Package ‘spatstat’

February 27, 2015

Version 1.41-1

Nickname Ides of March

Date 2015-02-27

Title Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Author Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz>,
and Ege Rubak <rubak@math.aau.dk>,
with substantial contributions of code by
Kasper Klitgaard Berthelsen;
Abdollah Jalilian;
Marie-Colette van Lieshout;
Tuomas Rajala;
Dominic Schuhmacher;
and
Rasmus Waagepetersen.
Additional contributions
by Q.W. Ang;
S. Azaele;
M. Baddeley;
C. Beale;
M. Bell;
R. Bernhardt;
T. Bendtsen;
A. Bevan;
B. Biggerstaff;
L. Bischof;
R. Bivand;
J.M. Blanco Moreno;
F. Bonneu;
J. Burgos;
S. Byers;
Y.M. Chang;
J.B. Chen;
I. Chernayavsky;
Y.C. Chin;
Comprehensive toolbox for analysing spatial data, mainly Spatial Point Patterns, including multitype/marked points and spatial covariates, in any two-dimensional spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, and point patterns on a linear network.

Contains about 2000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference.

Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks.

Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and ker-
nel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Diggle-Cressie-Loosmore-Ford, Dao-Genton) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov) are also supported.

Parametric models can be fitted to point pattern data using the functions ppm, kppm, slrm similar to glm. Types of models include Poisson, Gibbs, Cox and cluster point processes. Models may involve dependence on covariates, interpoint interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods.

Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise, AIC). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

License GPL (>= 2)

URL http://www.spatstat.org

LazyData true

NeedsCompilation yes

ByteCompile true

Repository CRAN

Date/Publication 2015-02-27 07:32:22

R topics documented:

- spatstat-package .. 23
- adaptive.density .. 48
- add.texture ... 49
- addvar ... 50
- affine ... 53
- affine.im ... 54
- affine.linnet ... 55
- affine.lpp ... 56
- affine.owin ... 58
- affine.ppp ... 59
- affine.psp ... 60
- affine.tess .. 61
- allstats .. 63
- alltypes .. 64
- amacrine ... 67
- anemones .. 68
- angles.psp ... 69
- anova.lppm .. 70
- anova.mppm .. 72
- anova.ppm ... 73
- anova.slrm ... 75
topics documented:

ants ... 77
anylist ... 79
append.psp ... 80
applynbdd ... 81
area.owin .. 84
areaGain ... 85
AreaInter .. 87
areaLoss ... 89
as.box3 ... 91
as.data.frame.hyperframe 92
as.data.frame.im 93
as.data.frame.ppp 94
as.data.frame.psp 95
as.function.fv 96
as.function.im 97
as.fv ... 98
as.hyperframe 100
as.hyperframe.ppx 102
as.im .. 103
as.interact .. 106
as.layered .. 108
as.linim .. 109
as.linnet.linim 110
as.linnet.psp 112
as.lpp ... 113
as.mask .. 114
as.mask.psp .. 116
as.matrix.im 117
as.matrix.owin 118
as.owin ... 119
aspolygonal 123
as.ppm .. 124
as.ppp ... 125
as.psp ... 127
as.rectangle 130
as.solist .. 131
astess .. 132
BadGey ... 133
bdist.pixels 135
bdist.points 136
bdist.tiles .. 137
bdspots .. 138
beachcolours 139
beginner .. 141
bei .. 142
berman.test 143
betaells .. 145
bind.fv .. 147
R topics documented:

 blur .. 149
 border ... 150
 bounding.box.xy ... 152
 boundingbox .. 153
 box3 .. 154
 boxx .. 155
 bramblecanes .. 156
 bronzefilter ... 157
 bw.diggle .. 158
 bw.frac ... 160
 bw.ppl .. 161
 bw.relrisk ... 162
 bw.scott ... 164
 bw.smoothppp .. 165
 bw.stoyan .. 166
 by.im .. 167
 by.ppp .. 169
 cauchy.estK .. 170
 cauchy.estpcf .. 172
 cbind.hyperframe ... 174
 cdf.test .. 175
 cdf.test.mppm ... 179
 cells .. 182
 centroid.owin .. 183
 chicago ... 184
 chop.tess ... 185
 chorley .. 186
 circdensity .. 188
 circumradius .. 189
 clarkevans ... 190
 clarkevans.test ... 192
 clickbox ... 193
 clickdist ... 194
 clickjoin ... 195
 clickpoly ... 196
 clickppp ... 197
 clip.infline .. 198
 clmfires ... 199
 closepairs .. 201
 closepairs.pp3 .. 203
 closing .. 205
 clusterfield .. 206
 clusterfit .. 208
 clusterkernel ... 210
 clusterradius .. 211
 clusterset .. 212
 coef.mppm ... 215
 coef.ppm ... 216
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>coef.slrm</td>
<td>217</td>
</tr>
<tr>
<td>collapse.fv</td>
<td>218</td>
</tr>
<tr>
<td>colournmap</td>
<td>220</td>
</tr>
<tr>
<td>colourtools</td>
<td>221</td>
</tr>
<tr>
<td>commonGrid</td>
<td>223</td>
</tr>
<tr>
<td>compareFit</td>
<td>224</td>
</tr>
<tr>
<td>compatible</td>
<td>226</td>
</tr>
<tr>
<td>compatible.fasp</td>
<td>227</td>
</tr>
<tr>
<td>compatible.fv</td>
<td>228</td>
</tr>
<tr>
<td>compatible.im</td>
<td>229</td>
</tr>
<tr>
<td>complement.owin</td>
<td>230</td>
</tr>
<tr>
<td>concatxy</td>
<td>231</td>
</tr>
<tr>
<td>Concom</td>
<td>232</td>
</tr>
<tr>
<td>connected</td>
<td>234</td>
</tr>
<tr>
<td>connected.ppp</td>
<td>236</td>
</tr>
<tr>
<td>contour.im</td>
<td>237</td>
</tr>
<tr>
<td>contour.imlist</td>
<td>239</td>
</tr>
<tr>
<td>convexhull</td>
<td>240</td>
</tr>
<tr>
<td>convexhull.xy</td>
<td>241</td>
</tr>
<tr>
<td>convolve.im</td>
<td>242</td>
</tr>
<tr>
<td>coords</td>
<td>243</td>
</tr>
<tr>
<td>copper</td>
<td>244</td>
</tr>
<tr>
<td>corners</td>
<td>246</td>
</tr>
<tr>
<td>crossdist</td>
<td>247</td>
</tr>
<tr>
<td>crossdist.default</td>
<td>248</td>
</tr>
<tr>
<td>crossdist.lpp</td>
<td>249</td>
</tr>
<tr>
<td>crossdist.pp3</td>
<td>250</td>
</tr>
<tr>
<td>crossdist.ppp</td>
<td>251</td>
</tr>
<tr>
<td>crossdist.ppx</td>
<td>253</td>
</tr>
<tr>
<td>crossdist.psp</td>
<td>254</td>
</tr>
<tr>
<td>crossing.psp</td>
<td>255</td>
</tr>
<tr>
<td>cut.im</td>
<td>256</td>
</tr>
<tr>
<td>cut.ppp</td>
<td>257</td>
</tr>
<tr>
<td>data.ppm</td>
<td>259</td>
</tr>
<tr>
<td>dclf.progress</td>
<td>260</td>
</tr>
<tr>
<td>dclf.test</td>
<td>262</td>
</tr>
<tr>
<td>default.dummy</td>
<td>265</td>
</tr>
<tr>
<td>default.expand</td>
<td>266</td>
</tr>
<tr>
<td>default.rmhcontrol</td>
<td>268</td>
</tr>
<tr>
<td>delauay</td>
<td>269</td>
</tr>
<tr>
<td>delauay.distance</td>
<td>270</td>
</tr>
<tr>
<td>delauay.network</td>
<td>271</td>
</tr>
<tr>
<td>deltametric</td>
<td>272</td>
</tr>
<tr>
<td>demohyper</td>
<td>273</td>
</tr>
<tr>
<td>demopat</td>
<td>274</td>
</tr>
<tr>
<td>dendrite</td>
<td>274</td>
</tr>
<tr>
<td>density.ppp</td>
<td>275</td>
</tr>
<tr>
<td>density.psp</td>
<td>279</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>density.splitppp</td>
<td>280</td>
</tr>
<tr>
<td>deriv.fv</td>
<td>281</td>
</tr>
<tr>
<td>dfbetas.ppm</td>
<td>283</td>
</tr>
<tr>
<td>diagnose.ppm</td>
<td>284</td>
</tr>
<tr>
<td>diameter</td>
<td>289</td>
</tr>
<tr>
<td>diameter.box3</td>
<td>290</td>
</tr>
<tr>
<td>diameter.boxx</td>
<td>291</td>
</tr>
<tr>
<td>diameter.linnet</td>
<td>293</td>
</tr>
<tr>
<td>diameter.owin</td>
<td>294</td>
</tr>
<tr>
<td>DiggleGatesStibbard</td>
<td>295</td>
</tr>
<tr>
<td>DiggleGratton</td>
<td>296</td>
</tr>
<tr>
<td>dilated.areas</td>
<td>297</td>
</tr>
<tr>
<td>dilation</td>
<td>299</td>
</tr>
<tr>
<td>dirichlet</td>
<td>300</td>
</tr>
<tr>
<td>dirichlet.vertices</td>
<td>301</td>
</tr>
<tr>
<td>dirichlet.weights</td>
<td>302</td>
</tr>
<tr>
<td>disc</td>
<td>303</td>
</tr>
<tr>
<td>discpartarea</td>
<td>305</td>
</tr>
<tr>
<td>discretise</td>
<td>306</td>
</tr>
<tr>
<td>discs</td>
<td>307</td>
</tr>
<tr>
<td>distcdf</td>
<td>309</td>
</tr>
<tr>
<td>distfun</td>
<td>310</td>
</tr>
<tr>
<td>distfun.lpp</td>
<td>312</td>
</tr>
<tr>
<td>distmap</td>
<td>313</td>
</tr>
<tr>
<td>distmap.owin</td>
<td>314</td>
</tr>
<tr>
<td>distmap.ppp</td>
<td>316</td>
</tr>
<tr>
<td>distmap.psp</td>
<td>317</td>
</tr>
<tr>
<td>dmixpois</td>
<td>318</td>
</tr>
<tr>
<td>domain</td>
<td>319</td>
</tr>
<tr>
<td>dummify</td>
<td>322</td>
</tr>
<tr>
<td>dummy.ppm</td>
<td>323</td>
</tr>
<tr>
<td>duplicated.ppp</td>
<td>324</td>
</tr>
<tr>
<td>edge.Ripley</td>
<td>326</td>
</tr>
<tr>
<td>edge.Trans</td>
<td>327</td>
</tr>
<tr>
<td>edges</td>
<td>329</td>
</tr>
<tr>
<td>edges2triangles</td>
<td>330</td>
</tr>
<tr>
<td>edges2vees</td>
<td>331</td>
</tr>
<tr>
<td>eem</td>
<td>332</td>
</tr>
<tr>
<td>effectfun</td>
<td>334</td>
</tr>
<tr>
<td>ellipse</td>
<td>335</td>
</tr>
<tr>
<td>Emark</td>
<td>336</td>
</tr>
<tr>
<td>endpoints.psp</td>
<td>339</td>
</tr>
<tr>
<td>envelope</td>
<td>340</td>
</tr>
<tr>
<td>envelope.envelope</td>
<td>350</td>
</tr>
<tr>
<td>envelope.lpp</td>
<td>351</td>
</tr>
<tr>
<td>envelope.pp3</td>
<td>354</td>
</tr>
<tr>
<td>eroded.areas</td>
<td>357</td>
</tr>
<tr>
<td>erosion</td>
<td>358</td>
</tr>
<tr>
<td>R topics documented:</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>eval.fasp</td>
<td>359</td>
</tr>
<tr>
<td>eval.fv</td>
<td>361</td>
</tr>
<tr>
<td>eval.im</td>
<td>362</td>
</tr>
<tr>
<td>eval.linim</td>
<td>364</td>
</tr>
<tr>
<td>ewcdf</td>
<td>365</td>
</tr>
<tr>
<td>exactMLEstrauss</td>
<td>366</td>
</tr>
<tr>
<td>expand.owin</td>
<td>368</td>
</tr>
<tr>
<td>Extract.anylist</td>
<td>369</td>
</tr>
<tr>
<td>Extract.fasp</td>
<td>370</td>
</tr>
<tr>
<td>Extract.fv</td>
<td>371</td>
</tr>
<tr>
<td>Extract.hyperframe</td>
<td>373</td>
</tr>
<tr>
<td>Extract.im</td>
<td>375</td>
</tr>
<tr>
<td>Extract.influence.ppm</td>
<td>377</td>
</tr>
<tr>
<td>Extract.layered</td>
<td>379</td>
</tr>
<tr>
<td>Extract.leverage.ppm</td>
<td>380</td>
</tr>
<tr>
<td>Extract.linnet</td>
<td>381</td>
</tr>
<tr>
<td>Extract.listof</td>
<td>382</td>
</tr>
<tr>
<td>Extract.lpp</td>
<td>383</td>
</tr>
<tr>
<td>Extract.msr</td>
<td>385</td>
</tr>
<tr>
<td>Extract.owin</td>
<td>386</td>
</tr>
<tr>
<td>Extract.ppp</td>
<td>387</td>
</tr>
<tr>
<td>Extract.ppx</td>
<td>389</td>
</tr>
<tr>
<td>Extract.psp</td>
<td>391</td>
</tr>
<tr>
<td>Extract.quad</td>
<td>392</td>
</tr>
<tr>
<td>Extract.solist</td>
<td>393</td>
</tr>
<tr>
<td>Extract.splitppp</td>
<td>394</td>
</tr>
<tr>
<td>Extract.tess</td>
<td>395</td>
</tr>
<tr>
<td>F3est</td>
<td>396</td>
</tr>
<tr>
<td>fardist</td>
<td>398</td>
</tr>
<tr>
<td>fasp.object</td>
<td>400</td>
</tr>
<tr>
<td>Fest</td>
<td>401</td>
</tr>
<tr>
<td>Fiksel</td>
<td>405</td>
</tr>
<tr>
<td>Finhom</td>
<td>407</td>
</tr>
<tr>
<td>finpines</td>
<td>409</td>
</tr>
<tr>
<td>fitin.ppm</td>
<td>411</td>
</tr>
<tr>
<td>fitted.mppm</td>
<td>412</td>
</tr>
<tr>
<td>fitted.ppm</td>
<td>413</td>
</tr>
<tr>
<td>fitted.slrn</td>
<td>415</td>
</tr>
<tr>
<td>flipxy</td>
<td>416</td>
</tr>
<tr>
<td>flu</td>
<td>417</td>
</tr>
<tr>
<td>foo</td>
<td>419</td>
</tr>
<tr>
<td>formula.fv</td>
<td>420</td>
</tr>
<tr>
<td>formula.ppm</td>
<td>421</td>
</tr>
<tr>
<td>Frame</td>
<td>422</td>
</tr>
<tr>
<td>fryplot</td>
<td>423</td>
</tr>
<tr>
<td>funxy</td>
<td>425</td>
</tr>
<tr>
<td>fv</td>
<td>426</td>
</tr>
<tr>
<td>fv.object</td>
<td>429</td>
</tr>
</tbody>
</table>
R topics documented:

fvnames . 430
G3est . 431
ganglia . 433
gauss.hermite . 434
Gcom . 435
Gcross . 439
Gdot . 442
Gest . 445
Geyer . 448
Gfox . 450
Ginhom . 452
Gmulti . 454
gorillas . 457
gordon . 457
Gres . 459
gridcentres . 461
gridweights . 462
grow.rectangle . 463
hamster . 464
Hardcore . 466
harmonic . 468
harmonise . 469
harmonise.fv . 470
harmonise.im . 471
heather . 473
Hest . 474
hextess . 476
hierpair.family . 478
HierStrauss . 479
hist.im . 480
hopskel . 481
humberside . 483
Hybrid . 484
hybrid.family . 486
hyperframe . 487
hyytiala . 488
identify.ppp . 489
identify.psp . 490
idw . 491
Iest . 493
im . 495
im.apply . 497
im.object . 498
imcov . 499
improve.kppm . 500
incircle . 502
increment.fv . 504
infinite . 505
R topics documented:

influence.ppm ... 506
inorder.family ... 508
inside.owin ... 508
integral.im ... 510
integral.linim ... 511
integral.msr ... 512
intensity ... 513
intensity.lpp ... 514
intensity.ppm ... 515
intensity.ppp ... 516
intensity.quadratcount .. 518
interp.colourmap .. 519
interp.im ... 520
intersect.owin .. 521
intersect.tess .. 523
invoke.symbolmap .. 524
iplot ... 526
ippm ... 527
is.convex ... 530
is.dppm ... 531
is.empty ... 531
is.hybrid ... 532
is.im ... 533
is.lpp ... 534
is.marked ... 535
is.marked.ppm ... 536
is.marked.ppp ... 537
is.multitype ... 538
is.multitype.ppm .. 539
is.multitype.ppp .. 541
is.owin ... 542
is.ppm ... 543
is.ppp ... 543
is.rectangle ... 544
is.stationary .. 545
is.subset.owin .. 547
istat ... 548
japanesepines ... 549
Jcross ... 550
Jdot ... 552
Jest ... 555
Jinhom ... 558
Jmulti ... 561
K3est ... 563
kaplan.meier ... 565
Kcom ... 566
Kcross ... 569
Kcross.inhom .. 572
R topics documented:

- Kdot ... 575
- Kdot.inhom .. 578
- Kest ... 581
- Kest.fft .. 585
- Kinhom ... 587
- km.rs .. 591
- Kmark .. 593
- Kmeasure ... 595
- Kmodel ... 598
- Kmodel.kppm 599
- Kmodel.ppm 600
- Kmulti .. 601
- Kmulti.inhom 604
- Kovesi ... 607
- kppm .. 609
- Kres .. 613
- Kscaled .. 615
- Ksector .. 618
- LambertW .. 619
- lansing .. 620
- latest.news 622
- layered .. 623
- layerplotargs 624
- layout.boxes 625
- Lcross .. 626
- Lcross.inhom 628
- Ldot ... 630
- Ldot.inhom 631
- lengths.psp 633
- LennardJones 634
- Lest ... 636
- letterR .. 637
- levelset ... 638
- leverage.ppm 639
- lgcp.estK .. 640
- lgcp.estpcf 643
- lineardisc 646
- linearK .. 648
- linearKcross 649
- linearKcross.inhom 650
- linearKdot 652
- linearKdot.inhom 654
- linearKinhom 656
- linearmarkconnect 657
- linearmarkequal 659
- linearpcf .. 660
- linearpcf.cross 661
- linearpcf.cross.inhom 663
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>linearpcfdot</td>
<td>665</td>
</tr>
<tr>
<td>linearpcfdot.inhom</td>
<td>666</td>
</tr>
<tr>
<td>linearpcfinhom</td>
<td>668</td>
</tr>
<tr>
<td>linfun</td>
<td>669</td>
</tr>
<tr>
<td>Linhom</td>
<td>671</td>
</tr>
<tr>
<td>linim</td>
<td>672</td>
</tr>
<tr>
<td>linnet</td>
<td>674</td>
</tr>
<tr>
<td>localK</td>
<td>675</td>
</tr>
<tr>
<td>localKinhom</td>
<td>677</td>
</tr>
<tr>
<td>localpcf</td>
<td>679</td>
</tr>
<tr>
<td>logLik.mppm</td>
<td>682</td>
</tr>
<tr>
<td>logLik.ppm</td>
<td>683</td>
</tr>
<tr>
<td>logLik.slrm</td>
<td>685</td>
</tr>
<tr>
<td>lohboot</td>
<td>686</td>
</tr>
<tr>
<td>longleaf</td>
<td>688</td>
</tr>
<tr>
<td>lpp</td>
<td>689</td>
</tr>
<tr>
<td>lppm</td>
<td>690</td>
</tr>
<tr>
<td>lurking</td>
<td>692</td>
</tr>
<tr>
<td>lut</td>
<td>695</td>
</tr>
<tr>
<td>markconnect</td>
<td>697</td>
</tr>
<tr>
<td>markcorr</td>
<td>699</td>
</tr>
<tr>
<td>marks</td>
<td>703</td>
</tr>
<tr>
<td>marks.psp</td>
<td>705</td>
</tr>
<tr>
<td>marks.tess</td>
<td>706</td>
</tr>
<tr>
<td>markstat</td>
<td>708</td>
</tr>
<tr>
<td>marktable</td>
<td>709</td>
</tr>
<tr>
<td>marktable</td>
<td>709</td>
</tr>
<tr>
<td>markvario</td>
<td>710</td>
</tr>
<tr>
<td>matchingdist</td>
<td>712</td>
</tr>
<tr>
<td>matclust.estK</td>
<td>714</td>
</tr>
<tr>
<td>matclust.estpcf</td>
<td>716</td>
</tr>
<tr>
<td>Math.im</td>
<td>719</td>
</tr>
<tr>
<td>Math.linim</td>
<td>720</td>
</tr>
<tr>
<td>maxnndist</td>
<td>722</td>
</tr>
<tr>
<td>mean.im</td>
<td>723</td>
</tr>
<tr>
<td>methods.box3</td>
<td>725</td>
</tr>
<tr>
<td>methods.boxx</td>
<td>726</td>
</tr>
<tr>
<td>methods.fii</td>
<td>727</td>
</tr>
<tr>
<td>methods.funxy</td>
<td>728</td>
</tr>
<tr>
<td>methods.kppm</td>
<td>729</td>
</tr>
<tr>
<td>methods.layered</td>
<td>731</td>
</tr>
<tr>
<td>methods.linfun</td>
<td>732</td>
</tr>
<tr>
<td>methods.linnet</td>
<td>734</td>
</tr>
<tr>
<td>methods.lpp</td>
<td>736</td>
</tr>
<tr>
<td>methods.lppm</td>
<td>737</td>
</tr>
<tr>
<td>methods.objsurf</td>
<td>739</td>
</tr>
<tr>
<td>methods.pp3</td>
<td>740</td>
</tr>
<tr>
<td>methods.ppx</td>
<td>741</td>
</tr>
<tr>
<td>methods.rho2hat</td>
<td>742</td>
</tr>
<tr>
<td>Method/Function</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>methods.rhohat</td>
<td>743</td>
</tr>
<tr>
<td>methods.slrm</td>
<td>745</td>
</tr>
<tr>
<td>methods.units</td>
<td>746</td>
</tr>
<tr>
<td>midpoints.psp</td>
<td>747</td>
</tr>
<tr>
<td>mincontrast</td>
<td>748</td>
</tr>
<tr>
<td>miplot</td>
<td>750</td>
</tr>
<tr>
<td>model.depends</td>
<td>751</td>
</tr>
<tr>
<td>model.frame.ppm</td>
<td>753</td>
</tr>
<tr>
<td>model.images</td>
<td>754</td>
</tr>
<tr>
<td>model.matrix.ppm</td>
<td>756</td>
</tr>
<tr>
<td>model.matrix.slrm</td>
<td>758</td>
</tr>
<tr>
<td>moribund</td>
<td>759</td>
</tr>
<tr>
<td>mppm</td>
<td>760</td>
</tr>
<tr>
<td>msr</td>
<td>762</td>
</tr>
<tr>
<td>mucosa</td>
<td>765</td>
</tr>
<tr>
<td>MultiHard</td>
<td>766</td>
</tr>
<tr>
<td>multiplicity.ppp</td>
<td>767</td>
</tr>
<tr>
<td>MultiStrauss</td>
<td>768</td>
</tr>
<tr>
<td>MultiStraussHard</td>
<td>770</td>
</tr>
<tr>
<td>murchison</td>
<td>772</td>
</tr>
<tr>
<td>nbfires</td>
<td>773</td>
</tr>
<tr>
<td>nearest.raster.point</td>
<td>776</td>
</tr>
<tr>
<td>nearestsegment</td>
<td>778</td>
</tr>
<tr>
<td>nestsplit</td>
<td>779</td>
</tr>
<tr>
<td>nnclean</td>
<td>780</td>
</tr>
<tr>
<td>nncorr</td>
<td>782</td>
</tr>
<tr>
<td>nncross</td>
<td>785</td>
</tr>
<tr>
<td>nncross.lpp</td>
<td>788</td>
</tr>
<tr>
<td>nncross.pp3</td>
<td>790</td>
</tr>
<tr>
<td>ndensity.ppp</td>
<td>792</td>
</tr>
<tr>
<td>ndist</td>
<td>794</td>
</tr>
<tr>
<td>ndist.lpp</td>
<td>796</td>
</tr>
<tr>
<td>ndist.pp3</td>
<td>797</td>
</tr>
<tr>
<td>ndist.ppx</td>
<td>799</td>
</tr>
<tr>
<td>ndist.psp</td>
<td>800</td>
</tr>
<tr>
<td>nnfun</td>
<td>802</td>
</tr>
<tr>
<td>nnfun.lpp</td>
<td>803</td>
</tr>
<tr>
<td>nnmap</td>
<td>804</td>
</tr>
<tr>
<td>nnmark</td>
<td>806</td>
</tr>
<tr>
<td>nnorient</td>
<td>808</td>
</tr>
<tr>
<td>nnwhich</td>
<td>809</td>
</tr>
<tr>
<td>nnwhich.lpp</td>
<td>811</td>
</tr>
<tr>
<td>nnwhich.pp3</td>
<td>813</td>
</tr>
<tr>
<td>nnwhich.ppx</td>
<td>814</td>
</tr>
<tr>
<td>npfun</td>
<td>815</td>
</tr>
<tr>
<td>npoints</td>
<td>816</td>
</tr>
<tr>
<td>nsegments</td>
<td>817</td>
</tr>
<tr>
<td>nztrees</td>
<td>818</td>
</tr>
</tbody>
</table>
R topics documented:

objsurf ... 819
opening ... 820
Ord ... 822
ord.family ... 823
OrdThresh ... 824
osteo ... 825
overlap.owin ... 827
owin ... 828
owin.object ... 830
padimage ... 833
pairdist .. 834
pairdist.default ... 835
pairdist.lpp .. 836
pairdist.pp3 ... 837
pairdist.ppp ... 838
pairdist.ppx ... 839
pairdist.psp ... 840
pairorient ... 842
PairPiece ... 843
pairs.im .. 845
pairsat.family .. 846
Pairwise .. 847
pairwise.family .. 849
panel.contour ... 850
paracou .. 851
parres ... 852
pcf ... 855
pcf.fasp .. 856
pcf.fv .. 858
pcf.ppp .. 860
pcf3est ... 863
pcfcross .. 865
pcfcross.inhom .. 867
pcfdot .. 869
pcfdot.inhom .. 872
pcfinhom .. 874
pcfmulti .. 876
perimeter ... 878
periodify .. 879
persp.im .. 880
perspPoints .. 883
pixelcentres ... 884
pixellate .. 885
pixellate.owin ... 886
pixellate.ppp ... 887
pixellate.psp ... 889
pixelquad ... 890
plot.anylist .. 891
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool.rat</td>
<td>970</td>
</tr>
<tr>
<td>pp3</td>
<td>971</td>
</tr>
<tr>
<td>ppm</td>
<td>972</td>
</tr>
<tr>
<td>ppm.object</td>
<td>978</td>
</tr>
<tr>
<td>ppm.ppp</td>
<td>980</td>
</tr>
<tr>
<td>ppp</td>
<td>990</td>
</tr>
<tr>
<td>ppp.object</td>
<td>993</td>
</tr>
<tr>
<td>pppdist</td>
<td>995</td>
</tr>
<tr>
<td>pppmatching</td>
<td>998</td>
</tr>
<tr>
<td>pppmatching.object</td>
<td>1000</td>
</tr>
<tr>
<td>ppx</td>
<td>1001</td>
</tr>
<tr>
<td>predict.kppm</td>
<td>1003</td>
</tr>
<tr>
<td>predict.lppm</td>
<td>1004</td>
</tr>
<tr>
<td>predict.mppm</td>
<td>1005</td>
</tr>
<tr>
<td>predict.ppm</td>
<td>1007</td>
</tr>
<tr>
<td>predict.slrm</td>
<td>1012</td>
</tr>
<tr>
<td>print.im</td>
<td>1013</td>
</tr>
<tr>
<td>print.owin</td>
<td>1014</td>
</tr>
<tr>
<td>print.ppm</td>
<td>1015</td>
</tr>
<tr>
<td>print.ppp</td>
<td>1016</td>
</tr>
<tr>
<td>print.psp</td>
<td>1017</td>
</tr>
<tr>
<td>print.quad</td>
<td>1018</td>
</tr>
<tr>
<td>profilepl</td>
<td>1019</td>
</tr>
<tr>
<td>progressreport</td>
<td>1021</td>
</tr>
<tr>
<td>project.ppm</td>
<td>1022</td>
</tr>
<tr>
<td>project2segment</td>
<td>1024</td>
</tr>
<tr>
<td>project2set</td>
<td>1025</td>
</tr>
<tr>
<td>psp</td>
<td>1026</td>
</tr>
<tr>
<td>psp.object</td>
<td>1028</td>
</tr>
<tr>
<td>psst</td>
<td>1029</td>
</tr>
<tr>
<td>psstA</td>
<td>1031</td>
</tr>
<tr>
<td>psstG</td>
<td>1034</td>
</tr>
<tr>
<td>pyramidal</td>
<td>1036</td>
</tr>
<tr>
<td>qqplot.ppm</td>
<td>1037</td>
</tr>
<tr>
<td>quad.object</td>
<td>1042</td>
</tr>
<tr>
<td>quad.ppm</td>
<td>1043</td>
</tr>
<tr>
<td>quadrat.test</td>
<td>1044</td>
</tr>
<tr>
<td>quadrat.test.mppm</td>
<td>1048</td>
</tr>
<tr>
<td>quadrat.test.splitppp</td>
<td>1050</td>
</tr>
<tr>
<td>quadratcount</td>
<td>1051</td>
</tr>
<tr>
<td>quadratresample</td>
<td>1054</td>
</tr>
<tr>
<td>quadrats</td>
<td>1055</td>
</tr>
<tr>
<td>quadscheme</td>
<td>1056</td>
</tr>
<tr>
<td>quadscheme.logi</td>
<td>1059</td>
</tr>
<tr>
<td>quantess</td>
<td>1061</td>
</tr>
<tr>
<td>quantile.ewcdf</td>
<td>1063</td>
</tr>
<tr>
<td>quantile.im</td>
<td>1064</td>
</tr>
<tr>
<td>quasirandom</td>
<td>1065</td>
</tr>
</tbody>
</table>
R topics documented:

- range.fv ... 1066
- raster.x ... 1067
- rat ... 1069
- rCauchy .. 1070
- rcell .. 1072
- rcellnumber ... 1073
- rDGS .. 1074
- rDiggleGratton .. 1076
- reach ... 1078
- reduced.sample ... 1080
- redwood .. 1081
- redwoodfull ... 1082
- reflect .. 1084
- reload.or.compute .. 1085
- relrisk ... 1086
- relrisk.ppm ... 1087
- relrisk.ppp ... 1089
- Replace.im .. 1092
- rescale ... 1094
- rescale.im .. 1095
- rescale.owin ... 1096
- rescale.ppp ... 1098
- rescale.psp .. 1099
- rescue.rectangle .. 1100
- residuals.mppm .. 1101
- residuals.ppm .. 1102
- residuals.paper .. 1105
- rGaussPoisson ... 1107
- rgbim .. 1108
- rHardcore .. 1109
- rho2hat .. 1111
- rho2hat .. 1112
- ripras .. 1117
- rjitter .. 1118
- rknn ... 1119
- rlabel ... 1121
- rLGCP .. 1122
- rlinegrid .. 1124
- rMatClust .. 1125
- rMaternI ... 1127
- rMaternII ... 1128
- rmh ... 1129
- rmh.default ... 1131
- rmh.ppm ... 1141
- rmhcontrol ... 1144
- rmhexpand ... 1148
- rmhmodel .. 1151
- rmhmodel.default .. 1152
R topics documented:

- `rmhmodel.list` .. 1159
- `rmhmodel.ppm` ... 1161
- `rmhstart` ... 1163
- `rMosaicField` .. 1165
- `rMosaicSet` ... 1166
- `rmpoint` ... 1167
- `rMosaicField` .. 1165
- `rMosaicSet` ... 1166
- `rmpoint` ... 1167
- `rmpoispp` ... 1171
- `rNeymanScott` ... 1174
- `rose` .. 1177
- `rotate` ... 1179
- `rotate.im` ... 1180
- `rotate.owin` ... 1181
- `rotate.ppp` ... 1182
- `rotate.psp` ... 1183
- `rotmean` ... 1184
- `round.ppp` ... 1185
- `rounding` ... 1186
- `rpoint` ... 1187
- `rpoisline` ... 1189
- `rpoislinetess` ... 1190
- `rpoispp` ... 1191
- `rpoispp` ... 1192
- `rpoispp3` ... 1194
- `rpoisppOnLines` .. 1195
- `rpoisppx` ... 1197
- `rPoissonCluster` .. 1198
- `rQuasi` ... 1200
- `rshift` ... 1201
- `rshift.ppp` ... 1202
- `rshift.psp` ... 1204
- `rshift.splitppp` .. 1206
- `rSSI` ... 1207
- `rstrat` ... 1209
- `rStrauss` .. 1210
- `rStraussHard` ... 1212
- `rsyst` ... 1214
- `rthin` ... 1215
- `rThomas` .. 1217
- `run.simplepanel` ... 1219
- `runifdisc` ... 1220
- `runiflpp` .. 1222
- `runifpoint` ... 1223
- `runifpoint3` ... 1224
- `runifpointOnLines` .. 1225
- `runifpointx` ... 1226
- `rVarGamma` .. 1227
- `SatPiece` .. 1229
- `Saturated` .. 1231
R topics documented:

scalardilate ... 1232
scaletointerval ... 1233
scan.test .. 1234
scanLRTS .. 1236
scanpp ... 1238
segregation.test .. 1240
selfcrossing.psp ... 1241
selfcut.psp .. 1242
sessionLibs .. 1243
setcov ... 1244
shapley ... 1245
sharpen ... 1246
shift .. 1248
shift.im ... 1248
shift.owin ... 1250
shift.ppp ... 1251
shift.psp ... 1252
sideLengths.owin .. 1253
simba .. 1254
simdat ... 1255
simpleNet ... 1256
simplePanel .. 1256
simplify.owin .. 1259
simulate.kppm .. 1260
simulate.lppm .. 1262
simulate.ppm .. 1263
slrm .. 1265
Smooth ... 1266
Smooth.fv .. 1270
Smooth.msr ... 1271
Smooth.ppp ... 1272
Smoothfun.ppp .. 1275
Softcore .. 1276
solapply ... 1278
solist .. 1279
solutionSet ... 1280
spatialcdf .. 1282
spatstat.options ... 1283
spiders .. 1287
split.hyperframe ... 1288
split.im ... 1290
split.ppp ... 1291
split.ppx ... 1294
spokes ... 1295
sporophores ... 1297
spruces ... 1298
square .. 1299
R topics documented:

stieltjes ... 1300
stienen .. 1301
stratrand ... 1302
Strauss .. 1304
StraussHard ... 1305
subfits ... 1307
subset.hyperframe .. 1308
subset.ppp .. 1309
suffstat .. 1311
summary.anylist .. 1313
summary.im .. 1314
summary.listof ... 1315
summary.owin ... 1316
summary.ppm .. 1317
summary.ppp .. 1318
summary.psp .. 1319
summary.quad ... 1320
summary.solist ... 1322
summary.splitppp ... 1323
sumouter .. 1324
superimpose ... 1325
superimpose.lpp .. 1328
swedishpines ... 1329
symbolmap .. 1330
tess ... 1332
texturemap ... 1334
textureplot ... 1335
thomas.estK ... 1336
thomas.estpcf .. 1338
tile.areas .. 1341
tilenames ... 1342	iles ... 1343
timed .. 1344
transect.im ... 1345
trim.rectangle .. 1346
triplet.family ... 1347
Triplelets .. 1348
Tstat ... 1349
tweak.colourmap .. 1351
union.quad .. 1352
unique.ppp .. 1353
ununitname .. 1354
unmark .. 1356
unnormdensity ... 1357
update.kppm .. 1358
update.ppm .. 1359
update.rmhcontrol .. 1362
update.symbolmap .. 1363
The Spatstat Package

Description

This is a summary of the features of spatstat, a package in R for the statistical analysis of spatial point patterns.

Details

spatstat is a package for the statistical analysis of spatial data. Currently, it deals mainly with the analysis of spatial patterns of points in two-dimensional space. The points may carry auxiliary data (‘marks’), and the spatial region in which the points were recorded may have arbitrary shape.

The package supports

- creation, manipulation and plotting of point patterns
- exploratory data analysis
- simulation of point process models
- parametric model-fitting
- hypothesis tests and model diagnostics
Apart from two-dimensional point patterns and point processes, spatstat also supports point patterns in three dimensions, point patterns in multidimensional space-time, point patterns on a linear network, patterns of line segments in two dimensions, and spatial tessellations and random sets in two dimensions.

The package can fit several types of point process models to a point pattern dataset:

- Poisson point process models (by Berman-Turner approximate maximum likelihood or by spatial logistic regression)
- Gibbs/Markov point process models (by Baddeley-Turner approximate maximum pseudolikelihood, Coeurjolly-Rubak logistic likelihood, or Huang-Ogata approximate maximum likelihood)
- Cox/cluster process models (by Waagepetersen’s two-step fitting procedure and minimum contrast, or by composite likelihood)

The models may include spatial trend, dependence on covariates, and complicated interpoint interactions. Models are specified by a formula in the R language, and are fitted using a function analogous to lm and glm. Fitted models can be printed, plotted, predicted, simulated and so on.

Getting Started

For a quick introduction to spatstat, see the package vignette Getting started with spatstat installed with spatstat. (To see this document online, start R, type help.start() to open the help browser, and navigate to Packages > spatstat > Vignettes).

For a complete 2-day course on using spatstat, see the workshop notes by Baddeley (2010), available on the internet. (This is now somewhat out-of-date but it will get you started.)

Type demo(spatstat) for a demonstration of the package’s capabilities. Type demo(data) to see all the datasets available in the package.

For information about handling data in shapefiles, see the Vignette Handling shapefiles in the spatstat package installed with spatstat.

To learn about spatial point process methods, see the short book by Diggle (2003) and the handbook Gelfand et al (2010).

Updates

New versions of spatstat are produced about once a month. Users are advised to update their installation of spatstat regularly.

Type latest.news to read the news documentation about changes to the current installed version of spatstat.

See the Vignette Summary of recent updates, installed with spatstat, which describes the main changes to spatstat since the workshop notes were published in 2010.

Type news(package="spatstat") to read news documentation about all previous versions of the package.
FUNCTIONS AND DATASETS

Following is a summary of the main functions and datasets in the `spatstat` package. Alternatively, an alphabetical list of all functions and datasets is available by typing `library(help=spatstat)`.

For further information on any of these, type `help(name)` where `name` is the name of the function or dataset.

CONTENTS:

I. Creating and manipulating data
II. Exploratory Data Analysis
III. Model fitting (cluster models)
IV. Model fitting (Poisson and Gibbs models)
V. Model fitting (spatial logistic regression)
VI. Simulation
VII. Tests and diagnostics
VIII. Documentation

I. CREATING AND MANIPULATING DATA

Types of spatial data:
The main types of spatial data supported by `spatstat` are:

- `ppp` point pattern
- `owin` window (spatial region)
- `im` pixel image
- `psp` line segment pattern
- `tess` tessellation
- `pp3` three-dimensional point pattern
- `ppx` point pattern in any number of dimensions
- `lpp` point pattern on a linear network

To create a point pattern:

- `ppp` create a point pattern from \((x,y)\) and window information
 `ppp(x, y, xlim, ylim)` for rectangular window
 `ppp(x, y, poly)` for polygonal window
 `ppp(x, y, mask)` for binary image window
- `as.ppp` convert other types of data to a `ppp` object
- `clickppp` interactively add points to a plot
- `marks<-, %mark%` attach/reassign marks to a point pattern

To simulate a random point pattern:

- `runifpoint` generate \(n\) independent uniform random points
To randomly change an existing point pattern:

- rshift: random shifting of points
- rjitter: apply random displacements to points in a pattern
- rthin: random thinning
- rlabel: random (re)labelling of a multitype point pattern
- quadratresample: block resampling

Standard point pattern datasets:

Datasets in spatstat are lazy-loaded, so you can simply type the name of the dataset to use it; there is no need to type data(amacrine) etc.

Type demo(data) to see a display of all the datasets installed with the package.

Type vignette(datasets) for a document giving an overview of all datasets, including background information, and plots.

- amacrine: Austin Hughes’ rabbit amacrine cells
- anemones: Upton-Fingleton sea anemones data
- ants: Harkness-Isham ant nests data
To manipulate a point pattern:

- plot.ppp: plot a point pattern (e.g. plot(X))
- iplot: plot a point pattern interactively
- [.ppp: extract or replace a subset of a point pattern
pp[subset] or pp[subwindow]

subset.ppp extract subset of point pattern satisfying a condition
superimpose combine several point patterns
by.ppp apply a function to sub-patterns of a point pattern
cut.ppp classify the points in a point pattern
split.ppp divide pattern into sub-patterns
unmark remove marks
npoints count the number of points
coords extract coordinates, change coordinates
marks extract marks, change marks or attach marks
rotate rotate pattern
shift translate pattern
flipxy swap x and y coordinates
reflect reflect in the origin
periodify make several translated copies
affine apply affine transformation
scalardilate apply scalar dilation
density.ppp kernel estimation of point pattern intensity
Smooth.ppp kernel smoothing of marks of point pattern
nnmark mark value of nearest data point
sharpen.ppp data sharpening
identify.ppp interactively identify points
unique.ppp remove duplicate points
duplicated.ppp determine which points are duplicates
connected.ppp find clumps of points
dirichlet compute Dirichlet-Voronoi tessellation
delaunay compute Delaunay triangulation
delaunay.distance graph distance in Delaunay triangulation
convexhull compute convex hull
discretise discretise coordinates
pixellate.ppp approximate point pattern by pixel image
as.im.ppp approximate point pattern by pixel image

See spatstat.options to control plotting behaviour.

To create a window:

An object of class "owin" describes a spatial region (a window of observation).

owin create a window object
 owin(xlim, ylim) for rectangular window
 owin(poly) for polygonal window
 owin(mask) for binary image window
Window extract window of another object
Frame extract the containing rectangle ("frame") of another object
as.owin convert other data to a window object
square make a square window
disc make a circular window
ripras Ripley-Rasson estimator of window, given only the points
convexhull compute convex hull of something
letterR polygonal window in the shape of the R logo
clickpoly interactively draw a polygonal window
clickbox interactively draw a rectangle

To manipulate a window:

plot.owin plot a window.
 plot(W)
boundingbox Find a tight bounding box for the window
erosion erode window by a distance r
dilation dilate window by a distance r
closing close window by a distance r
opening open window by a distance r
border difference between window and its erosion/dilation
complement.owin invert (swap inside and outside)
simplify.owin approximate a window by a simple polygon
rotate rotate window
flipxy swap x and y coordinates
shift translate window
periodify make several translated copies
affine apply affine transformation

Digital approximations:

as.mask Make a discrete pixel approximation of a given window
as.im.owin convert window to pixel image
pixellate.owin convert window to pixel image
commonGrid find common pixel grid for windows
nearest.raster.point map continuous coordinates to raster locations
raster.x raster x coordinates
raster.y raster y coordinates
as.polygonal convert pixel mask to polygonal window

See spatstat.options to control the approximation

Geometrical computations with windows:

edges extract boundary edges
intersect.owin intersection of two windows
union.owin union of two windows
setminus.owin set subtraction of two windows
inside.owin determine whether a point is inside a window
area.owin compute area
perimeter compute perimeter length
diameter.owin compute diameter
incircle find largest circle inside a window
connected.owin find connected components of window
eroded.areas compute areas of eroded windows
dilated.areas compute areas of dilated windows
bdist.points compute distances from data points to window boundary
bdist.pixels compute distances from all pixels to window boundary
bdist.tiles boundary distance for each tile in tessellation
distmap.owin distance transform image
distfun.owin distance transform
centroid.owin compute centroid (centre of mass) of window
is.subset.owin determine whether one window contains another
is.convex determine whether a window is convex
convexhull compute convex hull
as.mask pixel approximation of window
aspolygonal polygonal approximation of window
is.rectangle test whether window is a rectangle
is.polygonal test whether window is polygonal
is.mask test whether window is a mask
setcov spatial covariance function of window
pixelcentres extract centres of pixels in mask

Pixel images: An object of class "im" represents a pixel image. Such objects are returned by some of the functions in spatstat including Kmeasure, setcov and density.ppp.

im create a pixel image
as.im convert other data to a pixel image
pixellate convert other data to a pixel image
as.matrix.im convert pixel image to matrix
as.data.frame.im convert pixel image to data frame
as.function.im convert pixel image to function
plot.im plot a pixel image on screen as a digital image
contour.im draw contours of a pixel image
persp.im draw perspective plot of a pixel image
rgbim create colour-valued pixel image
hsvim create colour-valued pixel image
[.im extract a subset of a pixel image
[<-.im replace a subset of a pixel image
rotate.im rotate pixel image
shift.im apply vector shift to pixel image
affine.im apply affine transformation to image
X print very basic information about image X
summary(X) summary of image X
hist.im histogram of image
mean.im mean pixel value of image
integral.im integral of pixel values
quantile.im quantiles of image
cut.im convert numeric image to factor image
is.im test whether an object is a pixel image
interp.im interpolate a pixel image
blur apply Gaussian blur to image
Smooth.im apply Gaussian blur to image
connected.im find connected components
compatible.im test whether two images have compatible dimensions
harmonise.im make images compatible
commonGrid find a common pixel grid for images
eval.im evaluate any expression involving images
scaleToInterval rescale pixel values
zapsmall.im set very small pixel values to zero
levelset level set of an image
solutionset region where an expression is true
imcov spatial covariance function of image
convolve.im spatial convolution of images
transect.im line transect of image
pixelcentres extract centres of pixels

Line segment patterns
An object of class "psp" represents a pattern of straight line segments.

psp create a line segment pattern
as.psp convert other data into a line segment pattern
edges extract edges of a window
is.psp determine whether a dataset has class "psp"
plot.psp plot a line segment pattern
print.psp print basic information
summary.psp print summary information
[.psp extract a subset of a line segment pattern
as.data.frame.psp convert line segment pattern to data frame
marks.psp extract marks of line segments
marks<-.psp assign new marks to line segments
unmark.psp delete marks from line segments
midpoints.psp compute the midpoints of line segments
endpoints.psp extract the endpoints of line segments
lengths.psp compute the lengths of line segments
angles.psp compute the orientation angles of line segments
superimpose combine several line segment patterns
flipxy swap x and y coordinates
rotate.psp rotate a line segment pattern
shift.psp shift a line segment pattern
periodify make several shifted copies
affine.psp apply an affine transformation
pixellate.psp approximate line segment pattern by pixel image
as.mask.psp approximate line segment pattern by binary mask
distmap.psp compute the distance map of a line segment pattern
distfun.psp compute the distance map of a line segment pattern
density.psp kernel smoothing of line segments
selfcrossing.psp find crossing points between line segments
crossing.psp find crossing points between two line segment patterns
nncross find distance to nearest line segment from a given point
nearestsegment find line segment closest to a given point
project2segment find location along a line segment closest to a given point
pointsOnLines generate points evenly spaced along line segment
rpoisline generate a realisation of the Poisson line process inside a window
rlinegrid generate a random array of parallel lines through a window

Tessellations
An object of class "tess" represents a tessellation.

tess create a tessellation
quadrats create a tessellation of rectangles
hextess create a tessellation of hexagons
quantess quantile tessellation
as.tess convert other data to a tessellation
plot.tess plot a tessellation
tiles extract all the tiles of a tessellation
[..tess extract some tiles of a tessellation
[<-.tess change some tiles of a tessellation
intersect.tess intersect two tessellations
chop.tess or restrict a tessellation to a window
subdivide a tessellation by a line
dirichlet compute Dirichlet-Voronoi tessellation of points
delaunay compute Delaunay triangulation of points
rpoislinetess generate tessellation using Poisson line process
tile.areas area of each tile in tessellation
bdist.tiles boundary distance for each tile in tessellation

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box is represented by an object of class "box3".

pp3 create a 3-D point pattern
plot.pp3 plot a 3-D point pattern
cords extract coordinates
as.hyperframe extract coordinates
subset.pp3 extract subset of 3-D point pattern
unitname.pp3 name of unit of length
npoints count the number of points
runifpoint3 generate uniform random points in 3-D
rpoispp3 generate Poisson random points in 3-D
evervelope.pp3 generate simulation envelopes for 3-D pattern
box3 create a 3-D rectangular box
as.box3 convert data to 3-D rectangular box
unitname.box3 name of unit of length
diameter.box3 diameter of box
volume.box3 volume of box
shortside.box3 shortest side of box
eroded.volumes volumes of erosions of box
Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

- **ppx**: create a multidimensional space-time point pattern
- **coords**: extract coordinates
- **as.hyperframe**: extract coordinates
- **subset.ppx**: extract subset
- **unitname.ppx**: name of unit of length
- **npoints**: count the number of points
- **runifpointx**: generate uniform random points
- **rpoisppx**: generate Poisson random points
- **boxx**: define multidimensional box
- **diameter.boxx**: diameter of box
- **volume.boxx**: volume of box
- **shortside.boxx**: shortest side of box
- **eroded.volumes.boxx**: volumes of erosions of box

Point patterns on a linear network
An object of class "linnet" represents a linear network (for example, a road network).

