vcov_args = NULL,
...

)

S3 method for class 'clmm2'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "scale"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'clmm'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
include_sigma = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",

model_parameters.cpglmm 75

"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

ci_random Logical, if TRUE, includes the confidence intervals for random effects parame-
ters. Only applies if effects is not "fixed" and if ci is not NULL. Set ci_random
= FALSE if computation of the model summary is too much time consuming. By
default, ci_random = NULL, which uses a heuristic to guess if computation of
confidence intervals for random effects is fast enough or not. For models with
larger sample size and/or more complex random effects structures, confidence
intervals will not be computed by default, for simpler models or fewer observa-
tions, confidence intervals will be included. Set explicitly to TRUE or FALSE to
enforce or omit calculation of confidence intervals.

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of draws to simulate/bootstrap.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or
both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

group_level Logical, for multilevel models (i.e. models with random effects) and when
effects = "all" or effects = "random", include the parameters for each group
level from random effects. If group_level = FALSE (the default), only informa-
tion on SD and COR are shown.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate

76 model_parameters.cpglmm

= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

include_sigma Logical, if TRUE, includes the residual standard deviation. For mixed models,
this is defined as the sum of the distribution-specific variance and the variance
for the additive overdispersion term (see insight::get_variance() for de-
tails). Defaults to FALSE for mixed models due to the longer computation time.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

wb_component Logical, if TRUE and models contains within- and between-effects (see datawizard::demean()),
the Component column will indicate which variables belong to the within-effects,
between-effects, and cross-level interactions. By default, the Component column
indicates, which parameters belong to the conditional or zero-inflation compo-
nent of the model.

summary Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

model_parameters.cpglmm 77

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments.

Value

A data frame of indices related to the model’s parameters.

Confidence intervals for random effects variances

For models of class merMod and glmmTMB, confidence intervals for random effect variances can be
calculated.

• For models of from package lme4, when ci_method is either "profile" or "boot", and
effects is either "random" or "all", profiled resp. bootstrapped confidence intervals are
computed for the random effects.

• For all other options of ci_method, and only when the merDeriv package is installed, con-
fidence intervals for random effects are based on normal-distribution approximation, using
the delta-method to transform standard errors for constructing the intervals around the log-
transformed SD parameters. These are than back-transformed, so that random effect vari-
ances, standard errors and confidence intervals are shown on the original scale. Due to the
transformation, the intervals are asymmetrical, however, they are within the correct bounds
(i.e. no negative interval for the SD, and the interval for the correlations is within the range
from -1 to +1).

• For models of class glmmTMB, confidence intervals for random effect variances always use a
Wald t-distribution approximation.

Singular fits (random effects variances near zero)

If a model is "singular", this means that some dimensions of the variance-covariance matrix have
been estimated as exactly zero. This often occurs for mixed models with complex random effects
structures.

There is no gold-standard about how to deal with singularity and which random-effects specification
to choose. One way is to fully go Bayesian (with informative priors). Other proposals are listed
in the documentation of performance::check_singularity(). However, since version 1.1.9, the

78 model_parameters.cpglmm

glmmTMB package allows to use priors in a frequentist framework, too. One recommendation is
to use a Gamma prior (Chung et al. 2013). The mean may vary from 1 to very large values (like
1e8), and the shape parameter should be set to a value of 2.5. You can then update() your model
with the specified prior. In glmmTMB, the code would look like this:

"model" is an object of class gmmmTMB
prior <- data.frame(
prior = "gamma(1, 2.5)", # mean can be 1, but even 1e8
class = "ranef" # for random effects

)
model_with_priors <- update(model, priors = prior)

Large values for the mean parameter of the Gamma prior have no large impact on the random effects
variances in terms of a "bias". Thus, if 1 doesn’t fix the singular fit, you can safely try larger values.

Dispersion parameters in glmmTMB

For some models from package glmmTMB, both the dispersion parameter and the residual vari-
ance from the random effects parameters are shown. Usually, these are the same but presented on
different scales, e.g.

model <- glmmTMB(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
exp(fixef(model)$disp) # 0.09902987
sigma(model)^2 # 0.09902987

For models where the dispersion parameter and the residual variance are the same, only the residual
variance is shown in the output.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

model_parameters.cpglmm 79

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

80 model_parameters.cpglmm

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

Note

If the calculation of random effects parameters takes too long, you may use effects = "fixed".
There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

model_parameters.dbscan 81

References

Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, and Liu J. 2013. "A Nondegenerate Penalized Like-
lihood Estimator for Variance Parameters in Multilevel Models." Psychometrika 78 (4): 685–709.
doi:10.1007/s1133601393282

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
data(mtcars)
model <- lme4::lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model)

data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(

count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
model_parameters(model, effects = "all")

model <- lme4::lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model, bootstrap = TRUE, iterations = 50, verbose = FALSE)

model_parameters.dbscan

Parameters from Cluster Models (k-means, ...)

Description

Format cluster models obtained for example by kmeans().

Usage

S3 method for class 'dbscan'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'hclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

https://doi.org/10.1007/s11336-013-9328-2

82 model_parameters.dbscan

S3 method for class 'pvclust'
model_parameters(model, data = NULL, clusters = NULL, ci = 0.95, ...)

S3 method for class 'kmeans'
model_parameters(model, ...)

S3 method for class 'hkmeans'
model_parameters(model, ...)

S3 method for class 'Mclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'pam'
model_parameters(model, data = NULL, clusters = NULL, ...)

Arguments

model Cluster model.

data A data.frame.

clusters A vector with clusters assignments (must be same length as rows in data).

... Arguments passed to or from other methods.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

Examples

DBSCAN ---------------------------
if (require("dbscan", quietly = TRUE)) {

model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)

rez <- model_parameters(model, iris[1:4])
rez

Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

HDBSCAN
model <- dbscan::hdbscan(iris[1:4], minPts = 10)
model_parameters(model, iris[1:4])

}

#
Hierarchical clustering (hclust) ---------------------------

model_parameters.dbscan 83

data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)

rez <- model_parameters(model, data, clusters)
rez

Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Total_Sum_Squares
attributes(rez)$Between_Sum_Squares

#
pvclust (finds "significant" clusters) ---------------------------
if (require("pvclust", quietly = TRUE)) {

data <- iris[1:4]
NOTE: pvclust works on transposed data
model <- pvclust::pvclust(datawizard::data_transpose(data, verbose = FALSE),
method.dist = "euclidean",
nboot = 50,
quiet = TRUE

)

rez <- model_parameters(model, data, ci = 0.90)
rez

Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

}

#
K-means -------------------------------
model <- kmeans(iris[1:4], centers = 3)
rez <- model_parameters(model)
rez

Get clusters
predict(rez)

Clusters centers in long form

84 model_parameters.default

attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

#
Hierarchical K-means (factoextra::hkclust) ----------------------
if (require("factoextra", quietly = TRUE)) {

data <- iris[1:4]
model <- factoextra::hkmeans(data, k = 3)

rez <- model_parameters(model)
rez

Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

}

if (require("mclust", quietly = TRUE)) {
model <- mclust::Mclust(iris[1:4], verbose = FALSE)
model_parameters(model)

}

#
K-Medoids (PAM and HPAM) ==============
if (require("cluster", quietly = TRUE)) {

model <- cluster::pam(iris[1:4], k = 3)
model_parameters(model)

}
if (require("fpc", quietly = TRUE)) {

model <- fpc::pamk(iris[1:4], criterion = "ch")
model_parameters(model)

}

model_parameters.default

Parameters from (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).

model_parameters.default 85

Usage

Default S3 method:
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...

)

S3 method for class 'glm'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...

)

S3 method for class 'censReg'
model_parameters(
model,
ci = 0.95,
ci_method = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,

86 model_parameters.default

p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...

)

S3 method for class 'ridgelm'
model_parameters(model, verbose = TRUE, ...)

Arguments

model Model object.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard

model_parameters.default 87

errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

summary Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

88 model_parameters.default

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

model_parameters.default 89

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:
Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

90 model_parameters.default

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)

model_parameters(model)

bootstrapped parameters
model_parameters(model, bootstrap = TRUE)

standardized parameters
model_parameters(model, standardize = "refit")

robust, heteroskedasticity-consistent standard errors
model_parameters(model, vcov = "HC3")

model_parameters(model,
vcov = "vcovCL",
vcov_args = list(cluster = mtcars$cyl)

)

model_parameters.DirichletRegModel 91

different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)

show odds ratio / exponentiated coefficients
model_parameters(model, exponentiate = TRUE)

bias-corrected logistic regression with penalized maximum likelihood
model <- glm(

vs ~ wt + cyl,
data = mtcars,
family = "binomial",
method = "brglmFit"

)
model_parameters(model)

model_parameters.DirichletRegModel

Parameters from multinomial or cumulative link models

Description

Parameters from multinomial or cumulative link models

Usage

S3 method for class 'DirichletRegModel'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'bifeAPEs'

92 model_parameters.DirichletRegModel

model_parameters(model, ...)

S3 method for class 'bracl'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'mlm'
model_parameters(
model,
ci = 0.95,
vcov = NULL,
vcov_args = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'clm2'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "scale"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,

model_parameters.DirichletRegModel 93

verbose = TRUE,
...

)

Arguments

model A model with multinomial or categorical response value.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

94 model_parameters.DirichletRegModel

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

summary Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments.

Details

Multinomial or cumulative link models, i.e. models where the response value (dependent variable)
is categorical and has more than two levels, usually return coefficients for each response level.

model_parameters.glht 95

Hence, the output from model_parameters() will split the coefficient tables by the different levels
of the model’s response.

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

data("stemcell", package = "brglm2")
model <- brglm2::bracl(

research ~ as.numeric(religion) + gender,
weights = frequency,
data = stemcell,
type = "ML"

)
model_parameters(model)

model_parameters.glht Parameters from Hypothesis Testing

Description

Parameters from Hypothesis Testing.

Usage

S3 method for class 'glht'
model_parameters(
model,
ci = 0.95,
exponentiate = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

96 model_parameters.glht

Arguments

model Object of class multcomp::glht() (multcomp) or of class PMCMR, trendPMCMR
or osrt (PMCMRplus).

ci Confidence Interval (CI) level. Default to 0.95 (95%).

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

Examples

if (require("multcomp", quietly = TRUE)) {
multiple linear model, swiss data
lmod <- lm(Fertility ~ ., data = swiss)
mod <- glht(

model_parameters.glimML 97

model = lmod,
linfct = c(

"Agriculture = 0",
"Examination = 0",
"Education = 0",
"Catholic = 0",
"Infant.Mortality = 0"

)
)
model_parameters(mod)

}
if (require("PMCMRplus", quietly = TRUE)) {

model <- suppressWarnings(
kwAllPairsConoverTest(count ~ spray, data = InsectSprays)

)
model_parameters(model)

}

model_parameters.glimML

Parameters from special models

Description

Parameters from special regression models not listed under one of the previous categories yet.

Usage

S3 method for class 'glimML'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "random", "dispersion", "all"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'averaging'
model_parameters(

98 model_parameters.glimML

model,
ci = 0.95,
component = c("conditional", "full"),
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'betareg'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "precision", "all"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'emm_list'
model_parameters(
model,
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...

)

S3 method for class 'glmx'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "extra"),
standardize = NULL,
exponentiate = FALSE,

model_parameters.glimML 99

p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'marginaleffects'
model_parameters(model, ci = 0.95, exponentiate = FALSE, ...)

S3 method for class 'metaplus'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
include_studies = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'meta_random'
model_parameters(
model,
ci = 0.95,
ci_method = "eti",
exponentiate = FALSE,
include_studies = TRUE,
verbose = TRUE,
...

)

S3 method for class 'meta_bma'
model_parameters(
model,
ci = 0.95,
ci_method = "eti",
exponentiate = FALSE,
include_studies = TRUE,
verbose = TRUE,
...

)

S3 method for class 'betaor'

100 model_parameters.glimML

model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "precision", "all"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...

)

S3 method for class 'betamfx'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision", "marginal"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'mjoint'
model_parameters(
model,
ci = 0.95,
effects = "fixed",
component = c("all", "conditional", "survival"),
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'mvord'
model_parameters(
model,
ci = 0.95,
component = c("all", "conditional", "thresholds", "correlation"),

model_parameters.glimML 101

standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'selection'
model_parameters(
model,
ci = 0.95,
component = c("all", "selection", "outcome", "auxiliary"),
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model Model object.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of

Bayesian regressions apply (see also bootstrap_parameters()).
iterations The number of bootstrap replicates. This only apply in the case of bootstrapped

frequentist models.
component Model component for which parameters should be shown. May be one of

"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx), "conditional" or "full" (for MuMIn::model.avg()) or
"all".