- **linnet**: create a linear network
- **clickjoin**: interactively join vertices in network
- **simplenet**: simple example of network
- **lineardisc**: disc in a linear network
- **methods.linnet**: methods for linnet objects

An object of class "lpp" represents a point pattern on a linear network (for example, road accidents on a road network).

- **lpp**: create a point pattern on a linear network
- **methods.lpp**: methods for lpp objects
- **subset.lpp**: method for subset
- **rpoislpp**: simulate Poisson points on linear network
- **runiflpp**: simulate random points on a linear network
- **chicago**: Chicago street crime data
- **dendrite**: Dendritic spines data
- **spiders**: Spider webs on mortar lines of brick wall

Hyperframes
A hyperframe is like a data frame, except that the entries may be objects of any kind.

- **hyperframe**: create a hyperframe
- **as.hyperframe**: convert to hyperframe
- **plot.hyperframe**: plot hyperframe
- **with.hyperframe**: evaluate expression using each row of hyperframe
- **cbind.hyperframe**: combine hyperframes by columns
Layered objects

A layered object represents data that should be plotted in successive layers, for example, a background and a foreground.

```r
layered
plot.layered
[.layered
```

Colour maps

A colour map is a mechanism for associating colours with data. It can be regarded as a function, mapping data to colours. Using a `colourmap` object in a plot command ensures that the mapping from numbers to colours is the same in different plots.

```r
colourmap
 plot.colourmap
 tweak.colourmap
 interp.colourmap
 beachcolourmap
```

II. EXPLORATORY DATA ANALYSIS

Inspection of data:

```r
summary(X)
X
any(duplicated(X))
istat(X)
```

Classical exploratory tools:

```r
clarkevans
fryplot
miplot
```

Smoothing:

```r
density.ppp
relrisk
Smooth.ppp
bw.diggle
bw.ppl
bw.scott
bw.relrisk
bw.sMOOTH PPP
```
bw.frac bandwidth selection using window geometry
bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:

clusterset Allard-Fraley feature detection
nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of covariate effect
spatialcdf Spatial cumulative distribution function

demoHsumfun for a demonstration of many of the summary statistics.

Summary statistics for a point pattern: Type demo(sumfun) for a demonstration of many of the summary statistics.

intensity Mean intensity
quadratcount Quadrat counts
intensity.quadratcount Mean intensity in quadrats
Fest empty space function \(F \)
Gest nearest neighbour distribution function \(G \)
Jest \(J \)-function \(J = (1 - G)/(1 - F) \)
Kest Ripley’s \(K \)-function
Lest Besag \(L \)-function
Tstat Third order \(T \)-function
allstats all four functions \(F, G, J, K \)
pcf pair correlation function
Kinhom \(K \) for inhomogeneous point patterns
Linhom \(L \) for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom \(F \) for inhomogeneous point patterns
Ginhom \(G \) for inhomogeneous point patterns
Jinhom \(J \) for inhomogeneous point patterns
localL Getis-Franklin neighbourhood density function
localK neighbourhood \(K \)-function
localpcf local pair correlation function
localKinhom local \(K \) for inhomogeneous point patterns
localLinhom local \(L \) for inhomogeneous point patterns
localpcfinhom local pair correlation for inhomogeneous patterns
Ksector Directional \(K \)-function
Kscaled locally scaled \(K \)-function
Kest.fft fast \(K \)-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals
for a summary function
lohboot bootstrap for a summary function

Related facilities:
plot.fv plot a summary function
eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible
eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth.fv apply smoothing to a summary function
deriv.fv calculate derivative of a summary function
nnndist nearest neighbour distances
nnwhich find nearest neighbours
pairdist distances between all pairs of points
crossdist distances between points in two patterns
mnncross nearest neighbours between two point patterns
exactdt distance from any location to nearest data point
distmap distance map image
distfun distance map function
mnnmap nearest point image
mnnfun nearest point function
density.ppp kernel smoothed density
Smooth.ppp spatial interpolation of marks
relrisk kernel estimate of relative risk
sharpen.ppp data sharpening
rknn theoretical distribution of nearest neighbour distance

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an object X of class "ppp" such that marks(X) is a factor.

relrisk kernel estimation of relative risk
scan.test spatial scan test of elevated risk
Gcross,Gdot,Gmulti multitype nearest neighbour distributions G_{ij}, G_i•
Kcross,Kdot,Kmulti multitype K-functions K_{ij}, K_i•
Lcross,Ldot multitype L-functions L_{ij}, L_i•
Jcross,Jdot,Jmulti multitype J-functions J_{ij}, J_i•
pcfcr multitype pair correlation function g_{ij}
pcfdr multitype pair correlation function g_i•
pcfmc general pair correlation function
markconnect marked connection function p_{ij}
alltypes estimates of the above for all i, j pairs
Iest multitype I-function
Kcross.inhom,Kdot.inhom inhomogeneous counterparts of Kcross, Kdot
Lcross.inhom,Ldot.inhom inhomogeneous counterparts of Lcross, Ldot
pcfcr.inhom,pcfdr.inhom inhomogeneous counterparts of pcfcr, pcfdr

Summary statistics for a marked point pattern: A marked point pattern is represented by an object X of class "ppp" with a component X$marks. The entries in the vector X$marks may be numeric, complex, string or any other atomic type. For numeric marks, there are the following functions:

markmean smoothed local average of marks
For marks of any type, there are the following:

- **Gmulti**
 multitype nearest neighbour distribution
- **Kmulti**
 multitype K-function
- **Jmulti**
 multitype J-function

Alternatively use **cut.ppp** to convert a marked point pattern to a multitype point pattern.

Programming tools:

- **applynbd**
 apply function to every neighbourhood in a point pattern
- **markstat**
 apply function to the marks of neighbours in a point pattern
- **marktable**
 tabulate the marks of neighbours in a point pattern
- **pppdist**
 find the optimal match between two point patterns

Summary statistics for a point pattern on a linear network:

These are for point patterns on a linear network (class **lpp**). For unmarked patterns:

- **linearK**
 K function on linear network
- **linearKinhom**
 inhomogeneous K function on linear network
- **linearpcf**
 pair correlation function on linear network
- **linearpcfinhom**
 inhomogeneous pair correlation on linear network

For multitype patterns:

- **linearKcross**
 K function between two types of points
- **linearKdot**
 K function from one type to any type
- **linearKcross.inhom**
 Inhomogeneous version of **linearKcross**
- **linearKdot.inhom**
 Inhomogeneous version of **linearKdot**
- **linearmarkconnect**
 Mark connection function on linear network
- **linearmarkequal**
 Mark equality function on linear network
- **linearpcfcross**
 Pair correlation between two types of points
- **linearpcfdot**
 Pair correlation from one type to any type
- **linearpcfcross.inhom**
 Inhomogeneous version of **linearpcfcross**
- **linearpcfdot.inhom**
 Inhomogeneous version of **linearpcfdot**

Related facilities:

- **pairdist.lpp**
 distances between pairs
It is also possible to fit point process models to \texttt{lpp} objects. See Section IV.

Summary statistics for a three-dimensional point pattern:

These are for 3-dimensional point pattern objects (class \texttt{pp3}).

- \texttt{F3est} empty space function F
- \texttt{G3est} nearest neighbour function G
- \texttt{K3est} K-function
- \texttt{pcf3est} pair correlation function

Related facilities:

- \texttt{envelope.ppp3} simulation envelopes
- \texttt{pairdist.ppp3} distances between all pairs of points
- \texttt{crossdist.ppp3} distances between points in two patterns
- \texttt{nndist.ppp3} nearest neighbour distances
- \texttt{nnwhich.ppp3} find nearest neighbours
- \texttt{nncross.ppp3} find nearest neighbours in another pattern

Computations for multi-dimensional point pattern:

These are for multi-dimensional space-time point pattern objects (class \texttt{ppx}).

- \texttt{pairdist.ppx} distances between all pairs of points
- \texttt{crossdist.ppx} distances between points in two patterns
- \texttt{nndist.ppx} nearest neighbour distances
- \texttt{nnwhich.ppx} find nearest neighbours

Summary statistics for random sets:

These work for point patterns (class \texttt{ppp}), line segment patterns (class \texttt{psp}) or windows (class \texttt{owin}).

- \texttt{Hest} spherical contact distribution H
- \texttt{Gfox} Foxall G-function
- \texttt{Jfox} Foxall J-function
III. MODEL FITTING (CLUSTER MODELS)

Cluster process models (with homogeneous or inhomogeneous intensity) and Cox processes can be fitted by the function `kppm`. Its result is an object of class “kppm”. The fitted model can be printed, plotted, predicted, simulated and updated.

- `kppm`: Fit model
- `plot.kppm`: Plot the fitted model
- `fitted.kppm`: Compute fitted intensity
- `predict.kppm`: Compute fitted intensity
- `update.kppm`: Update the model
- `improve.kppm`: Refine the estimate of trend
- `simulate.kppm`: Generate simulated realisations
- `vcov.kppm`: Variance-covariance matrix of coefficients
- `Kmodel.kppm`: K function of fitted model
- `pcfmodel.kppm`: Pair correlation of fitted model

The theoretical models can also be simulated, for any choice of parameter values, using `rThomas`, `rMatClust`, `rCauchy`, `rVarGamma`, and `rLGCP`.

Lower-level fitting functions include:

- `lgcp.estK`: fit a log-Gaussian Cox process model
- `lgcp.estpcf`: fit a log-Gaussian Cox process model
- `thomas.estK`: fit the Thomas process model
- `thomas.estpcf`: fit the Thomas process model
- `matclust.estK`: fit the Matern Cluster process model
- `matclust.estpcf`: fit the Matern Cluster process model
- `cauchy.estK`: fit a Neyman-Scott Cauchy cluster process
- `cauchy.estpcf`: fit a Neyman-Scott Cauchy cluster process
- `vargamma.estK`: fit a Neyman-Scott Variance Gamma process
- `vargamma.estpcf`: fit a Neyman-Scott Variance Gamma process
- `mincontrast`: low-level algorithm for fitting models by the method of minimum contrast

IV. MODEL FITTING (POISSON AND GIBBS MODELS)

Types of models

Poisson point processes are the simplest models for point patterns. A Poisson model assumes that the points are stochastically independent. It may allow the points to have a non-uniform spatial density. The special case of a Poisson process with a uniform spatial density is often called Complete Spatial Randomness.

Poisson point processes are included in the more general class of Gibbs point process models. In a Gibbs model, there is interaction or dependence between points. Many different types of interaction can be specified.

For a detailed explanation of how to fit Poisson or Gibbs point process models to point pattern data using `spatstat`, see Baddeley and Turner (2005b) or Baddeley (2008).

To fit a Poisson or Gibbs point process model:
Model fitting in `spatstat` is performed mainly by the function `ppm`. Its result is an object of class "ppm".

Here are some examples, where `X` is a point pattern (class "ppp"):

<table>
<thead>
<tr>
<th>command</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm(X)</td>
<td>Complete Spatial Randomness</td>
</tr>
<tr>
<td>ppm(X ~ 1)</td>
<td>Complete Spatial Randomness</td>
</tr>
<tr>
<td>ppm(X ~ x)</td>
<td>Poisson process with intensity loglinear in <code>x</code></td>
</tr>
<tr>
<td>ppm(X ~ 1, Strauss(0.1))</td>
<td>Stationary Strauss process</td>
</tr>
<tr>
<td>ppm(X ~ x, Strauss(0.1))</td>
<td>Strauss process with conditional intensity loglinear in <code>x</code></td>
</tr>
</tbody>
</table>

It is also possible to fit models that depend on other covariates.

Manipulating the fitted model:

- `plot.ppm` Plot the fitted model
- `predict.ppm` Compute the spatial trend and conditional intensity of the fitted point process model
- `coef.ppm` Extract the fitted model coefficients
- `formula.ppm` Extract the trend formula
- `intensity.ppm` Compute fitted intensity
- `Kmodel.ppm` K function of fitted model
- `pcfmodel.ppm` Pair correlation of fitted model
- `fitted.ppm` Compute fitted conditional intensity at quadrature points
- `residuals.ppm` Compute point process residuals at quadrature points
- `update.ppm` Update the fit
- `vcov.ppm` Variance-covariance matrix of estimates
- `rmh.ppm` Simulate from fitted model
- `simulate.ppm` Simulate from fitted model
- `print.ppm` Print basic information about a fitted model
- `summary.ppm` Summarise a fitted model
- `effectfun` Compute the fitted effect of one covariate
- `logLik.ppm` Log-likelihood or log-pseudolikelihood
- `anova.ppm` Analysis of deviance
- `model.frame.ppm` Extract data frame used to fit model
- `model.images` Extract spatial data used to fit model
- `model.depends` Identify variables in the model
- `as.interact` Interpoint interaction component of model
- `fitin` Extract fitted interpoint interaction
- `is.hybrid` Determine whether the model is a hybrid
- `valid.ppm` Check the model is a valid point process
- `project.ppm` Ensure the model is a valid point process

For model selection, you can also use the generic functions `step`, `drop1` and `AIC` on fitted point process models.

See `spatstat.options` to control plotting of fitted model.
To specify a point process model:
The first order “trend” of the model is determined by an \(R \) language formula. The formula specifies the form of the logarithm of the trend.

\[
\begin{align*}
X & \sim 1 \quad \text{No trend (stationary)} \\
X & \sim x \quad \text{Loglinear trend } \lambda(x,y) = \exp(\alpha + \beta x) \\
X & \sim \text{polynom}(x,y,3) \quad \text{Log-cubic polynomial trend} \\
X & \sim \text{harmonic}(x,y,2) \quad \text{Log-harmonic polynomial trend} \\
X & \sim Z \quad \text{Loglinear function of covariate } Z
\end{align*}
\]

where \(x, y \) are Cartesian coordinates

\[
\lambda(x,y) = \exp(\alpha + \beta Z(x,y))
\]

The higher order (“interaction”) components are described by an object of class “interact”. Such objects are created by:

- `Poisson()` the Poisson point process
- `AreaInter()` Area-interaction process
- `BadGey()` multiscale Geyer process
- `Concom()` connected component interaction
- `DiggleGratton()` Diggle-Gratton potential
- `DiggleGatesStibbard()` Diggle-Gates-Stibbard potential
- `Fiksel()` Fiksel pairwise interaction process
- `Geyer()` Geyer’s saturation process
- `Hardcore()` Hard core process
- `Hybrid()` Hybrid of several interactions
- `LennardJones()` Lennard-Jones potential
- `MultiHard()` multitype hard core process
- `MultiStrauss()` multitype Strauss process
- `MultiStraussHard()` multitype Strauss/hard core process
- `OrdThresh()` Ord process, threshold potential
- `Ord()` Ord model, user-supplied potential
- `PairPiece()` pairwise interaction, piecewise constant
- `Pairwise()` pairwise interaction, user-supplied potential
- `SatPiece()` Saturated pair model, piecewise constant potential
- `Saturated()` Saturated pair model, user-supplied potential
- `Softcore()` pairwise interaction, soft core potential
- `Strauss()` Strauss process
- `StraussHard()` Strauss/hard core point process
- `Triplets()` Geyer triplets process

Note that it is also possible to combine several such interactions using `Hybrid`.

Finer control over model fitting:
A quadrature scheme is represented by an object of class “quad”. To create a quadrature scheme, typically use `quadscheme`.

- `quadscheme` default quadrature scheme
 using rectangular cells or Dirichlet cells
To inspect a quadrature scheme:

- `plot(Q)` - plot quadrature scheme Q
- `print(Q)` - print basic information about quadrature scheme Q
- `summary(Q)` - summary of quadrature scheme Q

A quadrature scheme consists of data points, dummy points, and weights. To generate dummy points:

- `default.dummy` - default pattern of dummy points
- `gridcentres` - dummy points in a rectangular grid
- `rstrat` - stratified random dummy pattern
- `spokes` - radial pattern of dummy points
- `corners` - dummy points at corners of the window

To compute weights:

- `gridweights` - quadrature weights by the grid-counting rule
- `dirichlet.weights` - quadrature weights are Dirichlet tile areas

Simulation and goodness-of-fit for fitted models:

- `rmh.ppm` - simulate realisations of a fitted model
- `simulate.ppm` - simulate realisations of a fitted model
- `envelope` - compute simulation envelopes for a fitted model

Point process models on a linear network:

An object of class "lpp" represents a pattern of points on a linear network. Point process models can also be fitted to these objects. Currently only Poisson models can be fitted.

- `lppm` - point process model on linear network
- `anova.lppm` - analysis of deviance for point process model on linear network
- `envelope.lppm` - simulation envelopes for point process model on linear network
- `predict.lppm` - model prediction on linear network
- `linim` - pixel image on linear network
- `plot.linim` - plot a pixel image on linear network
- `eval.linim` - evaluate expression involving images
- `linfun` - function defined on linear network
- `methods.linfun` - conversion facilities
V. MODEL FITTING (SPATIAL LOGISTIC REGRESSION)

Logistic regression

Pixel-based spatial logistic regression is an alternative technique for analysing spatial point patterns that is widely used in Geographical Information Systems. It is approximately equivalent to fitting a Poisson point process model.

In pixel-based logistic regression, the spatial domain is divided into small pixels, the presence or absence of a data point in each pixel is recorded, and logistic regression is used to model the presence/absence indicators as a function of any covariates.

Facilities for performing spatial logistic regression are provided in spatstat for comparison purposes.

Fitting a spatial logistic regression

Spatial logistic regression is performed by the function slrm. Its result is an object of class "slrm". There are many methods for this class, including methods for print, fitted, predict, simulate, anova, coef, logLik, terms, update, formula and vcov.

For example, if X is a point pattern (class "ppp"):

<table>
<thead>
<tr>
<th>command</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>slrm(X ~ 1)</td>
<td>Complete Spatial Randomness</td>
</tr>
<tr>
<td>slrm(X ~ x)</td>
<td>Poisson process with intensity loglinear in x coordinate</td>
</tr>
<tr>
<td>slrm(X ~ Z)</td>
<td>Poisson process with intensity loglinear in covariate Z</td>
</tr>
</tbody>
</table>

Manipulating a fitted spatial logistic regression

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anova.slrm</td>
<td>Analysis of deviance</td>
</tr>
<tr>
<td>coef.slrm</td>
<td>Extract fitted coefficients</td>
</tr>
<tr>
<td>vcov.slrm</td>
<td>Variance-covariance matrix of fitted coefficients</td>
</tr>
<tr>
<td>fitted.slrm</td>
<td>Compute fitted probabilities or intensity</td>
</tr>
<tr>
<td>logLik.slrm</td>
<td>Evaluate loglikelihood of fitted model</td>
</tr>
<tr>
<td>plot.slrm</td>
<td>Plot fitted probabilities or intensity</td>
</tr>
<tr>
<td>predict.slrm</td>
<td>Compute predicted probabilities or intensity with new data</td>
</tr>
<tr>
<td>simulate.slrm</td>
<td>Simulate model</td>
</tr>
</tbody>
</table>

There are many other undocumented methods for this class, including methods for print, update, formula and terms. Stepwise model selection is possible using step or stepAIC.

VI. SIMULATION

There are many ways to generate a random point pattern, line segment pattern, pixel image or tessellation in spatstat.

Random point patterns:

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>runifpoint</td>
<td>generate n independent uniform random points</td>
</tr>
<tr>
<td>rpoint</td>
<td>generate n independent random points</td>
</tr>
</tbody>
</table>
rmpoint generate \(n \) independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
runifdisc generate \(n \) independent uniform random points in disc
rstrat stratified random sample of points
rsyst systematic random sample (grid) of points
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition process
rStrauss simulate Strauss process (perfect simulation)
rNeymanScott simulate a general Neyman-Scott process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rLGCP simulate the log-Gaussian Cox process
rGaussPoisson simulate the Gauss-Poisson cluster process
rCauchy simulate Neyman-Scott process with Cauchy clusters
rVarGamma simulate Neyman-Scott process with Variance Gamma clusters
rcell simulate the Baddeley-Silverman cell process
runifpointOnLines generate \(n \) random points along specified line segments
rpoisppOnLines generate Poisson random points along specified line segments

Resampling a point pattern:

- quadratresample block resampling
- rjitter apply random displacements to points in a pattern
- rshift random shifting of (subsets of) points
- rthin random thinning

See also varblock for estimating the variance of a summary statistic by block resampling, and lohboot for another bootstrap technique.

Fitted point process models:

If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.

Cluster process models are fitted by the function \texttt{kppm} yielding an object of class "kppm". To generate one or more simulated realisations of this fitted model, use \texttt{simulate.kppm}.

Gibbs point process models are fitted by the function \texttt{ppm} yielding an object of class "ppm". To generate a simulated realisation of this fitted model, use \texttt{rmh}. To generate one or more simulated realisations of the fitted model, use \texttt{simulate.ppm}.

Other random patterns:

- rlinegrid generate a random array of parallel lines through a window
- rpoisolne simulate the Poisson line process within a window
- rpoislinetess generate random tessellation using Poisson line process
- rMosaicSet generate random set by selecting some tiles of a tessellation
- rMosaicField generate random pixel image by assigning random values in each tile of a tessellation

Simulation-based inference
envelope critical envelope for Monte Carlo test of goodness-of-fit
qqplot.ppm diagnostic plot for interpoint interaction
scan.test spatial scan statistic/test

VII. TESTS AND DIAGNOSTICS

Classical hypothesis tests:

- quadrat.test χ^2 goodness-of-fit test on quadrat counts
- clarkevans.test Clark and Evans test
- cdf.test Spatial distribution goodness-of-fit test
- berman.test Berman’s goodness-of-fit tests
- envelope critical envelope for Monte Carlo test of goodness-of-fit
- scan.test spatial scan statistic/test
- dclf.test Diggle-Cressie-Loosmore-Ford test
- mad.test Mean Absolute Deviation test
- dclf.progress Progress plot for DCLF test
- mad.progress Progress plot for MAD test
- anova.ppm Analysis of Deviance for point process models

Sensitivity diagnostics:

Classical measures of model sensitivity such as leverage and influence have been adapted to point process models.

- leverage.ppm Leverage for point process model
- influence.ppm Influence for point process model
- dfbetas.ppm Parameter influence

Diagnostics for covariate effect:

Classical diagnostics for covariate effects have been adapted to point process models.

- parres Partial residual plot
- addvar Added variable plot
- rhohat Kernel estimate of covariate effect
- rho2hat Kernel estimate of covariate effect (bivariate)

Residual diagnostics:

Residuals for a fitted point process model, and diagnostic plots based on the residuals, were introduced in Baddeley et al (2005) and Baddeley, Rubak and Møller (2011).

Type demo(diagnose) for a demonstration of the diagnostics features.

- diagnose.ppm diagnostic plots for spatial trend
- qqplot.ppm diagnostic Q-Q plot for interpoint interaction
- residuals.ppm examples from Baddeley et al (2005)
- Kcom model compensator of K function
Resampling and randomisation procedures

You can build your own tests based on randomisation and resampling using the following capabilities:

- `quadratresample` block resampling
- `rjitter` apply random displacements to points in a pattern
- `rshift` random shifting of (subsets of) points
- `rthin` random thinning

VIII. DOCUMENTATION

The online manual entries are quite detailed and should be consulted first for information about a particular function.

The paper by Baddeley and Turner (2005a) is a brief overview of the package. Baddeley and Turner (2005b) is a more detailed explanation of how to fit point process models to data. Baddeley (2010) is a complete set of notes from a 2-day workshop on the use of `spatstat`.

Type `citation("spatstat")` to get these references.

Licence

This library and its documentation are usable under the terms of the "GNU General Public License", a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Abdollah Jalilian, Marie-Colette van Lieshout, Tuomas Rajala, Dominic Schuhmacher and Rasmus Waagepetersen made substantial contributions of code.

Additional contributions by Ang Qi Wei, Sandro Azaele, Malissa Baddeley, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bernhardt, Andrew Bevan, Brad Biggerstaff, Leanne Bischof, Roger Bivand, Jose M. Blanco Moreno, Florent Bonneu, Julian Burgos, Simon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Jean-Francois Coeurjolly, Robin Corria Ainslie, Marcelino de la Cruz, Peter Dalgaard, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed El-Gabbas, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Marc Genton, Shaaban Ghalandarayeshi, Julian Gilby, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Martin Bøgsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Kurt Hornik, Philipp Hunziker, Ross Ihaka, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mahdieh Khamoomhammadi, Peter Kovesi, Mike Kuhn, Jeff Laake, Frederic Lavancier, Tom Lawrence, Robert Lamb, Jonathan Lee, George Leser, Li Haitao, George Limitsios,

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

adaptive.density

Intensity Estimate of Point Pattern Using Tessellation

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, f = 0.1, ..., nrep = 1, verbose=TRUE)

Arguments

X Point pattern dataset (object of class "ppp").
f Fraction (between 0 and 1) of the data points that will be removed from the data and used to determine a tessellation for the intensity estimate.
... Arguments passed to as.im determining the pixel resolution of the result.
nrep Number of independent repetitions of the randomised procedure.
verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of a point pattern dataset.

The dataset X is randomly split into two patterns A and B containing a fraction f and 1-f, respectively, of the original data. The subpattern A is used to construct a Dirichlet tessellation (see dirichlet). The subpattern B is retained for counting. For each tile of the Dirichlet tessellation, we count the number of points of B falling in the tile, and divide by the area of the same tile, to obtain an estimate of the intensity of the pattern B in the tile. This estimate is divided by 1-f to obtain an estimate of the intensity of X in the tile. The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If nrep is greater than 1, this randomised procedure is repeated nrep times, and the results are averaged.

This technique has been used by Ogata et al. (2003), Ogata (2004) and Baddeley (2007).

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
add.texture

References

See Also

density.ppp, dirichlet.im.object.

Examples

```r
## Not run:
data(nztrees)
plot(adaptive.density(nztrees))

## End(Not run)
```

add.texture

Fill Plot With Texture

Description

Draws a simple texture inside a region on the plot.

Usage

```r
add.texture(W, texture = 4, spacing = NULL, ...)
```

Arguments

- `W` Window (object of class "owin") inside which the texture should be drawn.
- `texture` Integer from 1 to 8 identifying the type of texture. See Details.
- `spacing` Spacing between elements of the texture, in units of the current plot.
- `...` Further arguments controlling the plot colour, line width etc.
Details

The chosen texture, confined to the window \(W \), will be added to the current plot. The available textures are:

- **texture=1**: Small crosses arranged in a square grid.
- **texture=2**: Parallel vertical lines.
- **texture=3**: Parallel horizontal lines.
- **texture=4**: Parallel diagonal lines at 45 degrees from the horizontal.
- **texture=5**: Parallel diagonal lines at 135 degrees from the horizontal.
- **texture=6**: Grid of horizontal and vertical lines.
- **texture=7**: Grid of diagonal lines at 45 and 135 degrees from the horizontal.
- **texture=8**: Grid of hexagons.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- owin, plot.owin, textureplot, texturemap.

Examples

```r
W <- Window(chorley)
plot(W, main="")
add.texture(W, 7)
```

addvar
Added Variable Plot for Point Process Model

Description

Computes the coordinates for an Added Variable Plot for a fitted point process model.

Usage

```r
addvar(model, covariate, ...,
  subregion=NULL,
  bw="nrd0", adjust=1,
  from=NULL, to=NULL, n=512,
  bw.input = c("points", "quad"),
  bw.restrict = FALSE,
  covname, crosscheck=FALSE)
```
addvar

Arguments

model Fitted point process model (object of class "ppm").
covariate The covariate to be added to the model. Either a pixel image, a function(x,y), or a character string giving the name of a covariate that was supplied when the model was fitted.
subregion Optional. A window (object of class "owin") specifying a subset of the spatial domain of the data. The calculation will be confined to the data in this subregion.
bw Smoothing bandwidth or bandwidth rule (passed to density.default).
adjust Smoothing bandwidth adjustment factor (passed to density.default).
n, from, to Arguments passed to density.default to control the number and range of values at which the function will be estimated.
... Additional arguments passed to density.default.
bw.input Character string specifying the input data used for automatic bandwidth selection.
bw.restrict Logical value, specifying whether bandwidth selection is performed using data from the entire spatial domain or from the subregion.
covname Optional. Character string to use as the name of the covariate.
crosscheck For developers only. Logical value indicating whether to perform cross-checks on the validity of the calculation.

Details

This command generates the plot coordinates for an Added Variable Plot for a spatial point process model.

Added Variable Plots (Cox, 1958, sec 4.5; Wang, 1985) are commonly used in linear models and generalized linear models, to decide whether a model with response \(y \) and predictors \(x \) would be improved by including another predictor \(z \).

In a (generalised) linear model with response \(y \) and predictors \(x \), the Added Variable Plot for a new covariate \(z \) is a plot of the smoothed Pearson residuals from the original model against the scaled residuals from a weighted linear regression of \(z \) on \(x \). If this plot has nonzero slope, then the new covariate \(z \) is needed. For general advice see Cook and Weisberg(1999); Harrell (2001).

Essentially the same technique can be used for a spatial point process model (Baddeley et al, 2012). The argument model should be a fitted spatial point process model (object of class "ppm").

The argument covariate identifies the covariate that is to be considered for addition to the model. It should be either a pixel image (object of class "im") or a function(x,y) giving the values of the covariate at any spatial location. Alternatively covariate may be a character string, giving the name of a covariate that was supplied (in the covariates argument to ppm) when the model was fitted, but was not used in the model.

The result of addvar(model, covariate) is an object belonging to the classes "addvar" and "fv". Plot this object to generate the added variable plot.

Note that the plot method shows the pointwise significance bands for a test of the null model, i.e. the null hypothesis that the new covariate has no effect.
The smoothing bandwidth is controlled by the arguments `bw`, `adjust`, `bw.input` and `bw.restrict`. If `bw` is a numeric value, then the bandwidth is taken to be `adjust * bw`. If `bw` is a string representing a bandwidth selection rule (recognised by `density.default`) then the bandwidth is selected by this rule.

The data used for automatic bandwidth selection are specified by `bw.input` and `bw.restrict`. If `bw.input = "points"` (the default) then bandwidth selection is based on the covariate values at the points of the original point pattern dataset to which the model was fitted. If `bw.input = "quad"` then bandwidth selection is based on the covariate values at every quadrature point used to fit the model. If `bw.restrict = TRUE` then the bandwidth selection is performed using only data from inside the subregion.

Value

An object of class "addvar" containing the coordinates for the added variable plot. There is a plot method.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smoothing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth `bw`. One strategy is to use a coarser subset of the data to select `bw` automatically. The selected bandwidth can be read off the print output for `addvar`.

Internal data

The return value has an attribute "spatial" which contains the internal data: the computed values of the residuals, and of all relevant covariates, at each quadrature point of the model. It is an object of class "ppp" with a data frame of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/], Rolf Turner <r.turner@auckland.ac.nz>, Yu-Mei Chang and Yong Song.

References

See Also

`parres`, `rhohat`, `rho2hat`.
Examples

```r
X <- rpoispp(function(x,y){exp(3+3*x)})
model <- ppm(X, ~y)
adv <- addvar(model, "x")
plot(adv)
adv <- addvar(model, "x", subregion=square(0.5))
```

affine
Apply Affine Transformation

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a plane geometrical object, such as a point pattern or a window.

Usage

```r
affine(X, ...)
```

Arguments

- **X**
 - Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), a line segment pattern (object of class "psp"), a window (object of class "owin") or a pixel image (object of class "im").
- **...**
 - Arguments determining the affine transformation.

Details

This is generic. Methods are provided for point patterns (affine.ppp) and windows (affine.owin).

Value

Another object of the same type, representing the result of applying the affine transformation.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine.ppp, affine.psp, affine.owin, affine.im, flipxy, reflect, rotate, shift
Apply Affine Transformation To Pixel Image

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a pixel image.

Usage
S3 method for class 'im'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments
- `X` Pixel image (object of class "im").
- `mat` Matrix representing a linear transformation.
- `vec` Vector of length 2 representing a translation.
- `...` Optional arguments passed to `as.mask` controlling the pixel resolution of the transformed image.

Details
The image is subjected first to the linear transformation represented by `mat` (multiplying on the left by `mat`), and then the result is translated by the vector `vec`.
The argument `mat` must be a nonsingular 2×2 matrix.
This is a method for the generic function `affine`.

Value
Another pixel image (of class "im") representing the result of applying the affine transformation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
`affine, affine.ppp, affine.psp, affine.owin, rotate, shift`

Examples
```r
X <- setcov(owin())
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear)
```
Apply Geometrical Transformations to a Linear Network

Description

Apply geometrical transformations to a linear network.

Usage

```r
### S3 method for class 'linnet'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

### S3 method for class 'linnet'
shift(X, vec=c(0,0), ..., origin=NULL)

### S3 method for class 'linnet'
rotate(X, angle=pi/2, ..., centre=NULL)

### S3 method for class 'linnet'
scalardilate(X, f, ...)

### S3 method for class 'linnet'
rescale(X, s, unitname)
```

Arguments

- `x` Linear network (object of class "linnet").
- `mat` Matrix representing a linear transformation.
- `vec` Vector of length 2 representing a translation.
- `angle` Rotation angle in radians.
- `f` Scalar dilation factor.
- `s` Unit conversion factor: the new units are `s` times the old units.
- `...` Arguments passed to other methods.
- `origin` Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.
- `centre` Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0,0).
- `unitname` Optional. New name for the unit of length. A value acceptable to the function `unitname<-`
Details

These functions are methods for the generic functions `affine`, `shift`, `rotate`, `rescale` and `scalardilate` applicable to objects of class "linnet".

All of these functions perform geometrical transformations on the object \(X \), except for `rescale`, which simply rescales the units of length.

Value

Another linear network (of class "linnet") representing the result of applying the geometrical transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`linnet` and `as.linnet`.

Generic functions `affine`, `shift`, `rotate`, `scalardilate`, `rescale`.

Examples

```r
U <- rotate(simplenet, pi)
stretch <- diag(c(2,3))
Y <- affine(simplenet, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(simplenet, mat=shear, vec=c(0, 1))
```

affine.lpp

Apply Geometrical Transformations to Point Pattern on a Linear Network

Description

Apply geometrical transformations to a point pattern on a linear network.

Usage

```r
## S3 method for class 'lpp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

## S3 method for class 'lpp'
shift(X, vec=c(0,0), ..., origin=NULL)

## S3 method for class 'lpp'
rotate(X, angle=pi/2, ..., centre=NULL)
```
Arguments

- **x**: Point pattern on a linear network (object of class "lpp").
- **mat**: Matrix representing a linear transformation.
- **vec**: Vector of length 2 representing a translation.
- **angle**: Rotation angle in radians.
- **f**: Scalar dilation factor.
- **s**: Unit conversion factor: the new units are \(s \) times the old units.
- **...**: Arguments passed to other methods.
- **origin**: Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.
- **centre**: Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin \(c(0,0) \).
- **unitname**: Optional. New name for the unit of length. A value acceptable to the function [unitname](#).

Details

These functions are methods for the generic functions `affine, shift, rotate, rescale` and `scalardilate` applicable to objects of class "lpp".

All of these functions perform geometrical transformations on the object \(X \), except for rescale, which simply rescales the units of length.

Value

Another point pattern on a linear network (object of class "lpp") representing the result of applying the geometrical transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `lpp`

Generic functions `affine, shift, rotate, scalardilate, rescale`.
Examples

```r
X <- rpoislpp(2, simplenet)
U <- rotate(X, pi)
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1), ncol=2, nrow=2)
Z <- affine(X, mat=shear, vec=c(0, 1))
```

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a window.

Usage

```r
## S3 method for class 'owin'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ..., rescue=TRUE)
```

Arguments

- `X`: Window (object of class "owin").
- `mat`: Matrix representing a linear transformation.
- `vec`: Vector of length 2 representing a translation.
- `rescue`: Logical. If TRUE, the transformed window will be processed by `rescue.rectangle`.
- `...`: Optional arguments passed to `as.mask` controlling the pixel resolution of the transformed window, if `X` is a binary pixel mask.

Details
The window is subjected first to the linear transformation represented by `mat` (multiplying on the left by `mat`), and then the result is translated by the vector `vec`.

The argument `mat` must be a nonsingular 2×2 matrix.

This is a method for the generic function `affine`.

Value
Another window (of class "owin") representing the result of applying the affine transformation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
affine.ppp

See Also
affine, affine.ppp, affine.psp, affine.im, rotate, shift

Examples

```r
# shear transformation
shear <- matrix(c(1, 0.6, 1), ncol=2)
X <- affine(owin(), shear)
## Not run:
plot(X)

## End(Not run)
data(letterR)
affine(letterR, shear, c(0, 0.5))
affine(as.mask(letterR), shear, c(0, 0.5))
```

affine.ppp

Apply Affine Transformation To Point Pattern

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a point pattern.

Usage

```r
## S3 method for class 'ppp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
```

Arguments

- `X` Point pattern (object of class "ppp").
- `mat` Matrix representing a linear transformation.
- `vec` Vector of length 2 representing a translation.
- `...` Arguments passed to `affine.owin` affecting the handling of the observation window, if it is a binary pixel mask.

Details
The point pattern, and its window, are subjected first to the linear transformation represented by `mat` (multiplying on the left by `mat`), and are then translated by the vector `vec`.

The argument `mat` must be a nonsingular 2×2 matrix.

This is a method for the generic function `affine`.

Value
Another point pattern (of class "ppp") representing the result of applying the affine transformation.
affine.psp

Author(s)
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
affine, affine.owin, affine.psp, affine.im, flipxy, rotate, shift

Examples
```r
data(cells)
# shear transformation
X <- affine(cells, matrix(c(1,0,0.6,1),ncol=2))
## Not run:
plot(X)
# rescale y coordinates by factor 1.3
plot(affine(cells, diag(c(1,1.3))))

## End(Not run)
```

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a line segment pattern.

Usage
```r
## S3 method for class 'psp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
```

Arguments
- **X**: Line Segment pattern (object of class "psp").
- **mat**: Matrix representing a linear transformation.
- **vec**: Vector of length 2 representing a translation.
- **...**: Arguments passed to `affine.owin` affecting the handling of the observation window, if it is a binary pixel mask.

Details
The line segment pattern, and its window, are subjected first to the linear transformation represented by `mat` (multiplying on the left by `mat`), and are then translated by the vector `vec`.

The argument `mat` must be a nonsingular 2×2 matrix.

This is a method for the generic function `affine`.
Value

Another line segment pattern (of class "psp") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, affine.owin, affine.ppp, affine.im, flipxy, rotate, shift

Examples

oldpar <- par(mfrow=c(2,1))
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")
shear transformation
Y <- affine(X, matrix(c(1,0,0.6,1),ncol=2))
plot(Y, main="transformed")
par(oldpar)
#
rescale y coordinates by factor 0.2
affine(X, diag(c(1,0.2)))

affine.tess Apply Geometrical Transformation To Tessellation

Description

Apply various geometrical transformations of the plane to each tile in a tessellation.

Usage

S3 method for class 'tess'
reflect(X)

S3 method for class 'tess'
shift(X, ...)

S3 method for class 'tess'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'tess'
scalardilate(X, f, ...)

S3 method for class 'tess'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
Arguments

- **X**
 - Tessellation (object of class "tess").
- **angle**
 - Rotation angle in radians (positive values represent anticlockwise rotations).
- **mat**
 - Matrix representing a linear transformation.
- **vec**
 - Vector of length 2 representing a translation.
- **f**
 - Positive number giving scale factor.
- **...**
 - Arguments passed to other methods.
- **centre**
 - Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0, 0).

Details

These are method for the generic functions `reflect`, `shift`, `rotate`, `scalardilate`, `affine` for tessellations (objects of class "tess").

The individual tiles of the tessellation, and the window containing the tessellation, are all subjected to the same geometrical transformation.

The transformations are performed by the corresponding method for windows (class "owin") or images (class "im") depending on the type of tessellation.

If the argument `origin` is used in `shift.tess` it is interpreted as applying to the window containing the tessellation. Then all tiles are shifted by the same vector.

Value

Another tessellation (of class "tess") representing the result of applying the geometrical transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Generic functions `reflect`, `shift`, `rotate`, `scalardilate`, `affine`.

Methods for windows: `reflect.default`, `shift.owin`, `rotate.owin`, `scalardilate.owin`, `affine.owin`.

Methods for images: `reflect.im`, `shift.im`, `rotate.im`, `scalardilate.im`, `affine.im`.

Examples

```r
live <- interactive()
if(live) {
  H <- hextess(lettreR, 0.2)
  plot(H)
  plot(reflect(H))
  plot(rotate(H, pi/3))
```
allstats

Calculate four standard summary functions of a point pattern.

Description

Calculates the F, G, J, and K summary functions for an unmarked point pattern. Returns them as a function array (of class "fasp", see fasp.object).

Usage

allstats(pp, ..., dataname=NULL, verb=FALSE)

Arguments

pp
The observed point pattern, for which summary function estimates are required. An object of class "ppp". It must not be marked.

... Optional arguments passed to the summary functions Fest, Gest, Jest and Kest.

dataname A character string giving an optional (alternative) name for the point pattern.

verb A logical value meaning “verbose”. If TRUE, progress reports are printed during calculation.

Details

This computes four standard summary statistics for a point pattern: the empty space function $F(r)$, nearest neighbour distance distribution function $G(r)$, van Lieshout-Baddeley function $J(r)$ and Ripley’s function $K(r)$. The real work is done by Fest, Gest, Jest and Kest respectively. Consult the help files for these functions for further information about the statistical interpretation of F, G, J and K.

If verb is TRUE, then “progress reports” (just indications of completion) are printed out when the calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by plot.fasp) will be formed from the argument dataname. If this is not given, it defaults to the expression for pp given in the call to allstats.
Value

A list of length 4 containing the F, G, J and K functions respectively.
The list can be plotted directly using plot (which dispatches to plot.listof).
Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest or Kest. Thus each entry in the list is a function value table (object of class "fv", see fv.object).
The default formulae for plotting these functions are cbind(km,tho) ~ r for F, G, and J, and cbind(trans,tho) ~ r for K.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.listof, plot.fv, fv.object, Fest, Gest, Jest, Kest

Examples

data(swedishpines)
a <- allstats(swedishpines, dataname="Swedish Pines")
Not run:
plot(a)
plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))
End(Not run)

alltypes

Calculate Summary Statistic for All Types in a Multitype Point Pattern

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F,G, J, K etc) of the pattern, for all possible combinations of marks, and returns these functions in an array.

Usage

alltypes(X, fun="K", ..., dataname=NULL, verb=FALSE, envelope=FALSE)

Arguments

X

The observed point pattern, for which summary function estimates are required.
An object of class "ppp" or "lpp".
fun
The summary function. Either an R function, or a character string indicating
the summary function required. Options for strings are "F", "G", "J", "K", "L",
"Ldot".

Arguments passed to the summary function (and to the function envelope if
appropriate)
dataname
Character string giving an optional (alternative) name to the point pattern, dif-
ferent from what is given in the call. This name, if supplied, may be used by
plot.fasp() in forming the title of the plot. If not supplied it defaults to the
parsing of the argument supplied as x in the call.

verb
Logical value. If verb is true then terse “progress reports” (just the values of
the mark indices) are printed out when the calculations for that combination of
marks are completed.

envelope
Logical value. If envelope is true, then simulation envelopes of the summary
function will also be computed. See Details.

Details

This routine is a convenient way to analyse the dependence between types in a multitype point
pattern. It computes the estimates of a selected summary function of the pattern, for all possible
combinations of marks. It returns these functions in an array (an object of class "fasp") amenable
to plotting by plot.fasp().

The argument fun specifies the summary function that will be evaluated for each type of point, or
for each pair of types. It may be either an R function or a character string.

Suppose that the points have possible types 1, 2, ..., m and let X_i denote the pattern of points of
type i only.

If fun="F" then this routine calculates, for each possible type i, an estimate of the Empty Space
Function $F_i(r)$ of X_i. See Fest for explanation of the empty space function. The estimate is
computed by applying Fest to X_i with the optional arguments

If fun is "Gcross", "Jcross", "Kcross" or "Lcross", the routine calculates, for each pair of types
(i,j), an estimate of the “i-to-j” cross-type function $G_{ij}(r)$, $J_{ij}(r)$, $K_{ij}(r)$ or $L_{ij}(r)$ respectively
describing the dependence between X_i and X_j. See Gcross, Jcross, Kcross or Lcross respec-
tively for explanation of these functions. The estimate is computed by applying the relevant function
(Gcross etc) to X using each possible value of the arguments i, j, together with the optional arguments

If fun is "pcf" the routine calculates the cross-type pair correlation function pcfcross between
each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type i, an estimate
of the “i-to-any” dot-type function $G_{i*}(r)$, $J_{i*}(r)$ or $K_{i*}(r)$ or $L_{i*}(r)$ respectively describing the dependence between X_i and X. See Gdot, Jdot, Kdot or Ldot respectively for explanation of these functions. The estimate is computed by applying the relevant function (Gdot etc) to X using each possible value of the argument i, together with the optional arguments

The letters "G", "J", "K" and "L" are interpreted as abbreviations for Gcross, Jcross, Kcross and
Lcross respectively, assuming the point pattern is marked. If the point pattern is unmarked, the
appropriate function Fest, Jest, Kest or Lest is invoked instead.
If envelope=TRUE, then as well as computing the value of the summary function for each combination of types, the algorithm also computes simulation envelopes of the summary function for each combination of types. The arguments ... are passed to the function envelope to control the number of simulations, the random process generating the simulations, the construction of envelopes, and so on.

Value

A function array (an object of class "fasp", see fasp.object). This can be plotted using plot.fasp.

If the pattern is not marked, the resulting “array” has dimensions 1×1. Otherwise the following is true:

If fun="F", the function array has dimensions $m \times 1$ where m is the number of different marks in the point pattern. The entry at position $[i,1]$ in this array is the result of applying Fest to the points of type i only.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the function array again has dimensions $m \times 1$. The entry at position $[i,1]$ in this array is the result of applying Gdot(X, i), Jdot(X, i) Kdot(X, i) or Ldot(X, i) respectively.

If fun is "Gcross", "Jcross", "Kcross" or "Lcross" (or their abbreviations "G", "J", "K" or "L"), the function array has dimensions $m \times m$. The $[i,j]$ entry of the function array (for $i \neq j$) is the result of applying the function Gcross, Jcross, Kcross or Lcross to the pair of types (i,j). The diagonal $[i,i]$ entry of the function array is the result of applying the univariate function Gest, Jest, Kest or Lest to the points of type i only.

If envelope=FALSE, then each function entry fns[[i]] retains the format of the output of the relevant estimating routine Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross or Lcross to the points of type i only.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the envelope command.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross, Lcross, Gdot, Jdot, Kdot or Ldot. The default formulae for plotting these functions are cbind(km, theo) ~ r for F, G, and J functions, and cbind(trans, theo) ~ r for K and L functions.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the envelope command.

Examples

```r
# bramblecanes (3 marks).
bram <- bramblecanes
```
amacrine

Hughes’ Amacrine Cell Data

Description
Austin Hughes’ data: a point pattern of displaced amacrine cells in the retina of a rabbit. A marked point pattern.

Usage
data(amacrine)

Format
An object of class "ppp" representing the point pattern of cell locations. Entries include

 x Cartesian x-coordinate of cell
anemones

\[y \]
Cartesian \(y \)-coordinate of cell

\[\text{marks} \]
factor with levels \text{off} and \text{on}
indicating “off” and “on” cells

See `ppp.object` for details of the format.

Notes

Austin Hughes’ data: a point pattern of displaced amacrine cells in the retina of a rabbit. 152 “on” cells and 142 “off” cells in a rectangular sampling frame.

The true dimensions of the rectangle are 1060 by 662 microns. The coordinates here are scaled to a rectangle of height 1 and width \(\frac{1060}{662} = 1.601 \) so the unit of measurement is approximately 662 microns.

The data were analysed by Diggle (1986).

Source

Peter Diggle, personal communication

References

anemones

Beadlet Anemones Data

Description

These data give the spatial locations and diameters of sea anemones (beadlet anemone *Actinia equina*) in a sample plot on the north face of a boulder, well above low tide level, at Quiberon (Bretagne, France) in May 1976.

The data were originally described and discussed by Kooijman (1979a). Kooijman (1979b) shows a hand-drawn plot of the original data. The data are discussed by Upton and Fingleton (1985) as Example 1.8 on pages 64–67.

The anemones dataset is taken directly from Table 1.11 of Upton and Fingleton (1985). The coordinates and diameters are integer multiples of an idiosyncratic unit of length. The boundary is a rectangle 280 by 180 units.

Usage

data(anemones)

Format

anemones is an object of class "ppp" representing the point pattern of anemone locations. It is a marked point pattern with numeric marks representing anemone diameter. See `ppp.object` for details of the format.
Units

There is some confusion about the correct physical scale for these data. According to Upton and Fingleton (1985), one unit in the dataset is approximately 0.475 cm. According to Kooijman (1979a, 1979b) and also quoted by Upton and Fingleton (1985), the physical size of the sample plot was 14.5 by 9.75 decimetres (145 by 97.5 centimetres). However if the data are plotted at this scale, they are too small for a rectangle of this size, and the appearance of the plot does not match the original hand-drawn plot in Kooijman (1979b). To avoid confusion, we have not assigned a unit scale to this dataset.

Source

Table 1.11 on pages 62–63 of Upton and Fingleton (1985), who acknowledge Kooijman (1979a) as the source.

References

Examples

data(anemones)
plot diameters on same scale as x, y
plot(anemones, markscale=1)

angles.psp Orientation Angles of Line Segments

Description

Computes the orientation angle of each line segment in a line segment pattern.

Usage

angles.psp(x, directed=FALSE)

Arguments

x A line segment pattern (object of class "psp").
directed Logical flag. See details.
Details

For each line segment, the angle of inclination to the x-axis (in radians) is computed, and the angles are returned as a numeric vector.

If directed=TRUE, the directed angle of orientation is computed. The angle respects the sense of direction from (x0, y0) to (x1, y1). The values returned are angles in the full range from $-\pi$ to π. The angle is computed as atan2(y1-y0, x1-x0). See atan2.

If directed=FALSE, the undirected angle of orientation is computed. Angles differing by π are regarded as equivalent. The values returned are angles in the range from 0 to π. These angles are computed by first computing the directed angle, then adding π to any negative angles.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary.psp, midpoints.psp, lengths.psp

Examples

```r
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- angles.psp(a)
```

anova.lppm

ANOVA for Fitted Point Process Models on Linear Network

Description

Performs analysis of deviance for two or more fitted point process models on a linear network.

Usage

```r
## S3 method for class 'lppm'
anova(object, ..., test=NULL)
```

Arguments

- **object**: A fitted point process model on a linear network (object of class "lppm").
- **...**: One or more fitted point process models on the same linear network.
- **test**: Character string, partially matching one of "Chisq", "F" or "Cp".
Details

This is a method for anova for fitted point process models on a linear network (objects of class "lppm", usually generated by the model-fitting function lppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, then the deviance difference is replaced by the adjusted composite likelihood ratio (Pace et al, 2011; Baddeley et al, 2014).

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Analysis of Deviance the models must be nested, i.e. one model must be a special case of the other. For example the point process model with formula ~x is a special case of the model with formula ~x+y, so these models are nested. However the two point process models with formulae ~x and ~y are not nested.

If you get this error message and you believe that the models should be nested, the problem may be the inability of R to recognise that the two formulae are nested. Try modifying the formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were not all fitted to the same size of dataset”. This generally occurs when the point process models are fitted on different linear networks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

lppm

Examples

eexample(lpp)
mod0 <- lppm(X, -1)
modx <- lppm(X, ~x)
anova(mod0, modx, test="Chi")

Description

Performs analysis of deviance for two or more fitted multiple point process models.

Usage

S3 method for class 'mppm'
anova(object, ..., test=NULL, override=FALSE)

Arguments

object A fitted multiple point process model (object of class "mppm").
...
One or more fitted multiple point process models.
test Type of hypothesis test to perform. A character string, partially matching one of "Chisq", "F" or "Cp", or NULL.
override Logical flag indicating whether to proceed even when there is no statistical theory to support the calculation.

Details

This is a method for anova for comparing several fitted multiple point process models (objects of class "mppm", usually generated by the model-fitting function mppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, then there is no statistical theory available to support a similar analysis. The function issues a warning, and (by default) returns a NULL value.

However if override=TRUE, then a kind of analysis of deviance table will be printed. The ‘deviance’ differences in this table are equal to 2 times the differences in the maximised values of
the log pseudolikelihood (see `mppm`). At the time of writing, there is no statistical theory to support inferential interpretation of log pseudolikelihood ratios. The override option is provided for research purposes only!

The argument `test` determines which hypothesis test, if any, will be performed to compare the models. The argument `test` should be a character string, partially matching one of "Chisq", "F" or "Cp", or NULL. The first option "Chisq" gives the likelihood ratio test based on the asymptotic chi-squared distribution of the deviance difference. The meaning of the other options is explained in `anova.glm`. For random effects models, only "Chisq" is available, and again gives the likelihood ratio test.

Value

An object of class "anova", or NULL.

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <rolf@math.unb.ca> http://www.math.unb.ca/~rolf

See Also

`mppm`

Examples

```r
H <- hyperframe(X=waterstriders)
mod0 <- ppm(X=1, H, Poisson())
modx <- ppm(X=x, H, Poisson())
anova.ppm(mod0, modx, test="Chi")
```

ANOVA for Fitted Point Process Models

Description

Performs analysis of deviance for two or more fitted point process models.

Usage

```r
## S3 method for class 'ppm'
anova(object, ..., test=NULL, adjust=TRUE, warn=TRUE)
```
Arguments

object A fitted point process model (object of class "ppm").

... One or more fitted point process models.

test Character string, partially matching one of "Chi sq", "LRT", "Rao", "F" or "Cp".

adjust Logical value indicating whether to correct the pseudolikelihood ratio when some of the models are not Poisson processes.

warn Logical value indicating whether to issue warnings if problems arise.

Details

This is a method for anova for fitted point process models (objects of class "ppm", usually generated by the model-fitting function ppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this table are 'pseudo-deviances' equal to 2 times the differences in the maximised values of the log pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution. In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method of Pace et al (2011) so that the chi-squared test is valid. It is strongly advisable to perform this adjustment.

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Analysis of Deviance the models must be nested, i.e. one model must be a special case of the other. For example the point process model with formula ~x is a special case of the model with formula ~x+y, so these models are nested. However the two point process models with formulae ~x and ~y are not nested.

If you get this error message and you believe that the models should be nested, the problem may be the inability of R to recognise that the two formulae are nested. Try modifying the formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that ‘models were not all fitted to the same size of dataset’. This implies that the models were fitted using different quadrature schemes (see quadscheme) and/or with different edge corrections or different values of the border edge correction distance rbord.

To ensure that models are comparable, check the following:

• the models must all have been fitted to the same point pattern dataset, in the same window.
• all models must have been fitted by the same fitting method as specified by the argument method in ppm.
• If some of the models depend on covariates, then they should all have been fitted using the same list of covariates, and using allcovar=TRUE to ensure that the same quadrature scheme is used.
• all models must have been fitted using the same edge correction as specified by the arguments correction and rbord. If you did not specify the value of rbord, then it may have taken a different value for different models. The default value of rbord is equal to zero for a Poisson model, and otherwise equals the reach (interaction distance) of the interaction term (see reach). To ensure that the models are comparable, set rbord to equal the maximum reach of the interactions that you are fitting.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm

Examples

mod0 <- ppm(swedishpines ~1)
modx <- ppm(swedishpines ~x)
anova(mod0, modx, test="Chi")

modx <- ppm(swedishpines ~x + y)
anova(modx, test="Chi")

modP <- ppm(swedishpines ~1, rbord=9)
modS <- ppm(swedishpines ~1, Strauss(9))
anova(modP, modS, test="Chi")

anova.slrml Analysis of Deviance for Spatial Logistic Regression Models

Description

Performs Analysis of Deviance for two or more fitted Spatial Logistic Regression models.
Usage

```r
## S3 method for class 'slrm'
anova(object, ..., test = NULL)
```

Arguments

- `object`: a fitted spatial logistic regression model. An object of class "slrm".
- `...`: additional objects of the same type (optional).
- `test`: a character string, (partially) matching one of "chisq", "F" or "Cp", indicating the reference distribution that should be used to compute p-values.

Details

This is a method for `anova` for fitted spatial logistic regression models (objects of class "slrm", usually obtained from the function `slrm`).

The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in degrees of freedom, and (if `test="chisq"`) the two-sided p-values for the chi-squared tests. Their interpretation is very similar to that in `anova.glm`.

Value

An object of class "anova", inheriting from class "data.frame", representing the analysis of deviance table.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`slrm`

Examples

```r
X <- rpoispp(42)
fit0 <- slrm(X ~ 1)
fit1 <- slrm(X ~ x+y)
anova(fit0, fit1, test="Chi")
```
Description

These data give the spatial locations of nests of two species of ants, *Messor wasmanni* and *Cataglyphis bicolor*, recorded by Professor R.D. Harkness at a site in northern Greece, and described in Harkness & Isham (1983). The full dataset (supplied here) has an irregular polygonal boundary, while most analyses have been confined to two rectangular subsets of the pattern (also supplied here).

The harvester ant *M. wasmanni* collects seeds for food and builds a nest composed mainly of seed husks. *C. bicolor* is a heat-tolerant desert foraging ant which eats dead insects and other arthropods. Interest focuses on whether there is evidence in the data for intra-species competition between *Messor* nests (i.e. competition for resources) and for preferential placement of *Cataglyphis* nests in the vicinity of *Messor* nests.

The full dataset is displayed in Figure 1 of Harkness & Isham (1983). See Usage below to produce a comparable plot. It comprises 97 nests (68 Messor and 29 Cataglyphis) inside an irregular convex polygonal boundary, together with annotations showing a foot track through the region, the boundary between field and scrub areas inside the region, and indicating the two rectangular subregions A and B used in their analysis.

Rectangular subsets of the data were analysed by Harkness & Isham (1983), Isham (1984), Takacs & Fiksel (1986), S"arkk"a (1993, section 5.3), H"ogmander and S"arkk"a (1999) and Baddeley & Turner (2000). The full dataset (inside its irregular boundary) was first analysed by Baddeley & Turner (2005b).

The dataset ants is the full point pattern enclosed by the irregular polygonal boundary. The \(x\) and \(y\) coordinates are eastings (E-W) and northings (N-S) scaled so that 1 unit equals 0.5 feet. This is a multitype point pattern object, each point carrying a mark indicating the ant species (with levels cataglyphis and messor).

The dataset ants.extra is a list of auxiliary information:

- **A** and **B** The subsets of the pattern within the rectangles A and B demarcated in Figure 1 of Harkness & Isham (1983). These are multitype point pattern objects.
- **trackNE** and **trackSW** coordinates of two straight lines bounding the foot track.
- **fieldscrub** The endpoints of a straight line separating the regions of ‘field’ and ‘scrub’: scrub to the North and field to the South.
- **side** A function \((x,y)\) that determines whether the location \((x,y)\) is in the scrub or the field. The function can be applied to numeric vectors \(x\) and \(y\), and returns a factor with levels “scrub” and “field”. This function is useful as a spatial covariate.
- **plotit** A function which produces a plot of the full dataset.

Usage

```
data(ants)
```
ants is an object of class "ppp" representing the full point pattern of ants' nests. See ppp.object for details of the format. The coordinates are scaled so that 1 unit equals 0.5 feet. The points are marked by species (with levels Cataglyphis and Messor).

ants.extra is a list with entries

A point pattern of class "ppp"
B point pattern of class "ppp"
trackNE data in format list(x=numeric(2),y=numeric(2)) giving the two endpoints of line markings
trackSW data in format list(x=numeric(2),y=numeric(2)) giving the two endpoints of line markings
fieldscrub data in format list(x=numeric(2),y=numeric(2)) giving the two endpoints of line markings
side Function with arguments x,y
plotit Function

Source

References

Examples

```r
# Equivalent to Figure 1 of Harkness and Isham (1983)

data(ants)
ants.extra$plotit()

# Data in subrectangle A, rotated
# Approximate data used by Sarkka (1993)

angle <- atan(diff(ants.extra$fieldscrub$y)/diff(ants.extra$fieldscrub$x))
plot(rotate(ants.extra$A, -angle))

# Approximate window used by Takacs and Fiksel (1986)

tfwindow <- boundingbox(ants$window)
antsTF <- ppp(ants$x, ants$y, window=tfwindow)
plot(antsTF)
```

anylist

List of Objects

Description

Make a list of objects of any type.

Usage

```r
anylist(...) as.anylist(x)
```

Arguments

- `...` Any number of arguments of any type.
- `x` A list.

Details

An object of class "anylist" is a list of objects that the user intends to treat in a similar fashion. For example it may be desired to plot each of the objects side-by-side: this can be done using the function `plot.anylist`.

The objects can belong to any class; they may or may not all belong to the same class.

In the `spatstat` package, various functions produce an object of class "anylist".

Value

A list, belonging to the class "anylist", containing the original objects.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.au.dk>

See Also
solist, as.solist, anylapply.

Examples
anylist(cells, intensity(cells), Kest(cells))

append.psp Combine Two Line Segment Patterns

Description
Combine two line segment patterns into a single pattern.

Usage
append.psp(A, B)

Arguments
A, B Line segment patterns (objects of class "psp").

Details
This function is used to superimpose two line segment patterns A and B.
The two patterns must have identical windows. If one pattern has marks, then the other must also
have marks of the same type. If the marks are data frames then the number of columns of these data
frames, and the names of the columns must be identical.
(To combine two point patterns, see superimpose).

Value
Another line segment pattern (object of class "psp").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
psp, as.psp, superimpose,
Examples
X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- psp(runif(5), runif(5), runif(5), runif(5), window=owin())
append.psp(X,Y)

applynbd
Apply Function to Every Neighbourhood in a Point Pattern

Description
Visit each point in a point pattern, find the neighbouring points, and apply a given function to them.

Usage
applynbd(X, FUN, N=NULL, R=NULL, criterion=NULL, exclude=FALSE, ...)

Arguments
X
Point pattern. An object of class "ppp", or data which can be converted into this format by as.ppp.

FUN
Function to be applied to each neighbourhood. The arguments of FUN are described under Details.

N
Integer. If this argument is present, the neighbourhood of a point of X is defined to consist of the N points of X which are closest to it.

R
Nonnegative numeric value. If this argument is present, the neighbourhood of a point of X is defined to consist of all points of X which lie within a distance R of it.

criterion
Function. If this argument is present, the neighbourhood of a point of X is determined by evaluating this function. See under Details.

exclude
Logical. If TRUE then the point currently being visited is excluded from its own neighbourhood.

...
extra arguments passed to the function FUN. They must be given in the form name=value.

Details
This is an analogue of apply for point patterns. It visits each point in the point pattern X, determines which points of X are "neighbours" of the current point, applies the function FUN to this neighbourhood, and collects the values returned by FUN.

The definition of "neighbours" depends on the arguments N, R and criterion. Also the argument exclude determines whether the current point is excluded from its own neighbourhood.

- If N is given, then the neighbours of the current point are the N points of X which are closest to the current point (including the current point itself unless exclude=TRUE).
• If \(r \) is given, then the neighbourhood of the current point consists of all points of \(X \) which lie closer than a distance \(r \) from the current point.

• If criterion is given, then it must be a function with two arguments dist and drank which will be vectors of equal length. The interpretation is that \(\text{dist}[i] \) will be the distance of a point from the current point, and \(\text{drank}[i] \) will be the rank of that distance (the three points closest to the current point will have rank 1, 2 and 3). This function must return a logical vector of the same length as dist and drank whose i-th entry is \text{TRUE} if the corresponding point should be included in the neighbourhood. See the examples below.

• If more than one of the arguments \(N, R \) and criterion is given, the neighbourhood is defined as the \textit{intersection} of the neighbourhoods specified by these arguments. For example if \(N=3 \) and \(R=5 \) then the neighbourhood is formed by finding the 3 nearest neighbours of current point, and retaining only those neighbours which lie closer than 5 units from the current point.

When \texttt{applynbd} is executed, each point of \(X \) is visited, and the following happens for each point:

• the neighbourhood of the current point is determined according to the chosen rule, and stored as a point pattern \(Y \);

• the function \texttt{FUN} is called as:

\[
\text{FUN}(Y=Y, \text{current}=\text{current}, \text{dists}=\text{dists}, \text{dranks}=\text{drankx}, \ldots)
\]

where \text{current} is the location of the current point (in a format explained below), \text{dists} is a vector of distances from the current point to each of the points in \(Y \), \text{drankx} is a vector of the ranks of these distances with respect to the full point pattern \(X \), and \(\ldots \) are the arguments passed from the call to \texttt{applynbd};

• The result of the call to \texttt{FUN} is stored.

The results of each call to \texttt{FUN} are collected and returned according to the usual rules for \texttt{apply} and its relatives. See the \texttt{Value} section of this help file.

The format of the argument \text{current} is as follows. If \(X \) is an unmarked point pattern, then \text{current} is a vector of length 2 containing the coordinates of the current point. If \(X \) is marked, then \text{current} is a point pattern containing exactly one point, so that \text{current}$_x$ is its \textit{x}-coordinate and \text{current}$_mark$ is its mark value. In either case, the coordinates of the current point can be referred to as \text{current}$_x$ and \text{current}$_y$.

Note that \texttt{FUN} will be called exactly as described above, with each argument named explicitly. Care is required when writing the function \texttt{FUN} to ensure that the arguments will match up. See the Examples.

See \texttt{markstat} for a common use of this function.

To simply tabulate the marks in every \(R \)-neighbourhood, use \texttt{marktable}.

\textbf{Value}

Similar to the result of \texttt{apply}. If each call to \texttt{FUN} returns a single numeric value, the result is a vector of dimension \(X$_n \), the number of points in \(X \). If each call to \texttt{FUN} returns a vector of the same length \(m \), then the result is a matrix of dimensions \(c(m,n) \); note the transposition of the indices, as usual for the family of \texttt{apply} functions. If the calls to \texttt{FUN} return vectors of different lengths, the result is a list of length \(X$_n \).
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
ppp.object, apply, markstat, marktable

Examples

data(redwood)

count the number of points within radius 0.2 of each point of X
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...)(Y$n-1))
equivalent to:
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...)(Y$n), exclude=TRUE)

compute the distance to the second nearest neighbour of each point
secondnndist <- applynbd(redwood, N=2,
 function(dists, ...){max(dists)},
 exclude=TRUE)

marked point pattern
data(longleaf)

compute the median of the marks of all neighbours of a point
(see also 'markstat')
dbh.med <- applynbd(longleaf, R=90, exclude=TRUE,
 function(Y, ...){ median(Y$marks)})

ANIMATION explaining the definition of the K function
(arguments 'fullpicture' and 'rad' are passed to FUN)

Not run:
showoffK <- function(Y, current, dists, dranks, fullpicture, rad) {
 plot(fullpicture, main="")
 points(Y, cex=2)
 u <- current
 points(ux,uy,pch="*",cex=3)
 theta <- seq(0,2*pi,length=100)
 polygon(u$x+rad*cos(theta),u$y+rad*sin(theta))
 text(u$x+rad/3,u$y+rad/2,Y$n,cex=3)
 Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
 return(Y$n - 1)
}
applynbd(redwood, R=0.2, showoffK, fullpicture=redwood, rad=0.2, exclude=TRUE)

animation explaining the definition of the G function

showoffG <- function(Y, current, dists, dranks, fullpicture) {
 plot(fullpicture, main="")
}

area.owin

area.owin

Area of a Window

Description
Computes the area of a window

Usage
area(w)

S3 method for class 'owin'
area(w)

Default S3 method:
area(w)

S3 method for class 'owin'
volume(x)

Arguments
w A window, whose area will be computed. This should be an object of class owin, or can be given in any format acceptable to as.owin().
x Object of class owin

Details
If the window w is of type "rectangle" or "polygonal", the area of this rectangular window is computed by analytic geometry. If w is of type "mask" the area of the discrete raster approximation of the window is computed by summing the binary image values and adjusting for pixel size.
The function `volume.owin` is identical to `area.owin` except for the argument name. It is a method for the generic function `volume`.

Value

A numerical value giving the area of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`perimeter`, `diameter.owin`, `owin.object`, `as.owin`

Examples

```r
w <- unit.square()
area(w)
# returns 1.00000

k <- 6
theta <- 2 * pi * (0:(k-1))/k
co <- cos(theta)
si <- sin(theta)
mas <- owin(c(-1,1), c(-1,1), poly=list(x=co, y=si))
area(mas)
# returns approx area of k-gon

mas <- as.mask(square(2), eps=0.01)
X <- raster.x(mas)
Y <- raster.y(mas)
mas$m <- ((X - 1)^2 + (Y - 1)^2 <= 1)
area(mas)
# returns 3.14 approx
```

Description

Computes the area of that part of a disc that is not covered by other discs.

Usage

```r
areaGain(u, X, r, ..., W=as.owin(X), exact=FALSE,
           ngrid=spatstat.options("ngrid.disc"))
```
Arguments

- **u**: Coordinates of the centre of the disc of interest. A vector of length 2. Alternatively, a point pattern (object of class "ppp").
- **X**: Locations of the centres of other discs. A point pattern (object of class "ppp").
- **r**: Disc radius, or vector of disc radii.
- **w**: Window (object of class "owin") in which the area should be computed.
- **exact**: Choice of algorithm. If `exact=TRUE`, areas are computed exactly using analytic geometry. If `exact=FALSE` then a faster algorithm is used to compute a discrete approximation to the areas.
- **ngrid**: Integer. Number of points in the square grid used to compute the discrete approximation, when `exact=FALSE`.

Details

This function computes the area of that part of the disc of radius \(r \) centred at the location \(u \) that is not covered by any of the discs of radius \(r \) centred at the points of the pattern \(X \). This area is important in some calculations related to the area-interaction model \(\text{AreaInter} \).

If \(u \) is a point pattern and \(r \) is a vector, the result is a matrix, with one row for each point in \(u \) and one column for each entry of \(r \). The \([i,j]\) entry in the matrix is the area of that part of the disc of radius \(r[j] \) centred at the location \(u[i] \) that is not covered by any of the discs of radius \(r[j] \) centred at the points of the pattern \(X \).

If \(w \) is not NULL, then the areas are computed only inside the window \(w \).

Value

A matrix with one row for each point in \(u \) and one column for each value in \(r \).

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- [AreaInter, areaLoss](#)

Examples

```r
data(cells)
u <- c(0.5,0.5)
areaGain(u, cells, 0.1)
```
The Area Interaction Point Process Model

Description

Creates an instance of the Area Interaction point process model (Widom-Rowlinson penetrable spheres model) which can then be fitted to point pattern data.

Usage

AreaInter(r)

Arguments

r

The radius of the discs in the area interaction process

Details

This function defines the interpoint interaction structure of a point process called the Widom-Rowlinson penetrable sphere model or area-interaction process. It can be used to fit this model to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the area interaction structure is yielded by the function AreaInter(). See the examples below.

In standard form, the area-interaction process (Widom and Rowlinson, 1970; Baddeley and Van Lieshout, 1995) with disc radius r, intensity parameter κ and interaction parameter γ is a point process with probability density

\[f(x_1, \ldots, x_n) = \alpha \kappa^n(x) \gamma^{-A(x)} \]

for a point pattern x, where \(x_1, \ldots, x_n \) represent the points of the pattern, \(n(x) \) is the number of points in the pattern, and \(A(x) \) is the area of the region formed by the union of discs of radius r centred at the points \(x_1, \ldots, x_n \). Here \(\alpha \) is a normalising constant.

The interaction parameter γ can be any positive number. If \(\gamma = 1 \) then the model reduces to a Poisson process with intensity κ. If \(\gamma < 1 \) then the process is regular, while if \(\gamma > 1 \) the process is clustered. Thus, an area interaction process can be used to model either clustered or regular point patterns. Two points interact if the distance between them is less than 2r.

The standard form of the model, shown above, is a little complicated to interpret in practical applications. For example, each isolated point of the pattern x contributes a factor \(\kappa \gamma^{-\pi r^2} \) to the probability density.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical scale-free form, the probability density is rewritten as

\[f(x_1, \ldots, x_n) = \alpha \beta^n(x) \eta^{-C(x)} \]
where β is the new intensity parameter, η is the new interaction parameter, and $C(x) = B(x) - n(x)$ is the interaction potential. Here

$$B(x) = \frac{A(x)}{\pi r^2}$$

is the normalised area (so that the discs have unit area). In this formulation, each isolated point of the pattern contributes a factor β to the probability density (so the first order trend is β). The quantity $C(x)$ is a true interaction potential, in the sense that $C(x) = 0$ if the point pattern x does not contain any points that lie close together (closer than $2r$ units apart).

When a new point u is added to an existing point pattern x, the rescaled potential $-\delta C(x)$ increases by a value between 0 and 1. The increase is zero if u is not close to any point of x. The increase is 1 if the disc of radius r centred at u is completely contained in the union of discs of radius r centred at the data points x_i. Thus, the increase in potential is a measure of how close the new point u is to the existing pattern x. Addition of the point u contributes a factor $\beta\eta\delta$ to the probability density, where δ is the increase in potential.

The old parameters κ, γ of the standard form are related to the new parameters β, η of the canonical scale-free form, by

$$\beta = \kappa \gamma^{-\pi r^2} = \kappa / \eta$$

and

$$\eta = \gamma \pi r^2$$

provided γ and κ are positive and finite.

In the canonical scale-free form, the parameter η can take any nonnegative value. The value $\eta = 1$ again corresponds to a Poisson process, with intensity β. If $\eta < 1$ then the process is regular, while if $\eta > 1$ the process is clustered. The value $\eta = 0$ corresponds to a hard core process with hard core radius r (interaction distance $2r$).

The nonstationary area interaction process is similar except that the contribution of each individual point x_i is a function $\beta(x_i)$ of location, rather than a constant beta.

Note the only argument of AreaInter() is the disc radius r. When r is fixed, the model becomes an exponential family. The canonical parameters $\log(\beta)$ and $\log(\eta)$ are estimated by ppm(), not fixed in AreaInter().

Value

An object of class "interact" describing the interpoint interaction structure of the area-interaction process with disc radius r.

Warnings

The interaction distance of this process is equal to $2 \times r$. Two discs of radius r overlap if their centres are closer than $2 \times r$ units apart.

The estimate of the interaction parameter η is unreliable if the interaction radius r is too small or too large. In these situations the model is approximately Poisson so that η is unidentifiable. As a rule of thumb, one can inspect the empty space function of the data, computed by Fest. The value $F(r)$ of the empty space function at the interaction radius r should be between 0.2 and 0.8.
areaLoss

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm`, `pairwise.family`, `ppm.object`

Examples

```r
# prints a sensible description of itself
AreaInter(r=0.1)

# Note the reach is twice the radius
reach(AreaInter(r=1))

# Fit the stationary area interaction process to Swedish Pines data
data(swedishpines)
ppm(swedishpines, ~1, AreaInter(r=7))

# Fit the stationary area interaction process to 'cells'
data(cells)
ppm(cells, ~1, AreaInter(r=0.06))
# eta=0 indicates hard core process.

# Fit a nonstationary area interaction with log-cubic polynomial trend
## Not run:
ppm(swedishpines, ~polynom(x/10,y/10,3), AreaInter(r=7))

## End(Not run)
```

Description

Computes the area of that part of a disc that is not covered by other discs.
Usage

\[\text{areaLoss}(X, r, \ldots, W=\text{as.owin}(X), \text{subset}=\text{NULL}, \]
\[\text{exact}=\text{FALSE}, \]
\[ngrid=\text{spatstat.options("ngrid.disc")}) \]

Arguments

- **x**: Locations of the centres of discs. A point pattern (object of class "ppp").
- **r**: Disc radius, or vector of disc radii.
- **\ldots**: Ignored.
- **w**: Optional. Window (object of class "owin") inside which the area should be calculated.
- **subset**: Optional. Index identifying a subset of the points of \(X\) for which the area difference should be computed.
- **exact**: Choice of algorithm. If \(\text{exact}=\text{TRUE}\), areas are computed exactly using analytic geometry. If \(\text{exact}=\text{FALSE}\) then a faster algorithm is used to compute a discrete approximation to the areas.
- **ngrid**: Integer. Number of points in the square grid used to compute the discrete approximation, when \(\text{exact}=\text{FALSE}\).

Details

This function computes, for each point \(X[i]\) in \(X\) and for each radius \(r\), the area of that part of the disc of radius \(r\) centred at the location \(X[i]\) that is not covered by any of the other discs of radius \(r\) centred at the points \(X[j]\) for \(j\) not equal to \(i\). This area is important in some calculations related to the area-interaction model \(\text{AreaInter}\).

The result is a matrix, with one row for each point in \(X\) and one column for each entry of \(r\).

Value

A matrix with one row for each point in \(X\) (or \(X[\text{subset}]\)) and one column for each value in \(r\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \(\langle r.turner@auckland.ac.nz\rangle\)

See Also

\(\text{AreaInter, areaGain, dilated.areas}\)

Examples

data(cells)
areaLoss(cells, 0.1)
as.box3

Convert Data to Three-Dimensional Box

Description

Interprets data as the dimensions of a three-dimensional box.

Usage

as.box3(...)

Arguments

...

Data that can be interpreted as giving the dimensions of a three-dimensional box. See Details.

Details

This function converts data in various formats to an object of class "box3" representing a three-dimensional box (see **box3**). The arguments ... may be

- an object of class "box3"
- arguments acceptable to box3
- a numeric vector of length 6, interpreted as c(xrange[1], xrange[2], yrange[1], yrange[2], zrange[1], zrange[2])
- an object of class "pp3" representing a three-dimensional point pattern contained in a box.

Value

Object of class "box3".

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

box3, pp3

Examples

```r
X <- c(0, 10, 0, 10, 0, 5)
as.box3(X)
X <- pp3(runif(42), runif(42), runif(42), box3(c(0, 1)))
as.box3(X)
```
as.data.frame.hyperframe

Coerce Hyperframe to Data Frame

Description

Converts a hyperframe to a data frame.

Usage

S3 method for class 'hyperframe'
as.data.frame(x, row.names = NULL,
 optional = FALSE, ...,
 discard=TRUE, warn=TRUE)

Arguments

- **x**: Point pattern (object of class "hyperframe").
- **row.names**: Optional character vector of row names.
- **optional**: Argument passed to \texttt{as.data.frame} controlling what happens to row names.
- **...**: Ignored.
- **discard**: Logical. Whether to discard columns of the hyperframe that do not contain atomic data. See Details.
- **warn**: Logical. Whether to issue a warning when columns are discarded.

Details

This is a method for the generic function \texttt{as.data.frame} for the class of hyperframes (see \texttt{hyperframe}).

If \texttt{discard=}TRUE, any columns of the hyperframe that do not contain atomic data will be removed (and a warning will be issued if \texttt{warn=}TRUE). If \texttt{discard=}FALSE, then such columns are converted to strings indicating what class of data they originally contained.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
h <- hyperframe(X=1:3, Y=letters[1:3], f=list(sin, cos, tan))
as.data.frame(h, discard=TRUE, warn=FALSE)
as.data.frame(h, discard=FALSE)
```
as.data.frame.im

Convert Pixel Image to Data Frame

Description

Convert a pixel image to a data frame

Usage

```r
## S3 method for class 'im'
as.data.frame(x, ...)
```

Arguments

- `x`: A pixel image (object of class "im").
- `...`: Further arguments passed to `as.data.frame.default` to determine the row names and other features.

Details

This function takes the pixel image `x` and returns a data frame with three columns containing the pixel coordinates and the pixel values.

Value

A data frame

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
# artificial image
Z <- setcov(square(1))

Y <- as.data.frame(Z)

head(Y)
```
Coerce Point Pattern to a Data Frame

Description

Extracts the coordinates of the points in a point pattern, and their marks if any, and returns them in a data frame.

Usage

```r
## S3 method for class 'ppp'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

- `x`: Point pattern (object of class "ppp").
- `row.names`: Optional character vector of row names.
- `...`: Ignored.

Details

This is a method for the generic function `as.data.frame` for the class "ppp" of point patterns. It extracts the coordinates of the points in the point pattern, and returns them as columns named `x` and `y` in a data frame. If the points were marked, the marks are returned as a column named `marks` with the same type as in the point pattern dataset.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
data(amacrine)
df <- as.data.frame(amacrine)
df[1:5,]
```
as.data.frame.psp

Coerce Line Segment Pattern to a Data Frame

Description

Extracts the coordinates of the endpoints in a line segment pattern, and their marks if any, and returns them in a data frame.

Usage

```r
## S3 method for class 'psp'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

- `x` Line segment pattern (object of class "psp").
- `row.names` Optional character vector of row names.
- `...` Ignored.

Details

This is a method for the generic function `as.data.frame` for the class "psp" of line segment patterns.

It extracts the coordinates of the endpoints of the line segments, and returns them as columns named `x0`, `y0`, `x1` and `y1` in a data frame. If the line segments were marked, the marks are appended as an extra column or columns to the data frame which is returned. If the marks are a vector then a single column named `marks` is appended, in the data frame, with the same type as in the line segment pattern dataset. If the marks are a data frame, then the columns of this data frame are appended (retaining their names).

Value

A data frame with 4 or 5 columns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
data(copper)
df <- as.data.frame(copper$Lines)
```
as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv" to an \texttt{R} language function.

Usage

```r
## S3 method for class 'fv'
as.function(x, ..., value="y", extrapolate=FALSE)

## S3 method for class 'rhohat'
as.function(x, ..., value="y", extrapolate=TRUE)
```

Arguments

- **x** Object of class "fv" or "rhohat".
- **...** Ignored.
- **value** Optional. Character string or character vector selecting one or more of the columns of \(x\) for use as the function value. See Details.
- **extrapolate** Logical, indicating whether to extrapolate the function outside the domain of \(x\). See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several different estimates of the same function. Objects of this class are returned by many commands in \texttt{spatstat}, such as \texttt{Kest} which returns an estimate of Ripley's K-function for a point pattern dataset.

Sometimes it is useful to convert the function value table to a function in the \texttt{R} language. This is done by \texttt{as.function.fv}. It converts an object \(x\) of class "fv" to an \texttt{R} function \(f\).

If \(f \leftarrow \text{as.function.fv}(x)\) then \(f\) is an \texttt{R} function that accepts a numeric argument and returns a corresponding value for the summary function by linear interpolation between the values in the table \(x\).

Argument values lying outside the range of the table yield an \texttt{NA} value (if \texttt{extrapolate=FALSE}) or the function value at the nearest endpoint of the range (if \texttt{extrapolate = TRUE}). To apply different rules to the left and right extremes, use \texttt{extrapolate=c(TRUE,FALSE)} and so on.

Typically the table \(x\) contains several columns of function values corresponding to different edge corrections. Auxiliary information for the table identifies one of these columns as the recommended \emph{value}. By default, the values of the function \(f \leftarrow \text{as.function.fv}(x)\) are taken from this column of recommended values. This default can be changed using the argument \texttt{value}, which can be a character string or character vector of names of columns of \(x\). Alternatively \texttt{value} can be one of the abbreviations used by \texttt{fvnames}.

If \texttt{value} specifies a single column of the table, then the result is a function \(f(r)\) with a single numeric argument \(r\) (with the same name as the orginal argument of the function table).
If `value` specifies several columns of the table, then the result is a function \(f(r, \text{what}) \) where \(r \) is the numeric argument and \(\text{what} \) is a character string identifying the column of values to be used.

The formal arguments of the resulting function are \(f(r, \text{what}=value) \), which means that in a call to this function \(f \), the permissible values of \(\text{what} \) are the entries of the original vector \(value \); the default value of \(\text{what} \) is the first entry of \(value \).

The command `as.function.fv` is a method for the generic command `as.function`.

Value

A function\((r) \) or function\((r, \text{what}) \) where \(r \) is the name of the original argument of the function table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`fv`, `fv.object`, `fvnames`, `plot.fv`, `Kest`

Examples

```r
K <- Kest(cells)
f <- as.function(K)
f
f(0.1)
g <- as.function(K, value=c("iso", "trans"))
g
g(0.1, "trans")
```

as.function.im
Convert Pixel Image to Function of Coordinates

Description

Converts a pixel image to a function of the \(x \) and \(y \) coordinates.

Usage

```r
## S3 method for class 'im'
as.function(x, ...)
```

Arguments

- \(x \)

 Pixel image (object of class "im").

- \(... \)

 Ignored.
Details

This command converts a pixel image (object of class "im") to a function \((x, y)\) where the arguments \(x\) and \(y\) are (vectors of) spatial coordinates. This function returns the pixel values at the specified locations.

Value

A function in the \(\mathbb{R}\) language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

\([.im\]

Examples

```r
  d <- density(cities)
  f <- as.function(d)
  f(0.1, 0.3)
```

as.fv

Convert Data To Class fv

Description

Converts data into a function table (an object of class "fv").

Usage

```r
as.fv(x)

  ## S3 method for class 'fv'
  as.fv(x)

  ## S3 method for class 'data.frame'
  as.fv(x)

  ## S3 method for class 'matrix'
  as.fv(x)

  ## S3 method for class 'fasp'
  as.fv(x)
```
Arguments

x Data which will be converted into a function table

Details

This command converts data \(x\), that could be interpreted as the values of a function, into a function value table (object of the class "fv" as described in \texttt{fv.object}). This object can then be plotted easily using \texttt{plot.fv}.

The dataset \(x\) may be any of the following:

- an object of class "fv";
- a matrix or data frame with at least two columns;
- an object of class "fasp", representing an array of "fv" objects.
- an object of class "minconfit", giving the results of a minimum contrast fit by the command \texttt{mincontrast}. The
- an object of class "kppm", representing a fitted Cox or cluster point process model, obtained from the model-fitting command \texttt{kppm};
- an object of class "bw.optim", representing an optimal choice of smoothing bandwidth by a cross-validation method, obtained from commands like \texttt{bw.diggle}.

The function \texttt{as.fv} is generic, with methods for each of the classes listed above. The behaviour is as follows:

- If \(x\) is an object of class "fv", it is returned unchanged.
- If \(x\) is a matrix or data frame, the first column is interpreted as the function argument, and subsequent columns are interpreted as values of the function computed by different methods.
- If \(x\) is an object of class "fasp" representing an array of "fv" objects, these are combined into a single "fv" object.
- If \(x\) is an object of class "minconfit", or an object of class "kppm" that was fitted by minimum contrast, the result is a function table containing the observed summary function and the best fit summary function.
- If \(x\) is an object of class "bw.optim", the result is a function table of the optimisation criterion as a function of the smoothing bandwidth.