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

102 model_parameters.glimML

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

summary Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

include_studies

Logical, if TRUE (default), includes parameters for all studies. Else, only param-
eters for overall-effects are shown.

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on

model_parameters.htest 103

the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("brglm2", quietly = TRUE)) {

data("stemcell")
model <- bracl(
research ~ as.numeric(religion) + gender,
weights = frequency,
data = stemcell,
type = "ML"

)
model_parameters(model)

}

model_parameters.htest

Parameters from hypothesis tests

Description

Parameters of h-tests (correlations, t-tests, chi-squared, ...).

Usage

S3 method for class 'htest'
model_parameters(
model,
ci = 0.95,
alternative = NULL,
bootstrap = FALSE,
effectsize_type = NULL,
verbose = TRUE,

104 model_parameters.htest

cramers_v = NULL,
phi = NULL,
standardized_d = NULL,
hedges_g = NULL,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
cohens_g = NULL,
rank_biserial = NULL,
rank_epsilon_squared = NULL,
kendalls_w = NULL,
...

)

S3 method for class 'coeftest'
model_parameters(
model,
ci = 0.95,
ci_method = "wald",
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model Object of class htest or pairwise.htest.

ci Level of confidence intervals for effect size statistic. Currently only applies to
objects from chisq.test() or oneway.test().

alternative A character string specifying the alternative hypothesis; Controls the type of
CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-
sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section
One-Sided CIs in the effectsize_CIs vignette.

bootstrap Should estimates be bootstrapped?
effectsize_type

The effect size of interest. Not that possibly not all effect sizes are applicable
to the model object. See ’Details’. For Anova models, can also be a character
vector with multiple effect size names.

verbose Toggle warnings and messages.
cramers_v, phi, cohens_g, standardized_d, hedges_g, omega_squared, eta_squared, epsilon_squared, rank_biserial, rank_epsilon_squared, kendalls_w

Deprecated. Please use effectsize_type.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",

https://easystats.github.io/effectsize/

model_parameters.htest 105

"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

Details

• For an object of class htest, data is extracted via insight::get_data(), and passed to the
relevant function according to:

– A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority",
"u1", "u2", "u3", "overlap".

* For a Paired t-test: depending on type: "rm_rm", "rm_av", "rm_b", "rm_d", "rm_z".
– A Chi-squared tests of independence or Fisher’s Exact Test, depending on type:
"cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h",
"oddsratio", "riskratio", "arr", or "nnt".

– A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w",
"pearsons_c"

– A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon"
-squared, "f", or "f2".

– A McNemar test returns Cohen’s g.
– A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or

one of "p_superiority", "vda", "u2", "u3", "overlap".
– A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
– A Friedman test returns Kendall’s W. (Where applicable, ci and alternative are taken

from the htest if not otherwise provided.)

• For an object of class BFBayesFactor, using bayestestR::describe_posterior(),

– A t-test depending on type: "cohens_d" (default) or one of "p_superiority", "u1",
"u2", "u3", "overlap".

– A correlation test returns r.

106 model_parameters.MCMCglmm

– A contingency table test, depending on type: "cramers_v" (default), "phi", "tschuprows_t",
"cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or
"nnt".

– A proportion test returns p.

• Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default),
"omega" or "epsilon" -squared, "f", or "f2".

• Other objects are passed to parameters::standardize_parameters().

For statistical models it is recommended to directly use the listed functions, for the full range
of options they provide.

Value

A data frame of indices related to the model’s parameters.

Examples

model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)

model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model, effectsize_type = "hedges_g")

model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model, effectsize_type = "hedges_g")

model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model, effectsize_type = "cohens_d")

data(airquality)
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
model <- pairwise.t.test(airquality$Ozone, airquality$Month)
model_parameters(model)

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
model <- suppressWarnings(pairwise.prop.test(smokers, patients))
model_parameters(model)

model <- suppressWarnings(chisq.test(table(mtcars$am, mtcars$cyl)))
model_parameters(model, effectsize_type = "cramers_v")

model_parameters.MCMCglmm

Parameters from Bayesian Models

model_parameters.MCMCglmm 107

Description

Parameters from Bayesian models.

Usage

S3 method for class 'MCMCglmm'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

S3 method for class 'brmsfit'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = "fixed",
component = "all",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,

108 model_parameters.MCMCglmm

...
)

S3 method for class 'draws'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'stanreg'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model Bayesian model (including SEM from blavaan. May also be a data frame with
posterior samples, however, as_draws must be set to TRUE (else, for data frames
NULL is returned).

centrality The point-estimates (centrality indices) to compute. Character (vector) or list

model_parameters.MCMCglmm 109

with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

ci Credible Interval (CI) level. Default to 0.95 (95%). See bayestestR::ci() for
further details.

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details. When ci_method=NULL, in most cases "wald" is used then.

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,
0.1)) or "default". If "default", the bounds are set to x +- 0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used
if the input is a posterior, otherwise (in the case of models) ignored.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

priors Add the prior used for each parameter.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

110 model_parameters.MCMCglmm

verbose Toggle messages and warnings.
... Currently not used.
as_draws Logical, if TRUE and model is of class data.frame, the data frame is treated

as posterior samples and handled similar to Bayesian models. All arguments in
... are passed to model_parameters.draws().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflation part of the model, the dispersion term, or other aux-
iliary parameters be returned? Applies to models with zero-inflation and/or
dispersion formula, or if parameters such as sigma should be included. May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model. There are three convenient shortcuts:
component = "all" returns all possible parameters. If component = "location",
location parameters such as conditional, zero_inflated, or smooth_terms,
are returned (everything that are fixed or random effects - depending on the
effects argument - but no auxiliary parameters). For component = "distributional"
(or "auxiliary"), components like sigma, dispersion, or beta (and other
auxiliary parameters) are returned.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

group_level Logical, for multilevel models (i.e. models with random effects) and when
effects = "all" or effects = "random", include the parameters for each group
level from random effects. If group_level = FALSE (the default), only informa-
tion on SD and COR are shown.

model_parameters.MCMCglmm 111

Value

A data frame of indices related to the model’s parameters.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

112 model_parameters.MCMCglmm

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

model_parameters.MCMCglmm 113

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

Note

When standardize = "refit", columns diagnostic, bf_prior and priors refer to the original
model. If model is a data frame, arguments diagnostic, bf_prior and priors are ignored.

There is also a plot()-method implemented in the see-package.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("rstanarm")) {

model <- suppressWarnings(stan_glm(
Sepal.Length ~ Petal.Length * Species,
data = iris, iter = 500, refresh = 0

))
model_parameters(model)

}

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

114 model_parameters.mipo

model_parameters.mipo Parameters from multiply imputed repeated analyses

Description

Format models of class mira, obtained from mice::width.mids(), or of class mipo.

Usage

S3 method for class 'mipo'
model_parameters(
model,
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

S3 method for class 'mira'
model_parameters(
model,
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model An object of class mira or mipo.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate

model_parameters.mipo 115

= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

Details

model_parameters() for objects of class mira works similar to summary(mice::pool()), i.e. it
generates the pooled summary of multiple imputed repeated regression analyses.

Examples

library(parameters)
if (require("mice", quietly = TRUE)) {

data(nhanes2)
imp <- mice(nhanes2)
fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
model_parameters(fit)

}

model_parameters() also works for models that have no "tidy"-method in mice
if (require("mice", quietly = TRUE) && require("gee", quietly = TRUE)) {

data(warpbreaks)
set.seed(1234)
warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
imp <- mice(warpbreaks)
fit <- with(data = imp, expr = gee(breaks ~ tension, id = wool))

116 model_parameters.PCA

does not work:
summary(pool(fit))

model_parameters(fit)
}

and it works with pooled results
if (require("mice")) {

data("nhanes2")
imp <- mice(nhanes2)
fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
pooled <- pool(fit)

model_parameters(pooled)
}

model_parameters.PCA Parameters from PCA, FA, CFA, SEM

Description

Format structural models from the psych or FactoMineR packages.

Usage

S3 method for class 'PCA'
model_parameters(
model,
sort = FALSE,
threshold = NULL,
labels = NULL,
verbose = TRUE,
...

)

S3 method for class 'lavaan'
model_parameters(
model,
ci = 0.95,
standardize = FALSE,
component = c("regression", "correlation", "loading", "defined"),
keep = NULL,
drop = NULL,
verbose = TRUE,
...

model_parameters.PCA 117

)

S3 method for class 'principal'
model_parameters(
model,
sort = FALSE,
threshold = NULL,
labels = NULL,
verbose = TRUE,
...

)

Arguments

model Model object.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

labels A character vector containing labels to be added to the loadings data. Usually,
the question related to the item.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

standardize Return standardized parameters (standardized coefficients). Can be TRUE (or
"all" or "std.all") for standardized estimates based on both the variances of
observed and latent variables; "latent" (or "std.lv") for standardized esti-
mates based on the variances of the latent variables only; or "no_exogenous"
(or "std.nox") for standardized estimates based on both the variances of ob-
served and latent variables, but not the variances of exogenous covariates. See
lavaan::standardizedsolution for details.

component What type of links to return. Can be "all" or some of c("regression",
"correlation", "loading", "variance", "mean").

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter

118 model_parameters.PCA

components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

Details

For the structural models obtained with psych, the following indices are present:

• Complexity (Hoffman’s, 1978; Pettersson and Turkheimer, 2010) represents the number of
latent components needed to account for the observed variables. Whereas a perfect simple
structure solution has a complexity of 1 in that each item would only load on one factor, a
solution with evenly distributed items has a complexity greater than 1.

• Uniqueness represents the variance that is ’unique’ to the variable and not shared with other
variables. It is equal to 1 communality (variance that is shared with other variables). A
uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other vari-
ables in the overall factor model. The greater ’uniqueness’ the lower the relevance of the
variable in the factor model.

• MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice,
1974) for each item. It indicates whether there is enough data for each factor give reliable
results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and
Fidell, 2013).

Value

A data frame of indices or loadings.

Note

There is also a plot()-method for lavaan models implemented in the see-package.

References

• Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and Psychological Mea-
surement, 34(1):111–117

• Pettersson, E., and Turkheimer, E. (2010). Item selection, evaluation, and simple structure in
personality data. Journal of research in personality, 44(4), 407-420.

• Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

• Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston:
Pearson Education.

• Rosseel Y (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statis-
tical Software, 48(2), 1-36.

• Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation Models via Parameter
Expansion. Journal of Statistical Software, 85(4), 1-30. http://www.jstatsoft.org/v85/i04/

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

model_parameters.PCA 119

Examples

library(parameters)
if (require("psych", quietly = TRUE)) {

Principal Component Analysis (PCA) ---------
pca <- psych::principal(attitude)
model_parameters(pca)

pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
model_parameters(pca, sort = TRUE, threshold = 0.2)

principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)

Exploratory Factor Analysis (EFA) ---------
efa <- psych::fa(attitude, nfactors = 3)
model_parameters(efa,
threshold = "max", sort = TRUE,
labels = as.character(1:ncol(attitude))

)

Omega ---------
omega <- psych::omega(mtcars, nfactors = 3)
params <- model_parameters(omega)
params
summary(params)

}

lavaan

library(parameters)

lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {

Confirmatory Factor Analysis (CFA) ---------

structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "

model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)

filter parameters
model_parameters(

model,
parameters = list(

To = "^(?!visual)",
From = "^(?!(x7|x8))"

)

120 model_parameters.rma

)

Structural Equation Model (SEM) ------------

structure <- "
latent variable definitions

ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)

}

model_parameters.rma Parameters from Meta-Analysis

Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

S3 method for class 'rma'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
include_studies = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

model_parameters.rma 121

Arguments

model Model object.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

include_studies

Logical, if TRUE (default), includes parameters for all studies. Else, only param-
eters for overall-effects are shown.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter

122 model_parameters.rma

components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

Examples

library(parameters)
mydat <<- data.frame(

effectsize = c(-0.393, 0.675, 0.282, -1.398),
stderr = c(0.317, 0.317, 0.13, 0.36)

)
if (require("metafor", quietly = TRUE)) {

model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
model_parameters(model)

}

with subgroups
if (require("metafor", quietly = TRUE)) {

data(dat.bcg)
dat <- escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg

)
dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
d <<- dat
model <- rma(yi, vi, mods = ~alloc, data = d, digits = 3, slab = author)
model_parameters(model)

}

if (require("metaBMA", quietly = TRUE)) {
data(towels)
m <- suppressWarnings(meta_random(logOR, SE, study, data = towels))
model_parameters(m)

}

model_parameters.t1way 123

model_parameters.t1way

Parameters from robust statistical objects in WRS2

Description

Parameters from robust statistical objects in WRS2

Usage

S3 method for class 't1way'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

Arguments

model Object from WRS2 package.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

Value

A data frame of indices related to the model’s parameters.