Value

An object of class "fv" (see \texttt{fv.object}).
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
r <- seq(0, 1, length=101)
x <- data.frame(r=r, y=r^2)
as.fv(x)
```

as.hyperframe
Convert Data to Hyperframe

Description

Converts data from any suitable format into a hyperframe.

Usage

```r
as.hyperframe(x, ...)
```

Default S3 method:

```r
as.hyperframe(x, ...)
```

S3 method for class 'data.frame'

```r
as.hyperframe(x, ..., stringsAsFactors=FALSE)
```

S3 method for class 'hyperframe'

```r
as.hyperframe(x, ...)
```

S3 method for class 'listof'

```r
as.hyperframe(x, ...)
```

S3 method for class 'anylist'

```r
as.hyperframe(x, ...)
```

Arguments

- **x**
 Data in some other format.

- **...**
 Optional arguments passed to `hyperframe`.

- **stringsAsFactors**
 Logical. If TRUE, any column of the data frame `x` that contains character strings will be converted to a factor. If FALSE, no such conversion will occur.
Details

A hyperframe is like a data frame, except that its entries can be objects of any kind.

The generic function \texttt{as.hyperframe} converts any suitable kind of data into a hyperframe.

There are methods for the classes \texttt{data.frame}, \texttt{listof}, \texttt{anylist} and a default method, all of which convert data that is like a hyperframe into a hyperframe object. (The method for the class \texttt{listof} and \texttt{anylist} converts a list of objects, of arbitrary type, into a hyperframe with one column.) These methods do not discard any information.

There are also methods for other classes (see \texttt{as.hyperframe.ppx}) which extract the coordinates from a spatial dataset. These methods do discard some information.

Value

An object of class "hyperframe" created by \texttt{hyperframe}.

Conversion of Strings to Factors

Note that \texttt{as.hyperframe.default} will convert a character vector to a factor. It behaves like \texttt{as.data.frame}.

However \texttt{as.hyperframe.data.frame} does not convert strings to factors; it respects the structure of the data frame \texttt{x}.

The behaviour can be changed using the argument \texttt{stringsAsFactors}.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{hyperframe}, \texttt{as.hyperframe.ppx}

Examples

\begin{verbatim}
df <- data.frame(x=runif(4),y=letters[1:4])
as.hyperframe(df)

sims <- list()
for(i in 1:3) sims[[i]] <- rpoispp(42)
as.hyperframe(as.listof(sims))
as.hyperframe(as.solist(sims))
\end{verbatim}
as.hyperframe.ppx

Extract coordinates and marks of multidimensional point pattern

Description

Given any kind of spatial or space-time point pattern, extract the coordinates and marks of the points.

Usage

```r
## S3 method for class 'ppx'
as.hyperframe(x, ...)
## S3 method for class 'ppx'
as.data.frame(x, ...)
## S3 method for class 'ppx'
as.matrix(x, ...)
```

Arguments

- `x` A general multidimensional space-time point pattern (object of class "ppx").
- `...` Ignored.

Details

An object of class "ppx" (see `ppx`) represents a marked point pattern in multidimensional space and/or time. There may be any number of spatial coordinates, any number of temporal coordinates, and any number of mark variables. The individual marks may be atomic (numeric values, factor values, etc) or objects of any kind.

The function `as.hyperframe.ppx` extracts the coordinates and the marks as a "hyperframe" (see `hyperframe`) with one row of data for each point in the pattern. This is a method for the generic function `as.hyperframe`.

The function `as.data.frame.ppx` discards those mark variables which are not atomic values, and extracts the coordinates and the remaining marks as a `data.frame` with one row of data for each point in the pattern. This is a method for the generic function `as.data.frame`.

Finally `as.matrix(x)` is equivalent to `as.matrix(as.data.frame(x))` for an object of class "ppx". Be warned that, if there are any columns of non-numeric data (i.e. if there are mark variables that are factors), the result will be a matrix of character values.

Value

A `hyperframe`, `data.frame` or `matrix` as appropriate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
as.im

Convert to Pixel Image

Description

Converts various kinds of data to a pixel image

Usage

as.im(X, ...)

S3 method for class 'im'
as.im(X, W=NULL, ...,
 eps=NULL, dimyx=NULL, xy=NULL,
 na.replace=NULL)

S3 method for class 'owin'
as.im(X, W=NULL, ...,
 eps=NULL, dimyx=NULL, xy=NULL,
 na.replace=NULL, value=1)

S3 method for class 'matrix'
as.im(X, W=NULL, ...)

S3 method for class 'tess'
as.im(X, W=NULL, ...,
 eps=NULL, dimyx=NULL, xy=NULL,
 na.replace=NULL)

S3 method for class 'function'
as.im(X, W=NULL, ...,
 eps=NULL, dimyx=NULL, xy=NULL,
 ...)

See Also

ppx, hyperframe, as.hyperframe.

Examples

df <- data.frame(x=runif(4), y=runif(4), t=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
as.data.frame(X)
val <- runif(4)
E <- lapply(val, function(s) { rpoispp(s) })
hf <- hyperframe(t=val, e=as.listof(E))
Z <- ppx(data=hf, domain=c(0,1))
as.hyperframe(Z)
as.data.frame(Z)
Arguments

X Data to be converted to a pixel image.
W Window object which determines the spatial domain and pixel array geometry.
... Additional arguments passed to X when X is a function.
eps, dimyx, xy Optional parameters passed to as.mask which determine the pixel array geometry. See as.mask.
na.replace Optional value to replace NA entries in the output image.
value Optional. The value to be assigned to pixels inside the window, if X is a window.

Details

This function converts the data X into a pixel image object of class "im" (see im.object). The function as.im is generic, with methods for the classes listed above.

Currently X may be any of the following:

- a pixel image object, of class "im".
- a window object, of class "owin" (see owin.object). The result is an image with all pixel entries equal to value inside the window X, and NA outside.
- a matrix.
- a tessellation (object of class "tess"). The result is a factor-valued image, with one factor level corresponding to each tile of the tessellation. Pixels are classified according to the tile of the tessellation into which they fall.
a single number (or a single logical, complex, factor or character value). The result is an image with all pixel entries equal to this constant value inside the window \(W \) (and \(\text{NA} \) outside, unless the argument \(\text{na.replace} \) is given). Argument \(W \) is required.

- a function of the form \(\text{function}(x, y, \ldots) \) which is to be evaluated to yield the image pixel values. In this case, the additional argument \(W \) must be present. This window will be converted to a binary image mask. Then the function \(X \) will be evaluated in the form \(X(x, y, \ldots) \) where \(x \) and \(y \) are vectors containing the \(x \) and \(y \) coordinates of all the pixels in the image mask, and \(\ldots \) are any extra arguments given. This function must return a vector or factor of the same length as the input vectors, giving the pixel values.

- an object of class "distfun" representing a distance function (created by the command \(\text{distfun} \)).

- an object of class "nnfun" representing a nearest neighbour function (created by the command \(\text{nnfun} \)).

- a list with entries \(x, y, z \) in the format expected by the standard \(\text{R} \) functions \(\text{image.default} \) and \(\text{contour.default} \). That is, \(z \) is a matrix of pixel values, \(x \) and \(y \) are vectors of \(x \) and \(y \) coordinates respectively, and \(z[i,j] \) is the pixel value for the location \((x[i], y[j]) \).

- a point pattern (object of class "ppp"). See the separate documentation for \(\text{as.im.ppp} \).

The spatial domain (enclosing rectangle) of the pixel image is determined by the argument \(W \). If \(W \) is absent, the spatial domain is determined by \(X \). When \(X \) is a function, a matrix, or a single numerical value, \(W \) is required.

The pixel array dimensions of the final resulting image are determined by (in priority order)

- the argument \(\text{eps}, \text{dimyx or xy} \) if present;
- the pixel dimensions of the window \(W \), if it is present and if it is a binary mask;
- the pixel dimensions of \(X \) if it is an image, a binary mask, or a list \((x, y, z) \);
- the default pixel dimensions, controlled by \(\text{spatstat.options} \).

Note that if \(\text{eps}, \text{dimyx or xy} \) is given, this will override the pixel dimensions of \(X \) if it has them. Thus, \(\text{as.im} \) can be used to change an image’s pixel dimensions.

If the argument \(\text{na.replace} \) is given, then all \(\text{NA} \) entries in the image will be replaced by this value. The resulting image is then defined everywhere on the full rectangular domain, instead of a smaller window. Here \(\text{na.replace} \) should be a single value, of the same type as the other entries in the image.

If \(X \) is a pixel image that was created by an older version of \(\text{spatstat} \), the command \(X \leftarrow \text{as.im}(X) \) will repair the internal format of \(X \) so that it conforms to the current version of \(\text{spatstat} \).

Value

An image object of class "im".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Separate documentation for \(\text{as.im.ppp} \)
Examples

data(demopat)
window object
W <- demopat$window
plot(W)
Z <- as.im(W)
image(Z)
function
Z <- as.im(function(x,y) {x^2 + y^2}, unit.square())
image(Z)
function with extra arguments
f <- function(x, y, x0, y0) {
 sqrt((x - x0)^2 + (y-y0)^2)
}
Z <- as.im(f, unit.square(), x0=0.5, y0=0.5)
image(Z)
Revisit the Sixties
data(letterR)
Z <- as.im(f, letterR, x0=2.5, y0=2)
image(Z)
usual convention in S
stuff <- list(x=1:10, y=1:10, z=matrix(1:100, nrow=10))
Z <- as.im(stuff)
convert to finer grid
Z <- as.im(Z, dimyx=256)

pixellate the Dirichlet tessellation
Di <- dirichlet(runifpoint(10))
plot(as.im(Di))
plot(Di, add=TRUE)

as.interact Extract Interaction Structure

Description

Extracts the interpoint interaction structure from a point pattern model.

Usage

as.interact(object)
S3 method for class 'fii'
as.interact(object)
S3 method for class 'interact'
as.interact(object)
S3 method for class 'ppm'
as.interact(object)
Arguments

object A fitted point process model (object of class "ppm") or an interpoint interaction structure (object of class "interact").

Details

The function as.interact extracts the interpoint interaction structure from a suitable object.

An object of class "interact" describes an interpoint interaction structure, before it has been fitted to point pattern data. The irregular parameters of the interaction (such as the interaction range) are fixed, but the regular parameters (such as interaction strength) are undetermined. Objects of this class are created by the functions Poisson, Strauss and so on. The main use of such objects is in a call to ppm.

The function as.interact is generic, with methods for the classes "ppm", "fii" and "interact". The result is an object of class "interact" which can be printed.

Value

An object of class "interact" representing the interpoint interaction. This object can be printed and plotted.

Note on parameters

This function does not extract the fitted coefficients of the interaction. To extract the fitted interaction including the fitted coefficients, use fitin.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fitin, ppm.

Examples

data(cells)
model <- ppm(cells, ~1, Strauss(0.07))
f <- as.interact(model)
f
as.layered

Convert Data To Layered Object

Description

Converts spatial data into a layered object.

Usage

as.layered(X)

Default S3 method:
as.layered(X)

S3 method for class 'ppp'
as.layered(X)

S3 method for class 'splitppp'
as.layered(X)

S3 method for class 'solist'
as.layered(X)

S3 method for class 'listof'
as.layered(X)

S3 method for class 'msr'
as.layered(X)

Arguments

X

Some kind of spatial data.

Details

This function converts the object X into an object of class "layered".
The argument X should contain some kind of spatial data such as a point pattern, window, or pixel image.

If X is a simple object then it will be converted into a layered object containing only one layer which is equivalent to X.

If X can be interpreted as consisting of multiple layers of data, then the result will be a layered object consisting of these separate layers of data.

- if X is a list of class "listof" or "solist", then as.layered(X) consists of several layers, one for each entry in the list X;
- if X is a multitype point pattern, then as.layered(X) consists of several layers, each containing the sub-pattern consisting of points of one type;
• if \(X \) is a vector-valued measure, then \(\text{as.layered}(X) \) consists of several layers, each containing a scalar-valued measure.

Value

An object of class "layered" (see \texttt{layered}).

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \texttt{http://www.maths.uwa.edu.au/~adrian/}
Rolf Turner \texttt{<r.turner@auckland.ac.nz>} and Ege Rubak \texttt{<rubak@math.aau.dk>}

See Also

\texttt{layered, split.ppp}

Examples

\begin{verbatim}
 as.layered(cells)
as.layered(amacrine)

 P <- rpoispp(100)
 fit <- ppm(P ~ x+y)
 rs <- residuals(fit, type="score")
 as.layered(rs)
\end{verbatim}

\begin{tabular}{ll}
 \texttt{as.linim} & \textit{Convert to Pixel Image on Linear Network} \\
\end{tabular}

Description

Converts various kinds of data to a pixel image on a linear network.

Usage

\begin{verbatim}
 as.linim(X, ...)

 # S3 method for class 'linim'
as.linim(X, ...)

 # Default S3 method:
as.linim(X, L, ...)
\end{verbatim}

Arguments

\begin{verbatim}
 X Data to be converted to a pixel image on a linear network.
 L Linear network (object of class "linnet").
 ... Additional arguments passed to \(X \) when \(X \) is a function, or arguments passed to \texttt{as.mask} which determine the pixel array geometry.
\end{verbatim}
Details

This function converts the data \(X \) into a pixel image on a linear network, an object of class "linim" (see \texttt{linim}).

The argument \(X \) may be any of the following:

- a pixel image on a linear network, an object of class "linim".
- a pixel image, an object of class "im".
- any type of data acceptable to \texttt{as.im}, such as a function, numeric value, or window.

First \(X \) is converted to a pixel image object \(Y \) (object of class "im"). The conversion is performed by \texttt{as.im} using any relevant arguments specified in \ldots. For example the argument \texttt{eps} could be used to change the pixel resolution.

Next \(Y \) is converted to a pixel image on a linear network using \texttt{linim}. The argument \(L \) determines the linear network. If \(L \) is missing or NULL, then \(X \) should be an object of class "linim", and \(L \) defaults to the linear network on which \(X \) is defined.

Value

An image object on a linear network; an object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{as.im}

Examples

\begin{verbatim}
f <- function(x,y){ x + y }
plot(as.linim(f, simplenet))
\end{verbatim}

\begin{table}
\centering
\begin{tabular}{ll}
\texttt{as.linnet.linim} & Extract Linear Network from Data on a Linear Network \\
\end{tabular}
\end{table}

Description

Given some kind of data on a linear network, the command \texttt{as.linnet} extracts the linear network itself.
Usage

```r
## S3 method for class 'linim'
as.linnet(X, ...)
## S3 method for class 'linfun'
as.linnet(X, ...)
## S3 method for class 'lpp'
as.linnet(X, ..., fatal=TRUE, sparse)
```

Arguments

- `X` Data on a linear network. A point pattern (class "lpp"), pixel image (class "linim") or function (class "linfun").
- `...` Ignored.
- `fatal` Logical value indicating whether data in the wrong format should lead to an error (`fatal=TRUE`) or a warning (`fatal=FALSE`).
- `sparse` Logical value indicating whether to use a sparse matrix representation, as explained in `linnet`. Default is to keep the same representation as in `X`.

Details

These are methods for the generic `as.linnet` for various classes. The network on which the data are defined is extracted.

Value

A linear network (object of class "linnet").

Author(s)

Rolff Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`linnet`, `methods.linnet`.

Examples

```r
# make some data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplelenet)
as.linnet(xcoord)
X <- as.linim(xcoord)
as.linnet(X)
```
as.linnet.psp

Convert Line Segment Pattern to Linear Network

Description

Converts a line segment pattern to a linear network.

Usage

```r
## S3 method for class 'psp'
as.linnet(x, ..., eps, sparse=FALSE)
```

Arguments

- `x` Line segment pattern (object of class "psp").
- `...` Ignored.
- `eps` Optional. Distance threshold. If two segment endpoints are closer than `eps` units apart, they will be treated as the same point, and will become a single vertex in the linear network.
- `sparse` Logical value indicating whether to use a sparse matrix representation, as explained in `linnet`.

Details

This command converts any collection of line segments into a linear network by guessing the connectivity of the network, using the distance threshold `eps`.

If any segments in `x` cross over each other, they are first cut into pieces using `selfcut.psp`.

Then any pair of segment endpoints lying closer than `eps` units apart, is treated as a single vertex. The linear network is then constructed using `linnet`.

It would be wise to check the result by plotting the degree of each vertex, as shown in the Examples.

Value

A linear network (object of class "linnet").

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`linnet`, `selfcut.psp`, `methods.linnet`
Examples

make some data
A <- psp(0.09, 0.55, 0.79, 0.80, window=owin())
B <- superimpose(A, as.psp(simpleset))

convert to a linear network
D <- as.linnet(B)

check validity
D
plot(D)
text(vertices(D), labels=vertexdegree(D))

as.lpp

Convert Data to a Point Pattern on a Linear Network

Description

Convert various kinds of data to a point pattern on a linear network.

Usage

as.lpp(x, y=NULL, seg=NULL, tp=NULL, ..., marks=NULL, L=NULL, check=FALSE, sparse)

Arguments

x, y
Vectors of cartesian coordinates, or any data acceptable to xy.coords. Alternatively x can be a point pattern on a linear network (object of class "lpp") or a planar point pattern (object of class "ppp").

seg, tp
Optional local coordinates. Vectors of the same length as x, y. See Details.

...
Ignored.

marks
Optional marks for the point pattern. A vector or factor with one entry for each point, or a data frame or hyperframe with one row for each point.

L
Linear network (object of class "linnet") on which the points lie.

cHECK
Logical. Whether to check the validity of the spatial coordinates.

sparse
Optional logical value indicating whether to store the linear network data in a sparse matrix representation or not. See linnet.

Details

This function converts data in various formats into a point pattern on a linear network (object of class "lpp").

The possible formats are:
• \(x\) is already a point pattern on a linear network (object of class "lpp"). Then \(x\) is returned unchanged.
• \(x\) is a planar point pattern (object of class "ppp"). Then \(x\) is converted to a point pattern on the linear network \(L\) using \texttt{lpp}.
• \(x, y, \text{seg}, t_p\) are vectors of equal length. These specify that the \(i\)th point has Cartesian coordinates \((x[i], y[i])\), and lies on segment number \(\text{seg}[i]\) of the network \(L\), at a fractional position \(t_p[i]\) along that segment (with \(t_p=0\) representing one endpoint and \(t_p=1\) the other endpoint of the segment).
• \(\text{seg}, t_p\) are \\texttt{NULL}, and \(x, y\) are data in a format acceptable to \texttt{xy.coords} specifying the Cartesian coordinates.

Value

A point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{lpp}.

Examples

\begin{verbatim}
A <- as.psp(simplenet)
X <- runifpointOnLines(10, A)
is.ppp(X)
Y <- as.lpp(X, L=simplenet)
\end{verbatim}

\textbf{as.mask} \hspace{1cm} \textit{Pixel Image Approximation of a Window}

\textbf{Description}

Obtain a discrete (pixel image) approximation of a given window

\textbf{Usage}

\texttt{as.mask(w, eps=NULL, dimyx=NULL, xy=NULL)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{w} \hspace{1cm} A window (object of class "owin") or data acceptable to \texttt{as.owin}.
 \item \texttt{eps} \hspace{1cm} (optional) width and height of pixels.
 \item \texttt{dimyx} \hspace{1cm} (optional) pixel array dimensions
 \item \texttt{xy} \hspace{1cm} (optional) data containing pixel coordinates
\end{itemize}
Details

This function generates a rectangular grid of locations in the plane, tests whether each of these locations lies inside the window \(w \), and stores the results as a binary pixel image or ‘mask’ (an object of class "owin", see \code{owin.object}).

The most common use of this function is to approximate the shape of another window \(w \) by a binary pixel image. In this case, we will usually want to have a very fine grid of pixels.

This function can also be used to generate a coarsely-spaced grid of locations inside a window, for purposes such as subsampling and prediction.

The grid spacing and location are controlled by the arguments \code{eps}, \code{dimyx} and \code{xy}, which are mutually incompatible.

If \code{eps} is given, then it determines the grid spacing. If \code{eps} is a single number, then the grid spacing will be approximately \code{eps} in both the \(x \) and \(y \) directions. If \code{eps} is a vector of length 2, then the grid spacing will be approximately \code{eps[1]} in the \(x \) direction and \code{eps[2]} in the \(y \) direction.

If \code{dimyx} is given, then the pixel grid will be an \(m \times n \) rectangular grid where \(m, n \) are given by \code{dimyx[2]}, \code{dimyx[1]} respectively. \textbf{Warning:} \code{dimyx[1]} is the number of pixels in the \(y \) direction, and \code{dimyx[2]} is the number in the \(x \) direction.

If \code{xy} is given, then this should be some kind of data specifying the coordinates of a pixel grid. It may be

- a list or structure containing elements \code{x} and \code{y} which are numeric vectors of equal length. These will be taken as \code{x} and \code{y} coordinates of the margins of the grid. The pixel coordinates will be generated from these two vectors.
- a pixel image (object of class "im").
- a window (object of class "owin") which is of type "mask" so that it contains pixel coordinates.

If \code{xy} is given, \code{w} may be omitted.

If neither \code{eps} nor \code{dimyx} nor \code{xy} is given, the pixel raster dimensions are obtained from \code{spatstat.options("npixel")}.

There is no inverse of this function. However, the function \code{as.polygonal} will compute a polygonal approximation of a binary mask.

Value

A window (object of class "owin") of type "mask" representing a binary pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\code{owin.object, as.rectangle, as.polygonal, spatstat.options}
Examples

```r
w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
## Not run: plot(w)
m <- as.mask(w)
## Not run: plot(m)
x <- 1:9
y <- seq(0.25, 9.75, by=0.5)
m <- as.mask(w, xy=list(x=x, y=y))
```

\[\text{as.mask.psp} \quad \text{Convert Line Segment Pattern to Binary Pixel Mask} \]

Description

Converts a line segment pattern to a binary pixel mask by determining which pixels intersect the lines.

Usage

\[\text{as.mask.psp}(x, W=NULL, \ldots) \]

Arguments

- **x**: Line segment pattern (object of class "psp").
- **W**: Optional window (object of class "owin") determining the pixel raster.
- **\ldots**: Optional extra arguments passed to \texttt{as.mask} to determine the pixel resolution.

Details

This function converts a line segment pattern to a binary pixel mask by determining which pixels intersect the lines.

The pixel raster is determined by \texttt{W} and the optional arguments \ldots. If \texttt{W} is missing or \texttt{NULL}, it defaults to the window containing \texttt{x}. Then \texttt{W} is converted to a binary pixel mask using \texttt{as.mask}. The arguments \ldots are passed to \texttt{as.mask} to control the pixel resolution.

Value

A window (object of class "owin") which is a binary pixel mask (type "mask").

Author(s)

Adrian Baddeley \(\text{<Adrian.Baddeley@uwa.edu.au>}\) \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \(\text{<r.turner@auckland.ac.nz>}\)

See Also

\texttt{pixellate.psp, as.mask}.

Use \texttt{pixellate.psp} if you want to measure the length of line in each pixel.
as.matrix.im

Examples

```r
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
pplot(as.mask.psp(X))
pplot(X, add=TRUE, col="red")
```

Description

Converts a pixel image to a matrix or an array.

Usage

```r
## S3 method for class 'im'
as.matrix(x, ...)
## S3 method for class 'im'
as.array(x, ...)
```

Arguments

- `x` A pixel image (object of class "im").
- `...` See below.

Details

The function as.matrix.im converts the pixel image `x` into a matrix containing the pixel values. It is handy when you want to extract a summary of the pixel values. See the Examples.

The function as.array.im converts the pixel image to an array. By default this is a three-dimensional array of dimension `n` by `m` by 1. If the extra arguments `...` are given, they will be passed to `array`, and they may change the dimensions of the array.

Value

A matrix or array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- as.matrix.owin
Examples

```r
# artificial image
Z <- setcov(square(1))

M <- as.matrix(Z)

median(M)

## Not run:
# plot the cumulative distribution function of pixel values
plot(ecdf(as.matrix(Z)))

## End(Not run)
```

as.matrix.owin Convert Pixel Image to Matrix

Description

Converts a pixel image to a matrix.

Usage

```r
## S3 method for class 'owin'
as.matrix(x, ...)
```

Arguments

- `x` A window (object of class "owin").
- `...` Arguments passed to `as.mask` to control the pixel resolution.

Details

The function `as.matrix.owin` converts a window to a logical matrix.

It first converts the window `x` into a binary pixel mask using `as.mask`. It then extracts the pixel entries as a logical matrix.

The resulting matrix has entries that are TRUE if the corresponding pixel is inside the window, and FALSE if it is outside.

The function `as.matrix` is generic. The function `as.matrix.owin` is the method for windows (objects of class "owin").

Use `as.im` to convert a window to a pixel image.

Value

A logical matrix.
as.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.matrix.im, as.im

Examples

```r
m <- as.matrix(letterR)
```

as.owin Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class "owin".

Usage

```r
as.owin(W, ..., fatal=TRUE)
```

S3 method for class 'owin'

as.owin(W, ..., fatal=TRUE)

S3 method for class 'ppp'

as.owin(W, ..., fatal=TRUE)

S3 method for class 'ppm'

as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'kppm'

as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'lpp'

as.owin(W, ..., fatal=TRUE)

S3 method for class 'lppm'

as.owin(W, ..., fatal=TRUE)

S3 method for class 'msr'

as.owin(W, ..., fatal=TRUE)

S3 method for class 'psp'

as.owin(W, ..., fatal=TRUE)
S3 method for class 'quad'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'quadratcount'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'quadrattest'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'tess'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'im'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'layered'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'data.frame'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'distfun'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'nnfun'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'funxy'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'boxx'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'rmhmodel'
asa.own(W, ..., fatal=FALSE)

S3 method for class 'leverage.ppm'
asa.own(W, ..., fatal=TRUE)

S3 method for class 'influence.ppm'
asa.own(W, ..., fatal=TRUE)

Default S3 method:
asa.own(W, ..., fatal=TRUE)
Arguments

\[w \]
Data specifying an observation window, in any of several formats described under Details below.

\[fatal \]
Logical flag determining what to do if the data cannot be converted to an observation window. See Details.

\[\ldots \]
Ignored.

\[from \]
Character string. See Details.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object for an overview.

This function converts data in any of several formats into an object of class "owin" for use by the spatstat package. The function as.owin is generic, with methods for different classes of objects, and a default method.

The argument \[w \] may be

- an object of class "owin"
- a structure with entries \[xrange, yrange \] specifying the \[x \] and \[y \] dimensions of a rectangle
- a four-element vector (interpreted as \[(xmin, xmax, ymin, ymax) \]) specifying the \[x \] and \[y \] dimensions of a rectangle
- a structure with entries \[xl, xu, yl, yu \] specifying the \[x \] and \[y \] dimensions of a rectangle as \[(xmin, xmax) = (xl, xu) \] and \[(ymin, ymax) = (yl, yu) \]. This will accept objects of class \[spp \] used in the Venables and Ripley spatial library.
- an object of class "ppp" representing a point pattern. In this case, the object’s window structure will be extracted.
- an object of class "psp" representing a line segment pattern. In this case, the object’s window structure will be extracted.
- an object of class "tess" representing a tessellation. In this case, the object’s window structure will be extracted.
- an object of class "quad" representing a quadrature scheme. In this case, the window of the data component will be extracted.
- an object of class "im" representing a pixel image. In this case, a window of type "mask" will be returned, with the same pixel raster coordinates as the image. An image pixel value of NA, signifying that the pixel lies outside the window, is transformed into the logical value FALSE, which is the corresponding convention for window masks.
- an object of class "ppm" or "kppm" representing a fitted point process model. In this case, if \[from="data" \] (the default), as.owin extracts the original point pattern data to which the model was fitted, and returns the observation window of this point pattern. If \[from="covariates" \] then as.owin extracts the covariate images to which the model was fitted, and returns a binary mask window that specifies the pixel locations.
- an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin extracts the linear network and returns a window containing this network.
• an object of class "lppm" representing a fitted point process model on a linear network. In this case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one pixel. Each row contains the \(x \) and \(y \) coordinates of a pixel, and a logical value indicating whether the pixel lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location, defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using \texttt{rmh}. The window (spatial domain) of the model will be extracted. The window may be NULL in some circumstances (indicating that the simulation window has not yet been determined). This is not treated as an error, because the argument \texttt{fatal} defaults to \texttt{FALSE} for this method.

• an object of class "layered" representing a list of spatial objects. See \texttt{layered}. In this case, \texttt{as.owin} will be applied to each of the objects in the list, and the union of these windows will be returned.

If the argument \(w \) is not in one of these formats and cannot be converted to a window, then an error will be generated (if \texttt{fatal=TRUE}) or a value of NULL will be returned (if \texttt{fatal=FALSE}).

Value

An object of class "owin" (see \texttt{owin.object}) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{owin.object, owin}

Examples

\begin{verbatim}
w <- as.owin(c(0,1,0,1))
w <- as.owin(list(xrange=c(0,5),yrange=c(0,10))) # point pattern data(demopat)
w <- as.owin(demopat) # image Z <- as.im(function(x,y) { x + 3}, unit.square())
w <- as.owin(Z)

Venables & Ripley 'spatial' package require(spatial)
towns <- ppinit("towns.dat")
w <- as.owin(towns)
detach(package:spatial)
\end{verbatim}
Convert a Window to a Polygonal Window

Description

Given a window \(W \) of any geometric type (rectangular, polygonal or binary mask), this function returns a polygonal window that represents the same spatial domain.

Usage

\[
\text{as.polygonal}(W)
\]

Arguments

- \(W \) A window (object of class "owin").

Details

Given a window \(W \) of any geometric type (rectangular, polygonal or binary mask), this function returns a polygonal window that represents the same spatial domain.

If \(W \) is already polygonal, it is returned without change.

If \(W \) is a rectangle, it is converted to a polygon with 4 vertices.

If \(W \) is a binary mask, then each pixel in the mask is replaced by a small square or rectangle, and the union of these squares or rectangles is computed. The result is a polygonal window that has only horizontal and vertical edges. (Use \texttt{simplify.owin} to remove the staircase appearance, if desired).

Value

A polygonal window (object of class "owin" and of type "polygonal").

Author(s)

Adrian Baddeley \texttt{Adrian.Baddeley@uwa.edu.au} \texttt{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner \texttt{r.turner@auckland.ac.nz}

See Also

\texttt{owin, as.owin, as.mask, simplify.owin}

Examples

```r
data(letterR)
m <- as.mask(letterR, dimyx=32)
p <- as.polygonal(m)
if(interactive()) {
  plot(m)
  plot(p, add=TRUE, lwd=2)
}
```
as.ppm
Extract Fitted Point Process Model

Description

Extracts the fitted point process model from some kind of fitted model.

Usage

```r
as.ppm(object)
```

```r
## S3 method for class 'ppm'
as.ppm(object)
```

```r
## S3 method for class 'profilepl'
as.ppm(object)
```

```r
## S3 method for class 'kppm'
as.ppm(object)
```

Arguments

- `object`
 An object that includes a fitted Poisson or Gibbs point process model. An object of class "ppm", "profilepl" or "kppm" or possibly other classes.

Details

The function `as.ppm` extracts the fitted point process model (of class "ppm") from a suitable object.

The function `as.ppm` is generic, with methods for the classes "ppm", "profilepl" and "kppm", and possibly for other classes.

For the class "profilepl" of models fitted by maximum profile pseudolikelihood, the method `as.ppm.profilepl` extracts the fitted point process model (with the optimal values of the irregular parameters).

For the class "kppm" of models fitted by minimum contrast using Waagepetersen's two-step estimation procedure (see `kppm`), the method `as.ppm.kppm` extracts the Poisson point process model that is fitted in the first stage of the procedure.

Value

An object of class "ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
as.ppp

See Also

ppm, profilepl.

Examples

fit a model by profile maximum pseudolikelihood
rvals <- data.frame(r=(1:10)/100)
pfit <- profilepl(rvals, Strauss, cells, -1)
extract the fitted model
fit <- as.ppm(pfit)

as.ppp

Convert Data To Class ppp

Description

Tries to coerce any reasonable kind of data to a spatial point pattern (an object of class "ppp") for use by the spatstat package.

Usage

as.ppp(X, ..., fatal=TRUE)
S3 method for class 'ppp'
as.ppp(X, ..., fatal=TRUE)
S3 method for class 'psp'

as.ppp(X, ..., fatal=TRUE)
S3 method for class 'quad'
as.ppp(X, ..., fatal=TRUE)
S3 method for class 'matrix'

as.ppp(X, W=NULL, ..., fatal=TRUE)
S3 method for class 'data.frame'
as.ppp(X, W=NULL, ..., fatal=TRUE)
S3 method for class 'influence.ppm'
as.ppp(X, ...)
Default S3 method:
as.ppp(X, W=NULL, ..., fatal=TRUE)

Arguments

X Data which will be converted into a point pattern
W Data which define a window for the pattern when X does not contain a window
... Ignored.
fatal Logical value. See Details.
Details

Converts the dataset X to a point pattern (an object of class "ppp"; see ppp.object for an overview). This function is normally used to convert an existing point pattern dataset, stored in another format, to the "ppp" format. To create a new point pattern from raw data such as \(x, y \) coordinates, it is normally easier to use the creator function ppp.

The dataset X may be:

- an object of class "ppp"
- an object of class "psp"
- an object of class "spp" as defined in the spatial library
- an object of class "quad" representing a quadrature scheme (see quad.object)
- a matrix or data frame with at least two columns
- a structure with entries \(x, y \) which are numeric vectors of equal length
- a numeric vector of length 2, interpreted as the coordinates of a single point.

In the last three cases, we need the second argument \(W \) which is converted to a window object by the function as.owin. In the first four cases, \(W \) will be ignored.

If X is a line segment pattern (an object of class psp) the point pattern returned consists of the endpoints of the segments. If X is marked then the point pattern returned will also be marked, the mark associated with a point being the mark of the segment of which that point was an endpoint.

If X is a matrix or data frame, the first and second columns will be interpreted as the \(x \) and \(y \) coordinates respectively. Any additional columns will be interpreted as marks.

The argument fatal indicates what to do when \(W \) is missing and X contains no information about the window. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

An spp object is the representation of a point pattern in the spatial library. Our implementation recognises the following formats:

- a structure with entries \(x, y, xL, xu, yL, yu \)
- a structure with entries \(x, y \) and area, where area is a structure with entries \(xL, xu, yL, yu \)

(used in spatial versions 1 to 6 and version 7.1 respectively) where \(x \) and \(y \) are vectors of equal length giving the point coordinates, and \(xL, xu, yL, yu \) are numbers giving the dimensions of a rectangular window.

The function as.ppp is generic, with methods for the classes "ppp", "psp", "quad", "matrix", "data.frame" and a default method.

Point pattern datasets can also be created by the function ppp.

Value

An object of class "ppp" (see ppp.object) describing the point pattern and its window of observation. The value NULL may also be returned; see Details.

Warnings

If the format of spp objects is changed in future versions of the spatial library, then as.ppp may not be able to interpret them. It currently handles all versions of spatial up to 7.1-4.
as.psp

Convert Data To Class psp

Description

Tries to coerce any reasonable kind of data object to a line segment pattern (an object of class "psp") for use by the spatstat package.

Usage

as.psp(x, ..., from=NULL, to=NULL)

S3 method for class 'psp'
as.psp(x, ..., check=FALSE, fatal=TRUE)

S3 method for class 'data.frame'
as.psp(x, ..., window=NULL, marks=NULL,
 check=spatstat.options("checksegments"), fatal=TRUE)

S3 method for class 'matrix'
as.psp(x, ..., window=NULL, marks=NULL,
 check=spatstat.options("checksegments"), fatal=TRUE)

Examples

xy <- matrix(runif(40), ncol=2)
pp <- as.ppp(xy, c(0,1,0,1))

Venables-Ripley format
check for 'spatial' package
spatialpath <- system.file(package="spatial")
if(nchar(spatialpath) > 0) {
 require(spatial)
 towns <- ppinit("towns.dat")
 pp <- as.ppp(towns) # converted to our format
 detach(package:spatial)
}

xyzt <- matrix(runif(40), ncol=4)
Z <- as.ppp(xyzt, square(1))
Default S3 method:

```r
as.psp(x, ..., window=NULL, marks=NULL,
       check=spatstat.options("checksegments"), fatal=TRUE)
```

Arguments

- **x**
 - Data which will be converted into a line segment pattern
- **window**
 - Data which define a window for the pattern
- **...**
 - Ignored.
- **marks**
 - (Optional) vector or data frame of marks for the pattern
- **check**
 - Logical value indicating whether to check the validity of the data, e.g. to check that the line segments lie inside the window.
- **fatal**
 - Logical value. See Details.
- **from**, **to**
 - Point patterns (object of class "ppp") containing the first and second endpoints (respectively) of each segment. Incompatible with x.

Details

Converts the dataset x to a line segment pattern (an object of class "psp"; see `psp.object` for an overview).

This function is normally used to convert an existing line segment pattern dataset, stored in another format, to the "psp" format. To create a new point pattern from raw data such as x, y coordinates, it is normally easier to use the creator function `psp`.

The dataset x may be:

- an object of class "psp"
- a data frame with at least 4 columns
- a structure (list) with elements named x0, y0, x1, y1 or elements named xmid, ymid, length, angle and possibly a fifth element named marks

If x is a data frame the interpretation of its columns is as follows:

- If there are columns named x0, y0, x1, y1 then these will be interpreted as the coordinates of the endpoints of the segments and used to form the ends component of the psp object to be returned.
- If there are columns named xmid, ymid, length, angle then these will be interpreted as the coordinates of the segment midpoints, the lengths of the segments, and the orientations of the segments in radians and used to form the ends component of the psp object to be returned.
- If there is a column named marks then this will be interpreted as the marks of the pattern provided that the argument marks of this function is NULL. If argument marks is not NULL then the value of this argument is taken to be the marks of the pattern and the column named marks is ignored (with a warning). In either case the column named marks is deleted and omitted from further consideration.
• If there is no column named marks and if the marks argument of this function is NULL, and if after interpreting 4 columns of x as determining the ends component of the psp object to be returned, there remain other columns of x, then these remaining columns will be taken to form a data frame of marks for the psp object to be returned.

If x is a structure (list) with elements named x0, y0, x1, y1, marks or xmid, ymid, length, angle, marks, then the element named marks will be interpreted as the marks of the pattern provide that the argument marks of this function is NULL. If this argument is non-NULL then it is interpreted as the marks of the pattern and the element marks of x is ignored — with a warning.

Alternatively, you may specify two point patterns from to containing the first and second endpoints of the line segments.

The argument window is converted to a window object by the function as.owin.

The argument fatal indicates what to do when the data cannot be converted to a line segment pattern. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

The function as.psp is generic, with methods for the classes "psp", "data.frame", "matrix" and a default method.

Point pattern datasets can also be created by the function psp.

Value

An object of class "psp" (see psp.object) describing the line segment pattern and its window of observation. The value NULL may also be returned; see Details.

Warnings

If only a proper subset of the names x0, y0, x1, y1 or xmid, ymid, length, angle appear amongst the names of the columns of x where x is a data frame, then these special names are ignored.

For example if the names of the columns were xmid, ymid, length, degrees, then these columns would be interpreted as if the represented x0, y0, x1, y1 in that order.

Whether it gets used or not, column named marks is always removed from x before any attempt to form the ends component of the psp object that is returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp, psp.object, as.owin, owin.object

Examples

```r
mat <- matrix(runif(40), ncol=4)
mx <- data.frame(v1=sample(1:4,10,TRUE),
                 v2=sample(1:4,10,TRUE),levels=letters[1:4]))
a <- as.psp(mat, window=owin(),marks=mx)
mat <- cbind(as.data.frame(mat),mx)
```
as.rectangle

```r
b <- as.psp(mat, window=owin())  # a and b are identical.
stuff <- list(xmid=runif(10),
               ymid=runif(10),
               length=rep(0.1, 10),
               angle=runif(10, 0, 2 * pi))
a <- as.psp(stuff, window=owin())
b <- as.psp(from=runifpoint(10), to=runifpoint(10))
```

<table>
<thead>
<tr>
<th>as.rectangle</th>
<th>Window Frame</th>
</tr>
</thead>
</table>

Description

Extract the window frame of a window or other spatial dataset

Usage

```r
as.rectangle(w, ...)
```

Arguments

- `w`: A window, or a dataset that has a window. Either a window (object of class "owin"), a pixel image (object of class "im") or other data determining such a window.
- `...`: Optional. Auxiliary data to help determine the window. If `w` does not belong to a recognised class, the arguments `w` and `...` are passed to `as.owin` to determine the window.

Details

This function is the quickest way to determine a bounding rectangle for a spatial dataset.

If `w` is a window, the function just extracts the outer bounding rectangle of `w` as given by its elements `xrange`, `yrange`.

The function can also be applied to any spatial dataset that has a window: for example, a point pattern (object of class "ppp") or a line segment pattern (object of class "psp"). The bounding rectangle of the window of the dataset is extracted.

Use the function `boundingbox` to compute the smallest bounding rectangle of a dataset.

Value

A window (object of class "owin") of type "rectangle" representing a rectangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
as.solist

See Also

owin, as.owin, boundingbox

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- as.rectangle(w)
returns a 10 x 10 rectangle

data(lansing)
as.rectangle(lansing)

data(copper)
as.rectangle(copper$SouthLines)

as.solist Convert List of Two-Dimensional Spatial Objects

Description

Given a list of two-dimensional spatial objects, convert it to the class "solist".

Usage

as.solist(x, ...)

Arguments

x A list of objects, each representing a two-dimensional spatial dataset.
... Additional arguments passed to solist.

Details

This command makes the list x into an object of class "solist" (spatial object list). See solist for details.
The entries in the list x should be two-dimensional spatial datasets (not necessarily of the same class).

Value

A list, usually of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
See Also

solist, as.anylist, solapply.

Examples

```r
x <- list(cells, density(cells))
y <- as.solist(x)
```

as.tess

Convert Data To Tessellation

Description

Converts data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage

```r
as.tess(X)
```

 ## S3 method for class 'tess'
 as.tess(X)

 ## S3 method for class 'im'
 as.tess(X)

 ## S3 method for class 'owin'
 as.tess(X)

 ## S3 method for class 'quadratcount'
 as.tess(X)

 ## S3 method for class 'quadrat.test'
 as.tess(X)

 ## S3 method for class 'list'
 as.tess(X)

Arguments

* X Data to be converted to a tessellation.

Details

A tessellation is a collection of disjoint spatial regions (called *tiles*) that fit together to form a larger spatial region. This command creates an object of class "tess" that represents a tessellation. This function converts data in any of several formats into an object of class "tess" for use by the spatstat package. The argument X may be

- an object of class "tess". The object will be stripped of any extraneous attributes and returned.
- a pixel image (object of class "im") with pixel values that are logical or factor values. Each level of the factor will determine a tile of the tessellation.
- a window (object of class "owin"). The result will be a tessellation consisting of a single tile.
a set of quadrat counts (object of class "quadratcount") returned by the command `quadratcount`. The quadrats used to generate the counts will be extracted and returned as a tessellation.

- a quadrat test (object of class "quadrat.test") returned by the command `quadrat.test`. The quadrats used to perform the test will be extracted and returned as a tessellation.

- a list of windows (objects of class "owin") giving the tiles of the tessellation.

The function `as.tess` is generic, with methods for various classes, as listed above.

Value
An object of class "tess" specifying a tessellation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
tess

Examples
```r
# pixel image
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2))), W=owin())
levels(v) <- letters[seq(length(levels(v)))]
as.tess(v)
# quadrat counts
data(nztrees)
qNZ <- quadratcount(nztrees, nx=4, ny=3)
as.tess(qNZ)
```

BadGey

Hybrid Geyer Point Process Model

Description

Creates an instance of the Baddeley-Geyer point process model, defined as a hybrid of several Geyer interactions. The model can then be fitted to point pattern data.

Usage

`BadGey(r, sat)`

Arguments

- `r` vector of interaction radii
- `sat` vector of saturation parameters, or a single common value of saturation parameter
Details

This is Baddeley’s generalisation of the Geyer saturation point process model, described in Geyer, to a process with multiple interaction distances.

The BadGey point process with interaction radii \(r_1, \ldots, r_k \), saturation thresholds \(s_1, \ldots, s_k \), intensity parameter \(\beta \) and interaction parameters \(\gamma_1, \ldots, \gamma_k \), is the point process in which each point \(x_i \) in the pattern \(X \) contributes a factor

\[
\beta \gamma_1^{v_1(x_i,X)} \cdots \gamma_k^{v_k(x_i,X)}
\]

to the probability density of the point pattern, where

\[
v_j(x_i, X) = \min(s_j, t_j(x_i, X))
\]

where \(t_j(x_i, X) \) denotes the number of points in the pattern \(X \) which lie within a distance \(r_j \) from the point \(x_i \).

BadGey is used to fit this model to data. The function `ppm()` , which fits point process models to point pattern data, requires an argument of class “interact” describing the interpoint interaction structure of the model to be fitted. The appropriate description of the piecewise constant Saturated pairwise interaction is yielded by the function BadGey(). See the examples below.

The argument \(r \) specifies the vector of interaction distances. The entries of \(r \) must be strictly increasing, positive numbers.

The argument `sat` specifies the vector of saturation parameters that are applied to the point counts \(t_j(x_i, X) \). It should be a vector of the same length as \(r \), and its entries should be nonnegative numbers. Thus `sat[1]` is applied to the count of points within a distance \(r[1] \), and `sat[2]` to the count of points within a distance \(r[2] \), etc. Alternatively `sat` may be a single number, and this saturation value will be applied to every count.

Infinite values of the saturation parameters are also permitted; in this case \(v_j(x_i, X) = t_j(x_i, X) \) and there is effectively no ‘saturation’ for the distance range in question. If all the saturation parameters are set to `Inf` then the model is effectively a pairwise interaction process, equivalent to `PairPiece` (however the interaction parameters \(\gamma \) obtained from BadGey have a complicated relationship to the interaction parameters \(\gamma \) obtained from PairPiece).

If \(r \) is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class “interact” describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz> in collaboration with Hao Wang and Jeff Picka

See Also

ppm, pairsat.family, Geyer, PairPiece, SatPiece
Examples

```
# prints a sensible description of itself
BadGey(c(0.1,0.2), c(1,1))

# fit a stationary Baddeley-Geyer model
ppm(cells, ~1, BadGey(c(0.07, 0.1, 0.13), 2))

# nonstationary process with log-cubic polynomial trend
## Not run:
ppm(cells, ~polynom(x,y,3), BadGey(c(0.07, 0.1, 0.13), 2))

## End(Not run)
```

bdist.pixels

Distance to Boundary of Window

Description

Computes the distances from each pixel in a window to the boundary of the window.

Usage

```
bdist.pixels(w, ..., style="image")
```

Arguments

- `w`: A window (object of class "owin").
- `...`: Arguments passed to `as.mask` to determine the pixel resolution.
- `style`: Character string determining the format of the output: either "matrix", "coords" or "image".

Details

This function computes, for each pixel u in the window w, the shortest distance $d(u, W^c)$ from u to the boundary of W.

If the window is not of type "mask" then it is first converted to that type. The arguments "..." are passed to `as.mask` to determine the pixel resolution.

Value

If `style="image"`, a pixel image (object of class "im") containing the distances from each pixel in the image raster to the boundary of the window.

If `style="matrix"`, a matrix giving the distances from each pixel in the image raster to the boundary of the window. Rows of this matrix correspond to the y coordinate and columns to the x coordinate.
If \texttt{style="coords"}, a list with three components \(x, y, z\), where \(x, y\) are vectors of length \(m, n\) giving the \(x\) and \(y\) coordinates respectively, and \(z\) is an \(m \times n\) matrix such that \(z[i,j]\) is the distance from \((x[i], y[j])\) to the boundary of the window. Rows of this matrix correspond to the \(x\) coordinate and columns to the \(y\) coordinate. This result can be plotted with \texttt{persp}, \texttt{image} or \texttt{contour}.

\section*{Author(s)}
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\section*{See Also}
\texttt{owin.object}, \texttt{erosion}, \texttt{bdist.points}, \texttt{bdist.tiles}.

\section*{Examples}
\begin{verbatim}
u <- owin(c(0,1),c(0,1))
d <- bdist.points(u, eps=0.01)
image(d)
d <- bdist.points(u, eps=0.01, style="matrix")
mean(d >= 0.1)
value is approx (1 - 2 * 0.1)^2 = 0.64
\end{verbatim}

\section*{bdist.points \textit{Distance to Boundary of Window}}

\section*{Description}
Computes the distances from each point of a point pattern to the boundary of the window.

\section*{Usage}
\texttt{bdist.points(X)}

\section*{Arguments}
\begin{itemize}
\item \texttt{X} \hspace{1cm} A point pattern (object of class "ppp").
\end{itemize}

\section*{Details}
This function computes, for each point \(x_i\) in the point pattern \(X\), the shortest distance \(d(x_i, W^c)\) from \(x_i\) to the boundary of the window \(W\) of observation.

If the window \(X\$window\) is of type "rectangle" or "polygonal", then these distances are computed by analytic geometry and are exact, up to rounding errors. If the window is of type "mask" then the distances are computed using the real-valued distance transform, which is an approximation with maximum error equal to the width of one pixel in the mask.
bdist.tiles

Value
A numeric vector, giving the distances from each point of the pattern to the boundary of the window.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
bdist.pixels, bdist.tiles, ppp.object, erosion

Examples

```r
data(cells)
d <- bdist.points(cells)
```

bdist.tiles Distance to Boundary of Window

Description
Computes the shortest distances from each tile in a tessellation to the boundary of the window.

Usage

```r
bdist.tiles(X)
```

Arguments

- `X` A tessellation (object of class "tess").

Details
This function computes, for each tile \(s_i \) in the tessellation \(X \), the shortest distance from \(s_i \) to the boundary of the window \(W \) containing the tessellation.

Value
A numeric vector, giving the shortest distance from each tile in the tessellation to the boundary of the window. Entries of the vector correspond to the entries of tiles(X).

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
See Also
tess, bdist.points, bdist.pixels

Examples