Examples

if (require("WRS2") && packageVersion("WRS2") >= "1.1.3") {
model <- t1way(libido ~ dose, data = viagra)
model_parameters(model)

}

124 model_parameters.zcpglm

model_parameters.zcpglm

Parameters from Zero-Inflated Models

Description

Parameters from zero-inflated models (from packages like pscl, cplm or countreg).

Usage

S3 method for class 'zcpglm'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "zi", "zero_inflated"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
summary = getOption("parameters_summary", FALSE),
verbose = TRUE,
...

)

S3 method for class 'mhurdle'
model_parameters(
model,
ci = 0.95,
component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip",

"auxiliary"),
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model A model with zero-inflation component.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of

Bayesian regressions apply (see also bootstrap_parameters()).

model_parameters.zcpglm 125

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See ’Details’ in standardize_parameters().
Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter

126 n_clusters

components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

summary Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("pscl")) {

data("bioChemists")
model <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd, data = bioChemists)
model_parameters(model)

}

n_clusters Find number of clusters in your data

Description

Similarly to n_factors() for factor / principal component analysis, n_clusters() is the main
function to find out the optimal numbers of clusters present in the data based on the maximum
consensus of a large number of methods.

Essentially, there exist many methods to determine the optimal number of clusters, each with pros
and cons, benefits and limitations. The main n_clusters function proposes to run all of them, and
find out the number of clusters that is suggested by the majority of methods (in case of ties, it will
select the most parsimonious solution with fewer clusters).

Note that we also implement some specific, commonly used methods, like the Elbow or the Gap
method, with their own visualization functionalities. See the examples below for more details.

n_clusters 127

Usage

n_clusters(
x,
standardize = TRUE,
include_factors = FALSE,
package = c("easystats", "NbClust", "mclust"),
fast = TRUE,
nbclust_method = "kmeans",
n_max = 10,
...

)

n_clusters_elbow(
x,
standardize = TRUE,
include_factors = FALSE,
clustering_function = stats::kmeans,
n_max = 10,
...

)

n_clusters_gap(
x,
standardize = TRUE,
include_factors = FALSE,
clustering_function = stats::kmeans,
n_max = 10,
gap_method = "firstSEmax",
...

)

n_clusters_silhouette(
x,
standardize = TRUE,
include_factors = FALSE,
clustering_function = stats::kmeans,
n_max = 10,
...

)

n_clusters_dbscan(
x,
standardize = TRUE,
include_factors = FALSE,
method = c("kNN", "SS"),
min_size = 0.1,
eps_n = 50,
eps_range = c(0.1, 3),

128 n_clusters

...
)

n_clusters_hclust(
x,
standardize = TRUE,
include_factors = FALSE,
distance_method = "correlation",
hclust_method = "average",
ci = 0.95,
iterations = 100,
...

)

Arguments

x A data frame.

standardize Standardize the dataframe before clustering (default).
include_factors

Logical, if TRUE, factors are converted to numerical values in order to be in-
cluded in the data for determining the number of clusters. By default, factors
are removed, because most methods that determine the number of clusters need
numeric input only.

package Package from which methods are to be called to determine the number of clus-
ters. Can be "all" or a vector containing "easystats", "NbClust", "mclust",
and "M3C".

fast If FALSE, will compute 4 more indices (sets index = "allong" in NbClust).
This has been deactivated by default as it is computationally heavy.

nbclust_method The clustering method (passed to NbClust::NbClust() as method).

n_max Maximal number of clusters to test.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like type or parallel are passed down to bootstrap_model().

clustering_function, gap_method

Other arguments passed to other functions. clustering_function is used by
fviz_nbclust() and can be kmeans, cluster::pam, cluster::clara, cluster::fanny,
and more. gap_method is used by cluster::maxSE to extract the optimal num-
bers of clusters (see its method argument).

method, min_size, eps_n, eps_range

Arguments for DBSCAN algorithm.
distance_method

The distance method (passed to dist()). Used by algorithms relying on the
distance matrix, such as hclust or dbscan.

hclust_method The hierarchical clustering method (passed to hclust()).

ci Confidence Interval (CI) level. Default to 0.95 (95%).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

n_clusters 129

Note

There is also a plot()-method implemented in the see-package.

Examples

library(parameters)

The main 'n_clusters' function ===============================
if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) &&

require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
n
summary(n)
as.data.frame(n) # Duration is the time elapsed for each method in seconds
plot(n)

The following runs all the method but it significantly slower
n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)

}

x <- n_clusters_elbow(iris[1:4])
x
as.data.frame(x)
plot(x)

#
Gap method --------------------
if (require("see", quietly = TRUE) &&

require("cluster", quietly = TRUE) &&
require("factoextra", quietly = TRUE)) {
x <- n_clusters_gap(iris[1:4])
x
as.data.frame(x)
plot(x)

}

#
Silhouette method --------------------------
if (require("factoextra", quietly = TRUE)) {

x <- n_clusters_silhouette(iris[1:4])
x
as.data.frame(x)
plot(x)

}

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

130 n_factors

#
if (require("dbscan", quietly = TRUE)) {

DBSCAN method -------------------------
NOTE: This actually primarily estimates the 'eps' parameter, the number of
clusters is a side effect (it's the number of clusters corresponding to
this 'optimal' EPS parameter).
x <- n_clusters_dbscan(iris[1:4], method = "kNN", min_size = 0.05) # 5 percent
x
head(as.data.frame(x))
plot(x)

x <- n_clusters_dbscan(iris[1:4], method = "SS", eps_n = 100, eps_range = c(0.1, 2))
x
head(as.data.frame(x))
plot(x)

}

#
hclust method -------------------------------
if (require("pvclust", quietly = TRUE)) {

iterations should be higher for real analyses
x <- n_clusters_hclust(iris[1:4], iterations = 50, ci = 0.90)
x
head(as.data.frame(x), n = 10) # Print 10 first rows
plot(x)

}

n_factors Number of components/factors to retain in PCA/FA

Description

This function runs many existing procedures for determining how many factors to retain/extract
from factor analysis (FA) or dimension reduction (PCA). It returns the number of factors based on
the maximum consensus between methods. In case of ties, it will keep the simplest model and select
the solution with the fewer factors.

Usage

n_factors(
x,
type = "FA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,

n_factors 131

n_max = NULL,
...

)

n_components(
x,
type = "PCA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,
...

)

Arguments

x A data frame.

type Can be "FA" or "PCA", depending on what you want to do.

rotation Only used for VSS (Very Simple Structure criterion, see psych::VSS()). The
rotation to apply. Can be "none", "varimax", "quartimax", "bentlerT",
"equamax", "varimin", "geominT" and "bifactor" for orthogonal rotations,
and "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin"
and "cluster" for oblique transformations.

algorithm Factoring method used by VSS. Can be "pa" for Principal Axis Factor Analysis,
"minres" for minimum residual (OLS) factoring, "mle" for Maximum Likeli-
hood FA and "pc" for Principal Components. "default" will select "minres"
if type = "FA" and "pc" if type = "PCA".

package Package from which respective methods are used. Can be "all" or a vector
containing "nFactors", "psych", "PCDimension", "fit" or "EGAnet". Note
that "fit" (which actually also relies on the psych package) and "EGAnet" can
be very slow for bigger datasets. Thus, the default is c("nFactors", "psych").
You must have the respective packages installed for the methods to be used.

cor An optional correlation matrix that can be used (note that the data must still be
passed as the first argument). If NULL, will compute it by running cor() on the
passed data.

safe If TRUE, the function will run all the procedures in try blocks, and will only
return those that work and silently skip the ones that may fail.

n_max If set to a value (e.g., 10), will drop from the results all methods that suggest a
higher number of components. The interpretation becomes ’from all the meth-
ods that suggested a number lower than n_max, the results are ...’.

... Arguments passed to or from other methods.

Details

n_components() is actually an alias for n_factors(), with different defaults for the function ar-
guments.

132 n_factors

Value

A data frame.

Note

There is also a plot()-method implemented in the see-package. n_components() is a convenient
short-cut for n_factors(type = "PCA").

References

• Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of statistical
psychology, 3(2), 77-85.

• Bentler, P. M., & Yuan, K. H. (1996). Test of linear trend in eigenvalues of a covariance matrix
with application to data analysis. British Journal of Mathematical and Statistical Psychology,
49(2), 299-312.

• Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral re-
search, 1(2), 245-276.

• Finch, W. H. (2019). Using Fit Statistic Differences to Determine the Optimal Number of
Factors to Retain in an Exploratory Factor Analysis. Educational and Psychological Measure-
ment.

• Zoski, K. W., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor
analysis: The standard error scree. Educational and Psychological Measurement, 56(3), 443-
451.

• Zoski, K., & Jurs, S. (1993). Using multiple regression to determine the number of factors to
retain in factor analysis. Multiple Linear Regression Viewpoints, 20(1), 5-9.

• Nasser, F., Benson, J., & Wisenbaker, J. (2002). The performance of regression-based vari-
ations of the visual scree for determining the number of common factors. Educational and
psychological measurement, 62(3), 397-419.

• Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Thiyagara-
jan, J. A. (2018). Investigating the performance of Exploratory Graph Analysis and traditional
techniques to identify the number of latent factors: A simulation and tutorial.

• Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for esti-
mating the number of dimensions in psychological research. PloS one, 12(6), e0174035.

• Revelle, W., & Rocklin, T. (1979). Very simple structure: An alternative procedure for esti-
mating the optimal number of interpretable factors. Multivariate Behavioral Research, 14(4),
403-414.

• Velicer, W. F. (1976). Determining the number of components from the matrix of partial
correlations. Psychometrika, 41(3), 321-327.

Examples

library(parameters)
n_factors(mtcars, type = "PCA")

result <- n_factors(mtcars[1:5], type = "FA")

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

parameters_type 133

as.data.frame(result)
summary(result)

Setting package = 'all' will increase the number of methods (but is slow)
n_factors(mtcars, type = "PCA", package = "all")
n_factors(mtcars, type = "FA", algorithm = "mle", package = "all")

parameters_type Type of model parameters

Description

In a regression model, the parameters do not all have the meaning. For instance, the intercept has
to be interpreted as theoretical outcome value under some conditions (when predictors are set to 0),
whereas other coefficients are to be interpreted as amounts of change. Others, such as interactions,
represent changes in another of the parameter. The parameters_type function attempts to retrieve
information and meaning of parameters. It outputs a dataframe of information for each parameters,
such as the Type (whether the parameter corresponds to a factor or a numeric predictor, or whether
it is a (regular) interaction or a nested one), the Link (whether the parameter can be interpreted as
a mean value, the slope of an association or a difference between two levels) and, in the case of
interactions, which other parameters is impacted by which parameter.

Usage

parameters_type(model, ...)

Arguments

model A statistical model.

... Arguments passed to or from other methods.

Value

A data frame.

Examples

library(parameters)

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
parameters_type(model)

134 pool_parameters

Interactions
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Sepal.Width * Species * Petal.Length, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / Sepal.Width, data = iris)
parameters_type(model)

Complex interactions
data <- iris
data$fac2 <- ifelse(data$Sepal.Width > mean(data$Sepal.Width), "A", "B")
model <- lm(Sepal.Length ~ Species / fac2 / Petal.Length, data = data)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / fac2 * Petal.Length, data = data)
parameters_type(model)

pool_parameters Pool Model Parameters

Description

This function "pools" (i.e. combines) model parameters in a similar fashion as mice::pool().
However, this function pools parameters from parameters_model objects, as returned by model_parameters().

Usage

pool_parameters(
x,
exponentiate = FALSE,
effects = "fixed",
component = "conditional",
verbose = TRUE,
...

)

Arguments

x A list of parameters_model objects, as returned by model_parameters(), or
a list of model-objects that is supported by model_parameters().

pool_parameters 135

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or
both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

verbose Toggle warnings and messages.

... Arguments passed down to model_parameters(), if x is a list of model-objects.
Can be used, for instance, to specify arguments like ci or ci_method etc.

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76). The pooled degrees of freedom
is based on the Barnard-Rubin adjustment for small samples (Barnard and Rubin, 1999).