```r
P <- runifpoint(15)
X <- dirichlet(P)
plot(X, col="red")
B <- bdist.tiles(X)
# identify tiles that do not touch the boundary
plot(X[B > 0], add=TRUE, col="green", lwd=3)
```

bdspots

Breakdown Spots in Microelectronic Materials

Description

A list of three point patterns, each giving the locations of electrical breakdown spots on a circular electrode in a microelectronic capacitor.

Usage

data(bdspots)

Format

A list (of class "listof") of three spatial point patterns, each representing the spatial locations of breakdown spots on an electrode. The three electrodes are circular discs, of radii 169, 282 and 423 microns respectively. Spatial coordinates are given in microns.

Details

The application of successive voltage sweeps to the metal gate electrode of a microelectronic capacitor generates multiple breakdown spots on the electrode. The spatial distribution of these breakdown spots in MIM (metal-insulator-metal) and MIS (metal-insulator-semiconductor) structures was observed and analysed by Miranda et al (2010, 2013) and Saura et al (2013a, 2013b, 2014).

The data given here are the breakdown spot patterns for three circular electrodes of different radii, 169, 282 and 423 microns respectively, in MIM structures analysed in Saura et al (2013a).

Source

Professor Enrique Miranda, Departament d’Enginyeria Electrònica, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain.
References

distribution in high-K dielectrics and model validation using the spatstat package for R language.
ECS Transactions 33 (3) 557–562.

Miranda, E., Jiménez, D., Suñé, J., O’Connor, E., Monaghan, S., Povey, I., Cherkaoui, K. and
Hurley, P. K. (2013) Nonhomogeneous spatial distribution of filamentary leakage current paths in

114, 154112.

generation of breakdown spots in MIM structures under constant voltage stress. Microelectronics
Reliability 53, 1257–1260.

and MIS structures using point-to-event distance and angular probability distributions. IEEE Trans-
actions on Devices and Materials Reliability (in press)

Examples

data(bdspots)
plot(bdspots, equal.scales=TRUE)

beachcolours Create Colour Scheme for a Range of Numbers

Description

Given a range of numerical values, this command creates a colour scheme that would be appropriate
if the numbers were altitudes (elevation above or below sea level).

Usage

beachcolours(range, sealevel = 0, monochrome = FALSE,
 ncolours = if (monochrome) 16 else 64,
 nbeach = 1)
beachcolourmap(range, ...)

Arguments

range Range of numerical values to be mapped. A numeric vector of length 2.
sealevel Value that should be treated as zero. A single number, lying between range[1]
 and range[2].
monochrome Logical. If TRUE then a greyscale colour map is constructed.
colours Number of distinct colours to use.
nbeach Number of colours that will be yellow.
... Arguments passed to beachcolours.
Details

Given a range of numerical values, these commands create a colour scheme that would be appropriate if the numbers were altitudes (elevation above or below sea level).

Numerical values close to zero are portrayed in green (representing the waterline). Negative values are blue (representing water) and positive values are yellow to red (representing land). At least, these are the colours of land and sea in Western Australia. This colour scheme was proposed by Baddeley et al (2005).

The function `beachcolours` returns these colours as a character vector, while `beachcolourmap` returns a colourmap object.

The argument `range` should be a numeric vector of length 2 giving a range of numerical values.

The argument `sealevel` specifies the height value that will be treated as zero, and mapped to the colour green. A vector of `ncolours` colours will be created, of which `nbeach` colours will be green.

The argument `monochrome` is included for convenience when preparing publications. If `monochrome=TRUE` the colour map will be a simple grey scale containing `ncolours` shades from black to white.

Value

For `beachcolours`, a character vector of length `ncolours` specifying colour values. For `beachcolourmap`, a colour map (object of class "colourmap").

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

colourmap, colourtools.

Examples

```
plot(beachcolourmap(c(-2,2)))
```
Print Introduction For Beginners

Description
Prints an introduction for beginners to the spatstat package, or another specified package.

Usage
beginner(package = "spatstat")

Arguments
package Name of package.

Details
This function prints an introduction for beginners to the spatstat package.
The function can be executed simply by typing beginner without parentheses.
If the argument package is given, then the function prints the beginner’s help file BEGINNER.txt from the specified package (if it has one).

Value
Null.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
latest.news

Examples
beginner
Description

A point pattern giving the locations of 3605 trees in a tropical rain forest. Accompanied by covariate data giving the elevation (altitude) and slope of elevation in the study region.

Usage

data(bei)

Format

bei is an object of class "ppp" representing the point pattern of tree locations. See ppp.object for details of the format.
bei.extra is a list containing two pixel images, elev (elevation in metres) and grad (norm of elevation gradient). These pixel images are objects of class "im", see im.object.

Notes

The dataset bei gives the positions of 3605 trees of the species *Beilschmiedia pendula* (Lauraceae) in a 1000 by 500 metre rectangular sampling region in the tropical rainforest of Barro Colorado Island.

The accompanying dataset bei.extra gives information about the altitude (elevation) in the study region. It is a list containing two pixel images, elev (elevation in metres) and grad (norm of elevation gradient).

These data are part of a much larger dataset containing the positions of hundreds of thousands of trees belong to thousands of species; see Hubbell and Foster (1983), Condit, Hubbell and Foster (1996) and Condit (1998).

The present data were analysed by Møller and Waagepetersen (2007).

Source

Hubbell and Foster (1983), Condit, Hubbell and Foster (1996) and Condit (1998). Data files kindly supplied by Rasmus Waagepetersen. The data were collected in the forest dynamics plot of Barro Colorado Island. The study was made possible through the generous support of the U.S. National Science Foundation, the John D. and Catherine T. MacArthur Foundation, and the Smithsonian Tropical Research Institute.

References

berman.test
Berman's Tests for Point Process Model

Description
Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage
berman.test(...)

S3 method for class 'ppp'
berman.test(X, covariate,
 which = c("Z1", "Z2"),
 alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'ppm'
berman.test(model, covariate,
 which = c("Z1", "Z2"),
 alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'lpp'
berman.test(X, covariate,
 which = c("Z1", "Z2"),
 alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'lppm'
berman.test(model, covariate,
 which = c("Z1", "Z2"),
 alternative = c("two.sided", "less", "greater"), ...)

Arguments

X A point pattern (object of class "ppp" or "lpp").
model A fitted point process model (object of class "ppm" or "lppm").
covariate The spatial covariate on which the test will be based. An image (object of class "im") or a function.
which Character string specifying the choice of test.
alternative Character string specifying the alternative hypothesis.
... Additional arguments controlling the pixel resolution (arguments dimyx and eps passed to as.mask) or other undocumented features.
Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point pattern data. The observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same values under the model, are compared using either of two test statistics Z_1 and Z_2 proposed by Berman (1986). The Z_1 test is also known as the Lawson-Waller test.

The function `berman.test` is generic, with methods for point patterns ("ppp" or "lpp") and point process models ("ppm" or "lppm").

- If `x` is a point pattern dataset (object of class "ppp" or "lpp"), then `berman.test(x, ...)` performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness, CSR) for this dataset.
- If `model` is a fitted point process model (object of class "ppm" or "lppm") then `berman.test(model, ...)` performs a test of goodness-of-fit for this fitted model. In this case, `model` should be a Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same covariate under the model. Thus, you must nominate a spatial covariate for this test.

The argument `covariate` should be either a function `x,y` or a pixel image (object of class "im" containing the values of a spatial function. If `covariate` is an image, it should have numeric values, and its domain should cover the observation window of the `model`. If `covariate` is a function, it should expect two arguments `x` and `y` which are vectors of coordinates, and it should return a numeric vector of the same length as `x` and `y`.

First the original data point pattern is extracted from `model`. The values of the `covariate` at these data points are collected.

Next the values of the `covariate` at all locations in the observation window are evaluated. The point process intensity of the fitted model is also evaluated at all locations in the window.

- If `which="Z1"`, the test statistic Z_1 is computed as follows. The sum S of the covariate values at all data points is evaluated. The predicted mean μ and variance σ^2 of S are computed from the values of the covariate at all locations in the window. Then we compute $Z_1 = (S - \mu)/\sigma$. Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993) so this test is often termed the Lawson-Waller test in epidemiological literature.

- If `which="Z2"`, the test statistic Z_2 is computed as follows. The values of the `covariate` at all locations in the observation window, weighted by the point process intensity, are compiled into a cumulative distribution function F. The probability integral transformation is then applied: the values of the `covariate` at the original data points are transformed by the predicted cumulative distribution function F into numbers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The standardised sample mean of these numbers is the statistic Z_2.

In both cases the null distribution of the test statistic is the standard normal distribution, approximately.

The return value is an object of class "htest" containing the results of the hypothesis test. The print method for this class gives an informative summary of the test outcome.
Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results of the test. The return value can be plotted (by `plot.bermantest`) or printed to give an informative summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/], Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

References

See Also

cdf.test, quadrat.test, ppm

Examples

```r
# Berman's data
data(copper)
X <- copper$SouthPoints
L <- copper$Southlines
D <- distmap(L, eps=1)
# test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")
```

betacells
Beta Ganglion Cells in Cat Retina

Description

Point pattern of cells in the retina, each cell classified as ‘on’ or ‘off’ and labelled with the cell profile area.
Usage

```r
data(betacells)
```

Format

`betacells` is an object of class "ppp" representing the point pattern of cell locations. Entries include:

- `x` Cartesian x-coordinate of cell
- `y` Cartesian y-coordinate of cell
- `marks` data frame of marks

Cartesian coordinates are given in microns.

The data frame of marks has two columns:

- `type` factor with levels `off` and `on` indicating “off” and “on” cells
- `area` numeric vector giving the areas of cell profiles (in square microns)

See `ppp.object` for details of the format.

Notes

This is a new, corrected version of the old dataset `ganglia`. See below.

These data represent a pattern of beta-type ganglion cells in the retina of a cat recorded by Wassle et al. (1981). Beta cells are associated with the resolution of fine detail in the cat's visual system. They can be classified anatomically as “on” or “off”.

Statistical independence of the arrangement of the “on”- and “off”-components would strengthen the evidence for Hering’s (1878) ‘opponent theory’ that there are two separate channels for sensing “brightness” and “darkness”. See Wassle et al (1981). There is considerable current interest in the arrangement of cell mosaics in the retina, see Rockhill et al (2000).

The dataset is a marked point pattern giving the locations, types (“on” or “off”), and profile areas of beta cells observed in a rectangle of dimensions 750×990 microns. Coordinates are given in microns (thousandths of a millimetre) and areas are given in square microns.

The original source is Figure 6 of Wassle et al (1981), which is a manual drawing of the beta mosaic observed in a microscope field-of-view of a whole mount of the retina. Thus, all beta cells in the retina were effectively projected onto the same two-dimensional plane.

The data were scanned in 2004 by Stephen Eglen from Figure 6(a) of Wassle et al (1981). Image analysis software was used to identify the soma (cell body). The x, y location of each cell was taken to be the centroid of the soma. The type of each cell (“on” or “off”) was identified by referring to Figures 6(b) and 6(d). The area of each soma (in square microns) was also computed.

Note that this is a corrected version of the `ganglia` dataset provided in earlier versions of `spatstat`. The earlier data `ganglia` were not faithful to the scale in the original paper and contain some scanning errors.
Source

Wassle et al (1981), Figure 6(a), scanned and processed by Stephen Eglen <S.J.Eglen@damtp.cam.ac.uk>

References

Examples

```r
plot(betacells)
area <- marks(betacells)$area
plot(betacells %mark% sqrt(area/pi), markscale=1)
```

bind.fv

Combine Function Value Tables

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing "fv" object.

Usage

```r
## S3 method for class 'fv'
cbind(...)
bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL)
```

Arguments

- ... Any number of arguments, which are objects of class "fv".
- x An object of class "fv".
- y Either a data frame or an object of class "fv".
- labl Plot labels (see *fv*) for columns of y. A character vector.
- desc Descriptions (see *fv*) for columns of y. A character vector.
- preferred Character string specifying the column which is to be the new recommended value of the function.
Details

This documentation is provided for experienced programmers who want to modify the internal behaviour of spatstat.

The function cbind.fv is a method for the generic \texttt{R} function \texttt{cbind}. It combines any number of objects of class "fv" into a single object of class "fv". The objects must be compatible, in the sense that they have identical values of the function argument.

The function bind.fv is a lower level utility which glues additional columns onto an existing object \texttt{x} of class "fv". It has two modes of use:

- If the additional dataset \texttt{y} is an object of class "fv", then \texttt{x} and \texttt{y} must be compatible as described above. Then the columns of \texttt{y} that contain function values will be appended to the object \texttt{x}.
- Alternatively if \texttt{y} is a data frame, then \texttt{y} must have the same number of rows as \texttt{x}. All columns of \texttt{y} will be appended to \texttt{x}.

The arguments \texttt{labl} and \texttt{desc} provide plot labels and description strings (as described in \texttt{fv}) for the new columns. If \texttt{y} is an object of class "fv" then \texttt{labl} and \texttt{desc} are optional, and default to the relevant entries in the object \texttt{y}. If \texttt{y} is a data frame then \texttt{labl} and \texttt{desc} must be provided.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{fv, with.fv}.

Undocumented functions for modifying an "fv" object include \texttt{fvnames}, \texttt{fvnames<->}, \texttt{tweak.fv.entry} and \texttt{rebadge.fv}.

Examples

data(cells)
K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")
remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

\texttt{cbind(K1, K2)}

bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(0, pmax(0, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),
"%s[mo](r)",
"monotone border-corrected estimate of %s",
"bmo")

Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

```
blur(x, sigma = NULL, ..., normalise=FALSE, bleed = TRUE, varcov=NULL)
```

```
## S3 method for class 'im'
Smooth(X, sigma = NULL, ...,
     normalise=FALSE, bleed = TRUE, varcov=NULL)
```

Arguments

- `x`: The pixel image. An object of class "im".
- `sigma`: Standard deviation of isotropic Gaussian smoothing kernel.
- `...`: Ignored.
- `normalise`: Logical flag indicating whether the output values should be divided by the corresponding blurred image of the window itself. See Details.
- `bleed`: Logical flag indicating whether to allow blur to extend outside the original domain of the image. See Details.
- `varcov`: Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with `sigma`.

Details

This command applies a Gaussian blur to the pixel image `x`.

`Smooth.im` is a method for the generic `Smooth` for pixel images. It is currently identical to `blur`, apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation `sigma`, or the anisotropic Gaussian kernel with variance-covariance matrix `varcov`. The arguments `sigma` and `varcov` are incompatible. Also `sigma` may be a vector of length 2 giving the standard deviations of two independent Gaussian coordinates, thus equivalent to `varcov = diag(sigma^2)`.

If the pixel values of `x` include some NA values (meaning that the image domain does not completely fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution \(x \ast G \) of the (zero-padded) pixel image `x` with the specified Gaussian kernel `G`.
If normalise=FALSE, then this convolution \(x \ast G \) is returned. If normalise=TRUE, then the convolution \(x \ast G \) is normalised by dividing it by the convolution \(w \ast G \) of the image domain \(w \) with the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is performed, and the result is a pixel image defined everywhere in the rectangular frame containing the input image.

Computation is performed using the Fast Fourier Transform.

Value

A pixel image with the same pixel array as the input image \(x \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point pattern, Smooth.ppp for interpolating marks attached to points.

Examples

```r
data(letterR)
Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR)
par(mfrow=c(1,3))
plot(Z)
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=TRUE))
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=FALSE))
plot(letterR, add=TRUE)
par(mfrow=c(1,1))
```

Description

Computes the border region of a window, that is, the region lying within a specified distance of the boundary of a window.

Usage

`border(w, r, outside=FALSE, ...)`
Arguments

- **w**: A window (object of class "owin") or something acceptable to `as.owin`.
- **r**: Numerical value.
- **outside**: Logical value determining whether to compute the border outside or inside *w*.
- **...**: Optional arguments passed to `erosion` (if `outside=FALSE`) or to `dilation` (if `outside=TRUE`).

Details

By default (if `outside=FALSE`), the border region is the subset of *w* lying within a distance *r* of the boundary of *w*. It is computed by eroding *w* by the distance *r* (using `erosion`) and subtracting this eroded window from the original window *w*.

If `outside=TRUE`, the border region is the set of locations outside *w* lying within a distance *r* of *w*. It is computed by dilating *w* by the distance *r* (using `dilation`) and subtracting the original window *w* from the dilated window.

Value

A window (object of class "owin").

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`erosion`, `dilation`

Examples

```r
# rectangle
u <- unit.square()
border(u, 0.1)
border(u, 0.1, outside=TRUE)
# polygon

data(letterR)
plot(letterR)
plot(border(letterR, 0.1), add=TRUE)
plot(border(letterR, 0.1, outside=TRUE), add=TRUE)
```
bounding.box.xy

Convex Hull of Points

Description
Computes the smallest rectangle containing a set of points.

Usage
bounding.box.xy(x, y=NULL)

Arguments
x
vector of x coordinates of observed points, or a 2-column matrix giving x, y coordinates, or a list with components x, y giving coordinates (such as a point pattern object of class "ppp".)

y
(optional) vector of y coordinates of observed points, if x is a vector.

Details
Given an observed pattern of points with coordinates given by x and y, this function finds the smallest rectangle, with sides parallel to the coordinate axes, that contains all the points, and returns it as a window.

Value
A window (an object of class "owin").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
owin, as.owin, convexhull.xy, ripras

Examples
x <- runif(30)
y <- runif(30)
w <- bounding.box.xy(x, y)
plot(owin(), main="bounding.box.xy(x,y)")
plot(w, add=TRUE)
points(x,y)

X <- rpoispp(30)
plot(X, main="bounding.box.xy(X)")
plot(bounding.box.xy(X), add=TRUE)
boundingbox

Bounding Box of a Window, Image, or Point Pattern

Description

Find the smallest rectangle containing a given window(s), image(s) or point pattern(s).

Usage

```
bbox(...)
```

Default S3 method:
```
bbox(...)
```

S3 method for class 'im'
```
bbox(...)
```

S3 method for class 'owin'
```
bbox(...)
```

S3 method for class 'ppp'
```
bbox(...)
```

Arguments

... One or more windows (objects of class "owin"), pixel images (objects of class "im") or point patterns (objects of class "ppp").

Details

This function finds the smallest rectangle (with sides parallel to the coordinate axes) that contains all the given objects.

For a window (object of class "owin"), the bounding box is the smallest rectangle that contains all the vertices of the window (this is generally smaller than the enclosing frame, which is returned by `as.rectangle`).

For a point pattern (object of class "ppp"), the bounding box is the smallest rectangle that contains all the points of the pattern.

For a pixel image (object of class "im"), the image will be converted to a window using `as.owin`, and the bounding box of this window is obtained.

If the argument is a list of several objects, then this function finds the smallest rectangle that contains all the bounding boxes of the objects.

Value

```
owin, as.owin, as.rectangle
```
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- boundingbox(w)
 # returns rectangle [1,3] x [2,7]

w2 <- unit.square()
r <- boundingbox(w, w2)
 # returns rectangle [0,3] x [0,7]

Description

Creates an object representing a three-dimensional box.

Usage

box3(xrange = c(0, 1), yrange = xrange, zrange = yrange, unitname = NULL)

Arguments

xrange, yrange, zrange
 Dimensions of the box in the x, y, z directions. Each of these arguments should be a numeric vector of length 2.

unitname
 Optional. Name of the unit of length. See Details.

Details

This function creates an object representing a three-dimensional rectangular parallelepiped (box) with sides parallel to the coordinate axes.

The object can be used to specify the domain of a three-dimensional point pattern (see pp3) and in various geometrical calculations (see volume.box3, diameter.box3, eroded.volumes).

The optional argument unitname specifies the name of the unit of length. See unitname for valid formats.

The function as.box3 can be used to convert other kinds of data to this format.

Value

An object of class "box3". There is a print method for this class.
The `boxx` function creates an object representing a multi-dimensional box. It is used to specify the domain of a multi-dimensional point pattern (see `ppx`) and in various geometrical calculations (see `volume.boxx`, `diameter.boxx`, `eroded.volumes`).

Usage

```r
boxx(..., unitname = NULL)
```

Arguments

- `...`: Dimensions of the box. Vectors of length 2.
- `unitname`: Optional. Name of the unit of length. See Details.

Details

This function creates an object representing a multi-dimensional rectangular parallelepiped (box) with sides parallel to the coordinate axes. The object can be used to specify the domain of a multi-dimensional point pattern (see `ppx`) and in various geometrical calculations (see `volume.boxx`, `diameter.boxx`, `eroded.volumes`).

The optional argument `unitname` specifies the name of the unit of length. See `unitname` for valid formats.

Value

An object of class "boxx". There is a print method for this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
See Also

ppx, volume.boxx, diameter.boxx, eroded.volumes.boxx.

Examples

boxx(c(0,10),c(0,10),c(0,5),c(0,1), unitname=c("metre","metres"))

bramblecanes

Hutchings’ Bramble Canes data

Description

Data giving the locations and ages of bramble canes in a field. A marked point pattern.

Usage

data(bramblecanes)

Format

An object of class "ppp" representing the point pattern of plant locations. Entries include

x Cartesian x-coordinate of plant
y Cartesian y-coordinate of plant
marks factor with levels 0, 1, 2 indicating age

See ppp.object for details of the format.

Notes

These data record the \((x, y)\) locations and ages of bramble canes in a field 9 metres square, rescaled to the unit square. The canes were classified according to age as either newly emergent, one or two years old. These are encoded as marks 0, 1 and 2 respectively in the dataset.

The data were recorded and analysed by Hutchings (1979) and further analysed by Diggle (1981a, 1981b, 1983), Diggle and Milne (1983), and Van Lieshout and Baddeley (1999). All analyses found that the pattern of newly emergent canes exhibits clustering, which Hutchings attributes to “vigorous vegetative reproduction”.

Source

Hutchings (1979), data published in Diggle (1983)

References

bronzefilter

Bronze gradient filter data

Description

These data represent a spatially inhomogeneous pattern of circular section profiles of particles, observed in a longitudinal plane section through a gradient sinter filter made from bronze powder, prepared by Ricardo Bernhardt, Dresden.

The material was produced by sedimentation of bronze powder with varying grain diameter and subsequent sintering, as described in Bernhardt et al. (1997).

The data are supplied as a marked point pattern of circle centres marked by circle radii. The coordinates of the centres and the radii are recorded in mm. The field of view is an 18×7 mm rectangle.

The data were first analysed by Hahn et al. (1999).

Usage

`data(bronzefilter)`

Format

An object of class "ppp" representing the point pattern of cell locations. Entries include

- **x**: Cartesian x-coordinate of bronze grain profile centre
- **y**: Cartesian y-coordinate of bronze grain profile centre
- **marks**: radius of bronze grain profile

See `ppp.object` for details of the format. All coordinates are recorded in mm.

Source

R.\ Bernhardt (section image), H.\ Wendrock (coordinate measurement). Adjusted, formatted and communicated by U.\ Hahn.
References

Examples
data(bronzefilter)
plot(bronzefilter, markscale=2)

bw.diggle

Cross Validated Bandwidth Selection for Kernel Density

Description

Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process intensity.

Usage

bw.diggle(X, ..., correction="good", hmax=NULL)

Arguments

- **X**: A point pattern (object of class "ppp").
- **...**: Ignored.
- **correction**: Character string passed to *Kest* determining the edge correction to be used to calculate the *K* function.
- **hmax**: Numeric. Maximum value of bandwidth that should be considered.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process intensity computed by *density.ppp*.

The bandwidth *σ* is chosen to minimise the mean-square error criterion defined by Diggle (1985). The algorithm computes the mean-square error by the method of Berman and Diggle (1989). See Diggle (2003, pages 115-118) for a summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.
Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.

Definition of bandwidth

The smoothing parameter sigma returned by bw.diggle (and displayed on the horizontal axis of the plot) corresponds to h/2, where h is the smoothing parameter described in Diggle (2003, pages 116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform density on the disc of radius h. In density.ppp, the smoothing kernel is the isotropic Gaussian density with standard deviation sigma. When replacing one kernel by another, the usual practice is to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This implies that sigma = h/2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

density.ppp, bw.ppl, bw.scott

Examples

data(lansing)
attach(split(lansing))
b <- bw.diggle(hickory)
plot(b, ylim=c(-2, 0), main="Cross validation for hickories")

plot(density(hickory, b))
bw.frac

Bandwidth Selection Based on Window Geometry

Description

Select a smoothing bandwidth for smoothing a point pattern, based only on the geometry of the spatial window. The bandwidth is a specified quantile of the distance between two independent random points in the window.

Usage

```
bw.frac(X, ..., f=1/4)
```

Arguments

- `X` A window (object of class "owin") or point pattern (object of class "ppp") or other data which can be converted to a window using `as.owin`.
- `...` Arguments passed to `distcdf`.
- `f` Probability value (between 0 and 1) determining the quantile of the distribution.

Details

This function selects an appropriate bandwidth `sigma` for the kernel estimator of point process intensity computed by `density.ppp`.

The bandwidth `sigma` is computed as a quantile of the distance between two independent random points in the window. The default is the lower quartile of this distribution.

If `F(r)` is the cumulative distribution function of the distance between two independent random points uniformly distributed in the window, then the value returned is the quantile with probability `f`. That is, the bandwidth is the value `r` such that `F(r) = f`.

The cumulative distribution function `F(r)` is computed using `distcdf`. We then we compute the smallest number `r` such that `F(r) ≥ f`.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac" which can be plotted to show the cumulative distribution function and the selected quantile.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

density.ppp, bw.diggle, bw.ppl, bw.relrisk, bw.scott, bw.smoothppp, bw.stoyan
bw.ppl

Examples

```r
h <- bw.frac(letterR)
h
plot(h, main="bw.frac(letterR)")
```

bw.ppl

Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point process intensity.

Usage

```r
bw.ppl(X, ..., srange=NULL, ns=16)
```

Arguments

- `X`: A point pattern (object of class "ppp").
- `...`: Ignored.
- `srange`: Optional numeric vector of length 2 giving the range of values of bandwidth to be searched.
- `ns`: Optional integer giving the number of values of bandwidth to search.

Details

This function selects an appropriate bandwidth \(\sigma \) for the kernel estimator of point process intensity computed by `density.ppp`.

The bandwidth \(\sigma \) is chosen to maximise the point process likelihood cross-validation criterion

\[
LCV(\sigma) = \sum_i \log \hat{\lambda}_{-i}(x_i) - \int_W \hat{\lambda}(u) \, du
\]

where the sum is taken over all the data points \(x_i \), where \(\hat{\lambda}_{-i}(x_i) \) is the leave-one-out kernel-smoothing estimate of the intensity at \(x_i \) with smoothing bandwidth \(\sigma \), and \(\hat{\lambda}(u) \) is the kernel-smoothing estimate of the intensity at a spatial location \(u \) with smoothing bandwidth \(\sigma \). See Loader(1999, Section 5.3).

The value of \(LCV(\sigma) \) is computed directly, using `density.ppp`, for \(ns \) different values of \(\sigma \) between `srange[1]` and `srange[2]`.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of \(\sigma \).
Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also
density.ppp, bw.diggle, bw.scott

Examples

b <- bw.ppl(redwood)
plot(b, main="Likelihood cross validation for redwoods")
plot(density(redwood, b))

bw.relrisk

Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage

bw.relrisk(X, method = "likelihood", nh = spatstat.options("n.bandwidth"), hmin=NULL, hmax=NULL, warn=TRUE)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).
method Character string determining the cross-validation method. Current options are "likelihood", "leastsquares" or "weightedleastsquares".

nh Number of trial values of smoothing bandwith sigma to consider. The default is 32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma to consider. There is a sensible default.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation criterion occurs at one of the ends of the search interval.
Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk using \texttt{relrisk}.

Consider the indicators y_{ij} which equal 1 when data point x_i belongs to type j, and equal 0 otherwise. For a particular value of smoothing bandwidth, let $\hat{p}_j(u)$ be the estimated probabilities that a point at location u will belong to type j. Then the bandwidth is chosen to minimise either the likelihood, the squared error, or the approximately standardised squared error, of the indicators y_{ij} relative to the fitted values $\hat{p}_j(x_i)$. See Diggle (2003).

The result is a numerical value giving the selected bandwidth \texttt{sigma}. The result also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth \texttt{sigma} is set by the arguments \texttt{hmin}, \texttt{hmax}. There is a sensible default, based on multiples of Stoyan’s rule of thumb \texttt{bw.stoyan}.

If the optimal bandwidth is achieved at an endpoint of the interval \texttt{[hmin, hmax]}, the algorithm will issue a warning (unless \texttt{warn=FALSE}). If this occurs, then it is probably advisable to expand the interval by changing the arguments \texttt{hmin}, \texttt{hmax}.

Computation time depends on the number \texttt{nh} of trial values considered, and also on the range \texttt{[hmin, hmax]} of values considered, because larger values of \texttt{sigma} require calculations involving more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

\texttt{relrisk}, \texttt{bw.stoyan}

Examples

data(ukirkiola)

b <- bw.relrisk(ukirkiola)
b
plot(b)
b <- bw.relrisk(ukirkiola, hmax=20)
plot(b)
Scott's Rule for Bandwidth Selection for Kernel Density

Description

Use Scott's rule of thumb to determine the smoothing bandwidth for the kernel estimation of point process intensity.

Usage

bw.scott(X)

Arguments

X

A point pattern (object of class "ppp").

Details

This function selects a bandwidth \(\sigma \) for the kernel estimator of point process intensity computed by density.ppp.

The bandwidth \(\sigma \) is computed by the rule of thumb of Scott (1992, page 152). It is very fast to compute.

This rule is designed for density estimation, and typically produces a larger bandwidth than bw.diggle. It is useful for estimating gradual trend.

Value

A numerical vector of two elements giving the selected bandwidths in the x and y directions.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

density.ppp, bw.diggle, bw.ppl, bw.frac.
bw.smoothppp

Examples

data(lansing)
attach(split(lansing))
b <- bw.scott(hickory)
b

plot(density(hickory, b))

bw.smoothppp Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE)

Arguments

X A marked point pattern with numeric marks.

nh Number of trial values of smoothing bandwidth to consider. The default is 32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwidth to consider. There is a sensible default.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values using Smooth.ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let \(y_i \) be the mark value at the \(i \)th data point. For a particular choice of smoothing bandwidth, let \(\hat{y}_i \) be the smoothed value at the \(i \)th data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values \(\sum_i (y_i - \hat{y}_i)^2 \).

The result of bw.smoothppp is a numerical value giving the selected bandwidth \(\sigma \). The result also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation criterion as a function of bandwidth.
bw.stoyan

The range of values for the smoothing bandwidth \(\sigma \) is set by the arguments \(h_{\text{min}}, h_{\text{max}} \). There is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval \([h_{\text{min}}, h_{\text{max}}]\), the algorithm will issue a warning (unless \(\text{warn}=\text{FALSE} \)). If this occurs, then it is probably advisable to expand the interval by changing the arguments \(h_{\text{min}}, h_{\text{max}} \).

Computation time depends on the number \(n_h \) of trial values considered, and also on the range \([h_{\text{min}}, h_{\text{max}}]\) of values considered, because larger values of \(\sigma \) require calculations involving more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp

Examples

data(longleaf)

b <- bw.smoothppp(longleaf)
b
plot(b)

Stoyan’s Rule of Thumb for Bandwidth Selection

Description

Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the pair correlation function and other quantities.

Usage

bw.stoyan(X, co=0.15)

Arguments

X A point pattern (object of class "ppp").
co Coefficient appearing in the rule of thumb. See Details.
Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width h to $0.15/\sqrt{\lambda}$ where λ is the estimated intensity of the point pattern, typically computed as the number of points of X divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to $\sigma = 0.15/\sqrt{5\lambda}$.

The coefficient 0.15 can be tweaked using the argument co.

Value

A numerical value giving the selected bandwidth (the standard deviation of the smoothing kernel).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

pcf, bw.relrisk

Examples

data(shapley)
bw.stoyan(shapley)

by.im

Apply Function to Image Broken Down by Factor

Description

Splits a pixel image into sub-images and applies a function to each sub-image.

Usage

S3 method for class 'im'
by(data, INDICES, FUN, ...)
Arguments

data A pixel image (object of class "im").
INDICES Grouping variable. Either a tessellation (object of class "tess") or a factor-valued pixel image.
FUN Function to be applied to each sub-image of data.
... Extra arguments passed to FUN.

Details

This is a method for the generic function by for pixel images (class "im").
The pixel image data is first divided into sub-images according to INDICES. Then the function FUN
is applied to each subset. The results of each computation are returned in a list.
The grouping variable INDICES may be either

- a tessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the spatial domain.
- a pixel image (object of class "im") with factor values. The levels of the factor determine subsets of the spatial domain.

Value

A list containing the results of each evaluation of FUN.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

split.im, tess.im

Examples

W <- square(1)
X <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
Y <- dirichlet(runifpoint(12, W))
mean pixel value in each subset
unlist(by(X, Y, mean))
trimmed mean
unlist(by(X, Y, mean, trim=0.05))
Apply a Function to a Point Pattern Broken Down by Factor

Description

Splits a point pattern into sub-patterns, and applies the function to each sub-pattern.

Usage

```r
## S3 method for class 'ppp'
by(data, INDICES=marks(data), FUN, ...)
```

Arguments

- `data`: Point pattern (object of class "ppp").
- `INDICES`: Grouping variable. Either a factor, a pixel image with factor values, or a tessellation.
- `FUN`: Function to be applied to subsets of `data`.
- `...`: Additional arguments to `FUN`.

Details

This is a method for the generic function `by` for point patterns (class "ppp").

The point pattern `data` is first divided into subsets according to `INDICES`. Then the function `FUN` is applied to each subset. The results of each computation are returned in a list.

The argument `INDICES` may be

- a factor, of length equal to the number of points in `data`. The levels of `INDICES` determine the destination of each point in `data`. The ith point of `data` will be placed in the sub-pattern `split.ppp(data)[l]` where `l = f[i]`.
- a pixel image (object of class "im") with factor values. The pixel value of `INDICES` at each point of `data` will be used as the classifying variable.
- a tessellation (object of class "tess"). Each point of `data` will be classified according to the tile of the tessellation into which it falls.

If `INDICES` is missing, then `data` must be a multitype point pattern (a marked point pattern whose marks vector is a factor). Then the effect is that the points of each type are separated into different point patterns.

Value

A list (also of class "listof") containing the results returned from `FUN` for each of the subpatterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
Fit the Neyman-Scott cluster process with Cauchy kernel

description
Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the Method of Minimum Contrast.

usage
cauchy.estK(X, startpar=c(kappa=1, scale=1), lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

arguments
X Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.
startpar Vector of starting values for the parameters of the model.
lambda Optional. An estimate of the intensity of the point process.
q,p Optional. Exponents for the contrast criterion.
rmin, rmax Optional. The interval of \(r\) values for the contrast criterion.
... Optional arguments passed to \texttt{optim} to control the optimisation algorithm. See Details.
Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point pattern dataset by the Method of Minimum Contrast, using the K function.

The argument x can be either

- **a point pattern**: An object of class "ppp" representing a point pattern dataset. The K function of the point pattern will be computed using `Kest`, and the method of minimum contrast will be applied to this.

- **a summary statistic**: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the K function, and this object should have been obtained by a call to `Kest` or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to x, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical K function of the Matern Cluster process and the observed K function. For a more detailed explanation of the Method of Minimum Contrast, see `mincontrast`.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity κ, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean μ, and the locations of the offspring points of one parent follow a common distribution described in Jalilian et al (2013).

If the argument `lambda` is provided, then this is used as the value of the point process intensity λ. Otherwise, if x is a point pattern, then λ will be estimated from x. If x is a summary statistic and `lambda` is missing, then the intensity λ cannot be estimated, and the parameter μ will be returned as NA.

The remaining arguments `rmin`, `rmax`, `q`, `p` control the method of minimum contrast; see `mincontrast`.

The corresponding model can be simulated using `rCauchy`.

For computational reasons, the optimisation procedure uses the parameter η_R, which is equivalent to $4 \times \text{scale}^2$ where `scale` is the scale parameter for the model as used in `rCauchy`.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the function `kppm` and the fitted models can be simulated using `simulate.kppm`.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function `optim`. For example, to constrain the parameter values to a certain range, use the argument `method="L-BFGS-B"` to select an optimisation algorithm that respects box constraints, and use the arguments `lower` and `upper` to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- **par**: Vector of fitted parameter values.
- **fit**: Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.
cauchy.estpcf

Author(s)
Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References

See Also
kppm, cauchy.estpcf, lgcp.estK, thomas.estK, vargamma.estK, mincontrast, Kest, Kmodel.
rcCauchy to simulate the model.

Examples
u <- cauchy.estK(redwood)
plot(u)

cauchy.estpcf

Fit the Neyman-Scott cluster process with Cauchy kernel

Description
Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

Usage
cauhcy.estpcf(X, startpar=c(kappa=1, scale=1), lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs = list())

Arguments
X Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.
startpar Vector of starting values for the parameters of the model.
lambda Optional. An estimate of the intensity of the point process.
q, p Optional. Exponents for the contrast criterion.
rmin, rmax Optional. The interval of r values for the contrast criterion.
... Optional arguments passed to optim to control the optimisation algorithm. See Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation function of the point pattern will be computed using pcf, and the method of minimum contrast will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the pair correlation function, and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical pair correlation function of the Matern Cluster process and the observed pair correlation function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity \(\kappa \), and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean \(\mu \), and the locations of the offspring points of one parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity \(\lambda \). Otherwise, if X is a point pattern, then \(\lambda \) will be estimated from \(\lambda \). If X is a summary statistic and lambda is missing, then the intensity \(\lambda \) cannot be estimated, and the parameter \(\mu \) will be returned as NA.

The remaining arguments rmin, rmax, q, p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure internally uses the parameter eta2, which is equivalent to \(4 * scale^2 \) where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function optim. For example, to constrain the parameter values to a certain range, use the argument method = "L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments lower and upper to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:
cbind.hyperframe

Description

Methods for cbind and rbind for hyperframes.

Usage

```r
## S3 method for class 'hyperframe'
cbind(...)
## S3 method for class 'hyperframe'
rbind(...)```

Arguments

... Any number of hyperframes (objects of class hyperframe).

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

kppm, cauchy.estK, lgcp.estpcf, thomas.estpcf, vargamma.estpcf, mincontrast, pcf, pcfmodel. rCauchy to simulate the model.

Examples

```r
u <- cauchy.estpcf(redwood)
plot(u, legendpos="topright")
```
Details

These are methods for `cbind` and `rbind` for hyperframes.

Note that all the arguments must be hyperframes (because of the peculiar dispatch rules of `cbind` and `rbind`).

To combine a hyperframe with a data frame, one should either convert the data frame to a hyperframe using `as.hyperframe`, or explicitly invoke the function `cbind.hyperframe` or `rbind.hyperframe`.

In other words: if h is a hyperframe and d is a data frame, the result of `cbind(h,d)` will be the same as `cbind(as.data.frame(h), d)`, so that all hypercolumns of h will be deleted (and a warning will be issued). To combine h with d so that all columns of h are retained, type either `cbind(h, as.hyperframe(d))` or `cbind.hyperframe(h,d)`.

Value

Another hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`hyperframe`, `as.hyperframe`

Examples

```r
lambda <- runif(5, min=10, max=30)
X <- lapply(as.list(lambda), function(x) { rpoispp(x) })
h <- hyperframe(lambda=lambda, X=X)
g <- hyperframe(id=letters[1:5], Y=rev(X))
gh <- cbind(h, g)
hh <- rbind(h, h)
```

---

**cdf.test**  
*Spatial Distribution Test for Point Pattern or Point Process Model*

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distributions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test, Cramèr-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is used.
Usage

cdf.test(...)

## S3 method for class 'ppp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ..., jitter=TRUE)

## S3 method for class 'ppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,
        jitter=TRUE, nsim=99, verbose=TRUE)

## S3 method for class 'lpp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ..., jitter=TRUE)

## S3 method for class 'lppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"),
        ..., jitter=TRUE, nsim=99, verbose=TRUE)

## S3 method for class 'slrm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,
        modelname=NULL, covname=NULL)

Arguments

X A point pattern (object of class "ppp" or "lpp").

model A fitted point process model (object of class "ppm" or "lppm") or fitted spatial
        logistic regression (object of class "slrm").

covariate The spatial covariate on which the test will be based. A function, a pixel image
        (object of class "im"), a list of pixel images, or one of the characters "x" or "y"
        indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
        Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
        test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
        (from the goftest package) to control the test.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
        at random, to avoid tied values in the test.

modelname,covname Character strings giving alternative names for model and covariate to be used
        in labelling plot axes.

nsim Number of simulated realisations from the model to be used for the Monte Carlo
        test, when model is not a Poisson process.

verbose Logical value indicating whether to print progress reports when performing a
        Monte Carlo test.
Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted to point pattern data. The observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same values under the model, are compared using the Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

- If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness, CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to depend on the type of point (sometimes called Complete Spatial Randomness and Independence, CSRI).
- If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model, ...) performs a test of goodness-of-fit for this fitted model.
- If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model, ...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same covariate under the model, using a classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a function(x,y) or a pixel image (object of class "im") containing the values of a spatial function, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an image, it should have numeric values, and its domain should cover the observation window of the model. If covariate is a function, it should expect two arguments x and y which are vectors of coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks), or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as follows. The values of the covariate at all locations in the observation window are evaluated, weighted according to the point process intensity of the fitted model, and compiled into a cumulative distribution function $F$ using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original data points are transformed by the predicted cumulative distribution function $F$ into numbers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test, goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo $p$ value is determined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest. The plot method displays the empirical cumulative distribution function of the covariate at the data points, and the predicted cumulative distribution function of the covariate under the model, plotted against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid ties. If the original data contains any ties in the covariate (i.e. points with equal values of the covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will issue a warning that it cannot calculate the exact $p$-value. To avoid this, if jitter=TRUE each value of the covariate will be perturbed by adding a small random value. The perturbations are normally distributed with standard deviation equal to one hundredth of the range of values of the covariate. This prevents ties, and the $p$-value is still correct. There is a very slight loss of power.

Value
An object of class "htest" containing the results of the test. See ks.test for details. The return value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning
The outcome of the test involves a small amount of random variability, because (by default) the coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the $p$-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also
plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm
Examples

```
op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(nztrees, "x")
cdf.test(nztrees, "x", "cvm")
cdf.test(nztrees, "x", "ad")

test of CSR using a function of x and y
fun <- function(x,y){2*x + y}
cdf.test(nztrees, fun)

test of CSR using an image covariate
funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

fit inhomogeneous Poisson model and test
model <- ppm(nztrees ~x)
cdf.test(model, "x")

if(interactive()) {
 # synthetic data: nonuniform Poisson process
 X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

 # fit uniform Poisson process
 fit0 <- ppm(X ~1)
 # fit correct nonuniform Poisson process
 fit1 <- ppm(X ~x)

 # test wrong model
 cdf.test(fit0, "x")
 # test right model
 cdf.test(fit1, "x")
}

multitype point pattern
cdf.test(amacrine, "x")
yimage <- as.im(function(x,y)(y), W=Window(amacrine))
cdf.test(ppm(amacrine ~marks+y), yimage)
```

description

Performs a spatial distribution test of a Poisson point process model fitted to multiple spatial point patterns. The test compares the observed and predicted distributions of the values of a spatial
covariate, using either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit.

Usage

```r
S3 method for class 'mppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,
 verbose=TRUE, interpolate=FALSE, fast=TRUE, jitter=TRUE)
```

Arguments

- **model**: An object of class "mppm" representing a point process model fitted to multiple spatial point patterns.
- **covariate**: The spatial covariate on which the test will be based. A function, a pixel image, a list of functions, a list of pixel images, a hyperframe, or a character string containing the name of one of the covariates in model.
- **test**: Character string identifying the test to be performed: "ks" for Kolmogorov-Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling test.
- ...: Arguments passed to `cdf.test` to control the test.
- **verbose**: Logical flag indicating whether to print progress reports.
- **interpolate**: Logical flag indicating whether to interpolate between pixel values when code-covariate is a pixel image. See Details.
- **fast**: Logical flag. If TRUE, values of the covariate are only sampled at the original quadrature points used to fit the model. If FALSE, values of the covariate are sampled at all pixels, which can be slower by three orders of magnitude.
- **jitter**: Logical flag. If TRUE, observed values of the covariate are perturbed by adding small random values, to avoid tied observations.

Details

This function is a method for the generic function `cdf.test` for the class mppm.

This function performs a goodness-of-fit test of a point process model that has been fitted to multiple point patterns. The observed distribution of the values of a spatial covariate at the data points, and the predicted distribution of the same values under the model, are compared using the Kolmogorov-Smirnov test.

The argument model should be a fitted point process model fitted to multiple point patterns (object of class "mppm"). It should be a Poisson point process.

The argument covariate contains the values of a spatial function. It can be

- a function(x,y)
- a pixel image (object of class "im")
- a list of function(x,y), one for each point pattern
- a list of pixel images, one for each point pattern
- a hyperframe (see hyperframe) of which the first column will be taken as containing the covariate
• a character string giving the name of one of the covariates in model.

If covariate is an image, it should have numeric values, and its domain should cover the observation window of the model. If covariate is a function, it should expect two arguments x and y which are vectors of coordinates, and it should return a numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as follows. The values of the covariate at all locations in the observation window are evaluated, weighted according to the point process intensity of the fitted model, and compiled into a cumulative distribution function $F$ using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original data points are transformed by the predicted cumulative distribution function $F$ into numbers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. A goodness-of-fit test of the uniform distribution is applied to these numbers using ks.test, cvm.test or ad.test.

This test was apparently first described (in the context of spatial data, and for Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

The argument interpolate determines how pixel values will be handled when codecovariate is a pixel image. The value of the covariate at a data point is obtained by looking up the value of the nearest pixel if interpolate=FALSE, or by linearly interpolating between the values of the four nearest pixels if interpolate=TRUE. Linear interpolation is slower, but is sometimes necessary to avoid tied values of the covariate arising when the pixel grid is coarse.

Value

An object of class "cdftest" and "htest" containing the results of the test. See cdf.test for details.

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <rolf@math.unb.ca> http://www.math.unb.ca/~rolf

References


See Also

cdf.test, quadrat.test, mppm
Examples

```r
three i.i.d. realisations of nonuniform Poisson process
lambda <- as.im(function(x,y) { 300 * exp(x) }, square(1))
dat <- hyperframe(X=list(rpoispp(lambda), rpoispp(lambda), rpoispp(lambda)))

fit uniform Poisson process
fit0 <- mppm(X~1, dat)
fit correct nonuniform Poisson process
fit1 <- mppm(X~x, dat)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
cdf.test(fit0, xcoord)
test right model
cdf.test(fit1, xcoord)
```

---

**cells**

*Biological Cells Point Pattern*

**Description**

The data record the locations of the centres of 42 biological cells observed under optical microscopy in a histological section. The microscope field-of-view has been rescaled to the unit square.

The data were recorded by F.H.C. Crick and B.D. Ripley, and analysed in Ripley (1977, 1981) and Diggle (1983). They are often used as a canonical example of an ‘ordered’ point pattern.