Value

A data frame of indices related to the model’s parameters.

Note

Models with multiple components, (for instance, models with zero-inflation, where predictors ap-
pear in the count and zero-inflation part) may fail in case of identical names for coefficients in the
different model components, since the coefficient table is grouped by coefficient names for pooling.
In such cases, coefficients of count and zero-inflation model parts would be combined. Therefore,
the component argument defaults to "conditional" to avoid this.

Some model objects do not return standard errors (e.g. objects of class htest). For these models,
no pooled confidence intervals nor p-values are returned.

References

Barnard, J. and Rubin, D.B. (1999). Small sample degrees of freedom with multiple imputation.
Biometrika, 86, 948-955. Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys.
New York: John Wiley and Sons.

136 predict.parameters_clusters

Examples

example for multiple imputed datasets
data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)
models <- lapply(1:5, function(i) {

lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
})
pool_parameters(models)

should be identical to:
m <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
summary(mice::pool(m))

For glm, mice used residual df, while `pool_parameters()` uses `Inf`
nhanes2$hyp <- datawizard::slide(as.numeric(nhanes2$hyp))
imp <- mice::mice(nhanes2, printFlag = FALSE)
models <- lapply(1:5, function(i) {

glm(hyp ~ age + chl, family = binomial, data = mice::complete(imp, action = i))
})
m <- with(data = imp, exp = glm(hyp ~ age + chl, family = binomial))
residual df
summary(mice::pool(m))$df
df = Inf
pool_parameters(models)$df_error
use residual df instead
pool_parameters(models, ci_method = "residual")$df_error

predict.parameters_clusters

Predict method for parameters_clusters objects

Description

Predict method for parameters_clusters objects

Usage

S3 method for class 'parameters_clusters'
predict(object, newdata = NULL, names = NULL, ...)

Arguments

object a model object for which prediction is desired.

newdata data.frame

names character vector or list

... additional arguments affecting the predictions produced.

print.parameters_model 137

print.parameters_model

Print model parameters

Description

A print()-method for objects from model_parameters().

Usage

S3 method for class 'parameters_model'
print(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
footer = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
footer_digits = 3,
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
groups = NULL,
column_width = NULL,
ci_brackets = c("[", "]"),
include_reference = FALSE,
...

)

S3 method for class 'parameters_model'
summary(object, ...)

Arguments

x, object An object returned by model_parameters().

pretty_names Can be TRUE, which will return "pretty" (i.e. more human readable) parameter
names. Or "labels", in which case value and variable labels will be used as
parameters names. The latter only works for "labelled" data, i.e. if the data used
to fit the model had "label" and "labels" attributes. See also section Global
Options to Customize Messages when Printing.

split_components

Logical, if TRUE (default), For models with multiple components (zero-inflation,
smooth terms, ...), each component is printed in a separate table. If FALSE, model

138 print.parameters_model

parameters are printed in a single table and a Component column is added to the
output.

select Determines which columns and and which layout columns are printed. There
are three options for this argument:

1. Selecting columns by name or index
select can be a character vector (or numeric index) of column names that
should be printed. There are two pre-defined options for selecting columns:
select = "minimal" prints coefficients, confidence intervals and p-values,
while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. However, it is possible to create multiple
columns as well. Following tokens are replaced by the related coefficients
or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p}
and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}.
Furthermore, a | separates values into new cells/columns. If format =
"html", a
 inserts a line break inside a cell. See ’Examples’.

3. A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:

• "ci": Estimates and confidence intervals, no asterisks for p-values.
This is equivalent to select = "{estimate} ({ci})".

• "se": Estimates and standard errors, no asterisks for p-values. This is
equivalent to select = "{estimate} ({se})".

• "ci_p": Estimates, confidence intervals and asterisks for p-values. This
is equivalent to select = "{estimate}{stars} ({ci})".

• "se_p": Estimates, standard errors and asterisks for p-values. This is
equivalent to select = "{estimate}{stars} ({se})"..

• "ci_p2": Estimates, confidence intervals and numeric p-values, in two
columns. This is equivalent to select = "{estimate} ({ci})|{p}".

• "se_p2": Estimate, standard errors and numeric p-values, in two columns.
This is equivalent to select = "{estimate} ({se})|{p}".

For model_parameters(), glue-like syntax is still experimental in the case of
more complex models (like mixed models) and may not return expected results.

caption Table caption as string. If NULL, depending on the model, either a default caption
or no table caption is printed. Use caption = "" to suppress the table caption.

footer Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to
print the default footer, or a string. The latter will combine the string value with
the default footer.

digits, ci_digits, p_digits

Number of digits for rounding or significant figures. May also be "signif" to
return significant figures or "scientific" to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4"
to have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

print.parameters_model 139

footer_digits Number of decimal places for values in the footer summary.

show_sigma Logical, if TRUE, adds information about the residual standard deviation.

show_formula Logical, if TRUE, adds the model formula to the output.

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

groups Named list, can be used to group parameters in the printed output. List elements
may either be character vectors that match the name of those parameters that be-
long to one group, or list elements can be row numbers of those parameter rows
that should belong to one group. The names of the list elements will be used
as group names, which will be inserted as "header row". A possible use case
might be to emphasize focal predictors and control variables, see ’Examples’.
Parameters will be re-ordered according to the order used in groups, while all
non-matching parameters will be added to the end.

column_width Width of table columns. Can be either NULL, a named numeric vector, or "fixed".
If NULL, the width for each table column is adjusted to the minimum required
width. If a named numeric vector, value names are matched against column
names, and for each match, the specified width is used. If "fixed", and ta-
ble is split into multiple components, columns across all table components are
adjusted to have the same width.

ci_brackets Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

include_reference

Logical, if TRUE, the reference level of factors will be added to the parameters
table. This is only relevant for models with categorical predictors. The coef-
ficient for the reference level is always 0 (except when exponentiate = TRUE,
then the coefficient will be 1), so this is just for completeness.

... Arguments passed to or from other methods.

Details

summary() is a convenient shortcut for print(object, select = "minimal", show_sigma = TRUE,
show_formula = TRUE).

Value

Invisibly returns the original input object.

Global Options to Customize Messages and Tables when Printing

The verbose argument can be used to display or silence messages and warnings for the different
functions in the parameters package. However, some messages providing additional information
can be displayed or suppressed using options():

• parameters_summary: options(parameters_summary = TRUE) will override the summary
argument in model_parameters() and always show the model summary for non-mixed mod-
els.

140 print.parameters_model

• parameters_mixed_summary: options(parameters_mixed_summary = TRUE) will override
the summary argument in model_parameters() for mixed models, and will then always show
the model summary.

• parameters_cimethod: options(parameters_cimethod = TRUE) will show the additional
information about the approximation method used to calculate confidence intervals and p-
values. Set to FALSE to hide this message when printing model_parameters() objects.

• parameters_exponentiate: options(parameters_exponentiate = TRUE) will show the
additional information on how to interpret coefficients of models with log-transformed re-
sponse variables or with log-/logit-links when the exponentiate argument in model_parameters()
is not TRUE. Set this option to FALSE to hide this message when printing model_parameters()
objects.

There are further options that can be used to modify the default behaviour for printed outputs:

• parameters_labels: options(parameters_labels = TRUE) will use variable and value la-
bels for pretty names, if data is labelled. If no labels available, default pretty names are used.

• parameters_interaction: options(parameters_interaction = <character>) will re-
place the interaction mark (by default, *) with the related character.

• parameters_select: options(parameters_select = <value>) will set the default for the
select argument. See argument’s documentation for available options.

• easystats_html_engine: options(easystats_html_engine = "gt") will set the default
HTML engine for tables to gt, i.e. the gt package is used to create HTML tables. If set to tt,
the tinytable package is used.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model.
The number of parameters, and overall performance of the model, can differ or not between a *
b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of
the same model, but other times it gives completely different models (depending on a or b being
factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full
context of the model, which should not be inferred from the parameters table alone - rather, we
recommend to use packages that calculate estimated marginal means or marginal effects, such as
modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may
use print(...,show_formula=TRUE) to add the model-specification to the output of the print()
method for model_parameters().

Labeling the Degrees of Freedom

Throughout the parameters package, we decided to label the residual degrees of freedom df_error.
The reason for this is that these degrees of freedom not always refer to the residuals. For certain
models, they refer to the estimate error - in a linear model these are the same, but in - for instance -
any mixed effects model, this isn’t strictly true. Hence, we think that df_error is the most generic
label for these degrees of freedom.

See Also

There is a dedicated method to use inside rmarkdown files, print_md(). See also display().

https://CRAN.R-project.org/package=modelbased
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=ggeffects
https://CRAN.R-project.org/package=marginaleffects

print.parameters_model 141

Examples

library(parameters)
model <- glmmTMB::glmmTMB(

count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
mp <- model_parameters(model)

print(mp, pretty_names = FALSE)

print(mp, split_components = FALSE)

print(mp, select = c("Parameter", "Coefficient", "SE"))

print(mp, select = "minimal")

group parameters ------

data(iris)
model <- lm(

Sepal.Width ~ Sepal.Length + Species + Petal.Length,
data = iris

)
don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\\(Intercept)")
groups <- list(

"Focal Predictors" = c("Speciesversicolor", "Speciesvirginica"),
"Controls" = c("Sepal.Length", "Petal.Length")

)
print(mp, groups = groups)

or use row indices
print(mp, groups = list(

"Focal Predictors" = c(1, 4),
"Controls" = c(2, 3)

))

only show coefficients, CI and p,
put non-matched parameters to the end

data(mtcars)
mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$gear <- as.factor(mtcars$gear)
model <- lm(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)

don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\\(Intercept)")

142 p_calibrate

print(mp, groups = list(
"Engine" = c("cyl6", "cyl8", "vs", "hp"),
"Interactions" = c("gear4:vs", "gear5:vs")

))

custom column layouts ------

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)

custom style
result <- compare_parameters(lm1, lm2, select = "{estimate}{stars} ({se})")
print(result)

custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}
({se})|{p}")
print_html(result)

p_calibrate Calculate calibrated p-values.

Description

Compute calibrated p-values that can be interpreted probabilistically, i.e. as posterior probability of
H0 (given that H0 and H1 have equal prior probabilities).

Usage

p_calibrate(x, ...)

Default S3 method:
p_calibrate(x, type = "frequentist", verbose = TRUE, ...)

Arguments

x A numeric vector of p-values, or a regression model object.

... Currently not used.

type Type of calibration. Can be "frequentist" or "bayesian". See ’Details’.

verbose Toggle warnings.

p_function 143

Details

The Bayesian calibration, i.e. when type = "bayesian", can be interpreted as the lower bound of
the Bayes factor for H0 to H1, based on the data. The full Bayes factor would then require multi-
plying by the prior odds of H0 to H1. The frequentist calibration also has a Bayesian interpretation;
it is the posterior probability of H0, assuming that H0 and H1 have equal prior probabilities of 0.5
each (Sellke et al. 2001).

The calibration only works for p-values lower than or equal to 1/e.

Value

A data frame with p-values and calibrated p-values.

References

Thomas Sellke, M. J Bayarri and James O Berger (2001) Calibration of p Values for Testing Precise
Null Hypotheses, The American Statistician, 55:1, 62-71, doi:10.1198/000313001300339950

Examples

model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
p_calibrate(model, verbose = FALSE)

p_function p-value or consonance function

Description

Compute p-values and compatibility (confidence) intervals for statistical models, at different levels.
This function is also called consonance function. It allows to see which estimates are compatible
with the model at various compatibility levels. Use plot() to generate plots of the p resp. conso-
nance function and compatibility intervals at different levels.

Usage

p_function(
model,
ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
exponentiate = FALSE,
effects = "fixed",
component = "all",
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

consonance_function(

https://doi.org/10.1198/000313001300339950

144 p_function

model,
ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
exponentiate = FALSE,
effects = "fixed",
component = "all",
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

confidence_curve(
model,
ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
exponentiate = FALSE,
effects = "fixed",
component = "all",
keep = NULL,
drop = NULL,
verbose = TRUE,
...

)

Arguments

model Statistical Model.

ci_levels Vector of scalars, indicating the different levels at which compatibility intervals
should be printed or plotted. In plots, these levels are highlighted by vertical
lines. It is possible to increase thickness for one or more of these lines by pro-
viding a names vector, where the to be highlighted values should be named
"emph", e.g ci_levels = c(0.25, 0.5, emph = 0.95).

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or
both ("all") be returned? Only applies to mixed models. May be abbreviated.
If the calculation of random effects parameters takes too long, you may use
effects = "fixed".