**Usage**

`data(cells)`

**Format**

An object of class "ppp" representing the point pattern of cell centres. See `ppp.object` for details of the format.

**Source**

Crick and Ripley, see Ripley (1977)

**References**


Description

Computes the centroid (centre of mass) of a window

Usage

centroid.owin(w, as.ppp = FALSE)

Arguments

w
A window

as.ppp
Logical flag indicating whether to return the centroid as a point pattern (ppp object)

Details

The centroid of the window w is computed. The centroid (“centre of mass”) is the point whose $x$ and $y$ coordinates are the mean values of the $x$ and $y$ coordinates of all points in the window.

The argument w should be a window (an object of class "owin", see owin.object for details) or can be given in any format acceptable to as.owin().

The calculation uses an exact analytic formula for the case of polygonal windows.

Note that the centroid of a window is not necessarily inside the window, unless the window is convex. If as.ppp=TRUE and the centroid of w lies outside w, then the window of the returned point pattern will be a rectangle containing the original window (using as.rectangle).

Value

Either a list with components x, y, or a point pattern (of class ppp) consisting of a single point, giving the coordinates of the centroid of the window w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

owin, as.owin
Examples

```r
w <- owin(c(0,1),c(0,1))
centroid.owin(w)
returns 0.5, 0.5

data(demopat)
w <- Window(demopat)
an irregular window
cent <- centroid.owin(w, as.ppp = TRUE)
Not run:
plot(cen)
plot the window and its centroid

End(Not run)

wapprox <- as.mask(w)
pixel approximation of window
Not run:
points(centroid.owin(wapprox))
should be indistinguishable

End(Not run)
```

chicago Chicago Street Crime Data

Description

This dataset is a record of street crimes reported in the period 25 April to 8 May 2002, in an area of Chicago (Illinois, USA) close to the University of Chicago. The original street crime map was published in the Chicago Weekly News in 2002.

The data give the spatial location of each crime, and the type of crime. The type labels are interpreted as follows:

- assault & battery/assault
- burglary & burglary
- cartheft & motor vehicle theft
- damage & criminal damage
- robbery & robbery
- theft & theft
- trespass & criminal trespass

All crimes occurred on or near a street. The data give the coordinates of all streets in the survey area, and their connectivity.

The dataset `chicago` is an object of class "lpp" representing a point pattern on a linear network. See `lpp` for further information on the format.
These data were published and analysed in Ang, Baddeley and Nair (2012).

Usage

data(chicago)

Format

Object of class "lpp". See lpp.

Source


References


Chicago Weekly News website: www.chicagoweeklynews.com

Examples

data(chicago)
plot(chicago)
plot(as.linnet(chicago), main="Chicago Street Crimes", col="green")
plot(as.ppp(chicago), add=TRUE, col="red", chars=c(16,2,22,17,24,15,6))

chop.tess

Subdivide a Window or Tessellation using a Set of Lines

Description

Divide a given window into tiles delineated by a set of infinite straight lines, obtaining a tessellation of the window. Alternatively, given a tessellation, divide each tile of the tessellation into sub-tiles delineated by the lines.

Usage

chop.tess(X, L)

Arguments

X A window (object of class "owin") or tessellation (object of class "tess") to be subdivided by lines.
L A set of infinite straight lines (object of class "infline")
Details

The argument \( L \) should be a set of infinite straight lines in the plane (stored in an object \( L \) of class "infinite" created by the function `infinite`).

If \( X \) is a window, then it is divided into tiles delineated by the lines in \( L \).
If \( X \) is a tessellation, then each tile of \( X \) is subdivided into sub-tiles delineated by the lines in \( L \).

The result is a tessellation.

Value

A tessellation (object of class "tess").

Warning

If \( X \) is a non-convex window, or a tessellation containing non-convex tiles, then \( \text{chop.tess}(X, L) \) may contain a tile which consists of several unconnected pieces.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`infinite`, `clip.infinite`

Examples

```r
L <- infinite(p=1:3, theta=pi/4)
W <- square(4)
chop.tess(W, L)
```

chorley  
*Chorley-Ribble Cancer Data*

Description

Spatial locations of cases of cancer of the larynx and cancer of the lung, and the location of a disused industrial incinerator. A marked point pattern.

Usage

data(chorley)
**Format**

The dataset `chorley` is an object of class "ppp" representing a marked point pattern. Entries include

- **x**  Cartesian $x$-coordinate of home address
- **y**  Cartesian $y$-coordinate of home address
- **marks**  factor with levels larynx and lung indicating whether this is a case of cancer of the larynx or cancer of the lung.

See `ppp.object` for details of the format.

The dataset `chorley.extra` is a list with two components. The first component `plotit` is a function which will plot the data in a sensible fashion. The second component `incin` is a list with entries `x` and `y` giving the location of the industrial incinerator.

Coordinates are given in kilometres, and the resolution is 100 metres (0.1 km)

**Notes**

The data give the precise domicile addresses of new cases of cancer of the larynx (58 cases) and cancer of the lung (978 cases), recorded in the Chorley and South Ribble Health Authority of Lancashire (England) between 1974 and 1983. The supplementary data give the location of a disused industrial incinerator.

The data were first presented and analysed by Diggle (1990). They have subsequently been analysed by Diggle and Rowlingson (1994) and Baddeley et al. (2005).

The aim is to assess evidence for an increase in the incidence of cancer of the larynx in the vicinity of the now-disused industrial incinerator. The lung cancer cases serve as a surrogate for the spatially-varying density of the susceptible population.

The data are represented as a marked point pattern, with the points giving the spatial location of each individual’s home address and the marks identifying whether each point is a case of laryngeal cancer or lung cancer.

Coordinates are in kilometres, and the resolution is 100 metres (0.1 km).

The dataset `chorley` has a polygonal window with 132 edges which closely approximates the boundary of the Chorley and South Ribble Health Authority.

Note that, due to the rounding of spatial coordinates, the data contain duplicated points (two points at the same location). To determine which points are duplicates, use `duplicated.ppp`. To remove the duplication, use `unique.ppp`.

**Source**

Coordinates of cases were provided by the Chorley and South Ribble Health Authority, and were kindly supplied by Professor Peter Diggle. Region boundary was digitised by Adrian Baddeley, 2005, from a photograph of an Ordnance Survey map.

**References**


**Examples**

c chorley
summary(chorley)
chorley.extra$plotit()

---

**circdensity**

*Density Estimation for Circular Data*

**Description**

Computes a kernel smoothed estimate of the probability density for angular data.

**Usage**

circdensity(x, sigma = "nrdo", ..., 
bw = NULL, 
weights=NULL, unit = c("degree", "radian"))

**Arguments**

- **x**
  Numeric vector, containing angular data.
- **sigma**
  Smoothing bandwidth, or bandwidth selection rule, passed to `density.default`.
- **bw**
  Alternative to `sigma` for consistency with other functions.
- **...**
  Additional arguments passed to `density.default`, such as kernel and weights.
- **weights**
  Optional numeric vector of weights for the data in `x`.
- **unit**
  The unit of angle in which `x` is expressed.

**Details**

The angular values `x` are smoothed using (by default) the wrapped Gaussian kernel with standard deviation `sigma`.

**Value**

An object of class "density" (produced by `density.default`) which can be plotted by `plot` or by `rose`.

**Author(s)**


Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
See Also
density.default, rose.

Examples

ang <- runif(1000, max=360)
rose(circdensity(ang, 12))

circumradius Circumradius of a Window

Description

Compute the circumradius of a window or other spatial object.

Usage

circumradius(x, ...)

## S3 method for class 'owin'
circumradius(x, ...)

Arguments

x A window (object of class "owin"), or another spatial object.
...
Arguments passed to as.mask to determine the pixel resolution for the calculation.

Details

The circumradius of a spatial region \( W \) is the radius of the smallest circle that contains \( W \).
The function circumradius is generic, with methods for objects of class "owin" and "linnet".

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also
circumradius.linnet

Examples
circumradius(letterR)
clarkevans

Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index \( R \) for a spatial point pattern.

Usage

```r
clarkevans(X, correction=c("none", "Donnelly", "cdf"),
 clipregion=NULL)
```

Arguments

- **X**: A spatial point pattern (object of class "ppp").
- **correction**: Character vector. The type of edge correction(s) to be applied.
- **clipregion**: Clipping region for the guard area correction. A window (object of class "owin"). See Details.

Details

The Clark and Evans (1954) aggregation index \( R \) is a crude measure of clustering or ordering of a point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that expected for a Poisson point process of the same intensity. A value \( R > 1 \) suggests ordering, while \( R < 1 \) suggests clustering.

Without correction for edge effects, the value of \( R \) will be positively biased. Edge effects arise because, for a point of \( X \) close to the edge of the window, the true nearest neighbour may actually lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true nearest neighbour distances.

The argument `correction` specifies an edge correction or several edge corrections to be applied. It is a character vector containing one or more of the options "none", "Donnelly", "guard" and "cdf" (which are recognised by partial matching). These edge corrections are:

- "none": No edge correction is applied.
- "Donnelly": Edge correction of Donnelly (1978), available for rectangular windows only. The theoretical expected value of mean nearest neighbour distance under a Poisson process is adjusted for edge effects by the edge correction of Donnelly (1978). The value of \( R \) is the ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.
- "guard": Guard region or buffer area method. The observed mean nearest neighbour distance for the point pattern \( X \) is re-defined by averaging only over those points of \( X \) that fall inside the sub-window `clipregion`.
- "cdf": Cumulative Distribution Function method. The nearest neighbour distance distribution function \( G(r) \) of the stationary point process is estimated by `Gest` using the Kaplan-Meier type edge correction. Then the mean of the distribution is calculated from the cdf.
If the argument clipregion is given, then the selected edge corrections will be assumed to include correction="guard".
To perform a test based on the Clark-Evans index, see clarkevans.test.

Value

A numeric value, or a numeric vector with named components

naive	$R$ without edge correction
Donnelly	$R$ using Donnelly edge correction
guard	$R$ using guard region
cdf	$R$ using cdf method

(as selected by correction). The value of the Donnelly component will be NA if the window of $X$ is not a rectangle.

Author(s)

John Rudge <rudge@esc.cam.ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

References


See Also

clarkevans.test, hopskel, nndist, Gest

Examples

```r
Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region
clip1 <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(cells$window, 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)
```
Description
Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage
clarkevans.test(x, ..., correction="none", clipregion=NULL, alternative=c("two.sided", "less", "greater", "clustered", "regular"), nsim=999)

Arguments
X A spatial point pattern (object of class "ppp").
... Ignored.
correction Character string. The type of edge correction to be applied. See clarkevans
clipregion Clipping region for the guard area correction. A window (object of class "owin"). See clarkevans
alternative String indicating the type of alternative for the hypothesis test. Partially matched.
nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is required.

Details
This command uses the Clark and Evans (1954) aggregation index $R$ as the basis for a crude test of clustering or ordering of a point pattern.

The Clark-Evans index is computed by the function clarkevans. See the help for clarkevans for information about the Clark-Evans index $R$ and about the arguments correction and clipregion.

This command performs a hypothesis test of clustering or ordering of the point pattern X. The null hypothesis is Complete Spatial Randomness, i.e. a uniform Poisson process. The alternative hypothesis is specified by the argument alternative:

- alternative="less" or alternative="clustered": the alternative hypothesis is that $R < 1$ corresponding to a clustered point pattern;
- alternative="greater" or alternative="regular": the alternative hypothesis is that $R > 1$ corresponding to a regular or ordered point pattern;
- alternative="two.sided": the alternative hypothesis is that $R \neq 1$ corresponding to a clustered or regular pattern.
The Clark-Evans index \( R \) is computed for the data as described in \texttt{clarkevans}.

If \texttt{correction}="none" and \texttt{nsim} is missing, the \( p \)-value for the test is computed by standardising \( R \) as proposed by Clark and Evans (1954) and referring the statistic to the standard Normal distribution.

Otherwise, the \( p \)-value for the test is computed by Monte Carlo simulation of \texttt{nsim} realisations of Complete Spatial Randomness conditional on the observed number of points.

**Value**

An object of class "htest" representing the result of the test.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

**References**


**See Also**

\texttt{clarkevans}, \texttt{hopskel.test}

**Examples**

```r
Redwood data - clustered
clarkevans.test(redwood)
clarkevans.test(redwood, alternative="clustered")
```

---

**Description**

Allows the user to specify a rectangle by point-and-click in the display.

**Usage**

```r
clickbox(add=TRUE)
```

**Arguments**

- \texttt{add} Logical value indicating whether to create a new plot (\texttt{add=FALSE}) or draw over the existing plot (\texttt{add=TRUE}).
Details
This function allows the user to create a rectangular window by interactively clicking on the screen display.

The user is prompted to point the mouse at any desired locations for two corners of the rectangle, and click the left mouse button to add each point.

The return value is a window (object of class "owin") representing the rectangle.

This function uses the R command locator to input the mouse clicks. It only works on screen devices such as 'X11', 'windows' and 'quartz'.

Value
A window (object of class "owin") representing the selected rectangle.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

clickpoly, clickppp, clickdist, locator

---

clickdist

Interactively Measure Distance

Description
Measures the distance between two points which the user has clicked on.

Usage

clickdist()

Details
This function allows the user to measure the distance between two spatial locations, interactively, by clicking on the screen display.

When clickdist() is called, the user is expected to click two points in the current graphics device. The distance between these points will be returned.

This function uses the R command locator to input the mouse clicks. It only works on screen devices such as 'X11', 'windows' and 'quartz'.

Value
A single nonnegative number.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

locator, clickppp, clickpoly, clickbox

clickjoin

Interactively join vertices on a plot

Description

Given a point pattern representing a set of vertices, this command gives a point-and-click interface allowing the user to join pairs of selected vertices by edges.

Usage

clickjoin(X, ..., add = TRUE, m = NULL, join = TRUE)

Arguments

X
Point pattern of vertices. An object of class "ppp".

... Arguments passed to segments to control the plotting of the new edges.

add Logical. Whether the point pattern X should be added to the existing plot (add=TRUE) or a new plot should be created (add=FALSE).

m Optional. Logical matrix specifying an initial set of edges. There is an edge between vertices i and j if m[i,j] = TRUE.

join Optional. If TRUE, then each user click will join a pair of vertices. If FALSE, then each user click will delete an existing edge. This is only relevant if m is supplied.

Details

This function makes it easier for the user to create a linear network or a planar graph, given a set of vertices.

The function first displays the point pattern X, then repeatedly prompts the user to click on a pair of points in X. Each selected pair of points will be joined by an edge. The function returns a logical matrix which has entries equal to TRUE for each pair of vertices joined by an edge.

The selection of points is performed using identify.ppp which typically expects the user to click the left mouse button. This point-and-click interaction continues until the user terminates it, by pressing the middle mouse button, or pressing the right mouse button and selecting stop.

The return value can be used in linnet to create a linear network.
Value
Logical matrix \( m \) with value \( m[i,j] = \text{TRUE} \) for every pair of vertices \( X[i] \) and \( X[j] \) that should be joined by an edge.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also
linnet, clickppp

clickpoly

Description
Allows the user to create a polygon by point-and-click in the display.

Usage
```
clickpoly(add=FALSE, nv=NULL, np=1, ...)```

Arguments
- **add**: Logical value indicating whether to create a new plot (add=FALSE) or draw over the existing plot (add=TRUE).
- **nv**: Number of vertices of the polygon (if this is predetermined).
- **np**: Number of polygons to create.
- **...**: Arguments passed to locator to control the interactive plot.

Details
This function allows the user to create a polygonal window by interactively clicking on the screen display.

The user is prompted to point the mouse at any desired locations for the polygon vertices, and click the left mouse button to add each point. Interactive input stops after \(nv \) clicks (if \(nv \) was given) or when the middle mouse button is pressed.

The return value is a window (object of class "owin") representing the polygon.

This function uses the \texttt{R} command \texttt{locator} to input the mouse clicks. It only works on screen devices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to \texttt{locator} through \texttt{...} include \texttt{pch} (plotting character), \texttt{cex} (character expansion factor) and \texttt{col} (colour). See \texttt{locator} and \texttt{par}.

Multiple polygons can also be drawn, by specifying \(np > 1 \). The polygons must be disjoint. The result is a single window object consisting of all the polygons.
Value
A window (object of class "owin") representing the polygon.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
identify.ppp, clickbox, clickppp, clickdist, locator

clickppp

Interactively Add Points

Description
Allows the user to create a point pattern by point-and-click in the display.

Usage
```r
clickppp(n=NULL, win=square(1), types=NULL, ..., add=FALSE, main=NULL, hook=NULL)
```

Arguments
- **n**
 Number of points to be added (if this is predetermined).
- **win**
 Window in which to create the point pattern. An object of class "owin".
- **types**
 Vector of types, when creating a multitype point pattern.
- **...**
 Optional extra arguments to be passed to `locator` to control the display.
- **add**
 Logical value indicating whether to create a new plot (add=FALSE) or draw over the existing plot (add=TRUE).
- **main**
 Main heading for plot.
- **hook**
 For internal use only. Do not use this argument.

Details
This function allows the user to create a point pattern by interactively clicking on the screen display. First the window `win` is plotted on the current screen device. Then the user is prompted to point the mouse at any desired locations and click the left mouse button to add each point. Interactive input stops after `n` clicks (if `n` was given) or when the middle mouse button is pressed.

The return value is a point pattern containing the locations of all the clicked points inside the original window `win`, provided that all of the clicked locations were inside this window. Otherwise, the window is expanded to a box large enough to contain all the points (as well as containing the original window).
If the argument types is given, then a multitype point pattern will be created. The user is prompted to input the locations of points of type type[i], for each successive index i. (If the argument n was given, there will be n points of each type.) The return value is a multitype point pattern.

This function uses the \texttt{R} command \texttt{locator} to input the mouse clicks. It only works on screen devices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to \texttt{locator} through \texttt{...} include pch (plotting character), cex (character expansion factor) and col (colour). See \texttt{locator} and \texttt{par}.

Value

A point pattern (object of class "ppp").

Author(s)

Original by Dominic Schuhmacher. Adapted by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{identify.ppp, locator, clickpoly, clickbox, clickdist}

\textbf{clip.infline} \hspace{1cm} \textit{Intersect Infinite Straight Lines with a Window}

Description

Take the intersection between a set of infinite straight lines and a window, yielding a set of line segments.

Usage

\texttt{clip.infline(L, win)}

Arguments

- \texttt{L} \hspace{1cm} Object of class "infline" specifying a set of infinite straight lines in the plane.
- \texttt{win} \hspace{1cm} Window (object of class "owin").

Details

This function computes the intersection between a set of infinite straight lines in the plane (stored in an object \texttt{L} of class "infline" created by the function \texttt{infline}) and a window \texttt{win}. The result is a pattern of line segments.

Value

A line segment pattern (object of class "psp").
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`infline`, `psp`.
To divide a window into pieces using infinite lines, use `chop.tess`.

Examples

```r
L <- infline(p=1:3, theta=pi/4)
W <- square(4)
clip.infline(L, W)
```

Description

This dataset is a record of forest fires in the Castilla-La Mancha region of Spain between 1998 and 2007. This region is approximately 400 by 400 kilometres. The coordinates are recorded in kilometres.

The dataset `clmfires` is a point pattern (object of class "ppp") containing the spatial coordinates of each fire, with marks containing information about each fire. There are 4 columns of marks:

- `cause` - cause of fire (see below)
- `burnt.area` - total area burned, in hectares
- `date` - the date of fire, as a value of class Date
- `julian.date` - number of days elapsed since 1 January 1998

The cause of the fire is a factor with the levels `lightning`, `accident` (for accidents or negligence), `intentional` (for intentionally started fires) and `other` (for other causes including unknown cause).

The format of `date` is “Year-month-day”, e.g. “2005-07-14” means 14 July, 2005.

The accompanying dataset `clmfires.extra` is a list of two items `clmcov100` and `clmcov200` containing covariate information for the entire Castilla-La Mancha region. Each of these two elements is a list of four images (objects of class "im") named elevation, orientation, slope and landuse. The landuse image is factor-valued with the factor having levels `urban`, `farm` (for farms or orchards), `meadow`, `denseforest` (for dense forest), `conifer` (for conifer forest or plantation), `mixedforest`, `grassland`, `bush`, `scrub` and `artifgreen` for artificial greens such as golf courses.

These images (effectively) provide values for the four covariates at every location in the study area. The images in `clmcov100` are 100 by 100 pixels in size, while those in `clmcov200` are 200 by 200 pixels. For easy handling, `clmcov100` and `clmcov200` also belong to the class "listof" so that they can be plotted and printed immediately.
Usage

data(clmfires)

Format

clmfires is a marked point pattern (object of class "ppp"). See ppp.object.

clmfires.extra is a list with two components, named clmcov100 and clmcov200, which are lists of pixel images (objects of class "im").

Remark

The precision with which the coordinates of the locations of the fires changed between 2003 and 2004. From 1998 to 2003 many of the locations were recorded as the centroid of the corresponding “district unit”; the rest were recorded as exact UTM coordinates of the centroids of the fires. In 2004 the system changed and the exact UTM coordinates of the centroids of the fires were used for all fires. There is thus a strongly apparent “gridlike” quality to the fire locations for the years 1998 to 2003.

There is however no actual duplication of points in the 1998 to 2003 patterns due to “jittering” having been applied in order to avoid such duplication. It is not clear just how the fire locations were jittered. It seems unlikely that the jittering was done using the jitter() function from R or the spatstat function rjitter.

Of course there are many sets of points which are virtually identical, being separated by distances induced by the jittering. Typically these distances are of the order of 40 metres which is unlikely to be meaningful on the scale at which forest fires are observed.

Caution should therefore be exercised in any analyses of the patterns for the years 1998 to 2003.

Source

Professor Jorge Mateu.

Examples

plot(clmfires, which.marks="cause", cols=2:5, cex=0.25)
plot(clmfires.extra$clmcov100)
Split the clmfires pattern by year and plot the first and last years:
yr <- factor(format(marks(clmfires)$date,format="%Y"))
X <- split(clmfires,f=yr)
fA1 <- c("1998","2007")
plot(X[fA1],use.marks=FALSE,main.panel=fA1,main="")
closepairs Close Pairs of Points

Description

Low-level functions to find all close pairs of points.

Usage

closepaircounts(X, r)
crosspaircounts(X, Y, r)
closepairs(X, rmax, ...)

S3 method for class 'ppp'
closepairs(X, rmax, ordered=TRUE,
 what=c("all","indices","ijd"), ...)
crosspairs(X, Y, rmax, ...)

S3 method for class 'ppp'
crosspairs(X, Y, rmax, what=c("all", "indices", "ijd"), ...)

Arguments

- X, Y: Point patterns (objects of class "ppp").
- r, rmax: Maximum distance between pairs of points to be counted as close pairs.
- ordered: Logical value indicating whether all ordered pairs of close points should be returned. If ordered=TRUE, each pair will appear twice in the output, as (i,j) and again as (j,i). If ordered=FALSE, then each pair will appear only once, as the pair (i,j) such that i < j.
- what: String specifying the data to be returned for each close pair of points. If what="all" (the default) then the returned information includes the indices i, j of each pair, their x, y coordinates, and the distance between them. If what="indices" then only the indices i, j are returned. If what="ijd" then the indices i, j and the distance d are returned.
- ...: Extra arguments, ignored by methods.

Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a point pattern or all close pairs between two point patterns.

closepaircounts(X, r) counts the number of neighbours for each point in the pattern X. That is, for each point X[i], it counts the number of other points X[j] with j != i such that d(X[i],X[j]) <= r
where d denotes Euclidean distance. The result is an integer vector v such that $v[i]$ is the number of neighbours of $X[i]$.

crosspaircountsX,Y,r counts, for each point in the pattern X, the number of neighbours in the pattern Y. That is, for each point $X[i]$, it counts the number of points $Y[j]$ such that $d(X[i], X[j]) \leq r$. The result is an integer vector v such that $v[i]$ is the number of neighbours of $X[i]$ in the pattern Y.

closepairsX,r_{max} identifies all pairs of neighbours in the pattern X and returns them. The result is a list with the following components:

- i Integer vector of indices of the first point in each pair.
- j Integer vector of indices of the second point in each pair.
- x_i,y_i Coordinates of the first point in each pair.
- x_j,y_j Coordinates of the second point in each pair.
- dx Equal to x_j-x_i
- dy Equal to y_j-y_i
- d Euclidean distance between each pair of points.

If what="indices" then only the components i and j are returned. This is slightly faster and more efficient with use of memory.

crosspairsX,r_{max} identifies all pairs of neighbours $(X[i], Y[j])$ between the patterns X and Y, and returns them. The result is a list with the same format as for closepairs.

Value

For closepaircounts and crosspaircounts, an integer vector of length equal to the number of points in X.

For closepairs and crosspairs, a list with components i and j, and possibly other components as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a human) and may not be consistent between different computers and different installations of R. The discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the threshold r_{max}.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about $\text{Machine}_\text{double}_\text{eps}$.

If the true interpoint distance d and the threshold r_{max} are equal, or if their difference is no more than $\text{Machine}_\text{double}_\text{eps}$, the result may be incorrect.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
See Also

closepairs.pp3 for the corresponding functions for 3D point patterns.
Kest, Kcross, nndist, nncross, applynbd, markstat for functions which use these capabilities.

Examples

```r
a <- closepaircounts(cells, 0.1)
sum(a)

Y <- split(amacrine)
b <- crosspaircounts(Y$on, Y$off, 0.1)

d <- closepairs(cells, 0.1)
e <- crosspairs(Y$on, Y$off, 0.1)
```

closepairs.pp3
Close Pairs of Points in 3 Dimensions

Description

Low-level functions to find all close pairs of points in three-dimensional point patterns.

Usage

```r
## S3 method for class 'pp3'
closepairs(X, rmax, ordered=TRUE,
          what=c("all", "indices"), ...)

## S3 method for class 'pp3'
crosspairs(X, Y, rmax, what=c("all", "indices"), ...)
```

Arguments

- **X,Y**
 Point patterns in three dimensions (objects of class "pp3").
- **rmax**
 Maximum distance between pairs of points to be counted as close pairs.
- **ordered**
 Logical value indicating whether all ordered pairs of close points should be returned. If `ordered=TRUE`, each pair will appear twice in the output, as \((i,j)\) and again as \((j,i)\). If `ordered=FALSE`, then each pair will appear only once, as the pair \((i,j)\) such that \(i < j\).
- **what**
 String specifying the data to be returned for each close pair of points. If `what="all"` (the default) then the returned information includes the indices \(i,j\) of each pair, their \(x,y,z\) coordinates, and the distance between them. If `what="indices"` then only the indices \(i,j\) are returned.
- **...**
 Ignored.
Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a three-dimensional point pattern or all close pairs between two point patterns in three dimensions.

closepairs(X, rmax) identifies all pairs of neighbours in the pattern X and returns them. The result is a list with the following components:

- **i**: Integer vector of indices of the first point in each pair.
- **j**: Integer vector of indices of the second point in each pair.
- **xi, yi, zi**: Coordinates of the first point in each pair.
- **xj, yj, zj**: Coordinates of the second point in each pair.
- **dx**: Equal to \(xj - xi\)
- **dy**: Equal to \(yj - yi\)
- **dz**: Equal to \(zj - zi\)
- **d**: Euclidean distance between each pair of points.

If what="indices" then only the components \(i\) and \(j\) are returned. This is slightly faster.

crosspairs(X, Y, rmax) identifies all pairs of neighbours \((x[i], y[j])\) between the patterns \(X\) and \(Y\), and returns them. The result is a list with the same format as for closepairs.

Value

A list with components \(i\) and \(j\), and possibly other components as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a human) and may not be consistent between different computers and different installations of R. The discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the threshold \(rmax\).

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about \(\text{Machine}\$\text{double}\$.\text{eps}\).

If the true interpoint distance \(d\) and the threshold \(rmax\) are equal, or if their difference is no more than \(\text{Machine}\$\text{double}\$.\text{eps}\), the result may be incorrect.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

See Also

closepairs
Examples

```r
X <- pp3(runif(10), runif(10), runif(10), box3(c(0, 1)))
Y <- pp3(runif(10), runif(10), runif(10), box3(c(0, 1)))
a <- closepairs(X, 0.1)
b <- crosspairs(X, Y, 0.1)
```

closing

Morphological Closing

Description

Perform morphological closing of a window, a line segment pattern or a point pattern.

Usage

```r
closing(w, r, ...)
```

- `w` A window (object of class "owin") or a line segment pattern (object of class "psp") or a point pattern (object of class "ppp").
- `r` positive number: the radius of the closing.
- `...` extra arguments passed to `as.mask` controlling the pixel resolution, if a pixel approximation is used
- `polygonal` Logical flag indicating whether to compute a polygonal approximation to the erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological closing (Serra, 1982) of a set \(W \) by a distance \(r > 0 \) is the set of all points that cannot be separated from \(W \) by any circle of radius \(r \). That is, a point \(x \) belongs to the closing \(W^* \) if it is impossible to draw any circle of radius \(r \) that has \(x \) on the inside and \(W \) on the outside. The closing \(W^* \) contains the original set \(W \).

For a small radius \(r \), the closing operation has the effect of smoothing out irregularities in the boundary of \(W \). For larger radii, the closing operation smooths out concave features in the boundary. For very large radii, the closed set \(W^* \) becomes more and more convex.

The algorithm applies `dilation` followed by `erosion`.
Value

If \(r > 0 \), an object of class "owin" representing the closed region. If \(r=0 \), the result is identical to \(w \).

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

opening for the opposite operation.
dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

```r
v <- closing(letterR, 0.25)
plot(v, main="closing")
plot(letterR, add=TRUE)
```

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

Usage

```r
clusterfield(model, locations = NULL, ...)
```
Arguments

- **model**: Cluster model. Either a fitted cluster model (object of class "kppm"), a character string specifying the type of cluster model, or a function defining the cluster kernel. See Details.
- **locations**: A point pattern giving the locations of the kernels. Defaults to the centroid of the observation window for the "kppm" method and to the center of a unit square otherwise.
- **...**: Additional arguments passed to `density.ppp` or the cluster kernel. See Details.
- **mu**: Mean number of offspring per cluster. A single number or a pixel image.

Details

The actual calculations are preformed by `density.ppp` and ... arguments are passed thereto for control over the pixel resolution etc. (These arguments are then passed on to `pixellate.ppp` and `as.mask`.)

For the function method the given kernel function should accept vectors of x and y coordinates as its first two arguments. Any additional arguments may be passed through the

The function method also accepts the optional parameter `mu` (defaulting to 1) specifying the mean number of points per cluster (as a numeric) or the inhomogeneous reference cluster intensity (as an "im" object or a function(x,y)). The interpretation of `mu` is as explained in the simulation functions referenced in the See Also section below.

For the character method `model` must be one of: model="Thomas" for the Thomas process, model="MatClust" for the Matern cluster process, model="Cauchy" for the Neyman-Scott cluster process with Cauchy kernel, or model="VarGamma" for the Neyman-Scott cluster process with Variance Gamma kernel. For all these models the parameter `scale` is required and passed through ... as well as the parameter `nu` when model="VarGamma". This method calls `clusterfield.function` so the parameter `mu` may also be passed through ... and will be interpreted as explained above.

The kppm method extracts the relevant information from the fitted model (including `mu`) and calls `clusterfield.function`.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

density.ppp and kppm
Simulation algorithms for cluster models: rCauchy rMatClust rThomas rVarGamma
Examples

method for fitted model
fit <- kppm(redwood~1, "Thomas")
clusterfield(fit, eps = 0.01)

method for functions
kernel <- function(x,y,scal) {
 r <- sqrt(x^2 + y^2)
 ifelse(r > 0,
 dgamma(r, shape=5, scale=scal)/(2 * pi * r),
 0)
}
X <- runifpoint(10)
clusterfield(kernel, X, scal=0.05)

clusterfit

Fit Cluster or Cox Point Process Model via Minimum Contrast

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern by the Method of Minimum Contrast.

Usage

clusterfit(X, clusters, lambda = NULL, startpar = NULL,
 q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
 statistic = NULL, statargs = NULL)

Arguments

X
Data to which the cluster or Cox model will be fitted. Either a point pattern or a summary statistic. See Details.

clusters
Character string determining the cluster or Cox model. Partially matched. Options are "Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

lambda
Optional. An estimate of the intensity of the point process. Either a single numeric specifying a constant intensity, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

startpar
Vector of initial values of the parameters of the point process mode. If X is a point pattern sensible defaults are used. Otherwise rather arbitrary values are used.

q, p
Optional. Exponents for the contrast criterion.

rmin, rmax
Optional. The interval of r values for the contrast criterion.

...
Additional arguments passed to mincontrast.
clusterfit

 Optional. Name of the summary statistic to be used for minimum contrast estimation: either "K" or "pcf".

statargs

Optional list of arguments to be used when calculating the statistic. See Details.

Details

This function fits the clustering parameters of a cluster or Cox point process model by the Method of Minimum Contrast, that is, by matching the theoretical *K*-function of the model to the empirical *K*-function of the data, as explained in mincontrast.

If statistic="pcf" (or X appears to be an estimated pair correlation function) then instead of using the *K*-function, the algorithm will use the pair correlation function.

If X is a point pattern of class "ppp" an estimate of the summary statistic specified by statistic (defaults to "K") is first computed before minimum contrast estimation is carried out as described above. In this case the argument statargs can be used for controlling the summary statistic estimation. The precise algorithm for computing the summary statistic depends on whether the intensity specification (lambda) is:

homogeneous: If lambda is NULL or a single numeric the pattern is considered homogeneous and either Kest or pcf is invoked. In this case lambda is not used for anything when estimating the summary statistic.

inhomogeneous: If lambda is a pixel image (object of class "im"), a fitted point process model (object of class "ppm" or "kppm") or a function *H*(*x,y*) the pattern is considered inhomogeneous. In this case either Kinhom or pcfinhom is invoked with lambda as an argument.

After the clustering parameters of the model have been estimated by minimum contrast lambda (if non-null) is used to compute the additional model parameter µ.

Value

An object of class "minconfit". There are methods for printing and plotting this object. See mincontrast.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References

See Also

kppm

Examples

```r
fit <- clusterfit(redwood, "Thomas")
fit
if(interactive()){
  plot(fit)
}
```

clusterkernel Extract Cluster Offspring Kernel

Description

Given a cluster point process model, this command returns the probability density of the cluster offspring.

Usage

`clusterkernel(model, ...)`

```r
## S3 method for class 'kppm'
clusterkernel(model, ...)

## S3 method for class 'character'
clusterkernel(model, ...)
```

Arguments

- `model` Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or a character string specifying the type of cluster model.
- `...` Parameter values for the model, when `model` is a character string.

Details

Given a specification of a cluster point process model, this command returns a function\((x, y) \) giving the two-dimensional probability density of the cluster offspring points assuming a cluster parent located at the origin.

Value

A function in the \(\mathcal{R} \) language with arguments \(x, y, \ldots \).
clusterradius

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

clusterfield, kppm

Examples

fit <- kppm(redwood ~ x, "MatClust")
f <- clusterkernel(fit)
f(0.1, 0.2)

clusterradius
Compute or Extract Effective Range of Cluster Kernel

Description

Given a cluster point process model, this command returns a value beyond which the probability density of the cluster offspring is negligible.

Usage

clusterradius(model, ...)

S3 method for class 'kppm'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

S3 method for class 'character'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

Arguments

model
Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or a character string specifying the type of cluster model.

...
Parameter values for the model, when model is a character string.

thresh
Numerical threshold relative to the cluster kernel value at the origin (parent location) determining when the cluster kernel will be considered negligible. A sensible default is provided.

precision
Logical. If precision=TRUE the precision of the calculated range is returned as an attribute to the range. See details.
Details

Given a cluster model this function by default returns the effective range of the model with the given
parameters as used in spatstat. For the Matern cluster model (see e.g. `rMatClust`) this is simply the
finite radius of the offspring density given by the parameter scale irrespective of other options given
to this function. The remaining models in spatstat have infinite theoretical range, and an effective
finite value is given as follows: For the Thomas model (see e.g. `rThomas` the default is 4*scale
where scale is the scale or standard deviation parameter of the model. If thresh is given the value
is instead found as described for the other models below.

For the Cauchy model (see e.g. `rCauchy`) and the Variance Gamma (Bessel) model (see e.g.
`rVarGamma`) the value of thresh defaults to 0.001, and then this is used to compute the range
numerically as follows. If \(k(x, y) = k_0(r) \) with \(r = \sqrt{x^2 + y^2} \) denotes the isotropic cluster
kernel then \(f(r) = 2\pi rk_0(r) \) is the density function of the offspring distance from the parent. The
range is determined as the value of \(r \) where \(f(r) \) falls below thresh times \(k_0(r) \).

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the
precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally
this should be close to the value 1 which would be obtained for the true theoretical infinite range.

Value

A positive numeric.

Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

Examples

```r
fit <- kppm(redwood ~ x, "MatClust")
clusterradius(fit)

clusterradius("Thomas", scale = .1)
clusterradius("Thomas", scale = .1, thresh = 0.001)
clusterradius("VarGamma", scale = .1, nu = 2, precision = TRUE)
```

detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estima-
tor.
Usage

```r
collectorset(X, what=c("marks", "domain"),
      ..., verbose=TRUE,
      fast=FALSE,
      exact=!fast)
```

Arguments

- **X**: A dimensional spatial point pattern (object of class "ppp").
- **what**: Character string or character vector specifying the type of result. See Details.
- **verbose**: Logical value indicating whether to print progress reports.
- **fast**: Logical. If **fast**=**false** (the default), the Dirichlet tile areas will be computed exactly using polygonal geometry, so that the optimal choice of tiles will be computed exactly. If **fast**=**true**, the Dirichlet tile areas will be approximated using pixel counting, so the optimal choice will be approximate.
- **exact**: Logical. If **exact**=**true**, the Allard-Fraley estimator of the domain will be computed exactly using polygonal geometry. If **exact**=**false**, the Allard-Fraley estimator of the domain will be approximated by a binary pixel mask. The default is initially set to **false**.
- **...**: Optional arguments passed to `as.mask` to control the pixel resolution if **exact**=**false**.

Details

Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial point pattern in the presence of random clutter.

This algorithm computes the *unrestricted* Allard-Fraley estimator. The Dirichlet (Voronoi) tessellation of the point pattern `X` is computed. The smallest `m` Dirichlet cells are selected, where the number `m` is determined by a maximum likelihood criterion.

- If **fast**=**false** (the default), the areas of the tiles of the Dirichlet tessellation will be computed exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed exactly.
- If **fast**=**true**, the Dirichlet tile areas will be approximated by counting pixels. This is faster, and is usually correct (depending on the pixel resolution, which is controlled by the arguments `...`).

The type of result depends on the character vector `what`.

- If `what="marks"` the result is the point pattern `X` with a vector of marks labelling each point with a value yes or no depending on whether the corresponding Dirichlet cell is selected by the Allard-Fraley estimator. In other words each point of `X` is labelled as either a cluster point or a non-cluster point.
- If `what="domain"`, the result is the Allard-Fraley estimator of the cluster feature set, which is the union of all the selected Dirichlet cells, represented as a window (object of class "owin").
- If `what=c("marks", "domain")` the result is a list containing both of the results described above.
Computation of the Allard-Fraley set estimator depends on the argument `exact`.

- If `exact=TRUE` (the default), the Allard-Fraley set estimator will be computed exactly using polygonal geometry. The result is a polygonal window.
- If `exact=FALSE`, the Allard-Fraley set estimator will be approximated by a binary pixel mask. This is faster than the exact computation. The result is a binary mask.

Value

If `what="marks"`, a multitype point pattern (object of class "ppp").

If `what="domain"`, a window (object of class "owin").

If `what=c("marks", "domain")` (the default), a list consisting of a multitype point pattern and a window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`nnclean`, `sharpen`

Examples

```r
opa <- par(mfrow=c(1,2))
W <- grow.rectangle(as.rectangle(letterR), 1)
X <- superimpose(runifpoint(300, letterR),
                  runifpoint(50, W), W=W)
plot(W, main="clusterset(X, 'm')")
plot(clusterset(X, "marks", fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)
plot(letterR, add=TRUE)
plot(W, main="clusterset(X, 'd')")
plot(clusterset(X, "domain", exact=FALSE), add=TRUE)
plot(letterR, add=TRUE)
par(opa)
```
Description
Given a point process model fitted to a list of point patterns, extract the coefficients of the fitted model. A method for coef.

Usage

```r
## S3 method for class 'mppm'
coef(object, ...)  
```

Arguments

- `object`: The fitted point process model (an object of class "mppm")
- `...`: Ignored.

Details

This function is a method for the generic function `coef`.

The argument `object` must be a fitted point process model (object of class "mppm") produced by the fitting algorithm `mppm`. This represents a point process model that has been fitted to a list of several point pattern datasets. See `mppm` for information.

This function extracts the vector of coefficients of the fitted model. This is the estimate of the parameter vector θ such that the conditional intensity of the model is of the form

$$\lambda(u, x) = \exp(\theta S(u, x))$$

where $S(u, x)$ is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then `coef(object)` will yield a single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson process.

Use `print.mppm` to print a more useful description of the fitted model.

Value

A vector containing the fitted coefficients.

Author(s)

See Also

`print.mppm`, `mppm`
Examples

H <- hyperframe(X=waterstriders)
fit.Poisson <- mppm(X ~ 1, H)
coef(fit.Poisson)

The single entry "(Intercept)"
is the log of the fitted intensity of the Poisson process

fit.Strauss <- mppm(X~1, H, Strauss())
coef(fit.Strauss)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

coef.ppm
Coefficients of Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, extract the coefficients of the fitted model. A method for coef.

Usage

```r
## S3 method for class 'ppm'
coef(object, ...)
```

Arguments

- **object**
The fitted point process model (an object of class "ppm")
- **...**
Ignored.

Details

This function is a method for the generic function `coef`.

The argument `object` must be a fitted point process model (object of class "ppm"). Such objects are produced by the maximum pseudolikelihood fitting algorithm `ppm`.

This function extracts the vector of coefficients of the fitted model. This is the estimate of the parameter vector θ such that the conditional intensity of the model is of the form

$$\lambda(u, x) = \exp(\theta S(u, x))$$

where $S(u, x)$ is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then `coef(object)` will yield a single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson process.

Use `print.ppm` to print a more useful description of the fitted model.
coef.slrm

Value

A vector containing the fitted coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print.ppm, ppm.object.ppm

Examples

data(cells)

poi <- ppm(cells, ~1, Poisson())
coef(poi)
This is the log of the fitted intensity of the Poisson process

stra <- ppm(cells, ~1, Strauss(r=0.07))
coef(stra)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)
Details

This is a method for `coef` for fitted spatial logistic regression models (objects of class "slrm", usually obtained from the function `slrm`).

It extracts the fitted canonical parameters, i.e. the coefficients in the linear predictor of the spatial logistic regression.

Value

Numeric vector of coefficients.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`slrm`

Examples

```r
X <- rpoispp(42)
fit <- slrm(X ~ x+y)
coeff(fit)
```

collapse.fv

Collapse Several Function Tables into One

Description

Combines several function tables (objects of class "fv") into a single function table, merging columns that are identical and relabelling columns that are different.

Usage

collapse.fv(..., same = NULL, different = NULL)

Arguments

... Arguments which are objects of class "fv", or a list of objects of class "fv".

same Character string or character vector specifying a column or columns, present in each "fv" object, that are identical in each object. This column or columns will be included only once.

different Character string or character vector specifying a column or columns, present in each "fv" object, that contain different values in each object. Each of these columns of data will be included, with labels that distinguish them from each other.
Details

This command combines the data in several function tables (objects of class "fv", see \texttt{fv.object}) to make a single function table. It is essentially a smart wrapper for \texttt{cbind.fv}.

A typical application is to calculate the same summary statistic (such as the K function) for different point patterns, and then to use \texttt{collapse.fv} to combine the results into a single object that can easily be plotted. See the Examples.

The arguments \ldots should be function tables (objects of class "fv", see \texttt{fv.object}) that are compatible in the sense that they have the same values of the function argument.

The argument \texttt{same} identifies any columns that are present in each function table, and which are known to contain exactly the same values in each table. This column or columns will be included only once in the result.

The argument \texttt{different} identifies any columns that are present in each function table, and which contain different numerical values in each table. Each of these columns will be included, with labels to distinguish them.

Columns that are not named in \texttt{same} or \texttt{different} will not be included.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{fv.object, cbind.fv}

Examples

\begin{verbatim}
generate simulated data
X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste("Simulation", 1:3)
compute K function estimates
Klist <- lapply(X, Kest)
collapse
K <- collapse.fv(Klist, same="theo", different="iso")
K
\end{verbatim}
Description

Create a colour map (colour lookup table).

Usage

colourmap(col, ..., range=NULL, breaks=NULL, inputs=NULL)

Arguments

col Vector of values specifying colours
... Ignored.
range Interval to be mapped. A numeric vector of length 2, specifying the endpoints of the range of values to be mapped. Incompatible with breaks or inputs.
inputs Values to which the colours are associated. A factor or vector of the same length as col. Incompatible with breaks or range.
breaks Breakpoints for the colour map. A numeric vector of length equal to length(col)+1. Incompatible with range or inputs.

Details

A colour map is a mechanism for associating colours with data. It can be regarded as a function, mapping data to colours.

The command colourmap creates an object representing a colour map, which can then be used to control the plot commands in the spatstat package. It can also be used to compute the colour assigned to any data value.

The argument col specifies the colours to which data values will be mapped. It should be a vector whose entries can be interpreted as colours by the standard R graphics system. The entries can be string names of colours like "red", or integers that refer to colours in the standard palette, or strings containing six-letter hexadecimal codes like "#F0A0FF".

Exactly one of the arguments range, inputs or breaks must be specified by name.

If inputs is given, then it should be a vector or factor, of the same length as col. The entries of inputs can be any atomic type (e.g. numeric, logical, character, complex) or factor values. The resulting colour map associates the value inputs[i] with the colour col[i].

If range is given, then it determines the interval of the real number line that will be mapped. It should be a numeric vector of length 2.

If breaks is given, then it determines the precise intervals of the real number line which are mapped to each colour. It should be a numeric vector, of length at least 2, with entries that are in increasing order. Infinite values are allowed. Any number in the range between breaks[i] and breaks[i+1] will be mapped to the colour col[i].
The result is an object of class "colourmap". There are print and plot methods for this class. Some plot commands in the spatstat package accept an object of this class as a specification of the colour map.

The result is also a function \(f \) which can be used to compute the colour assigned to any data value. That is, \(f(x) \) returns the character value of the colour assigned to \(x \). This also works for vectors of data values.

Value

A function, which is also an object of class "colourmap".

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

The plot method `plot.colourmap`.

See the R help file on `colours` for information about the colours that R recognises, and how to manipulate them.

To make a smooth transition between colours, see `interp.colourmap`. To alter individual colour values, see `tweak.colourmap`.

See `colourtools` for more tools to manipulate colour values.

See `lut` for lookup tables.

Examples

```r
# colour map for real numbers, using breakpoints
cr <- colourmap(c("red", "blue", "green"), breaks=c(0,5,10,15))
cr
    cr(3.2)
    cr(c(3,5,7))
# a large colour map
co <- colourmap(rainbow(100), range=c(-1,1))
co(0.2)
# colour map for discrete set of values
cr <- colourmap(c("red", "green"), inputs=c(FALSE, TRUE))
cr(TRUE)
```

colourtools Convert and Compare Colours in Different Formats

Description

These functions convert between different formats for specifying a colour in R, determine whether colours are equivalent, and convert colour to greyscale.
Usage

col2hex(x)
rgb2hex(v)
paletteindex(x)
samecolour(x, y)
complementarycolour(x)
interp.colours(x, length.out=512)
to.grey(x, weights=c(0.299, 0.587, 0.114))
is.grey(x)

Arguments

x, y Any valid specification for a colour or sequence of colours accepted by col2rgb.
v A numeric vector of length 3, giving the RGB values (0 to 255) of a single colour, or a 3-column matrix giving the RGB values of several colours.
weights Numeric vector of length 3 giving relative weights for the red, green, and blue channels respectively.
length.out Integer. Length of desired sequence.

Details

col2hex converts colours specified in any format into their hexadecimal character codes.
rgb2hex converts RGB colour values into their hexadecimal character codes.
paletteindex checks whether the colour or colours specified by x are available in the default palette returned by palette(). If so, it returns the index or indices of the colours in the palette. If not, it returns NA.
samecolour decides whether two colours x and y are equivalent.
isgrey determines whether each entry of x is a greyscale colour, and returns a logical vector.
to.grey converts the colour data in x to greyscale colours. Alternatively x can be an object of class "colourmap" and to.grey(x) is the modified colour map.
complementarycolour replaces each colour by its complementary colour in RGB space (the colour obtained by replacing RGB values (r, g, b) by (255-r, 255-g, 255-b)). Alternatively x can be an object of class "colourmap" and complementarycolour(x) is the modified colour map.
interp.colours interpolates between each successive pair of colours in a sequence of colours, to generate a more finely-spaced sequence. It uses linear interpolation in HSV space (with hue represented as a two-dimensional unit vector).

Value

For col2hex, rgb2hex and to.grey, a character vector containing hexadecimal colour codes.
For paletteindex, an integer vector, possibly containing NA values.
For samecolour and isgrey, a logical value or logical vector.

Warning

paletteindex("green") returns NA because the green colour in the default palette is called "green3".
commonGrid

Determine A Common Spatial Domain And Pixel Resolution

Description

Determine a common spatial domain and pixel resolution for several spatial objects such as images, masks, windows and point patterns.

Usage

commonGrid(...)

Arguments

... Any number of pixel images (objects of class "im"), binary masks (objects of class "owin" of type "mask") or data which can be converted to binary masks by as.mask.

Details

This function determines a common spatial resolution and spatial domain for several spatial objects. The arguments ... may be pixel images, binary masks, or other spatial objects acceptable to as.mask.

The common pixel grid is determined by inspecting all the pixel images and binary masks in the argument list, finding the pixel grid with the highest spatial resolution, and extending this pixel grid to cover the bounding box of all the spatial objects.
The return value is a binary mask \(m \), representing the bounding box at the chosen pixel resolution. Use \texttt{as.im}(X, \(\mathbb{W} = m \)) to convert a pixel image \(X \) to this new pixel resolution. Use \texttt{as.mask}(\(\mathbb{W} \), \(xy = m \)) to convert a window \(\mathbb{W} \) to a binary mask at this new pixel resolution. See the Examples.

Value

A binary mask (object of class "owin" and type "mask").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{harmonise.im, compatible.im, as.im}

Examples

\begin{verbatim}
A <- setcov(square(1))
G <- density(runifpoint(42), dimyx=16)
H <- commonGrid(A, letterR, G)
newR <- as.mask(letterR, xy=H)
newG <- as.im(G, \(\mathbb{W} = H \))
\end{verbatim}

\texttt{compareFit} \hspace{1cm} \textit{Residual Diagnostics for Multiple Fitted Models}

Description

Compares several fitted point process models using the same residual diagnostic.

Usage

\begin{verbatim}
compareFit(object, Fun, r = NULL, breaks = NULL, ...,
 trend = ~1, interaction = Poisson(), rbord = NULL,
 modelnames = NULL, same = NULL, different = NULL)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{object} Object or objects to be analysed. Either a fitted point process model (object of class "ppm"), a point pattern (object of class "ppp"), or a list of these objects.
 \item \texttt{Fun} Diagnostic function to be computed for each model. One of the functions \texttt{Kcom}, \texttt{Kres}, \texttt{Gcom}, \texttt{Gres}, \texttt{psst}, \texttt{psstA} or \texttt{psstG} or a string containing one of these names.
 \item \texttt{r} Optional. Vector of values of the argument \(r \) at which the diagnostic should be computed. This argument is usually not specified. There is a sensible default.
 \item \texttt{breaks} Optional alternative to \(r \) for advanced use.
\end{itemize}
... Extra arguments passed to Fun.

- trend, interaction, rbord
 Optional. Arguments passed to ppm to fit a point process model to the data, if object is a point pattern or list of point patterns. See ppm for details. Each of these arguments can be a list, specifying different trend, interaction and/or rbord values to be used to generate different fitted models.

- modelnames
 Character vector. Short descriptive names for the different models.

- same, different
 Character strings or character vectors passed to collapse.fv to determine the format of the output.

Details

This is a convenient way to collect diagnostic information for several different point process models fitted to the same point pattern dataset, or for point process models of the same form fitted to several different datasets, etc.

The first argument, object, is usually a list of fitted point process models (objects of class "ppm"), obtained from the model-fitting function ppm.

For convenience, object can also be a list of point patterns (objects of class "ppp"). In that case, point process models will be fitted to each of the point pattern datasets, by calling ppm using the arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the border correction for the pseudolikelihood). See ppm for details of these arguments.

Alternatively object can be a single point pattern (object of class "ppp") and one or more of the arguments trend, interaction or rbord can be a list. In this case, point process models will be fitted to the same point pattern dataset, using each of the model specifications listed.

The diagnostic function Fun will be applied to each of the point process models. The results will be collected into a single function value table. The modelnames are used to label the results from each fitted model.

Value

Function value table (object of class "fv").

Author(s)

See Also

ppm, Kcom, Kres, Gcom, Gres, psst, psstA, psstG, collapse.fv

Examples

```r
nd <- 40

ilist <- list(Poisson(), Geyer(7, 2), Strauss(7))
iname <- c("Poisson", "Geyer", "Strauss")
```
compatible

K <- compareFit(swedishpines, Kcom, interaction=ilist, rbord=9,
correction="translate",
 same="trans", different="tcom", modelnames=iname, nd=nd)
K

compatible Test Whether Objects Are Compatible

Description
Tests whether two or more objects of the same class are compatible.

Usage
compatible(A, B, ...)

Arguments
A,B,... Two or more objects of the same class

Details
This generic function is used to check whether the objects A and B (and any additional objects ...) are compatible.

What is meant by ‘compatible’ depends on the class of object.
There are methods for the classes "fv", "fasp", "im" and "units".

Value
Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
compatible.fv, compatible.fasp, compatible.im, compatible.units
Test Whether Function Arrays Are Compatible

Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage

```r
## S3 method for class 'fasp'
compatible(A, B, ...)
```

Arguments

- `A, B, ...` Two or more function arrays (object of class "fasp").

Details

An object of class "fasp" can be regarded as an array of functions. Such objects are returned by the command `alltypes`.

This command tests whether such objects are compatible (so that, for example, they could be added or subtracted). It is a method for the generic command `compatible`.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding elements in each cell of the array are compatible as defined by `compatible.fv`.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `eval.fasp`
Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage

```
## S3 method for class 'fv'
compatible(A, B, ...)
```

Arguments

- `A, B, ...` Two or more function value objects (class "fv").

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates of the same function. Such objects are returned by `Kest` and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added or subtracted). It is a method for the generic command `compatible`.

The functions are compatible if they have been evaluated at the same sequence of values of the argument `r`, and if the statistical estimates have the same names.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `eval.fv`
Test Whether Pixel Images Are Compatible

Description

Tests whether two or more pixel image objects have compatible dimensions.

Usage

```r
## S3 method for class 'im'
compatible(A, B, ..., tol=1e-6)
```

Arguments

- `A, B, ...`: Two or more pixel images (objects of class "im").
- `tol`: Tolerance factor

Details

This function tests whether the pixel images `A` and `B` (and any additional images `...`) have compatible pixel dimensions. They are compatible if they have the same number of rows and columns, the same physical pixel dimensions, and occupy the same rectangle in the plane.

The argument `tol` specifies the maximum tolerated error in the pixel coordinates, expressed as a fraction of the dimensions of a single pixel.

Value

Logical value: `TRUE` if the images are compatible, and `FALSE` if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `eval.im`, `harmonise.im`, `commonGrid`
complement.owin

Take Complement of a Window

Description
Take the set complement of a window, within its enclosing rectangle or in a larger rectangle.

Usage
complement.owin(w, frame=as.rectangle(w))

Arguments
- `w`: an object of class "owin" describing a window of observation for a point pattern.
- `frame`: Optional. The enclosing rectangle, with respect to which the set complement is taken.

Details
This yields a window object (of class "owin", see owin.object) representing the set complement of `w` with respect to the rectangle `frame`.

By default, `frame` is the enclosing box of `w` (originally specified by the arguments `xrange` and `yrange` given to owin when `w` was created). If `frame` is specified, it must be a rectangle (an object of class "owin" whose type is "rectangle") and it must be larger than the enclosing box of `w`. This rectangle becomes the enclosing box for the resulting window.

If `w` is a rectangle, then `frame` must be specified. Otherwise an error will occur (since the complement of `w` in itself is empty).

For rectangular and polygonal windows, the complement is computed by reversing the sign of each boundary polygon, while for binary masks it is computed by negating the pixel values.

Value
Another object of class "owin" representing the complement of the window, i.e. the inside of the window becomes the outside.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
owin, owin.object
Examples

rectangular
a <- owin(c(0,1),c(0,1))
b <- owin(c(-1,2),c(-1,2))
bmina <- complement.owin(a, frame=b)
polygonal
data(demopat)
w <- demopat$window
outside <- complement.owin(w)
mask
w <- as.mask(demopat$window)
outside <- complement.owin(w)

concatxy

Concatenate x,y Coordinate Vectors

Description

Concatenate any number of pairs of x and y coordinate vectors.

Usage

concatxy(...)

Arguments

... Any number of arguments, each of which is a structure containing elements x and y.

Details

This function can be used to superimpose two or more point patterns of unmarked points (but see also superimpose which is recommended).

It assumes that each of the arguments in ... is a structure containing (at least) the elements x and y. It concatenates all the x elements into a vector x, and similarly for y, and returns these concatenated vectors.

Value

A list with two components x and y, which are the concatenations of all the corresponding x and y vectors in the argument list.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
The Connected Component Process Model

Description

Creates an instance of the Connected Component point process model which can then be fitted to point pattern data.

Usage

Concom(r)

Arguments

r Threshold distance

Details

This function defines the interpoint interaction structure of a point process called the connected component process. It can be used to fit this model to point pattern data.

The function `ppm()` which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the connected component interaction is yielded by the function `Concom()`. See the examples below.

In standard form, the connected component process (Baddeley and Møller, 1989) with disc radius \(r \), intensity parameter \(\kappa \) and interaction parameter \(\gamma \) is a point process with probability density

\[
f(x_1, \ldots, x_n) = \alpha \kappa^{n(x)} \gamma^{-C(x)}
\]

for a point pattern \(x \), where \(x_1, \ldots, x_n \) represent the points of the pattern, \(n(x) \) is the number of points in the pattern, and \(C(x) \) is defined below. Here \(\alpha \) is a normalising constant.

To define the term \(C(x) \), suppose that we construct a planar graph by drawing an edge between each pair of points \(x_i, x_j \) which are less than \(r \) units apart. Two points belong to the same connected component of this graph if they are joined by a path in the graph. Then \(C(x) \) is the number of connected components of the graph.

The interaction parameter \(\gamma \) can be any positive number. If \(\gamma = 1 \) then the model reduces to a Poisson process with intensity \(\kappa \). If \(\gamma < 1 \) then the process is regular, while if \(\gamma > 1 \) the process is

See Also

`superimpose`, `quadscheme`

Examples

```r
dat <- runifrect(30)
xy <- list(x=runif(10), y=runif(10))
new <- concatxy(dat, xy)
```
clustered. Thus, a connected-component interaction process can be used to model either clustered or regular point patterns.

In `spatstat`, the model is parametrised in a different form, which is easier to interpret. In canonical form, the probability density is rewritten as

\[f(x_1, \ldots, x_n) = \alpha \beta^{n(x)} \gamma^{-U(x)} \]

where \(\beta \) is the new intensity parameter and \(U(x) = C(x) - n(x) \) is the interaction potential. In this formulation, each isolated point of the pattern contributes a factor \(\beta \) to the probability density (so the first order trend is \(\beta \)). The quantity \(U(x) \) is a true interaction potential, in the sense that \(U(x) = 0 \) if the point pattern \(x \) does not contain any points that lie close together.

When a new point \(u \) is added to an existing point pattern \(x \), the rescaled potential \(-U(x) \) increases by zero or a positive integer. The increase is zero if \(u \) is not close to any point of \(x \). The increase is a positive integer \(k \) if there are \(k \) different connected components of \(x \) that lie close to \(u \). Addition of the point \(u \) contributes a factor \(\beta \eta^k \) to the probability density, where \(\delta \) is the increase in potential.

If desired, the original parameter \(\kappa \) can be recovered from the canonical parameter by \(\kappa = \beta \gamma \).

The nonstationary connected component process is similar except that the contribution of each individual point \(x_i \) is a function \(\beta(x_i) \) of location, rather than a constant beta.

Note the only argument of Concom() is the threshold distance \(r \). When \(r \) is fixed, the model becomes an exponential family. The canonical parameters \(\log(\beta) \) and \(\log(\gamma) \) are estimated by ppm(), not fixed in Concom().

Value

An object of class "interact" describing the interpoint interaction structure of the connected component process with disc radius \(r \).

Edge correction

The interaction distance of this process is infinite. There are no well-established procedures for edge correction for fitting such models, and accordingly the model-fitting function ppm will give an error message saying that the user must specify an edge correction. A reasonable solution is to use the border correction at the same distance \(r \), as shown in the Examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm, pairwise.family, ppm.object
Examples

prints a sensible description of itself
Concom(r=0.1)

Fit the stationary connected component process to redwood data
ppm(redwood, -1, Concom(r=0.07), rbord=0.07)

Fit the stationary connected component process to `cells' data
ppm(cells, -1, Concom(r=0.06), rbord=0.06)
eta=0 indicates hard core process.

Fit a nonstationary connected component model
with log-cubic polynomial trend
Not run:
ppm(swedishpines, ~polynom(x/10,y/10,3), Concom(r=7), rbord=7)

End(Not run)

connected

Connected components

Description

Finds the topologically-connected components of a spatial object, such as the connected clumps of pixels in a binary image.

Usage

connected(X, ...)

S3 method for class 'owin'
connected(X, ..., method="C")

S3 method for class 'im'
connected(X, ..., background = NA, method="C")

Arguments

- **X**: A spatial object such as a pixel image (object of class "im") or a window (object of class "owin").
- **background**: Optional. Treat pixels with this value as being part of the background.
- **method**: String indicating the algorithm to be used. Either "C" or "interpreted". See Details.
- **...**: Other arguments, not recognised by these methods.
Details

The function `connected` is generic, with methods for pixel images (class "im") and windows (class "owin") described here. There is also a method for point patterns described in `connected.ppp`.

The functions described here compute the connected component transform (Rosenfeld and Pfalz, 1966) of a binary image or binary mask. The argument `x` is first converted into a pixel image with logical values. Then the algorithm identifies the connected components (topologically-connected clumps of pixels) in the foreground.

Two pixels belong to the same connected component if they have the value `TRUE` and if they are neighbours (in the 8-connected sense). This rule is applied repeatedly until it terminates. Then each connected component contains all the pixels that can be reached by stepping from neighbour to neighbour.

If `method="C"`, the computation is performed by a compiled C language implementation of the classical algorithm of Rosenfeld and Pfalz (1966). If `method="interpreted"`, the computation is performed by an R implementation of the algorithm of Park et al (2000).

The result is a factor-valued image, with levels that correspond to the connected components. The Examples show how to extract each connected component as a separate window object.

Value

A pixel image (object of class "im") with factor values. The levels of the factor correspond to the connected components.

Warnings

It may be hard to distinguish different components in the default plot because the colours of nearby components may be very similar. See the Examples for a randomised colour map.

The algorithm for `method="interpreted"` can be very slow for large images (or images where the connected components include a large number of pixels).

Author(s)

Original R code by Julian Burgos, University of Washington. Adapted for spatstat by Adrian Baddeley <adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`connected.ppp`, `im.object`, `tess`
Examples

data(cells)
d <- distmap(cells, dimyx=256)
X <- levelset(d, 0.06)
plot(X)
Z <- connected(X)
plot(Z)

number of components
nc <- length(levels(Z))
plot with randomised colour map
plot(Z, col=hsv(h=sample(seq(0,1,length=nc), nc)))

how to extract the components as a list of windows
W <- tiles(tess(image=Z))

Description

Finds the topologically-connected components of a point pattern, when all pairs of points closer than a threshold distance are joined.

Usage

S3 method for class 'ppp'
connected(X, R, ...)

Arguments

X A point pattern (object of class "ppp").
R Threshold distance. Pairs of points closer than R units apart will be joined together.
... Other arguments, not recognised by these methods.

Details

This function can be used to identify clumps of points in a point pattern.
The function connected is generic. This is the method for point patterns (objects of class "ppp").
The point pattern X is first converted into an abstract graph by joining every pair of points that lie closer than R units apart. Then the connected components of this graph are identified.
Two points in X belong to the same connected component if they can be reached by a series of steps between points of X, each step being shorter than R units in length.
The result is a vector of labels for the points of X where all the points in a connected component have the same label.
contour.im

Value

A point pattern, equivalent to X except that the points have factor-valued marks, with levels corresponding to the connected components.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

connected.im, im.object, tess

Examples

Y <- connected(redwoodfull, 0.1)
if(interactive()) {
 plot(Y, cols=1:length(levels(marks(Y))),
 main="connected(redwoodfull, 0.1)")
}

Description

Generates a contour plot of a pixel image.

Usage

S3 method for class 'im'
contour(x, ..., main,
 axes=FALSE, add=FALSE, clipwin=NULL, show.all=!add, do.plot=TRUE)

Arguments

 x Pixel image to be plotted. An object of class "im".
 main Character string to be displayed as the main title.
 axes Logical. If TRUE, coordinate axes are plotted (with tick marks) around a region
 slightly larger than the image window. If FALSE (the default), no axes are plotted,
 and a box is drawn tightly around the image window. Ignored if add=TRUE.
 add Logical. If FALSE, a new plot is created. If TRUE, the contours are drawn over
 the existing plot.
 clipwin Optional. A window (object of class "owin"). Only this subset of the data will be displayed.
Other arguments passed to `contour.default` controlling the contour plot; see Details.

Logical value indicating whether to display all plot elements including the main title, bounding box, and (if `axis=TRUE`) coordinate axis markings. Default is `TRUE` for new plots and `FALSE` for added plots.

Logical value indicating whether to actually perform the plot.

Details

This is a method for the generic `contour` function, for objects of the class "im". An object of class "im" represents a pixel image; see `im.object`.

This function displays the values of the pixel image `x` as a contour plot on the current plot device, using equal scales on the `x` and `y` axes.

The appearance of the plot can be modified using any of the arguments listed in the help for `contour.default`. Useful ones include:

- `nlevels` Number of contour levels to plot.
- `drawlabels` Whether to label the contour lines with text.
- `col`, `lty`, `lwd` Colour, type, and width of contour lines.

See `contour.default` for a full list of these arguments.

The defaults for any of the abovementioned arguments can be reset using `spatstat.options("par.contour")`.

Value

none.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`im.object`, `plot.im`, `persp.im`

Examples

```r
# an image
Z <- setcov(owin())
contour(Z, axes=TRUE)
contour(Z)
```
Description

Generates an array of contour plots.

Usage

```r
## S3 method for class 'imlist'
contour(x, ...)

## S3 method for class 'listof'
contour(x, ...)
```

Arguments

- `x`: An object of the class "imlist" representing a list of pixel images. Alternatively `x` may belong to the outdated class "listof".
- `...`: Arguments passed to `plot.solist` to control the spatial arrangement of panels, and arguments passed to `contour.im` to control the display of each panel.

Details

This is a method for the generic command `contour` for the class "imlist". An object of class "imlist" represents a list of pixel images.

(The outdated class "listof" is also handled.)

Each entry in the list `x` will be displayed as a contour plot, in an array of panels laid out on the same graphics display, using `plot.solist`. Individual panels are plotted by `contour.im`.

Value

Null.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`plot.solist`, `contour.im`

Examples

```r
# Multitype point pattern
c contour(D <- density(split(amacrine)))
```
convexhull

Description

Computes the convex hull of a spatial object.

Usage

convexhull(x)

Arguments

x
a window (object of class "owin"), a point pattern (object of class "ppp"), a line segment pattern (object of class "psp"), or an object that can be converted to a window by as.owin.

Details

This function computes the convex hull of the spatial object x.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, convexhull.xy, is.convex

Examples

data(demopat)
W <- demopat$window
plot(convexhull(W), col="lightblue", border=NA)
plot(W, add=TRUE, lwd=2)
convexhull.xy

Convex Hull of Points

Description

Computes the convex hull of a set of points in two dimensions.

Usage

convexhull.xy(x, y=NULL)

Arguments

x
 vector of x coordinates of observed points, or a 2-column matrix giving x,y
 coordinates, or a list with components x,y giving coordinates (such as a point
 pattern object of class "ppp".)

y
 (optional) vector of y coordinates of observed points, if x is a vector.

Details

Given an observed pattern of points with coordinates given by x and y, this function computes the
convex hull of the points, and returns it as a window.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
 and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, convexhull, bounding.box.xy, ripras

Examples

x <- runif(30)
y <- runif(30)
w <- convexhull.xy(x,y)
plot(owin(), main="convexhull.xy(x,y)", lty=2)
plot(w, add=TRUE)
points(x,y)

X <- rpoispp(30)
plot(X, main="convexhull.xy(X)")
plot(convexhull.xy(X), add=TRUE)
Description

Computes the convolution of two pixel images.

Usage

convolve.im(X, Y=x, ..., reflectX=FALSE, reflectY=FALSE)

Arguments

X A pixel image (object of class "im".
Y Optional. Another pixel image.
... Ignored.
reflectX, reflectY Logical values specifying whether the images X and Y (respectively) should be reflected in the origin before computing the convolution.

Details

The convolution of two pixel images X and Y in the plane is the function C(v) defined for each vector v as

\[C(v) = \int X(u)Y(v - u) \, du \]

where the integral is over all spatial locations u, and where \(X(u) \) and \(Y(u) \) denote the pixel values of X and Y respectively at location u.

This command computes a discretised approximation to the convolution, using the Fast Fourier Transform. The return value is another pixel image (object of class "im") whose greyscale values are values of the convolution.

If reflectX = TRUE then the pixel image X is reflected in the origin before the convolution is computed, so that convolve.im(X, Y, reflectX=TRUE) is mathematically equivalent to convolve.im(reflect(X), Y). (These two commands are not exactly equivalent, because the reflection is performed in the Fourier domain in the first command, and reflection is performed in the spatial domain in the second command).

Similarly if reflectY = TRUE then the pixel image Y is reflected in the origin before the convolution is computed, so that convolve.im(X, Y, reflectY=TRUE) is mathematically equivalent to convolve.im(X, reflect(Y)).

Value

A pixel image (an object of class "im") representing the convolution of X and Y.
coords

Description

Given any kind of spatial or space-time point pattern, this function extracts the (space and/or time and/or local) coordinates of the points and returns them as a data frame.

Usage

```r
 coords(x, ...)
 # S3 method for class 'ppp'
 coords(x, ...)
 # S3 method for class 'ppx'
 coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE)
 coords(x, ...) <- value
 # S3 replacement method for class 'ppp'
 coords(x, ...) <- value
 # S3 replacement method for class 'ppx'
 coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE) <- value
```

Arguments

- **x**: A point pattern: either a two-dimensional point pattern (object of class "ppp"), a three-dimensional point pattern (object of class "pp3"), or a general multidimensional space-time point pattern (object of class "ppx").
- **...**: Further arguments passed to methods.
- **spatial, temporal, local**: Logical values indicating whether to extract spatial, temporal and local coordinates, respectively. The default is to return all such coordinates. (Only relevant to ppx objects).
value New values of the coordinates. A numeric vector with one entry for each point in \(x \), or a numeric matrix or data frame with one row for each point in \(x \).

Details

The function \texttt{coords} extracts the coordinates from a point pattern. The function \texttt{coords<-} replaces the coordinates of the point pattern with new values.

Both functions \texttt{coords} and \texttt{coords<-} are generic, with methods for the classes "ppp" and "ppx". An object of class "pp3" also inherits from "ppx" and is handled by the method for "ppx".

Value

\texttt{coords} returns a \texttt{data.frame} with one row for each point, containing the coordinates. \texttt{coords<-} returns the altered point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{ppx, pp3, ppp, as.hyperframe.ppx, as.data.frame.ppx}.

Examples

\begin{verbatim}
df <- data.frame(x=runif(4), y=runif(4), t=runif(4))
X <- ppx(data=df, coord.type=c("s", "s", "t"))
coords(X)
coords(X, temporal=FALSE)
coords(X) <- matrix(runif(12), ncol=3)
\end{verbatim}

\texttt{copper} \hspace{1cm} \textit{Berman-Huntington points and lines data}

Description

These data come from an intensive geological survey of a 70 x 158 km region in central Queensland, Australia. They consist of 67 points representing copper ore deposits, and 146 line segments representing geological 'lineaments'. Lineaments are linear features, visible on a satellite image, that are believed to consist largely of geological faults (Berman, 1986, p. 55). It would be of great interest to predict the occurrence of copper deposits from the lineament pattern, since the latter can easily be observed on satellite images.

These data were introduced and analysed by Berman (1986). They have also been studied by Berman and Diggle (1989), Berman and Turner (1992), Baddeley and Turner (2000, 2005), Foxall and Baddeley (2002) and Baddeley et al (2005).

Many analyses have been performed on the southern half of the data only. This subset is also provided.
copper

Usage
data(copper)

Format
copper is a list with the following entries:

- **Points** a point pattern (object of class "ppp") representing the full point pattern of copper deposits. See `ppp.object` for details of the format.
- **Lines** a line segment pattern (object of class "psp") representing the lineaments in the full dataset. See `psp.object` for details of the format.
- **SouthWindow** the window delineating the southern half of the study region. An object of class "owin".
- **SouthPoints** the point pattern of copper deposits in the southern half of the study region. An object of class "ppp".
- **SouthLines** the line segment pattern of the lineaments in the southern half of the study region. An object of class "psp".

Source
Dr Jonathan Huntington, CSIRO Earth Science and Resource Engineering, Sydney, Australia. Co-ordinates kindly provided by Dr. Mark Berman and Dr. Andy Green, CSIRO, Sydney, Australia.

References

Examples

```r
data(copper)

# Plot full dataset
plot(copper$Points)
plot(copper$Lines, add=TRUE)

# Plot southern half of data
plot(copper$SouthPoints)
plot(copper$SouthLines, add=TRUE)

## Not run:
Z <- distmap(copper$SouthLines)
plot(Z)
X <- copper$SouthPoints
ppm(X, ~D, covariates=list(D=Z))

## End(Not run)
```

corners

Corners of a rectangle

Description

Returns the four corners of a rectangle

Usage

```r
corners(window)
```

Arguments

- `window` A window. An object of class `owin`, or data in any format acceptable to `as.owin()`.

Details

This trivial function is occasionally convenient. If `window` is of type "rectangle" this returns the four corners of the window itself; otherwise, it returns the corners of the bounding rectangle of the window.

Value

A list with two components `x` and `y`, which are numeric vectors of length 4 giving the coordinates of the four corner points of the (bounding rectangle of the) window.
crossdist

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme

Examples

```r
w <- unit.square()
corners(w)
  # returns list(x=c(0,1,0,1),y=c(0,0,1,1))
```

Description

Computes the distances between pairs of ‘things’ taken from two different datasets.

Usage

```r
crossdist(X, Y, ...)
```

Arguments

- `X, Y`: Two objects of the same class.
- `...`: Additional arguments depending on the method.

Details

Given two datasets `X` and `Y` (representing either two point patterns or two line segment patterns), `crossdist` computes the Euclidean distance from each thing in the first dataset to each thing in the second dataset, and returns a matrix containing these distances.

The function `crossdist` is generic, with methods for point patterns (objects of class "ppp"), line segment patterns (objects of class "psp"), and a default method. See the documentation for `crossdist.ppp`, `crossdist.psp` or `crossdist.default` for further details.

Value

A matrix whose `[i,j]` entry is the distance from the `i`-th thing in the first dataset to the `j`-th thing in the second dataset.

Author(s)

crossdist.default

Pairwise distances between two different sets of points

Description

Computes the distances between each pair of points taken from two different sets of points.

Usage

```r
## Default S3 method:
crossdist(X, Y, x2, y2, ..., 
    period=NULL, method="C", squared=FALSE)
```

Arguments

- `X, Y` Numeric vectors of equal length specifying the coordinates of the first set of points.
- `x2, y2` Numeric vectors of equal length specifying the coordinates of the second set of points.
- `...` Ignored.
- `period` Optional. Dimensions for periodic edge correction.
- `method` String specifying which method of calculation to use. Values are "C" and "interpreted".
- `squared` Logical. If `squared=TRUE`, the squared distances are returned instead (this computation is faster).

Details

Given two sets of points, this function computes the Euclidean distance from each point in the first set to each point in the second set, and returns a matrix containing these distances.

This is a method for the generic function `crossdist`.

This function expects `X` and `Y` to be numeric vectors of equal length specifying the coordinates of the first set of points. The arguments `x2, y2` specify the coordinates of the second set of points.

Alternatively if `period` is given, then the distances will be computed in the 'periodic' sense (also known as 'torus' distance). The points will be treated as if they are in a rectangle of width `period[1]` and height `period[2]`. Opposite edges of the rectangle are regarded as equivalent.

The argument `method` is not normally used. It is retained only for checking the validity of the software. If `method = "interpreted"` then the distances are computed using interpreted R code only. If `method="C"` (the default) then C code is used. The C code is faster by a factor of 4.
crossdist.lpp

Value

A matrix whose \([i, j]\) entry is the distance from the \(i\)-th point in the first set of points to the \(j\)-th point in the second set of points.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

See Also

`crossdist, crossdist.ppp, crossdist.psp, pairdist, nndist, Gest`

Examples

```r
d <- crossdist(runif(7), runif(7), runif(12), runif(12))
d <- crossdist(runif(7), runif(7), runif(12), runif(12), period=c(1,1))
```

** crossdist.lpp
Pairwise distances between two point patterns on a linear network

Description

Computes the distances between pairs of points taken from two different point patterns on the same linear network.

Usage

```r
# S3 method for class 'lpp'
crossdist(X, Y, ..., method="C")
```

Arguments

- `X, Y`
 Point patterns on a linear network (objects of class "lpp"). They must lie on the same network.
- `...`
 Ignored.
- `method`
 String specifying which method of calculation to use. Values are "C" and "interpreted".

Details

Given two point patterns on a linear network, this function computes the Euclidean distance from each point in the first pattern to each point in the second pattern, measuring distance by the shortest path in the network.

This is a method for the generic function `crossdist` for point patterns on a linear network (objects of class "lpp").

This function expects two point pattern objects \(X\) and \(Y\) on the same linear network, and returns the matrix whose \([i, j]\) entry is the shortest-path distance from \(X[i]\) to \(Y[j]\).
The argument method is not normally used. It is retained only for checking the validity of the software. If method = "interpreted" then the distances are computed using interpreted R code only. If method="C" (the default) then C code is used. The C code is much faster.

Value
A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also
crossdist, crossdist.ppp, pairdist, nndist

Examples
v <- split(chicago)
X <- v$cartheft
Y <- v$burglary
d <- crossdist(X, Y)

crossdist.pp3 Pairwise distances between two different three-dimensional point patterns

Description
Computes the distances between pairs of points taken from two different three-dimensional point patterns.

Usage
S3 method for class 'pp3'
crossdist(X, Y, ..., periodic=FALSE, squared=FALSE)

Arguments
X, Y Point patterns in three dimensions (objects of class "pp3").
... Ignored.
periodic Logical. Specifies whether to apply a periodic edge correction.
squared Logical. If squared=TRUE, the squared distances are returned instead (this computation is faster).
Details

Given two point patterns in three-dimensional space, this function computes the Euclidean distance from each point in the first pattern to each point in the second pattern, and returns a matrix containing these distances.

This is a method for the generic function `crossdist` for three-dimensional point patterns (objects of class "pp3").

This function expects two point patterns \(X \) and \(Y \), and returns the matrix whose \([i,j]\) entry is the distance from \(X[i] \) to \(Y[j] \).

Alternatively if \texttt{periodic=TRUE}, then provided the windows containing \(X \) and \(Y \) are identical and are rectangular, then the distances will be computed in the ‘periodic’ sense (also known as ‘torus’ distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the window is not a rectangle.

Value

A matrix whose \([i,j]\) entry is the distance from the \(i \)-th point in \(X \) to the \(j \)-th point in \(Y \).

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\) \texttt{http://www.maths.uwa.edu.au/~adrian/}
based on code for two dimensions by Pavel Grabarnik.

See Also

`crossdist`, `pairdist`, `nndist`, `G3est`

Examples

```r
X <- runifpoint3(20)
Y <- runifpoint3(30)
d <- crossdist(X, Y)
d <- crossdist(X, Y, periodic=TRUE)
```

Description

Computes the distances between pairs of points taken from two different point patterns.

Usage

```r
## S3 method for class 'ppp'
crossdist(X, Y, ..., periodic=FALSE, method="C", squared=FALSE)
```
Arguments

- **X, Y**
 Point patterns (objects of class "ppp").
- **...**
 Ignored.
- **periodic**
 Logical. Specifies whether to apply a periodic edge correction.
- **method**
 String specifying which method of calculation to use. Values are "C" and "interpreted".
- **squared**
 Logical. If squared=TRUE, the squared distances are returned instead (this computation is faster).

Details

Given two point patterns, this function computes the Euclidean distance from each point in the first pattern to each point in the second pattern, and returns a matrix containing these distances.

This is a method for the generic function `crossdist` for point patterns (objects of class "ppp").

This function expects two point patterns X and Y, and returns the matrix whose [i,j] entry is the distance from X[i] to Y[j].

Alternatively if periodic=TRUE, then provided the windows containing X and Y are identical and are rectangular, then the distances will be computed in the 'periodic' sense (also known as 'torus' distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the window is not a rectangle.

The argument method is not normally used. It is retained only for checking the validity of the software. If method = "interpreted" then the distances are computed using interpreted R code only. If method="C" (the default) then C code is used. The C code is faster by a factor of 4.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

See Also

`crossdist, crossdist.default, crossdist.psp, pairdist, nndist, Gest`

Examples

```r
data(cells)
d <- crossdist(cells, runifpoint(6))
d <- crossdist(cells, runifpoint(6), periodic=TRUE)
```
Description

Computes the distances between pairs of points taken from two different multi-dimensional point patterns.

Usage

```r
## S3 method for class 'ppx'
crossdist(X, Y, ...)
```

Arguments

- `X, Y`: Multi-dimensional point patterns (objects of class "ppx").
- `...`: Arguments passed to `coords.ppx` to determine which coordinates should be used.

Details

Given two point patterns in multi-dimensional space, this function computes the Euclidean distance from each point in the first pattern to each point in the second pattern, and returns a matrix containing these distances.

This is a method for the generic function `crossdist` for three-dimensional point patterns (objects of class "ppx").

This function expects two multidimensional point patterns `X` and `Y`, and returns the matrix whose `[i,j]` entry is the distance from `X[i]` to `Y[j].`

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance between points in a space-time point pattern, set `temporal=FALSE`.

Value

A matrix whose `[i,j]` entry is the distance from the `i`-th point in `X` to the `j`-th point in `Y`.

Author(s)

See Also

crossdist, pairdist, nndist
Examples

```r
df <- data.frame(x=runif(3), y=runif(3), z=runif(3), w=runif(3))
X <- ppx(data=df)
df <- data.frame(x=runif(5), y=runif(5), z=runif(5), w=runif(5))
Y <- ppx(data=df)
d <- crossdist(X, Y)
```

Description

Computes the distances between all pairs of line segments taken from two different line segment patterns.

Usage

```r
# S3 method for class 'psp'
crossdist(X, Y, ..., method="C", type="Hausdorff")
```

Arguments

- `X, Y`: Line segment patterns (objects of class "psp").
- `...`: Ignored.
- `method`: String specifying which method of calculation to use. Values are "C" and "interpreted". Usually not specified.
- `type`: Type of distance to be computed. Options are "Hausdorff" and "separation". Partial matching is used.

Details

This is a method for the generic function `crossdist`.

Given two line segment patterns, this function computes the distance from each line segment in the first pattern to each line segment in the second pattern, and returns a matrix containing these distances.

The distances between line segments are measured in one of two ways:

- if `type="Hausdorff"`, distances are computed in the Hausdorff metric. The Hausdorff distance between two line segments is the maximum distance from any point on one of the segments to the nearest point on the other segment.
- if `type="separation"`, distances are computed as the minimum distance from a point on one line segment to a point on the other line segment. For example, line segments which cross over each other have separation zero.

The argument `method` is not normally used. It is retained only for checking the validity of the software. If `method = "interpreted"` then the distances are computed using interpreted R code only. If `method="C"` (the default) then compiled C code is used. The C code is several times faster.
crossing.psp

Value
A matrix whose $[i,j]$ entry is the distance from the i-th line segment in X to the j-th line segment in Y.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
pairdist, nndist, Gest

Examples
L1 <- psp(runif(5), runif(5), runif(5), runif(5), owin())
L2 <- psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- crossdist(L1, L2)
#result is a 5 x 10 matrix
S <- crossdist(L1, L2, type="sep")

Description
Finds any crossing points between two line segment patterns.

Usage
crossing.psp(A,B,fatal=TRUE)

Arguments
A,B Line segment patterns (objects of class "psp").
fatal Logical value indicating what to do if the windows of A and B do not overlap. See Details.

Details
This function finds any crossing points between the line segment patterns A and B.
A crossing point occurs whenever one of the line segments in A intersects one of the line segments in B, at a nonzero angle of intersection.
If the windows Window(A) and Window(B) do not overlap, then an error will be reported if fatal=TRUE, while if fatal=FALSE an error will not occur and the result will be NULL.
Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

selfcrossing.psp, psp.object, ppp.object.

Examples

```r
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a, col="green", main="crossing.psp")
plot(b, add=TRUE, col="blue")
P <- crossing.psp(a,b)
plot(P, add=TRUE, col="red")
```
cut.ppp

Value

A pixel image (object of class "im") with pixel values that are a factor. See \texttt{im.object}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{cut.im.object}

Examples

\begin{verbatim}
artificial image data
Z <- setcov(square(1))

Y <- cut(Z, 3)
Y <- cut(Z, breaks=seq(0,1,length=5))

cut at the quartiles
(divides the image into 4 equal areas)
Y <- cut(Z, quantile(Z))
\end{verbatim}

cut.ppp \hspace{1cm} \textit{Classify Points in a Point Pattern}

Description

Classifies the points in a point pattern into distinct types according to the numerical marks in the pattern, or according to another variable.

Usage

\begin{verbatim}
S3 method for class 'ppp'
cut(x, z=marks(x), ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{x} \hspace{1cm} A two-dimensional point pattern. An object of class "ppp".
 \item \textbf{z} \hspace{1cm} Data determining the classification. A numeric vector, a factor, a pixel image, a window, a tessellation, or a string giving the name of a column of marks.
 \item \textbf{...} \hspace{1cm} Arguments passed to \texttt{cut.default}. They determine the breakpoints for the mapping from numerical values in \texttt{z} to factor values in the output. See \texttt{cut.default}.
\end{itemize}
Details

This function has the effect of classifying each point in the point pattern \(x \) into one of several possible types. The classification is based on the dataset \(z \), which may be either

- a factor (of length equal to the number of points in \(z \)) determining the classification of each point in \(x \). Levels of the factor determine the classification.
- a numeric vector (of length equal to the number of points in \(z \)). The range of values of \(z \) will be divided into bands (the number of bands is determined by \(\ldots \) and \(z \) will be converted to a factor using \texttt{cut.default}.
- a pixel image (object of class "im"). The value of \(z \) at each point of \(x \) will be used as the classifying variable.
- a tessellation (object of class "tess", see \texttt{tess}). Each point of \(x \) will be classified according to the tile of the tessellation into which it falls.
- a window (object of class "owin"). Each point of \(x \) will be classified according to whether it falls inside or outside this window.
- a character string, giving the name of one of the columns of \texttt{marks}(\(x \)), if this is a data frame.

The default is to take \(z \) to be the vector of marks in \(x \) (or the first column in the data frame of marks of \(x \), if it is a data frame). If the marks are numeric, then the range of values of the numerical marks is divided into several intervals, and each interval is associated with a level of a factor. The result is a marked point pattern, with the same window and point locations as \(x \), but with the numeric mark of each point discretised by replacing it by the factor level. This is a convenient way to transform a marked point pattern which has numeric marks into a multitype point pattern, for example to plot it or analyse it. See the examples.

To select some points from a point pattern, use the subset operator \texttt{[.ppp} instead.

Value

A multitype point pattern, that is, a point pattern object (of class "ppp") with a \texttt{marks} vector that is a factor.

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\) http://www.maths.uwa.edu.au/\~{}adrian/ and Rolf Turner \(<\text{r.turner@auckland.ac.nz}>\)

See Also

\texttt{cut.ppp.object, tess}

Examples

\begin{verbatim}
(1) cutting based on numeric marks of point pattern

data(longleaf)
Longleaf Pines data
the marks are positive real numbers indicating tree diameters.
\end{verbatim}
data.ppm

Not run:
plot(longleaf)

End(Not run)

cut the range of tree diameters into three intervals
long3 <- cut(longleaf, breaks=3)
Not run:
plot(long3)

End(Not run)

adult trees defined to have diameter at least 30 cm
long2 <- cut(longleaf, breaks=c(0,30,100), labels=c("Sapling", "Adult"))
plot(long2)
plot(long2, cols=c("green","blue"))

(2) cutting based on another numeric vector
Divide Swedish Pines data into 3 classes
according to nearest neighbour distance
data(swedishpines)
plot(cut(swedishpines, nndist(swedishpines), breaks=3))

(3) cutting based on tessellation
Divide Swedish Pines study region into a 4 x 4 grid of rectangles
and classify points accordingly
tes <- tess(xgrid=seq(0,96,length=5),ygrid=seq(0,100,length=5))
plot(cut(swedishpines, tes))
plot(tes, lty=2, add=TRUE)

(4) multivariate marks
data(finpines)
cut(finpines, "height", breaks=4)

data.ppm Extract Original Data from a Fitted Point Process Model

Description

Given a fitted point process model, this function extracts the original point pattern dataset to which the model was fitted.

Usage

data.ppm(object)
Arguments

object fitted point process model (an object of class "ppm").

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically produced by the model-fitting algorithm ppm. The object contains complete information about the original data point pattern to which the model was fitted. This function extracts the original data pattern.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object, ppp.object

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- data.ppm(fit)
'X' is identical to 'cells'

dclf.progress mad.progress mctest.progress

Description

Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.progress(X, ..., nrank = 1)
mad.progress(X, ..., nrank = 1)
mctest.progress(X, fun = Lest, ..., expo = 1, nrank = 1)
Arguments

- **X**: Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class) or an envelope object (class "envelope").

- **...**: Arguments passed to `envelope`. Useful arguments include `fun` to determine the summary function, `nsim` to specify the number of Monte Carlo simulations, and `verbose=FALSE` to turn off the messages.

- **nrank**: Integer. The rank of the critical value of the Monte Carlo test, amongst the `nsim` simulated values. A rank of 1 means that the minimum and maximum simulated values will become the critical values for the test.

- **fun**: Function that computes the desired summary statistic for a point pattern.

- **expo**: Positive number. The exponent of the L^p distance. See Details.

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial point pattern are described in `dclf.test`. These tests depend on the choice of an interval of distance values (the argument `rinterval`). A progress plot or envelope representation of the test (Baddeley et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of the interval `rinterval`.

The command `dclf.progress` performs `dclf.test` on `X` using all possible intervals of the form `c(0,r)`, and returns the resulting values of the test statistic, and the corresponding critical values of the test, as a function of `r`.

Similarly `mad.progress` performs `mad.test` using all possible intervals and returns the test statistic and critical value.

More generally, `mctest.progress` performs a test based on the L^p discrepancy between the curves. The deviation between two curves is measured by the pth root of the integral of the pth power of the absolute value of the difference between the two curves. The exponent p is given by the argument `expo`. The case `expo=2` is the Cressie-Loosmore-Ford test, while `expo=Inf` is the MAD test.

The result of each command is an object of class "fv" that can be plotted to obtain the progress plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region (grey shading).

The significance level for the Monte Carlo test is `nrank/nsim`. Note that `nsim` defaults to 99, so if the values of `nrank` and `nsim` are not given, the default is a test with significance level 0.01.

If `X` is an envelope object, then some of the data stored in `X` may be re-used:

- If `X` is an envelope object containing simulated functions, and `fun=NULL`, then the code will re-use the simulated functions stored in `X`.
- If `X` is an envelope object containing simulated point patterns, then `fun` will be applied to the stored point patterns to obtain the simulated functions. If `fun` is not specified, it defaults to `lest`.
- Otherwise, new simulations will be performed, and `fun` defaults to `lest`.

Value

An object of class "fv" that can be plotted to obtain the progress plot.
Author(s)
Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.

References

See Also
\texttt{dclf.test} and \texttt{mad.test} for the tests.

See \texttt{plot.fv} for information on plotting objects of class "fv".

Examples
```r
plot(dclf.progress(cells, nsim=19))
```

\texttt{dclf.test}

Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation Tests

Description

Usage
```r
dclf.test(X, ..., alternative=c("two.sided", "less", "greater"),
           rinterval = NULL, use.theo=FALSE)
```