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models

p_function 145

with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. Non-documented arguments are
digits, p_digits, ci_digits and footer_digits to set the number of digits
for the output. If s_value = TRUE, the p-value will be replaced by the S-value in
the output (cf. Rafi and Greenland 2020). pd adds an additional column with the
probability of direction (see bayestestR::p_direction() for details). groups
can be used to group coefficients. It will be passed to the print-method, or can di-
rectly be used in print(), see documentation in print.parameters_model().
Furthermore, see ’Examples’ in model_parameters.default(). For develop-
ers, whose interest mainly is to get a "tidy" data frame of model summaries, it
is recommended to set pretty_names = FALSE to speed up computation of the
summary table.

Details

Compatibility intervals and continuous p-values for different estimate values:
p_function() only returns the compatibility interval estimates, not the related p-values. The
reason for this is because the p-value for a given estimate value is just 1 - CI_level. The values
indicating the lower and upper limits of the intervals are the related estimates associated with the
p-value. E.g., if a parameter x has a 75% compatibility interval of (0.81, 1.05), then the p-
value for the estimate value of 0.81 would be 1 - 0.75, which is 0.25. This relationship is more
intuitive and better to understand when looking at the plots (using plot()).

Conditional versus unconditional interpretation of p-values and intervals:
p_function(), and in particular its plot() method, aims at re-interpreting p-values and confi-
dence intervals (better named: compatibility intervals) in unconditional terms. Instead of refer-
ring to the long-term property and repeated trials when interpreting interval estimates (so-called

146 p_function

"aleatory probability", Schweder 2018), and assuming that all underlying assumptions are cor-
rect and met, p_function() interprets p-values in a Fisherian way as "continuous measure of
evidence against the very test hypothesis and entire model (all assumptions) used to compute it"
(P-Values Are Tough and S-Values Can Help, lesslikely.com/statistics/s-values; see also Amrhein
and Greenland 2022).
This interpretation as a continuous measure of evidence against the test hypothesis and the entire
model used to compute it can be seen in the figure below (taken from P-Values Are Tough and S-
Values Can Help, lesslikely.com/statistics/s-values). The "conditional" interpretation of p-values
and interval estimates (A) implicitly assumes certain assumptions to be true, thus the interpretation
is "conditioned" on these assumptions (i.e. assumptions are taken as given). The unconditional
interpretation (B), however, questions all these assumptions.
"Emphasizing unconditional interpretations helps avoid overconfident and misleading inferences
in light of uncertainties about the assumptions used to arrive at the statistical results." (Greenland
et al. 2022).
Note: The term "conditional" as used by Rafi and Greenland probably has a slightly different
meaning than normally. "Conditional" in this notion means that all model assumptions are taken
as given - it should not be confused with terms like "conditional probability". See also Greenland
et al. 2022 for a detailed elaboration on this issue.
In other words, the term compatibility interval emphasizes "the dependence of the p-value on the
assumptions as well as on the data, recognizing that p<0.05 can arise from assumption violations
even if the effect under study is null" (Gelman/Greenland 2019).

Probabilistic interpretation of compatibility intervals:
Schweder (2018) resp. Schweder and Hjort (2016) (and others) argue that confidence curves (as
produced by p_function()) have a valid probabilistic interpretation. They distinguish between
aleatory probability, which describes the aleatory stochastic element of a distribution ex ante, i.e.
before the data are obtained. This is the classical interpretation of confidence intervals following
the Neyman-Pearson school of statistics. However, there is also an ex post probability, called
epistemic probability, for confidence curves. The shift in terminology from confidence intervals
to compatibility intervals may help emphasizing this interpretation.
In this sense, the probabilistic interpretation of p-values and compatibility intervals is "condi-
tional" - on the data and model assumptions (which is in line with the "unconditional" interpreta-
tion in the sense of Rafi and Greenland).
Ascribing a probabilistic interpretation to one realized confidence interval is possible without
repeated sampling of the specific experiment. Important is the assumption that a sampling distri-
bution is a good description of the variability of the parameter (Vos and Holbert 2022). At the
core, the interpretation of a confidence interval is "I assume that this sampling distribution is a
good description of the uncertainty of the parameter. If that’s a good assumption, then the values
in this interval are the most plausible or compatible with the data". The source of confidence in
probability statements is the assumption that the selected sampling distribution is appropriate.
"The realized confidence distribution is clearly an epistemic probability distribution" (Schweder
2018). In Bayesian words, compatibility intervals (or confidence distributons, or consonance
curves) are "posteriors without priors" (Schweder, Hjort, 2003). In this regard, interpretation of
p-values might be guided using bayestestR::p_to_pd().

Compatibility intervals - is their interpretation conditional or not?:
The fact that the term "conditional" is used in different meanings, is confusing and unfortunate.
Thus, we would summarize the probabilistic interpretation of compatibility intervals as follows:

p_function 147

The intervals are built from the data and our modeling assumptions. The accuracy of the intervals
depends on our model assumptions. If a value is outside the interval, that might be because (1)
that parameter value isn’t supported by the data, or (2) the modeling assumptions are a poor fit for
the situation. When we make bad assumptions, the compatibility interval might be too wide or
(more commonly and seriously) too narrow, making us think we know more about the parameter
than is warranted.
When we say "there is a 95% chance the true value is in the interval", that is a statement of
epistemic probability (i.e. description of uncertainty related to our knowledge or belief). When
we talk about repeated samples or sampling distributions, that is referring to aleatoric (physical
properties) probability. Frequentist inference is built on defining estimators with known aleatoric
probability properties, from which we can draw epistemic probabilistic statements of uncertainty
(Schweder and Hjort 2016).

Value

A data frame with p-values and compatibility intervals.

Note

Curently, p_function() computes intervals based on Wald t- or z-statistic. For certain models (like
mixed models), profiled intervals may be more accurate, however, this is currently not supported.

References

• Amrhein V, Greenland S. Discuss practical importance of results based on interval estimates
and p-value functions, not only on point estimates and null p-values. Journal of Information
Technology 2022;37:316–20. doi:10.1177/02683962221105904

• Fraser DAS. The P-value function and statistical inference. The American Statistician. 2019;73(sup1):135-
147. doi:10.1080/00031305.2018.1556735

• Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ
(2019)l5381. doi:10.1136/bmj.l5381

• Greenland S, Rafi Z, Matthews R, Higgs M. To Aid Scientific Inference, Emphasize Uncon-
ditional Compatibility Descriptions of Statistics. (2022) https://arxiv.org/abs/1909.08583v7
(Accessed November 10, 2022)

• Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: Replace confi-
dence and significance by compatibility and surprise. BMC Medical Research Methodology.
2020;20(1):244. doi:10.1186/s12874020011059

• Schweder T. Confidence is epistemic probability for empirical science. Journal of Statistical
Planning and Inference (2018) 195:116–125. doi:10.1016/j.jspi.2017.09.016

• Schweder T, Hjort NL. Confidence and Likelihood. Scandinavian Journal of Statistics. 2002;29(2):309-
332. doi:10.1111/14679469.00285

• Schweder T, Hjort NL. Frequentist analogues of priors and posteriors. In Stigum, B. (ed.),
Econometrics and the Philosophy of Economics: Theory Data Confrontation in Economics,
pp. 285-217. Princeton University Press, Princeton, NJ, 2003

• Schweder T, Hjort NL. Confidence, Likelihood, Probability: Statistical inference with confi-
dence distributions. Cambridge University Press, 2016.

• Vos P, Holbert D. Frequentist statistical inference without repeated sampling. Synthese 200,
89 (2022). doi:10.1007/s1122902203560x

https://doi.org/10.1177/02683962221105904
https://doi.org/10.1080/00031305.2018.1556735
https://doi.org/10.1136/bmj.l5381
https://doi.org/10.1186/s12874-020-01105-9
https://doi.org/10.1016/j.jspi.2017.09.016
https://doi.org/10.1111/1467-9469.00285
https://doi.org/10.1007/s11229-022-03560-x

148 p_value

Examples

model <- lm(Sepal.Length ~ Species, data = iris)
p_function(model)

model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
result <- p_function(model)

single panels
plot(result, n_columns = 2)

integrated plot, the default
plot(result)

p_value p-values

Description

This function attempts to return, or compute, p-values of a model’s parameters. See the documen-
tation for your object’s class:

• Bayesian models (rstanarm, brms, MCMCglmm, ...)

• Zero-inflated models (hurdle, zeroinfl, zerocount, ...)

• Marginal effects models (mfx)

• Models with special components (DirichletRegModel, clm2, cgam, ...)

Usage

p_value(model, ...)

Default S3 method:
p_value(
model,
dof = NULL,
method = NULL,
component = "all",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...

)

S3 method for class 'emmGrid'
p_value(model, ci = 0.95, adjust = "none", ...)

p_value 149

Arguments

model A statistical model.

... Additional arguments

dof Number of degrees of freedom to be used when calculating confidence intervals.
If NULL (default), the degrees of freedom are retrieved by calling degrees_of_freedom()
with approximation method defined in method. If not NULL, use this argument
to override the default degrees of freedom used to compute confidence intervals.

method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details.

component Model component for which parameters should be shown. See the documenta-
tion for your object’s class in model_parameters() or p_value() for further
details.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments.

verbose Toggle warnings and messages.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

adjust Character value naming the method used to adjust p-values or confidence inter-
vals. See ?emmeans::summary.emmGrid for details.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the
model, may also include columns for model components etc.

150 p_value

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assump-
tions about the nature of the model and its sampling distribution. The ci_method argument modu-
lates the method for computing degrees of freedom (df) that are used to calculate confidence inter-
vals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference com-
putes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute
CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method
(SE and a t-distribution with residual df); p-values computed using the Wald method with a t-
distribution with residual df. For other models, CIs computed using the Wald method (SE and
a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal
distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution
with residual df when possible. If the residual df for a model cannot be determined, a normal
distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based in-
ference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead
using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with Satterthwaite df); p-values computed using the Wald method with a t-distribution with
Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE
and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with
Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution
with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution
with m-l-1 approximated df. See ci_ml1().

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#what-are-the-p-values-listed-by-summaryglmerfit-etc.-are-they-reliable

p_value 151

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the
Wald method (SE and a t-distribution with between-within df); p-values computed using the
Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood esti-
mate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or
a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models
are compared to a χ-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by
profiling the likelihood curve for a parameter, using linear interpolation to find where likeli-
hood ratio equals a critical value; p-values computed using the Wald method with a normal-
distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood
curve for a parameter, using root finding to find where likelihood ratio equals a critical value;
p-values computed using the Wald method with a normal-distribution (note: this might change
in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets.
The distribution of parameter estimates across resampled datasets is used to approximate the pa-
rameter’s sampling distribution. Depending on the type of model, several different methods for
bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies
if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior
samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only ap-
plies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for
the bootstrap or posterior samples; p-values are based on the probability of direction. See
bayestestR::bci().

152 p_value.BFBayesFactor

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals compar-
ing the posterior samples against the prior samples; p-values are based on the probability of
direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrap-
ping (simulating data from the fitted model); p-values computed using the Wald method with
a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci",
"bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which
is converted into a p-value using bayestestR::pd_to_p().

Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)

p_value.BFBayesFactor p-values for Bayesian Models

Description

This function attempts to return, or compute, p-values of Bayesian models.

Usage

S3 method for class 'BFBayesFactor'
p_value(model, ...)

Arguments

model A statistical model.

... Additional arguments

Details

For Bayesian models, the p-values corresponds to the probability of direction (bayestestR::p_direction()),
which is converted to a p-value using bayestestR::convert_pd_to_p().

Value

The p-values.

p_value.DirichletRegModel 153

Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)

p_value.DirichletRegModel

p-values for Models with Special Components

Description

This function attempts to return, or compute, p-values of models with special model components.

Usage

S3 method for class 'DirichletRegModel'
p_value(model, component = c("all", "conditional", "precision"), ...)

S3 method for class 'averaging'
p_value(model, component = c("conditional", "full"), ...)

S3 method for class 'betareg'
p_value(
model,
component = c("all", "conditional", "precision"),
verbose = TRUE,
...

)

S3 method for class 'cgam'
p_value(model, component = c("all", "conditional", "smooth_terms"), ...)

S3 method for class 'clm2'
p_value(model, component = c("all", "conditional", "scale"), ...)

Arguments

model A statistical model.
component Should all parameters, parameters for the conditional model, precision- or scale-

component or smooth_terms be returned? component may be one of "conditional",
"precision", "scale", "smooth_terms", "full" or "all" (default).

... Additional arguments
verbose Toggle warnings and messages.

Value

The p-values.

154 p_value.poissonmfx

p_value.poissonmfx p-values for Marginal Effects Models

Description

This function attempts to return, or compute, p-values of marginal effects models from package
mfx.

Usage

S3 method for class 'poissonmfx'
p_value(model, component = c("all", "conditional", "marginal"), ...)

S3 method for class 'betaor'
p_value(model, component = c("all", "conditional", "precision"), ...)

S3 method for class 'betamfx'
p_value(
model,
component = c("all", "conditional", "precision", "marginal"),
...

)

Arguments

model A statistical model.

component Should all parameters, parameters for the conditional model, precision-component
or marginal effects be returned? component may be one of "conditional",
"precision", "marginal" or "all" (default).

... Currently not used.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the
model, may also include columns for model components etc.

Examples

if (require("mfx", quietly = TRUE)) {
set.seed(12345)
n <- 1000
x <- rnorm(n)
y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5)
d <- data.frame(y, x)
model <- poissonmfx(y ~ x, data = d)

p_value(model)

p_value.zcpglm 155

p_value(model, component = "marginal")
}

p_value.zcpglm p-values for Models with Zero-Inflation

Description

This function attempts to return, or compute, p-values of hurdle and zero-inflated models.

Usage

S3 method for class 'zcpglm'
p_value(model, component = c("all", "conditional", "zi", "zero_inflated"), ...)

S3 method for class 'zeroinfl'
p_value(
model,
component = c("all", "conditional", "zi", "zero_inflated"),
method = NULL,
verbose = TRUE,
...

)

Arguments

model A statistical model.

component Model component for which parameters should be shown. See the documenta-
tion for your object’s class in model_parameters() or p_value() for further
details.

... Additional arguments

method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details.

verbose Toggle warnings and messages.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the
model, may also include columns for model components etc.

156 random_parameters

Examples

if (require("pscl", quietly = TRUE)) {
data("bioChemists")
model <- zeroinfl(art ~ fem + mar + kid5 | kid5 + phd, data = bioChemists)
p_value(model)
p_value(model, component = "zi")

}

qol_cancer Sample data set

Description

A sample data set with longitudinal data, used in the vignette describing the datawizard::demean()
function. Health-related quality of life from cancer-patients was measured at three time points (pre-
surgery, 6 and 12 months after surgery).

Format

A data frame with 564 rows and 7 variables:

ID Patient ID

QoL Quality of Life Score

time Timepoint of measurement

age Age in years

phq4 Patients’ Health Questionnaire, 4-item version

hospital Hospital ID, where patient was treated

education Patients’ educational level

random_parameters Summary information from random effects

Description

This function extracts the different variance components of a mixed model and returns the result as
a data frame.

Usage

random_parameters(model, component = "conditional")

random_parameters 157

Arguments

model A mixed effects model (including stanreg models).

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

Details

The variance components are obtained from insight::get_variance() and are denoted as fol-
lowing:

Within-group (or residual) variance:
The residual variance, σ2

ε , is the sum of the distribution-specific variance and the variance due to
additive dispersion. It indicates the within-group variance.

Between-group random intercept variance:
The random intercept variance, or between-group variance for the intercept (τ00), is obtained from
VarCorr(). It indicates how much groups or subjects differ from each other.

Between-group random slope variance:
The random slope variance, or between-group variance for the slopes (τ11) is obtained from
VarCorr(). This measure is only available for mixed models with random slopes. It indicates
how much groups or subjects differ from each other according to their slopes.

Random slope-intercept correlation:
The random slope-intercept correlation (ρ01) is obtained from VarCorr(). This measure is only
available for mixed models with random intercepts and slopes.
Note: For the within-group and between-group variance, variance and standard deviations (which
are simply the square root of the variance) are shown.

Value

A data frame with random effects statistics for the variance components, including number of levels
per random effect group, as well as complete observations in the model.

Examples

if (require("lme4")) {
data(sleepstudy)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
random_parameters(model)

}

158 reduce_parameters

reduce_parameters Dimensionality reduction (DR) / Features Reduction

Description

This function performs a reduction in the parameter space (the number of variables). It starts by
creating a new set of variables, based on the given method (the default method is "PCA", but other
are available via the method argument, such as "cMDS", "DRR" or "ICA"). Then, it names this
new dimensions using the original variables that correlates the most with it. For instance, a variable
named 'V1_0.97/V4_-0.88' means that the V1 and the V4 variables correlate maximally (with
respective coefficients of .97 and -.88) with this dimension. Although this function can be useful
in exploratory data analysis, it’s best to perform the dimension reduction step in a separate and
dedicated stage, as this is a very important process in the data analysis workflow. reduce_data()
is an alias for reduce_parameters.data.frame().

Usage

reduce_parameters(x, method = "PCA", n = "max", distance = "euclidean", ...)

reduce_data(x, method = "PCA", n = "max", distance = "euclidean", ...)

Arguments

x A data frame or a statistical model.

method The feature reduction method. Can be one of "PCA", "cMDS", "DRR", "ICA" (see
the ’Details’ section).

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number
of components is selected through n_factors() resp. n_components(). Else,
if n is a number, n components are extracted. If n exceeds number of variables
in the data, it is automatically set to the maximum number (i.e. ncol(x)). In
reduce_parameters(), can also be "max", in which case it will select all the
components that are maximally pseudo-loaded (i.e., correlated) by at least one
variable.

distance The distance measure to be used. Only applies when method = "cMDS". This
must be one of "euclidean", "maximum", "manhattan", "canberra", "binary"
or "minkowski". Any unambiguous substring can be given.

... Arguments passed to or from other methods.

Details

The different methods available are described below:

Supervised Methods:

• PCA: See principal_components().

reshape_loadings 159

• cMDS / PCoA: Classical Multidimensional Scaling (cMDS) takes a set of dissimilarities
(i.e., a distance matrix) and returns a set of points such that the distances between the points
are approximately equal to the dissimilarities.

• DRR: Dimensionality Reduction via Regression (DRR) is a very recent technique extending
PCA (Laparra et al., 2015). Starting from a rotated PCA, it predicts redundant informa-
tion from the remaining components using non-linear regression. Some of the most notable
advantages of performing DRR are avoidance of multicollinearity between predictors and
overfitting mitigation. DRR tends to perform well when the first principal component is
enough to explain most of the variation in the predictors. Requires the DRR package to be
installed.

• ICA: Performs an Independent Component Analysis using the FastICA algorithm. Contrary
to PCA, which attempts to find uncorrelated sources (through least squares minimization),
ICA attempts to find independent sources, i.e., the source space that maximizes the "non-
gaussianity" of all sources. Contrary to PCA, ICA does not rank each source, which makes
it a poor tool for dimensionality reduction. Requires the fastICA package to be installed.

See also package vignette.

References

• Nguyen, L. H., and Holmes, S. (2019). Ten quick tips for effective dimensionality reduction.
PLOS Computational Biology, 15(6).

• Laparra, V., Malo, J., and Camps-Valls, G. (2015). Dimensionality reduction via regression
in hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing, 9(6), 1026-
1036.

Examples

data(iris)
model <- lm(Sepal.Width ~ Species * Sepal.Length + Petal.Width, data = iris)
model
reduce_parameters(model)

out <- reduce_data(iris, method = "PCA", n = "max")
head(out)

reshape_loadings Reshape loadings between wide/long formats

Description

Reshape loadings between wide/long formats.

Usage

reshape_loadings(x, ...)

S3 method for class 'parameters_efa'

https://easystats.github.io/parameters/articles/parameters_reduction.html

160 select_parameters

reshape_loadings(x, threshold = NULL, ...)

S3 method for class 'data.frame'
reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)

Arguments

x A data frame or a statistical model.

... Arguments passed to or from other methods.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

loadings_columns

Vector indicating the columns corresponding to loadings.

Examples

if (require("psych")) {
pca <- model_parameters(psych::fa(attitude, nfactors = 3))
loadings <- reshape_loadings(pca)

loadings
reshape_loadings(loadings)

}

select_parameters Automated selection of model parameters

Description

This function performs an automated selection of the ’best’ parameters, updating and returning the
"best" model.

Usage

select_parameters(model, ...)

S3 method for class 'lm'
select_parameters(model, direction = "both", steps = 1000, k = 2, ...)

S3 method for class 'merMod'
select_parameters(model, direction = "backward", steps = 1000, ...)

select_parameters 161

Arguments

model A statistical model (of class lm, glm, or merMod).

... Arguments passed to or from other methods.

direction the mode of stepwise search, can be one of "both", "backward", or "forward",
with a default of "both". If the scope argument is missing the default for
direction is "backward". Values can be abbreviated.

steps the maximum number of steps to be considered. The default is 1000 (essentially
as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Only k =
2 gives the genuine AIC: k = log(n) is sometimes referred to as BIC or SBC.

Details

Classical lm and glm: For frequentist GLMs, select_parameters() performs an AIC-based
stepwise selection.

Mixed models: For mixed-effects models of class merMod, stepwise selection is based on
cAIC4::stepcAIC(). This step function only searches the "best" model based on the random-
effects structure, i.e. select_parameters() adds or excludes random-effects until the cAIC
can’t be improved further.

Value

The model refitted with optimal number of parameters.

Examples

model <- lm(mpg ~ ., data = mtcars)
select_parameters(model)

model <- lm(mpg ~ cyl * disp * hp * wt, data = mtcars)
select_parameters(model)

lme4 ---
if (require("lme4")) {

model <- lmer(
Sepal.Width ~ Sepal.Length * Petal.Width * Petal.Length + (1 | Species),
data = iris

)
select_parameters(model)

}

162 simulate_model

simulate_model Simulated draws from model coefficients

Description

Simulate draws from a statistical model to return a data frame of estimates.

Usage

simulate_model(model, iterations = 1000, ...)

S3 method for class 'glmmTMB'
simulate_model(
model,
iterations = 1000,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
verbose = FALSE,
...

)

Arguments

model Statistical model (no Bayesian models).

iterations The number of draws to simulate/bootstrap.

... Arguments passed to insight::get_varcov(), e.g. to allow simulated draws
to be based on heteroscedasticity consistent variance covariance matrices.

component Should all parameters, parameters for the conditional model, for the zero-inflation
part of the model, or the dispersion model be returned? Applies to models
with zero-inflation and/or dispersion component. component may be one of
"conditional", "zi", "zero-inflated", "dispersion" or "all" (default).
May be abbreviated.

verbose Toggle warnings and messages.

Details

Technical Details:
simulate_model() is a computationally faster alternative to bootstrap_model(). Simulated
draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm()) with
mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component:
For models from packages glmmTMB, pscl, GLMMadaptive and countreg, the component
argument can be used to specify which parameters should be simulated. For all other models, pa-
rameters from the conditional component (fixed effects) are simulated. This may include smooth
terms, but not random effects.

simulate_parameters.glmmTMB 163

Value

A data frame.

See Also

simulate_parameters(), bootstrap_model(), bootstrap_parameters()

Examples

model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
head(simulate_model(model))

if (require("glmmTMB", quietly = TRUE)) {
model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
head(simulate_model(model))
head(simulate_model(model, component = "zero_inflated"))

}

simulate_parameters.glmmTMB

Simulate Model Parameters

Description

Compute simulated draws of parameters and their related indices such as Confidence Intervals (CI)
and p-values. Simulating parameter draws can be seen as a (computationally faster) alternative to
bootstrapping.

Usage

S3 method for class 'glmmTMB'
simulate_parameters(
model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

simulate_parameters(model, ...)

164 simulate_parameters.glmmTMB

Default S3 method:
simulate_parameters(
model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

Arguments

model Statistical model (no Bayesian models).

iterations The number of draws to simulate/bootstrap.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

... Arguments passed to insight::get_varcov(), e.g. to allow simulated draws
to be based on heteroscedasticity consistent variance covariance matrices.

Details

Technical Details:
simulate_parameters() is a computationally faster alternative to bootstrap_parameters().
Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm())
with mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component:
For models from packages glmmTMB, pscl, GLMMadaptive and countreg, the component
argument can be used to specify which parameters should be simulated. For all other models, pa-
rameters from the conditional component (fixed effects) are simulated. This may include smooth
terms, but not random effects.

Value

A data frame with simulated parameters.

sort_parameters 165

Note

There is also a plot()-method implemented in the see-package.

References

Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge;
New York: Cambridge University Press 2007: 140-143

See Also

bootstrap_model(), bootstrap_parameters(), simulate_model()

Examples

model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
simulate_parameters(model)

if (require("glmmTMB", quietly = TRUE)) {
model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
simulate_parameters(model, centrality = "mean")
simulate_parameters(model, ci = c(.8, .95), component = "zero_inflated")

}

sort_parameters Sort parameters by coefficient values

Description

Sort parameters by coefficient values

Usage

sort_parameters(x, ...)

Default S3 method:
sort_parameters(x, sort = "none", column = "Coefficient", ...)

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

166 standardize_info

Arguments

x A data frame or a parameters_model object.
... Arguments passed to or from other methods.
sort If "none" (default) do not sort, "ascending" sort by increasing coefficient

value, or "descending" sort by decreasing coefficient value.
column The column containing model parameter estimates. This will be "Coefficient"

(default) in easystats packages, "estimate" in broom package, etc.

Value

A sorted data frame or original object.

Examples

creating object to sort (can also be a regular data frame)
mod <- model_parameters(stats::lm(wt ~ am * cyl, data = mtcars))

original output
mod

sorted outputs
sort_parameters(mod, sort = "ascending")
sort_parameters(mod, sort = "descending")

standardize_info Get Standardization Information

Description

This function extracts information, such as the deviations (SD or MAD) from parent variables, that
are necessary for post-hoc standardization of parameters. This function gives a window on how
standardized are obtained, i.e., by what they are divided. The "basic" method of standardization
uses.

Usage

standardize_info(model, ...)

Default S3 method:
standardize_info(

model,
robust = FALSE,
two_sd = FALSE,
include_pseudo = FALSE,
verbose = TRUE,
...

)

standardize_parameters 167

Arguments

model A statistical model.

... Arguments passed to or from other methods.

robust Logical, if TRUE, centering is done by subtracting the median from the variables
and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

include_pseudo (For (G)LMMs) Should Pseudo-standardized information be included?

verbose Toggle warnings and messages on or off.

Value

A data frame with information on each parameter (see parameters_type()), and various standard-
ization coefficients for the post-hoc methods (see standardize_parameters()) for the predictor
and the response.

See Also

Other standardize: standardize_parameters()

Examples

model <- lm(mpg ~ ., data = mtcars)
standardize_info(model)
standardize_info(model, robust = TRUE)
standardize_info(model, two_sd = TRUE)

standardize_parameters

Parameters standardization

Description

Compute standardized model parameters (coefficients).

Usage

standardize_parameters(
model,
method = "refit",
ci = 0.95,
robust = FALSE,

168 standardize_parameters

two_sd = FALSE,
include_response = TRUE,
verbose = TRUE,
...

)

standardize_posteriors(
model,
method = "refit",
robust = FALSE,
two_sd = FALSE,
include_response = TRUE,
verbose = TRUE,
...

)

Arguments

model A statistical model.

method The method used for standardizing the parameters. Can be "refit" (default),
"posthoc", "smart", "basic", "pseudo" or "sdy". See Details’.

ci Confidence Interval (CI) level

robust Logical, if TRUE, centering is done by subtracting the median from the variables
and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

include_response

If TRUE (default), the response value will also be standardized. If FALSE, only
the predictors will be standardized. For GLMs the response value will never be
standardized (see Generalized Linear Models section).

verbose Toggle warnings and messages on or off.

... For standardize_parameters(), arguments passed to model_parameters(),
such as:

• ci_method, centrality for Mixed models and Bayesian models...
• exponentiate, ...
• etc.

Details

Standardization Methods:
• refit: This method is based on a complete model re-fit with a standardized version of the

data. Hence, this method is equal to standardizing the variables before fitting the model. It is

standardize_parameters 169

the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally
costly and long (especially for heavy models such as Bayesian models). This method is
particularly recommended for complex models that include interactions or transformations
(e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust
standardization of data, i.e., based on the median and MAD instead of the mean and SD. See
standardize() for more details.

– Note that standardize_parameters(method = "refit") may not return the same re-
sults as fitting a model on data that has been standardized with standardize(); standardize_parameters()
used the data used by the model fitting function, which might not be same data if there
are missing values. see the remove_na argument in standardize().

• posthoc: Post-hoc standardization of the parameters, aiming at emulating the results obtained
by "refit" without refitting the model. The coefficients are divided by the standard deviation
(or MAD if robust) of the outcome (which becomes their expression ’unit’). Then, the
coefficients related to numeric variables are additionally multiplied by the standard deviation
(or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the
predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y). This
does not apply to binary variables or factors, so the coefficients are still related to changes
in levels. This method is not accurate and tend to give aberrant results when interactions are
specified.

• basic: This method is similar to method = "posthoc", but treats all variables as continuous:
it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors
levels (transformed to integers) or binary predictors. Although being inappropriate for these
cases, this method is the one implemented by default in other software packages, such as
lm.beta::lm.beta().

• smart (Standardization of Model’s parameters with Adjustment, Reconnaissance and Trans-
formation - experimental): Similar to method = "posthoc" in that it does not involve model
refitting. The difference is that the SD (or MAD if robust) of the response is computed on
the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and
C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance
of the response at the intercept only. As a results, the coefficients for effects of factors are
similar to a Glass’ delta.

• pseudo (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor
are standardized based on the level of prediction (levels are detected with performance::check_heterogeneity_bias()):
Predictors are standardized based on their SD at level of prediction (see also datawizard::demean());
The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model,
where sqrt(random-intercept-variance) is used for level 2 predictors, and sqrt(residual-variance)
is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-
group variable is found to have access between-group variance.

• sdy (for logistic regression models only): This y-standardization is useful when compar-
ing coefficients of logistic regression models across models for the same sample. Unob-
served heterogeneity varies across models with different independent variables, and thus,
odds ratios from the same predictor of different models cannot be compared directly. The
y-standardization makes coefficients "comparable across models by dividing them with the
estimated standard deviation of the latent variable for each model" (Mood 2010). Thus,
whenever one has multiple logistic regression models that are fit to the same data and share
certain predictors (e.g. nested models), it can be useful to use this standardization approach
to make log-odds or odds ratios comparable.

170 standardize_parameters

Transformed Variables:
When the model’s formula contains transformations (e.g. y ~ exp(X)) method = "refit" will
give different results compared to method = "basic" ("posthoc" and "smart" do not support
such transformations): While "refit" standardizes the data prior to the transformation (e.g.
equivalent to exp(scale(X))), the "basic" method standardizes the transformed data (e.g. equiv-
alent to scale(exp(X))).

See the Transformed Variables section in standardize.default() for more details on how dif-
ferent transformations are dealt with when method = "refit".

Confidence Intervals:
The returned confidence intervals are re-scaled versions of the unstandardized confidence inter-
vals, and not "true" confidence intervals of the standardized coefficients (cf. Jones & Waller,
2015).

Generalized Linear Models:
Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to
the predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability
of the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the
OR of a change of 1 SD in the predictor, etc.)

Dealing with Factors:
standardize(model) or standardize_parameters(model, method = "refit") do not stan-
dardize categorical predictors (i.e. factors) / their dummy-variables, which may be a different be-
haviour compared to other R packages (such as lm.beta) or other software packages (like SPSS).
To mimic such behaviours, either use standardize_parameters(model, method = "basic") to
obtain post-hoc standardized parameters, or standardize the data with datawizard::standardize(data,
force = TRUE) before fitting the model.

Value

A data frame with the standardized parameters (Std_*, depending on the model type) and their
CIs (CI_low and CI_high). Where applicable, standard errors (SEs) are returned as an attribute
(attr(x, "standard_error")).

References

• Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change.
Routledge.

• Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free
(ADF) covariance matrix of standardized regression coefficients: theoretical extensions and
finite sample behavior. Psychometrika, 80(2), 365-378.

• Neter, J., Wasserman, W., & Kutner, M. H. (1989). Applied linear regression models.

• Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statis-
tics in medicine, 27(15), 2865-2873.

• Mood C. Logistic Regression: Why We Cannot Do What We Think We Can Do, and What
We Can Do About It. European Sociological Review (2010) 26:67–82.

standard_error 171

See Also

See also package vignette.

Other standardize: standardize_info()

Examples

model <- lm(len ~ supp * dose, data = ToothGrowth)
standardize_parameters(model, method = "refit")

standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "smart")
standardize_parameters(model, method = "basic")

Robust and 2 SD
standardize_parameters(model, robust = TRUE)
standardize_parameters(model, two_sd = TRUE)

model <- glm(am ~ cyl * mpg, data = mtcars, family = "binomial")
standardize_parameters(model, method = "refit")
standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "basic", exponentiate = TRUE)

m <- lme4::lmer(mpg ~ cyl + am + vs + (1 | cyl), mtcars)
standardize_parameters(m, method = "pseudo", ci_method = "satterthwaite")

model <- rstanarm::stan_glm(rating ~ critical + privileges, data = attitude, refresh = 0)
standardize_posteriors(model, method = "refit", verbose = FALSE)
standardize_posteriors(model, method = "posthoc", verbose = FALSE)
standardize_posteriors(model, method = "smart", verbose = FALSE)
head(standardize_posteriors(model, method = "basic", verbose = FALSE))

standard_error Standard Errors

Description

standard_error() attempts to return standard errors of model parameters.

https://easystats.github.io/parameters/articles/standardize_parameters_effsize.html

172 standard_error

Usage

standard_error(model, ...)

Default S3 method:
standard_error(
model,
component = "all",
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...

)

S3 method for class 'factor'
standard_error(model, force = FALSE, verbose = TRUE, ...)

S3 method for class 'glmmTMB'
standard_error(
model,
effects = "fixed",
component = "all",
verbose = TRUE,
...

)

S3 method for class 'merMod'
standard_error(
model,
effects = "fixed",
method = NULL,
vcov = NULL,
vcov_args = NULL,
...

)

Arguments

model A model.

... Arguments passed to or from other methods.

component Model component for which standard errors should be shown. See the documen-
tation for your object’s class in model_parameters() or p_value() for further
details.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

• A covariance matrix

standard_error 173

• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.

– Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich::vcovCR.

– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list
of available arguments.

verbose Toggle warnings and messages.

force Logical, if TRUE, factors are converted to numerical values to calculate the stan-
dard error, with the lowest level being the value 1 (unless the factor has numeric
levels, which are converted to the corresponding numeric value). By default, NA
is returned for factors or character vectors.

effects Should standard errors for fixed effects ("fixed"), random effects ("random"),
or both ("all") be returned? Only applies to mixed models. May be abbrevi-
ated. When standard errors for random effects are requested, for each grouping
factor a list of standard errors (per group level) for random intercepts and slopes
is returned.

method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confi-
dence intervals and approximation of degrees of freedom in model_parameters()
for further details.

Value

A data frame with at least two columns: the parameter names and the standard errors. Depending
on the model, may also include columns for model components etc.

Note

For Bayesian models (from rstanarm or brms), the standard error is the SD of the posterior sam-
ples.

Examples

model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)

174 standard_error

if (require("sandwich") && require("clubSandwich")) {
standard_error(model, vcov = "HC3")

standard_error(model,
vcov = "vcovCL",
vcov_args = list(cluster = iris$Species)

)
}

Index

∗ data
fish, 49
qol_cancer, 156

∗ effect size indices
standardize_parameters, 167

∗ standardize
standardize_info, 166
standardize_parameters, 167

..., 42

Additive models, 53
ANOVA, 53
anova(), 60
aov(), 60

BayesFactor::anovaBF(), 66
BayesFactor::correlationBF(), 66
BayesFactor::generalTestBF(), 66
BayesFactor::lmBF(), 66
BayesFactor::regressionBF(), 66
BayesFactor::ttestBF(), 66
Bayesian, 54
Bayesian models, 148
Bayesian regressions, 69, 75, 86, 93, 101,

121, 124
bayestestR::bci(), 11, 58, 80, 90, 113, 151
bayestestR::ci(), 109
bayestestR::describe_posterior(), 7, 62,

105
bayestestR::equivalence_test(), 44
bayestestR::eti(), 11, 57, 80, 89, 112, 151
bayestestR::hdi(), 11, 58, 80, 90, 112, 151
bayestestR::p_direction(), 7, 11, 54, 58,

80, 90, 113, 145, 152
bayestestR::p_to_pd(), 146
bayestestR::pd_to_p(), 11, 58, 80, 90, 113,

152
bayestestR::rope(), 7
bayestestR::rope_range(), 43
bayestestR::si(), 11, 58, 80, 90, 113, 152

bci(), 7, 64, 66, 164
bootstrap_model, 4
bootstrap_model(), 7, 163, 165
bootstrap_parameters, 6
bootstrap_parameters(), 5, 69, 75, 86, 93,

101, 121, 124, 163, 165

cAIC4::stepcAIC(), 161
ci.default, 8
ci.glmmTMB (ci.default), 8
ci.merMod (ci.default), 8
ci_betwithin, 12
ci_betwithin(), 10, 57, 79, 89, 112, 151
ci_kenward, 13
ci_ml1, 14
ci_ml1(), 10, 57, 79, 89, 112, 150
ci_satterthwaite, 16
closest_component (factor_analysis), 44
closest_component(), 47
cluster_analysis, 17
cluster_analysis(), 21
cluster_centers, 20
cluster_discrimination, 21
cluster_discrimination(), 19
cluster_meta, 22
cluster_performance, 23
Clustering, 54
compare_models (compare_parameters), 24
compare_parameters, 24
confidence_curve (p_function), 143
consonance_function (p_function), 143
contrasts, 39
convert_efa_to_cfa, 29
Correlations, t-tests, etc., 54

datawizard::demean(), 55, 169
Default method, 53
degrees_of_freedom, 30
degrees_of_freedom(), 8, 149
display(), 140

175

176 INDEX

display.equivalence_test_lm
(display.parameters_model), 32

display.parameters_efa
(display.parameters_model), 32

display.parameters_efa_summary
(display.parameters_model), 32

display.parameters_model, 32
display.parameters_sem

(display.parameters_model), 32
dist(), 18, 128
dof (degrees_of_freedom), 30
dof_betwithin (ci_betwithin), 12
dof_betwithin(), 30, 31
dof_kenward (ci_kenward), 13
dof_kenward(), 17, 30, 31
dof_ml1 (ci_ml1), 14
dof_ml1(), 14, 15, 17, 30, 31
dof_satterthwaite (ci_satterthwaite), 16
dof_satterthwaite(), 14, 30, 31
dominance_analysis, 38
domir::domin(), 41

efa_to_cfa (convert_efa_to_cfa), 29
effectsize::effectsize(), 61
equivalence_test(), 34
equivalence_test.ggeffects

(equivalence_test.lm), 41
equivalence_test.lm, 41
equivalence_test.merMod

(equivalence_test.lm), 41
eti(), 7, 64, 66, 164

factor_analysis, 44
fish, 49
format.parameters_model

(display.parameters_model), 32
format_df_adjust, 49
format_order, 50
format_p_adjust, 52
format_parameters, 51

get_scores, 52
get_scores(), 47

hclust(), 18, 128
hdi(), 7, 64, 66, 164

insight::format_value(), 50
insight::get_data(), 62, 105

insight::get_modelmatrix(), 39
insight::get_varcov(), 162, 164
insight::get_variance(), 76, 157
insight::standardize_names(), 59, 70, 81,

90, 95, 103, 113, 126

kmeans(), 18, 81

lm.beta::lm.beta(), 55, 169

manova(), 60
map_estimate(), 6, 64, 66, 109, 164
Marginal effects models, 148
Meta-Analysis, 54
Mixed models, 54
model_parameters, 53
model_parameters(), 8, 9, 24–26, 34, 36, 69,

75, 86, 103, 105, 109, 134, 137, 149,
155, 168, 172, 173

model_parameters.afex_aov
(model_parameters.aov), 60

model_parameters.aov, 60
model_parameters.averaging

(model_parameters.glimML), 97
model_parameters.befa, 64
model_parameters.betamfx

(model_parameters.glimML), 97
model_parameters.betaor

(model_parameters.glimML), 97
model_parameters.betareg

(model_parameters.glimML), 97
model_parameters.BFBayesFactor, 65
model_parameters.bifeAPEs

(model_parameters.DirichletRegModel),
91

model_parameters.bracl
(model_parameters.DirichletRegModel),
91

model_parameters.brmsfit
(model_parameters.MCMCglmm),
106

model_parameters.censReg
(model_parameters.default), 84

model_parameters.cgam, 67
model_parameters.clm2

(model_parameters.DirichletRegModel),
91

model_parameters.clmm
(model_parameters.cpglmm), 71

INDEX 177

model_parameters.clmm2
(model_parameters.cpglmm), 71

model_parameters.coeftest
(model_parameters.htest), 103

model_parameters.cpglmm, 71
model_parameters.data.frame

(model_parameters.MCMCglmm),
106

model_parameters.dbscan, 81
model_parameters.default, 84
model_parameters.default(), 54, 145
model_parameters.DirichletRegModel, 91
model_parameters.draws

(model_parameters.MCMCglmm),
106

model_parameters.emm_list
(model_parameters.glimML), 97

model_parameters.Gam
(model_parameters.cgam), 67

model_parameters.gamm
(model_parameters.cgam), 67

model_parameters.glht, 95
model_parameters.glimML, 97
model_parameters.glm

(model_parameters.default), 84
model_parameters.glmmTMB

(model_parameters.cpglmm), 71
model_parameters.glmx

(model_parameters.glimML), 97
model_parameters.hclust

(model_parameters.dbscan), 81
model_parameters.hkmeans

(model_parameters.dbscan), 81
model_parameters.htest, 103
model_parameters.kmeans

(model_parameters.dbscan), 81
model_parameters.lavaan

(model_parameters.PCA), 116
model_parameters.lavaan(), 27, 61, 70, 76,

87, 94, 96, 102, 105, 109, 115, 118,
122, 123, 126, 145

model_parameters.lme
(model_parameters.cpglmm), 71

model_parameters.marginaleffects
(model_parameters.glimML), 97

model_parameters.Mclust
(model_parameters.dbscan), 81

model_parameters.MCMCglmm, 106

model_parameters.merMod
(model_parameters.cpglmm), 71

model_parameters.meta_bma
(model_parameters.glimML), 97

model_parameters.meta_random
(model_parameters.glimML), 97

model_parameters.metaplus
(model_parameters.glimML), 97

model_parameters.mhurdle
(model_parameters.zcpglm), 124

model_parameters.mipo, 114
model_parameters.mira

(model_parameters.mipo), 114
model_parameters.mixed

(model_parameters.cpglmm), 71
model_parameters.MixMod

(model_parameters.cpglmm), 71
model_parameters.mjoint

(model_parameters.glimML), 97
model_parameters.mlm

(model_parameters.DirichletRegModel),
91

model_parameters.mvord
(model_parameters.glimML), 97

model_parameters.pam
(model_parameters.dbscan), 81

model_parameters.PCA, 116
model_parameters.principal

(model_parameters.PCA), 116
model_parameters.pvclust

(model_parameters.dbscan), 81
model_parameters.ridgelm

(model_parameters.default), 84
model_parameters.rma, 120
model_parameters.scam

(model_parameters.cgam), 67
model_parameters.selection

(model_parameters.glimML), 97
model_parameters.stanreg

(model_parameters.MCMCglmm),
106

model_parameters.t1way, 123
model_parameters.zcpglm, 124
Models with special components, 148
multcomp::glht(), 96
Multinomial, ordinal and cumulative

link, 54
Multiple imputation, 54

178 INDEX

n_clusters, 126
n_clusters(), 18, 19, 21
n_clusters_dbscan (n_clusters), 126
n_clusters_dbscan(), 18
n_clusters_elbow (n_clusters), 126
n_clusters_gap (n_clusters), 126
n_clusters_hclust (n_clusters), 126
n_clusters_silhouette (n_clusters), 126
n_components (n_factors), 130
n_components(), 46, 158
n_factors, 130
n_factors(), 46, 126, 158

Other models, 54

p_calibrate, 142
p_direction(), 64, 66, 109, 164
p_function, 143
p_value, 148
p_value(), 9, 149, 155, 172
p_value.averaging

(p_value.DirichletRegModel),
153

p_value.betamfx (p_value.poissonmfx),
154

p_value.betaor (p_value.poissonmfx), 154
p_value.betareg

(p_value.DirichletRegModel),
153

p_value.BFBayesFactor, 152
p_value.cgam

(p_value.DirichletRegModel),
153

p_value.clm2
(p_value.DirichletRegModel),
153

p_value.DirichletRegModel, 153
p_value.poissonmfx, 154
p_value.zcpglm, 155
p_value.zeroinfl (p_value.zcpglm), 155
p_value_betwithin (ci_betwithin), 12
p_value_kenward (ci_kenward), 13
p_value_ml1 (ci_ml1), 14
p_value_satterthwaite

(ci_satterthwaite), 16
parameters (model_parameters), 53
parameters::standardize_parameters(),

62, 106
parameters_type, 133

parameters_type(), 167
PCA, FA, CFA, SEM, 54
performance::check_clusterstructure(),

19, 21
performance::check_factorstructure(),

46
performance::check_heterogeneity_bias(),

55, 169
performance::check_itemscale(), 47
performance::check_kmo(), 46
performance::check_singularity(), 77
performance::check_sphericity_bartlett(),

46
pool_parameters, 134
predict.parameters_clusters, 136
predict.parameters_efa

(factor_analysis), 44
principal_components (factor_analysis),

44
principal_components(), 34, 53, 158
print(), 51, 58, 59, 140
print.parameters_efa (factor_analysis),

44
print.parameters_model, 137
print.parameters_model(), 37, 54, 145
print_html.parameters_model

(display.parameters_model), 32
print_md(), 59, 140
print_md.parameters_model

(display.parameters_model), 32
print_table (display.parameters_model),

32
psych::fa(), 46
psych::VSS(), 131

qol_cancer, 156

random_parameters, 156
reduce_data (reduce_parameters), 158
reduce_parameters, 158
reduce_parameters(), 46, 158
reshape_loadings, 159
rope(), 64, 66, 109, 164
rotated_data (factor_analysis), 44
rotated_data(), 47

se_kenward (ci_kenward), 13
se_satterthwaite (ci_satterthwaite), 16
select_parameters, 160

INDEX 179

si(), 7, 64, 66, 164
signif(), 36, 138
simulate_model, 162
simulate_model(), 5, 7, 165
simulate_parameters

(simulate_parameters.glmmTMB),
163

simulate_parameters(), 5, 7, 34, 163
simulate_parameters.glmmTMB, 163
sort.parameters_efa (factor_analysis),

44
sort_parameters, 165
sparsepca::robspca(), 46
sparsepca::spca(), 46
spi(), 7, 64, 66, 164
standard_error, 171
standardise_info (standardize_info), 166
standardise_parameters

(standardize_parameters), 167
standardise_posteriors

(standardize_parameters), 167
standardize(), 55, 169
standardize.default(), 170
standardize_info, 166, 171
standardize_parameters, 167, 167
standardize_parameters(), 25, 54, 69, 75,

86, 93, 101, 110, 121, 125, 167
standardize_posteriors

(standardize_parameters), 167
stats::p.adjust(), 26, 69, 76, 87, 93, 102,

115, 125
summary.parameters_model

(print.parameters_model), 137

Zero-inflated and hurdle, 54
Zero-inflated models, 148

	bootstrap_model
	bootstrap_parameters
	ci.default
	ci_betwithin
	ci_kenward
	ci_ml1
	ci_satterthwaite
	cluster_analysis
	cluster_centers
	cluster_discrimination
	cluster_meta
	cluster_performance
	compare_parameters
	convert_efa_to_cfa
	degrees_of_freedom
	display.parameters_model
	dominance_analysis
	equivalence_test.lm
	factor_analysis
	fish
	format_df_adjust
	format_order
	format_parameters
	format_p_adjust
	get_scores
	model_parameters
	model_parameters.aov
	model_parameters.befa
	model_parameters.BFBayesFactor
	model_parameters.cgam
	model_parameters.cpglmm
	model_parameters.dbscan
	model_parameters.default
	model_parameters.DirichletRegModel
	model_parameters.glht
	model_parameters.glimML
	model_parameters.htest
	model_parameters.MCMCglmm
	model_parameters.mipo
	model_parameters.PCA
	model_parameters.rma
	model_parameters.t1way
	model_parameters.zcpglm
	n_clusters
	n_factors
	parameters_type
	pool_parameters
	predict.parameters_clusters
	print.parameters_model
	p_calibrate
	p_function
	p_value
	p_value.BFBayesFactor
	p_value.DirichletRegModel
	p_value.poissonmfx
	p_value.zcpglm
	qol_cancer
	random_parameters
	reduce_parameters
	reshape_loadings
	select_parameters
	simulate_model
	simulate_parameters.glmmTMB
	sort_parameters
	standardize_info
	standardize_parameters
	standard_error
	Index