```r
mad.test(X, ..., alternative=c("two.sided", "less", "greater"),
         rinterval = NULL, use.theo=FALSE)
```

Arguments

- **\texttt{X}**
 - Data for the test. Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point process model (object of class "ppm", "kppm" or other class), a simulation envelope (object of class "envelope") or a previous result of \texttt{dclf.test} or \texttt{mad.test}.

- **\ldots**
 - Arguments passed to \texttt{envelope}. Useful arguments include \texttt{fun} to determine the summary function, \texttt{nsim} to specify the number of Monte Carlo simulations, \texttt{verbose=FALSE} to turn off the messages, and \texttt{savefuns} or \texttt{savepatterns} to save the simulation results.

- **\texttt{alternative}**
 - The alternative hypothesis. A character string. The default is a two-sided alternative. See Details.
rinterval
Interval of values of the summary function argument \(r \) over which the maximum absolute deviation, or the integral, will be computed for the test. A numeric vector of length 2.

use.theo
Logical value determining whether to compare the summary function for the data to its theoretical value for CSR (use.theo=TRUE) or to the sample mean of simulations from CSR (use.theo=FALSE).

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point process model, based on Monte Carlo simulation from the model.

The type of test depends on the type of argument \(X \).

- If \(X \) is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be performed. That is, the null hypothesis is that the point pattern is completely random.
- If \(X \) is a fitted point process model, then a test of goodness-of-fit for the fitted model will be performed. The model object contains the data point pattern to which it was originally fitted. The null hypothesis is that the data point pattern is a realisation of the model.
- If \(X \) is an envelope object generated by \texttt{envelope}, then it should have been generated with \texttt{savefuns=TRUE} or \texttt{savepatterns=TRUE} so that it contains simulation results. These simulations will be treated as realisations from the null hypothesis.
- Alternatively \(X \) could be a previously-performed test of the same kind (i.e. the result of calling \texttt{dclf.test} or \texttt{mad.test}). The simulations used to perform the original test will be re-used to perform the new test (provided these simulations were saved in the original test, by setting \texttt{savefuns=TRUE} or \texttt{savepatterns=TRUE}).

The argument \texttt{alternative} specifies the alternative hypothesis, that is, the direction of deviation that will be considered statistically significant. If \texttt{alternative="two.sided"} (the default), both positive and negative deviations (between the observed summary function and the theoretical function) are significant. If \texttt{alternative="less"}, then only negative deviations (where the observed summary function is lower than the theoretical function) are considered. If \texttt{alternative="greater"}, then only positive deviations (where the observed summary function is higher than the theoretical function) are considered.

In all cases, the algorithm will first call \texttt{envelope} to generate or extract the simulated summary functions. The number of simulations that will be generated or extracted, is determined by the argument \texttt{nsim}, and defaults to 99. The summary function that will be computed is determined by the argument \texttt{fun} (or the first unnamed argument in the list . . .) and defaults to \texttt{Kest} (except when \(X \) is an envelope object generated with \texttt{savefuns=TRUE}, when these functions will be taken).

The choice of summary function \texttt{fun} affects the power of the test. It is normally recommended to apply a variance-stabilising transformation (Ripley, 1981). If you are using the \(K \) function, the normal practice is to replace this by the \(L \) function (Besag, 1977) computed by \texttt{Lest}. If you
are using the F or G functions, the recommended practice is to apply Fisher’s variance-stabilising transformation $\sin^{-1}\sqrt{x}$ using the argument `transform`. See the Examples.

The argument `rinterval` specifies the interval of distance values r which will contribute to the test statistic (either maximising over this range of values for `mad.test`, or integrating over this range of values for `dclf.test`). This affects the power of the test. General advice and experiments in Baddeley et al (2014) suggest that the maximum r value should be slightly larger than the maximum possible range of interaction between points. The `dclf.test` is quite sensitive to this choice, while the `mad.test` is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance r) by specifying `rinterval = c(r,r)`.

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value is contained in the component `p.value`.

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Andrew Hardegen.

References

See Also

`envelope`, `dclf.progress`
default.dummy

Generate a Default Pattern of Dummy Points

Description

Generates a default pattern of dummy points for use in a quadrature scheme.

Usage

default.dummy(X, nd, random=FALSE, ntile=NULL, npix=NULL,
quasi=FALSE, ..., eps=NULL, verbose=FALSE)

Arguments

X

The observed data point pattern. An object of class "ppp" or in a format recognised by as.ppp()

nd

Optional. Integer, or integer vector of length 2, specifying an nd \times nd or nd[1] \times nd[2] rectangular array of dummy points.

random

Logical value. If TRUE, the dummy points are generated randomly.

quasi

Logical value. If TRUE, the dummy points are generated by a quasirandom sequence.

ntile

Optional. Integer or pair of integers specifying the number of rows and columns of tiles used in the counting rule.

npix

Optional. Integer or pair of integers specifying the number of rows and columns of pixels used in computing approximate areas.

...

Ignored.

eps

Optional. Grid spacing. A positive number, or a vector of two positive numbers, giving the horizontal and vertical spacing, respectively, of the grid of dummy points. Incompatible with nd.

verbose

If TRUE, information about the construction of the quadrature scheme is printed.

Examples

dclf.test(cells, Lest, nsim=39)
m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(0, 0.1), nsim=19)
m
extract the p-value
m$p.value
variance stabilised G function
dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),
verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")
Details

This function provides a sensible default for the dummy points in a quadrature scheme.

A quadrature scheme consists of the original data point pattern, an additional pattern of dummy points, and a vector of quadrature weights for all these points. See `quad.object` for further information about quadrature schemes.

If `random` and `quasi` are both false (the default), then the function creates dummy points in a regular \(n_d[1] \times n_d[1] \) rectangular grid. If `random` is true and `quasi` is false, then the frame of the window is divided into an \(n_d[1] \times n_d[1] \) array of tiles, and one dummy point is generated at random inside each tile. If `quasi` is true, a quasirandom pattern of \(n_d[1] \times n_d[2] \) points is generated. In all cases, the four corner points of the frame of the window are added. Then if the window is not rectangular, any dummy points lying outside it are deleted.

If \(n_d \) is missing, a default value (depending on the data pattern \(X \)) is computed by `default.ngrid`.

Alternative functions for creating dummy patterns include `corners`, `gridcentres`, `stratrand` and `spokes`.

Value

A point pattern (an object of class "ppp", see `ppp.object`) containing the dummy points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`quad.object`, `quadscheme`, `corners`, `gridcentres`, `stratrand`, `spokes`

Examples

```r
data(simdat)
P <- simdat
D <- default.dummy(P, 100)
## Not run: plot(D)
Q <- quadscheme(P, D, "grid")
## Not run: plot(union.quad(Q))
```

default.expand

Default Expansion Rule for Simulation of Model

Description

Defines the default expansion window or expansion rule for simulation of a fitted point process model.
Usage

default.expand(object, m=2, epsilon=1e-6)

Arguments

- object: A point process model (object of class "ppm" or "rmhmodel").
- m: A single numeric value. The window will be expanded by a distance \(m \times \text{reach}(\text{object})\) along each side.
- epsilon: Threshold argument passed to \(\text{reach}\) to determine \(\text{reach}(\text{object})\).

Details

This function computes a default value for the expansion rule (the argument expand in \(\text{rmhcontrol}\)) given a fitted point process model object. This default is used by \(\text{envelope, qqplot.ppm, simulate.ppm}\) and other functions.

Suppose we wish to generate simulated realisations of a fitted point process model inside a window \(w\). It is advisable to first simulate the pattern on a larger window, and then clip it to the original window \(w\). This avoids edge effects in the simulation. It is called expansion of the simulation window.

Accordingly, for the Metropolis-Hastings simulation algorithm \(\text{rmh}\), the algorithm control parameters specified by \(\text{rmhcontrol}\) include an argument expand that determines the expansion of the simulation window.

The function \(\text{default.expand}\) determines the default expansion rule for a fitted point process model object.

If the model is Poisson, then no expansion is necessary. No expansion is performed by default, and \(\text{default.expand}\) returns a rule representing no expansion. The simulation window is the original window \(w = \text{Window}(\text{object})\).

If the model depends on external covariates (i.e.\ covariates other than the Cartesian covariates \(x\) and \(y\) and the marks) then no expansion is feasible, in general, because the spatial domain of the covariates is not guaranteed to be large enough. \(\text{default.expand}\) returns a rule representing no expansion. The simulation window is the original window \(w = \text{Window}(\text{object})\).

If the model depends on the Cartesian covariates \(x\) and \(y\), it would be feasible to expand the simulation window, and this was the default for \(\text{spatstat}\) version 1.24-1 and earlier. However this sometimes produces artefacts (such as an empty point pattern) or memory overflow, because the fitted trend, extrapolated outside the original window of the data, may become very large. In \(\text{spatstat}\) version 1.24-2 and later, the default rule is \textit{not} to expand if the model depends on \(x\) or \(y\). Again \(\text{default.expand}\) returns a rule representing no expansion.

Otherwise, expansion will occur. The original window \(w = \text{Window}(\text{object})\) is expanded by a distance \(m \times rr\), where \(rr\) is the interaction range of the model, computed by \(\text{reach}\). If \(w\) is a rectangle then each edge of \(w\) is displaced outward by distance \(m \times rr\). If \(w\) is not a rectangle then \(w\) is dilated by distance \(m \times rr\) using \(\text{dilation}\).

Value

A window expansion rule (object of class "rmhexpand").
default.rmhcontrol

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
rmhexpand, rmhcontrol, rmh, envelope, qqplot.ppm

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(0.07))
default.expand(fit)
mod <- rmhmodel(cif="strauss", par=list(beta=100, gamma=0.5, r=0.07))
default.expand(fit)

Description
Given a fitted point process model, this command sets appropriate default values of the parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

default.rmhcontrol(model)

Arguments

model A fitted point process model (object of class "ppm")

Details
This function sets the values of the parameters controlling the iterative behaviour of the Metropolis-Hastings simulation algorithm. It uses default values that would be appropriate for the fitted point process model model.

The expansion parameter expand is set to default.expand(model).

All other parameters revert to their defaults given in rmhcontrol.default.

See rmhcontrol for the full list of control parameters. To override default parameters, use update.rmhcontrol.

Value
An object of class "rmhcontrol". See rmhcontrol.
delaunay

Description
Computes the Delaunay triangulation of a spatial point pattern.

Usage
delaunay(X)

Arguments

X Spatial point pattern (object of class "ppp").

Details
The Delaunay triangulation of a spatial point pattern X is defined as follows. First the Dirichlet/Voronoi tessellation of X is computed; see dirichlet. Then two points of X are defined to be Delaunay neighbours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of Delaunay neighbours is joined by a straight line. The result is a tessellation, consisting of disjoint triangles. The union of these triangles is the convex hull of X.

Value
A tessellation (object of class "tess"). The window of the tessellation is the convex hull of X, not the original window of X.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
tess, dirichlet, convexhull.xy, ppp, delaunay.distance, delaunay.network
Examples

```r
X <- runifpoint(42)
plot(delaunay(X))
plot(X, add=TRUE)
```

delaunay.distance

Distance on Delaunay Triangulation

Description

Computes the graph distance in the Delaunay triangulation of a point pattern.

Usage

```r
delaunay.distance(X)
```

Arguments

- **X** Spatial point pattern (object of class "ppp").

Details

The Delaunay triangulation of a spatial point pattern \(X\) is defined as follows. First the Dirichlet/Voronoi tessellation of \(X\) computed; see `dirichlet`. Then two points of \(X\) are defined to be Delaunay neighbours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of Delaunay neighbours is joined by a straight line.

The *graph distance* in the Delaunay triangulation between two points \(X[i]\) and \(X[j]\) is the minimum number of edges of the Delaunay triangulation that must be traversed to go from \(X[i]\) to \(X[j]\).

This command returns a matrix \(D\) such that \(D[i,j]\) is the graph distance between \(X[i]\) and \(X[j]\).

Value

A symmetric square matrix with integer entries.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`delaunay, delaunay.network`
Examples

```r
X <- runifpoint(20)
M <- delaunay.distance(X)
plot(delaunay(X), lty=3)
text(X, labels=M[, ], cex=2)
```

delaunay.network Linear Network of Delaunay Triangulation or Dirichlet Tessellation

Description

Computes the edges of the Delaunay triangulation or Dirichlet tessellation of a point pattern, and returns the result as a linear network object.

Usage

delaunay.network(X)
dirichlet.network(X, ...)

Arguments

- `X` A point pattern (object of class "ppp").
- `...` Arguments passed to `as.linnet.psp`

Details

For `delaunay.network`, points of `X` which are neighbours in the Delaunay triangulation (see `delaunay`) will be joined by a straight line. The result will be returned as a linear network (object of class "linnet").

For `dirichlet.network`, the Dirichlet tessellation is computed (see `dirichlet`) and the edges of the tiles of the tessellation are extracted. This is converted to a linear network using `as.linnet.psp`.

Value

Linear network (object of class "linnet") or NULL.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

delaunay, dirichlet, delaunay.distance
Examples

```
LE <- delaunay.network(cells)
LI <- dirichlet.network(cells)
```

deltametric

Delta Metric

Description

Computes the discrepancy between two sets \(A \) and \(B \) according to Baddeley’s delta-metric.

Usage

```
deltametric(A, B, p = 2, c = Inf, ...)
```

Arguments

- \(A, B \): The two sets which will be compared. Windows (objects of class "owin"), point patterns (objects of class "ppp") or line segment patterns (objects of class "psp").
- \(p \): Index of the \(L^p \) metric. Either a positive numeric value, or \(\text{Inf} \).
- \(c \): Distance threshold. Either a positive numeric value, or \(\text{Inf} \).
- \(... \): Arguments passed to `as.mask` to determine the pixel resolution of the distance maps computed by `distmap`.

Details

Baddeley (1992a, 1992b) defined a distance between two sets \(A \) and \(B \) contained in a space \(W \) by

\[
\Delta(A, B) = \left(\frac{1}{|W|} \int_W |\min(c, d(x, A)) - \min(c, d(x, B))|^p \, dx \right)^{1/p}
\]

where \(c \geq 0 \) is a distance threshold parameter, \(0 < p \leq \infty \) is the exponent parameter, and \(d(x, A) \) denotes the shortest distance from a point \(x \) to the set \(A \). Also \(|W| \) denotes the area or volume of the containing space \(W \).

This is defined so that it is a metric, i.e.

- \(\Delta(A, B) = 0 \) if and only if \(A = B \)
- \(\Delta(A, B) = \Delta(B, A) \)
- \(\Delta(A, C) \leq \Delta(A, B) + \Delta(B, C) \)

It is topologically equivalent to the Hausdorff metric (Baddeley, 1992a) but has better stability properties in practical applications (Baddeley, 1992b).

If \(p = \infty \) and \(c = \infty \) the Delta metric is equal to the Hausdorff metric.

The algorithm uses `distmap` to compute the distance maps \(d(x, A) \) and \(d(x, B) \), then approximates the integral numerically. The accuracy of the computation depends on the pixel resolution which is controlled through the extra arguments \(...\) passed to `as.mask`.

Value

A numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`distmap`

Examples

```r
X <- runifpoint(20)
Y <- runifpoint(10)
deltametric(X, Y, p=1, c=0.1)
```

Description

This is an artificially constructed example of a hyperframe of spatial data. The data could have been obtained from an experiment in which there are two groups of experimental units, the response from each unit is a point pattern `Points`, and for each unit there is explanatory data in the form of a pixel image `Image`.

Usage

```r
data(demohyper)
```

Format

A `hyperframe` with 3 rows and 3 columns:

- **Points** List of spatial point patterns (objects of class "ppp") serving as the responses in an experiment.
- **Image** List of images (objects of class "im") serving as explanatory variables.
- **Group** Factor with two levels a and b serving as an explanatory variable.
Source

Artificially generated by Adrian Baddeley.

Examples

```r
plot(demohyper, quote({
  plot(Image, main=""; plot(Points, add=TRUE))
}),
  parargs=list(mar=rep(1,4)))
mppm(Points ~ Group/Image, data=demohyper)
```

demopat

Artificial Data Point Pattern

Description

This is an artificial dataset, for use in testing and demonstrating the capabilities of the spatstat package. It is a multitype point pattern in an irregular polygonal window. There are two types of points. The window contains a polygonal hole.

Usage

```r
data(demopat)
```

Format

An object of class "ppp" representing the point pattern.

See `ppp.object` for details of the format of a point pattern object.

Source

Adrian Baddeley

dendrite

Dendritic Spines Data

Description

Dendrites are branching filaments which extend from the main body of a neuron (nerve cell) to propagate electrochemical signals. Spines are small protrusions on the dendrites.

This dataset gives the locations of 566 spines observed on one branch of the dendritic tree of a rat neuron. The spines are classified according to their shape into three types: mushroom, stubby or thin.

The data have been analysed in Jammalamadaka et al (2013) and Baddeley et al (2014). Please cite these papers and acknowledge the Kosik Lab, UC Santa Barbara, in any use of the data.
density.ppp

Usage

data("dendrite")

Format

Object of class "lpp". See lpp.

Source

Kosik Lab, UC Santa Barbara (Dr Kenneth Kosik, Dr Sourav Banerjee). Formatted for spatstat by Dr Aruna Jammalamadaka.

References

Examples

plot(dendrite,leg.side="bottom", main="", cex=0.75, cols=2:4)

density.ppp Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

```r
## S3 method for class 'ppp'
density(x, sigma, ..., 
weights=NULL, edge=TRUE, varcov=NULL, 
at="pixels", leaveoneout=TRUE, 
adjust=1, diggle=FALSE, se=FALSE)
```

Arguments

- **x** Point pattern (object of class "ppp").
- **sigma** Standard deviation of isotropic Gaussian smoothing kernel. Either a numerical value, or a function that computes an appropriate value of sigma.
- **weights** Optional weights to be attached to the points. A numeric vector, numeric matrix, or an expression.
... Additional arguments passed to `pixellate.ppp` and `as.mask` to determine the pixel resolution, or passed to `sigma` if it is a function.

edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with `sigma`.

at String specifying whether to compute the intensity values at a grid of pixel locations (`at="pixels"`) or only at the points of `x` (`at="points"`).

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Applicable only when `at="points"`.

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use Diggle’s edge correction, which is more accurate but slower to compute than the correction described under Details.

se Logical value indicating whether to compute standard errors as well.

Details

This is a method for the generic function `density`.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point process that generated the point pattern `x`.

By default it computes the convolution of the isotropic Gaussian kernel of standard deviation `sigma` with point masses at each of the data points in `x`. Anisotropic Gaussian kernels are also supported. Each point has unit weight, unless the argument `weights` is given.

If `edge=TRUE`, the intensity estimate is corrected for edge effect bias in one of two ways:

- If `diggle`=`FALSE` (the default) the intensity estimate is corrected by dividing it by the convolution of the Gaussian kernel with the window of observation. Thus the intensity value at a point `u` is
 \[
 \hat{\lambda}(u) = e(u) \sum_i k(x_i - u)w_i
 \]
 where `k` is the Gaussian smoothing kernel, `e(u)` is an edge correction factor, and `w_i` are the weights.

- If `diggle`=TRUE then the method of Diggle (1985) is followed exactly. The intensity value at a point `u` is
 \[
 \hat{\lambda}(u) = \sum_i k(x_i - u)w_i e(x_i)
 \]
 where again `k` is the Gaussian smoothing kernel, `e(x_i)` is an edge correction factor, and `w_i` are the weights. This computation is slightly slower but more accurate.

In both cases, the edge correction term `e(u)` is the reciprocal of the kernel mass inside the window:

\[
\frac{1}{e(u)} = \int_W k(v - u) \, dv
\]

where `W` is the observation window.

The smoothing kernel is determined by the arguments `sigma`, `varcov` and `adjust`.

• if sigma is a single numerical value, this is taken as the standard deviation of the isotropic Gaussian kernel.

• alternatively sigma may be a function that computes an appropriate bandwidth for the isotropic Gaussian kernel from the data point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-validation, it is recommended to use the functions bw.diggle or bw.ppl.

• The smoothing kernel may be chosen to be any Gaussian kernel, by giving the variance-covariance matrix varcov. The arguments sigma and varcov are incompatible.

• Alternatively sigma may be a vector of length 2 giving the standard deviations of two independent Gaussian coordinates, thus equivalent to varcov = diag(rep(sigma^2, 2)).

• if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a default value of sigma calculated by a simple rule of thumb that depends only on the size of the window.

• The argument adjust makes it easy for the user to change the bandwidth specified by any of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix varcov will be multiplied by adjust^2. To double the smoothing bandwidth, set adjust=2.

By default the intensity values are computed at every location u in a fine grid, and are returned as a pixel image. Computation is performed using the Fast Fourier Transform. Accuracy depends on the pixel resolution, controlled by the arguments ... passed to as.mask.

If at="points", the intensity values are computed to high accuracy at the points of x only. Computation is performed by directly evaluating and summing the Gaussian kernel contributions without discretising the data. The result is a numeric vector giving the density values. The intensity value at a point \(x_i\) is (if diggle=FALSE)

\[
\hat{\lambda}(x_i) = e(x_i) \sum_j k(x_j - x_i) w_j
\]

or (if diggle=TRUE)

\[
\hat{\lambda}(x_i) = \sum_j k(x_j - x_i) w_j e(x_j)
\]

If leaveoneout=TRUE (the default), then the sum in the equation is taken over all \(j\) not equal to \(i\), so that the intensity value at a data point is the sum of kernel contributions from all other data points. If leaveoneout=FALSE then the sum is taken over all \(j\), so that the intensity value at a data point includes a contribution from the same point.

If weights is a matrix with more than one column, then the calculation is effectively repeated for each column of weights. The result is a list of images (if at="pixels") or a matrix of numerical values (if at="points").

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(x) to obtain a vector or matrix of weights. The expression may involve the symbols \(x\) and \(y\) representing the Cartesian coordinates, the symbol marks representing the mark values if there is only one column of marks, and the names of the columns of marks if there are several columns.

To select the bandwidth sigma automatically by cross-validation, use bw.diggle or bw.ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use Smooth.ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen.ppp.

To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.
Value

By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity values, expressed in “points per unit area”.

If at="points", the result is a numeric vector of length equal to the number of points in x. Values are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels") or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format described above.

Note

This function is often misunderstood.

The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point pattern. To perform spatial interpolation of values that were observed at the points of a point pattern, use Smooth.ppp.

The result of density.ppp is not a probability density. It is an estimate of the intensity function of the point process that generated the point pattern data. Intensity is the expected number of random points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function of spatial location, and it is this function which is estimated by density.ppp. The integral of the intensity function over a spatial region gives the expected number of points falling in this region.

Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point pattern dataset. For more explanation, see the workshop notes (Baddeley, 2008) or Diggle (2003).

If you have two (or more) types of points, and you want a probability map or relative risk surface (the spatially-varying probability of a given type), use relrisk.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

bw.diggle, bw.ppl, Smooth.ppp, sharpen.ppp, adaptive.density, relrisk, ppp.object, im.object
Examples

```r
data(cells)
if(interactive()) {
  opa <- par(mfrow=c(1,2))
  plot(density(cells, 0.05))
  plot(density(cells, 0.05, diggle=TRUE))
  par(opa)
  v <- diag(c(0.05, 0.07)^2)
  plot(density(cells, varcov=v))
}

# automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
# equivalent:
plot(density(cells, bw.diggle))
# evaluate intensity at points
density(cells, 0.05, at="points")
```

Description

Compute a kernel smoothed intensity function from a line segment pattern.

Usage

```r
## S3 method for class 'psp'
density(x, sigma, ..., edge=TRUE)
```

Arguments

- `x` Line segment pattern (object of class "psp") to be smoothed.
- `sigma` Standard deviation of isotropic Gaussian smoothing kernel.
- `...` Extra arguments passed to `as.mask` which determine the resolution of the resulting image.
- `edge` Logical flag indicating whether to apply edge correction.

Details

This is a method for the generic function `density`.

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convolution of the isotropic Gaussian kernel, of standard deviation `sigma`, with the line segments. Computation is performed analytically.

If `edge=TRUE` this result is adjusted for edge effects by dividing it by the convolution of the same Gaussian kernel with the observation window.
Value
A pixel image (object of class "im").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
psp.object, im.object, density

Examples
L <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
D <- density(L, sigma=0.03)
plot(D, main="density(L)")
plot(L, add=TRUE)

Description
Kernel Smoothed Intensity of Split Point Pattern

Usage

S3 method for class 'splitppp'
density(x, ...)

Arguments

x
Split point pattern (object of class "splitppp" created by split.ppp) to be smoothed.

... Arguments passed to density.ppp to control the smoothing, pixel resolution, edge correction etc.

Details
This is a method for the generic function density.

The argument x should be an object of class "splitppp", effectively a list of point patterns.

Typically x is obtained by applying the function split.ppp to a point pattern y by calling split(y).

This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density.ppp.

The return value is a list, each of whose entries is a pixel image (object of class "im"). The return value also belongs to the class "listof" and can be plotted or printed.
Value

A list of pixel images (objects of class "im"). Can be plotted or printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, im.object

Examples

\[
Z \leftarrow \text{density(split(amacrine), 0.05)} \\
\text{plot}(Z)
\]

argument

Calculate Derivative of Function Values

Description

Applies numerical differentiation to the values in selected columns of a function value table.

Usage

\[
\text{deriv}(expr, \text{which} = '*', ..., \text{method}=c("spline", "numeric"), \text{kinks}=\text{NULL}, \text{periodic}=\text{FALSE}, \text{Dperiodic}=\text{periodic})
\]

Arguments

\begin{itemize}
\item \textbf{expr} Function values to be differentiated. A function value table (object of class "fv", see \text{fv.object}).
\item \textbf{which} Character vector identifying which columns of the table should be differentiated. Either a vector containing names of columns, or one of the wildcard strings "\text{\textasciitilde}" or "\text{*}" explained below.
\item \textbf{...} Extra arguments passed to \text{smooth.spline} to control the differentiation algorithm, if \text{method}="spline".
\item \textbf{method} Differentiation method. A character string, partially matched to either "spline" or "numeric".
\item \textbf{kinks} Optional vector of \text{x} values where the derivative is allowed to be discontinuous.
\item \textbf{periodic} Logical value indicating whether the function \text{expr} is periodic.
\item \textbf{Dperiodic} Logical value indicating whether the resulting derivative should be a periodic function.
\end{itemize}
Details

This command performs numerical differentiation on the function values in a function value table (object of class "fv"). The differentiation is performed either by \texttt{smooth.spline} or by a naive numerical difference algorithm.

The command \texttt{deriv} is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in turn, using the function argument as the x coordinate and the selected column as the y coordinate. The original function values are then replaced by the corresponding derivatives.

The optional argument \texttt{which} specifies which of the columns of function values in \texttt{expr} will be differentiated. The default (indicated by the wildcard \texttt{which="*"}) is to differentiate all function values, i.e. all columns except the function argument. Alternatively \texttt{which="."} designates the subset of function values that are displayed in the default plot. Alternatively \texttt{which} can be a character vector containing the names of columns of \texttt{expr}.

If the argument \texttt{kinks} is given, it should be a numeric vector giving the discontinuity points of the function: the value or values of the function argument at which the function is not differentiable. Differentiation will be performed separately on intervals between the discontinuity points.

If \texttt{periodic=TRUE} then the function \texttt{expr} is taken to be periodic, with period equal to the range of the function argument in \texttt{expr}. The resulting derivative is periodic.

If \texttt{periodic=FALSE} but \texttt{Dperiodic=TRUE}, then the \textit{derivative} is assumed to be periodic. This would be appropriate if \texttt{expr} is the cumulative distribution function of an angular variable, for example.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{with.fv, fv.object, smooth.spline}

Examples

\begin{verbatim}
G <- Gest(cells)
plot(deriv(G, which=".", spar=0.5))
A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)
\end{verbatim}
dfbetas.ppm

Parameter influence measure

Description

Computes the deletion influence measure for each parameter in a fitted point process model.

Usage

```r
## S3 method for class 'ppm'
dfbetas(model, ..., drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
```

Arguments

- `model`: Fitted point process model (object of class "ppm").
- `...`: Ignored.
- `drop`: Logical. Whether to include (\texttt{drop=FALSE}) or exclude (\texttt{drop=TRUE}) contributions from quadrature points that were not used to fit the model.
- `iScore, iHessian`: Components of the score vector and Hessian matrix for the irregular parameters, if required. See Details.
- `iArgs`: List of extra arguments for the functions \texttt{iScore, iHessian} if required.

Details

Given a fitted spatial point process model, this function computes the influence measure for each parameter, as described in Baddeley, Chang and Song (2013).

This is a method for the generic function \texttt{dfbetas}.

The influence measure for each parameter \(\theta \) is a signed measure in two-dimensional space. It consists of a discrete mass on each data point (i.e. each point in the point pattern to which the model was originally fitted) and a continuous density at all locations. The mass at a data point represents the change in the fitted value of the parameter \(\theta \) that would occur if this data point were to be deleted. The density at other non-data locations represents the effect (on the fitted value of \(\theta \)) of deleting these locations (and their associated covariate values) from the input to the fitting procedure.

If the point process model trend has irregular parameters that were fitted (using \texttt{ippm}) then the influence calculation requires the first and second derivatives of the log trend with respect to the irregular parameters. The argument \texttt{iScore} should be a list, with one entry for each irregular parameter, of \texttt{R} functions that compute the partial derivatives of the log trend (i.e. log intensity or log conditional intensity) with respect to each irregular parameter. The argument \texttt{iHessian} should be a list, with \(p^2 \) entries where \(p \) is the number of irregular parameters, of \texttt{R} functions that compute the second order partial derivatives of the log trend with respect to each pair of irregular parameters.
Value

An object of class "msr" representing a signed or vector-valued measure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

leverage.ppm, influence.ppm

Examples

```r
X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)

plot(dfbetas(fit))
plot(Smooth(dfbetas(fit)))
```

diagnose.ppm Diagnostic Plots for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce diagnostic plots based on residuals.

Usage

```r
diagnose.ppm(object, ..., type="raw", which="all", sigma=NULL,
rbord=reach(object), cumulative=TRUE,
plot.it=TRUE, rv = NULL,
compute.sd=is.poisson(object), compute.cts=TRUE,
envelope=FALSE, nsim=39, nrank=1,
typename, check=TRUE, repair=TRUE,
oldstyle=FALSE, splineargs=list(spar=0.5))
```

S3 method for class 'diagppm'
```r
plot(x, ..., which,
plot.neg=c("image", "discrete", "contour", "imagecontour"),
plot.smooth=c("imagecontour", "image", "contour", "persp"),
plot.sd, spacing=0.1, outer=3,
srange=NULL, monochrome=FALSE, main=NULL)
```
Arguments

object: The fitted point process model (an object of class “ppm”) for which diagnostics should be produced. This object is usually obtained from `ppm`.

type: String indicating the type of residuals or weights to be used. Current options are "eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the Pearson residuals. A partial match is adequate.

which: Character string or vector indicating the choice(s) of plots to be generated. Options are "all", "marks", "smooth", "x", "y" and "sum". Multiple choices may be given but must be matched exactly. See Details.

sigma: Bandwidth for kernel smoother in "smooth" option.

rbord: Width of border to avoid edge effects. The diagnostic calculations will be confined to those points of the data pattern which are at least rbord units away from the edge of the window.

cumulative: Logical flag indicating whether the lurking variable plots for the x and y coordinates will be the plots of cumulative sums of marks (cumulative=TRUE) or the plots of marginal integrals of the smoothed residual field (cumulative=FALSE).

plot.it: Logical value indicating whether plots should be shown. If `plot.it=FALSE`, the computed diagnostic quantities are returned without plotting them.

plot.neg: String indicating how the density part of the residual measure should be plotted.

plot.smooth: String indicating how the smoothed residual field should be plotted.

compute.sd,plot.sd: Logical values indicating whether error bounds should be computed and added to the "x" and "y" plots. The default is TRUE for Poisson models and FALSE for non-Poisson models. See Details.

envelope,nsim,nrank: Arguments passed to `lurking` in order to plot simulation envelopes for the lurking variable plots.

rv: Usually absent. Advanced use only. If this argument is present, the values of the residuals will not be calculated from the fitted model object but will instead be taken directly from rv.

spacing: The spacing between plot panels (when a four-panel plot is generated) expressed as a fraction of the width of the window of the point pattern.

outer: The distance from the outermost line of text to the nearest plot panel, expressed as a multiple of the spacing between plot panels.

srange: Vector of length 2 that will be taken as giving the range of values of the smoothed residual field, when generating an image plot of this field. This is useful if you want to generate diagnostic plots for two different fitted models using the same colour map.

monochrome: Flag indicating whether images should be displayed in greyscale (suitable for publication) or in colour (suitable for the screen). The default is to display in colour.
The function `diagnose.ppm` generates several diagnostic plots for a fitted point process model. The plots display the residuals from the fitted model (Baddeley et al., 2005) or alternatively the 'exponential energy marks' (Stoyan and Grabarnik, 1991). These plots can be used to assess goodness-of-fit, to identify outliers in the data, and to reveal departures from the fitted model. See also the companion function `qqplot.ppm`.

The argument `object` must be a fitted point process model (object of class "ppm") typically produced by the maximum pseudolikelihood fitting algorithm `ppm`.

The argument `type` selects the type of residual or weight that will be computed. Current options are:

- "eem": exponential energy marks (Stoyan and Grabarnik, 1991) computed by `eem`. These are positive weights attached to the data points (i.e. the points of the point pattern dataset to which the model was fitted). If the fitted model is correct, then the sum of these weights for all data points in a spatial region \(B \) has expected value equal to the area of \(B \). See `eem` for further explanation.

- "raw", "inverse" or "pearson": point process residuals (Baddeley et al., 2005) computed by the function `residuals.ppm`. These are residuals attached both to the data points and to some other points in the window of observation (namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model is correct, then the sum of the residuals in a spatial region \(B \) has mean zero. The options are
 - "raw": the raw residuals;
 - "inverse": the ‘inverse-lambda’ residuals, a counterpart of the exponential energy weights;
 - "pearson": the Pearson residuals.
See residuals.ppm for further explanation.

The argument which selects the type of plot that is produced. Options are:

"marks": plot the residual measure. For the exponential energy weights (type="eem") this displays circles centred at the points of the data pattern, with radii proportional to the exponential energy weights. For the residuals (type="raw", type="inverse" or type="pearson") this again displays circles centred at the points of the data pattern with radii proportional to the (positive) residuals, while the plotting of the negative residuals depends on the argument plot.neg. If plot.neg="image" then the negative part of the residual measure, which is a density, is plotted as a colour image. If plot.neg="discrete" then the discretised negative residuals (obtained by approximately integrating the negative density using the quadrature scheme of the fitted model) are plotted as squares centred at the dummy points with side lengths proportional to the (negative) residuals. [To control the size of the circles and squares, use the argument maxsize.]

"smooth": plot a kernel-smoothed version of the residual measure. Each data or dummy point is taken to have a ‘mass’ equal to its residual or exponential energy weight. (Note that residuals can be negative). This point mass is then replaced by a bivariate isotropic Gaussian density with standard deviation sigma. The value of the smoothed residual field at any point in the window is the sum of these weighted densities. If the fitted model is correct, this smoothed field should be flat, and its height should be close to 0 (for the residuals) or 1 (for the exponential energy weights). The field is plotted either as an image, contour plot or perspective view of a surface, according to the argument plot.smooth. The range of values of the smoothed field is printed if the option which="sum" is also selected.

"x": produce a ‘lurking variable’ plot for the x coordinate. This is a plot of h(x) against x (solid lines) and of E(h(x)) against x (dashed lines), where h(x) is defined below, and E(h(x)) denotes the expectation of h(x) assuming the fitted model is true.

- if cumulative=TRUE then h(x) is the cumulative sum of the weights or residuals for all points which have X coordinate less than or equal to x. For the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = area of the subset of the window to the left of the line X = x.
- if cumulative=FALSE then h(x) is the marginal integral of the smoothed residual field (see the case which="smooth" described above) on the x axis. This is approximately the derivative of the plot for cumulative=TRUE. The value of h(x) is computed by summing the values of the smoothed residual field over all pixels with the given x coordinate. For the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = length of the intersection between the observation window and the line X = x.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-deviation error limits for h(x) calculated for the inhomogeneous Poisson process. The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

"y": produce a similar lurking variable plot for the y coordinate.

"sum": print the sum of the weights or residuals for all points in the window (clipped by a margin rbord if required) and the area of the same window. If the fitted model is correct the sum of the exponential energy weights should equal the area of the window, while the sum of the residuals should equal zero. Also print the range of values of the smoothed field displayed in the "smooth" case.
"all": All four of the diagnostic plots listed above are plotted together in a two-by-two display. Top left panel is "marks" plot. Bottom right panel is "smooth" plot. Bottom left panel is "x" plot. Top right panel is "y" plot, rotated 90 degrees.

The argument rbord ensures there are no edge effects in the computation of the residuals. The diagnostic calculations will be confined to those points of the data pattern which are at least rbord units away from the edge of the window. The value of rbord should be greater than or equal to the range of interaction permitted in the model.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymptotic variance of the residuals under the asymptotic normal approximation, equation (37) of Baddeley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an over-estimate of the true variance of the residuals.

The argument rv would normally be used only by experts. It enables the user to substitute arbitrary values for the residuals or marks, overriding the usual calculations. If rv is present, then instead of calculating the residuals from the fitted model, the algorithm takes the residuals from the object rv, and plots them in the manner appropriate to the type of residual or mark selected by type. If type = "eem" then rv should be similar to the return value of eem, namely, a numeric vector of length equal to the number of points in the original data point pattern. Otherwise, rv should be similar to the return value of residuals.ppm, that is, it should be an object of class "msr" (see msr) representing a signed measure.

The return value of diagnose.ppm is an object of class "diagppm". The plot method for this class is documented here. There is also a print method. See the Examples.

In plot.diagppm, if a four-panel diagnostic plot is produced (the default), then the extra arguments xlab, ylab, rlab determine the text labels for the x and y coordinates and the residuals, respectively.

See also the companion functions qqplot.ppm, which produces a Q-Q plot of the residuals, and lurking, which produces lurking variable plots for any spatial covariate.

Value

An object of class "diagppm" which contains the coordinates needed to reproduce the selected plots. This object can be plotted using plot.diagppm and printed using print.diagppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

residuals.ppm, eem.ppm, ppm.object, qqplot.ppm, lurking.ppm

Examples

```r
fit <- ppm(cells ~ x, Strauss(r=0.15))
diagnose.ppm(fit)
## Not run:
diagnose.ppm(fit, type="pearson")

## End(Not run)
diagnose.ppm(fit, which="marks")
diagnose.ppm(fit, type="raw", plot.neg="discrete")

# save the diagnostics and plot them later
u <- diagnose.ppm(fit, rbord=0.15, plot.it=FALSE)
## Not run:
plot(u)
plot(u, which="marks")

## End(Not run)
```

diameter

Diameter of an Object

Description

Computes the diameter of an object such as a two-dimensional window or three-dimensional box.

Usage

`diameter(x)`

Arguments

`x`
A window or other object whose diameter will be computed.

Details

This function computes the diameter of an object such as a two-dimensional window or a three-dimensional box. The diameter is the maximum distance between any two points in the object.

The function `diameter` is generic, with methods for the class "owin" (two-dimensional windows), "box3" (three-dimensional boxes), "boxx" (multi-dimensional boxes) and "linnet" (linear networks).

Value

The numerical value of the diameter of the object.
Author(s)
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
diameter.owin, diameter.box3, diameter.boxx, diameter.linnet

diameter.box3 Geometrical Calculations for Three-Dimensional Box

Description
Calculates the volume, diameter, shortest side, side lengths, or eroded volume of a three-dimensional box.

Usage
```r
## S3 method for class 'box3'
diameter(x)

## S3 method for class 'box3'
volume(x)

shortside(x)
sidelengths(x)
eroded.volumes(x, r)

## S3 method for class 'box3'
shortside(x)

## S3 method for class 'box3'
sidelengths(x)

## S3 method for class 'box3'
eroded.volumes(x, r)
```

Arguments
- `x` : Three-dimensional box (object of class "box3").
- `r` : Numeric value or vector of numeric values for which eroded volumes should be calculated.
Details

diameter.boxx computes the diameter of the box. volume.boxx computes the volume of the box.
shortside.boxx finds the shortest of the three side lengths of the box. sidelengths.boxx returns
all three side lengths of the box.

eroded.volumes computes, for each entry r[i], the volume of the smaller box obtained by remov-
ing a slab of thickness r[i] from each face of the box. This smaller box is the subset consisting of
points that lie at least r[i] units away from the boundary of the box.

Value

For diameter.boxx, shortside.boxx and volume.boxx, a single numeric value. For sidelengths.boxx,
a vector of three numbers. For eroded.volumes, a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.boxx

Examples

X <- box3(c(0,10),c(0,10),c(0,5))
diameter(X)
volume(X)
sidelengths(X)
shortside(X)
hd <- shortside(X)/2
eroded.volumes(X, seq(0,hd, length=10))
S3 method for class 'boxx'
shortside(x)

S3 method for class 'boxx'
sidelengths(x)

S3 method for class 'boxx'
eroded.volumes(x, r)

Arguments

- **x**: Multi-dimensional box (object of class "boxx").
- **r**: Numeric value or vector of numeric values for which eroded volumes should be calculated.

Details

diameter.boxx, volume.boxx and shortside.boxx compute the diameter, volume and shortest side length of the box. sidelengths.boxx returns the lengths of each side of the box.

eroded.volumes.boxx computes, for each entry \(r[i] \), the volume of the smaller box obtained by removing a slab of thickness \(r[i] \) from each face of the box. This smaller box is the subset consisting of points that lie at least \(r[i] \) units away from the boundary of the box.

Value

For diameter.boxx, shortside.boxx and volume.boxx, a single numeric value. For sidelengths.boxx, a numeric vector of length equal to the number of spatial dimensions. For eroded.volumes.boxx, a numeric vector of the same length as \(r \).

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- boxx

Examples

```r
X <- boxx(c(0,10),c(0,10),c(0,5),c(0,2))
diameter(X)
volume(X)
shortside(X)
sidelengths(X)
hd <- shortside(X)/2
eroded.volumes(X, seq(0,hd, length=10))
```
diameter.linnet

Circumradius and Diameter of a Linear Network

Description

Compute the circumradius or diameter of a linear network measured using the shortest path distance.

Usage

S3 method for class 'linnet'
circumradius(x, ...)

S3 method for class 'linnet'
diameter(x)

Arguments

x
Linear network (object of class "linnet").

... Ignored.

Details

The diameter of a linear network (in the shortest path distance) is the maximum value of the shortest-path distance between any two points u and v on the network.

The circumradius of a linear network (in the shortest path distance) is the minimum value, over all points u on the network, of the maximum shortest-path distance from u to another point v on the network.

The functions circumradius and diameter are generic; the functions circumradius.linnet and diameter.linnet are the methods for objects of class linnet.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

circumradius, diameter, linnet

Examples

diameter(simplenet)
circumradius(simplenet)
diameter.owin

Description

Computes the diameter of a window.

Usage

```r
## S3 method for class 'owin'
diameter(x)
```

Arguments

- `x`: A window whose diameter will be computed.

Details

This function computes the diameter of a window of arbitrary shape, i.e. the maximum distance between any two points in the window.

The argument `x` should be a window (an object of class "owin", see `owin.object` for details) or can be given in any format acceptable to `as.owin()`.

The function `diameter` is generic. This function is the method for the class "owin".

Value

The numerical value of the diameter of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`area.owin`, `perimeter`, `edges.owin`, `as.owin`

Examples

```r
w <- owin(c(0,1),c(0,1))
diameter(w)
# returns sqrt(2)
data(letterR)
diameter(letterR)
```
Description

Creates an instance of the Diggle-Gates-Stibbard point process model which can then be fitted to point pattern data.

Usage

DiggleGatesStibbard(rho)

Arguments

rho Interaction range

Details

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair of points separated by a distance d contributes a factor $e(d)$ to the probability density, where

$$e(d) = \sin^2 \left(\frac{\pi d}{2\rho} \right)$$

for $d < \rho$, and $e(d)$ is equal to 1 for $d \geq \rho$.

The function `ppm()`, which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Diggle-Gates-Stibbard pairwise interaction is yielded by the function `DiggleGatesStibbard()`. See the examples below.

Note that this model does not have any regular parameters (as explained in the section on Interaction Parameters in the help file for `ppm`). The parameter ρ is not estimated by `ppm`.

Value

An object of class "interact" describing the interpoint interaction structure of the Diggle-Gates-Stibbard process with interaction range ρ.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm, pairwise.family, DiggleGratton, rDGS, ppm.object

Examples

DiggleGatesStibbard(0.02)
 # prints a sensible description of itself

data(cells)

 ## Not run:
 ppm(cells, -1, DiggleGatesStibbard(0.05))
 # fit the stationary D-G-S process to 'cells'

 ## End(Not run)
 ppm(cells, ~ polynom(x,y,3), DiggleGatesStibbard(0.05))
 # fit a nonstationary D-G-S process
 # with log-cubic polynomial trend

DiggleGratton Diggle-Gratton model

Description

Creates an instance of the Diggle-Gratton pairwise interaction point process model, which can then be fitted to point pattern data.

Usage

DiggleGratton(delta=NA, rho)

Arguments

delta lower threshold \(\delta \)
rho upper threshold \(\rho \)

Details

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with pair potential \(h(t) \) of the form

\[
h(t) = \left(\frac{t - \delta}{\rho - \delta} \right)^\kappa \quad \text{if } \delta \leq t \leq \rho
\]

with \(h(t) = 0 \) for \(t < \delta \) and \(h(t) = 1 \) for \(t > \rho \). Here \(\delta, \rho \) and \(\kappa \) are parameters.

Note that we use the symbol \(\kappa \) where Diggle and Gratton (1984) and Diggle, Gates and Stibbard (1987) use \(\beta \), since in spatstat we reserve the symbol \(\beta \) for an intensity parameter.
The parameters must all be nonnegative, and must satisfy $\delta \leq \rho$.

The potential is inhibitory, i.e. this model is only appropriate for regular point patterns. The strength of inhibition increases with κ. For $\kappa = 0$ the model is a hard core process with hard core radius δ. For $\kappa = \infty$ the model is a hard core process with hard core radius ρ.

The irregular parameters δ, ρ must be given in the call to `DiggleGratton`, while the regular parameter κ will be estimated.

If the lower threshold δ is missing or NA, it will be estimated from the data when `ppm` is called. The estimated value of δ is the minimum nearest neighbour distance multiplied by $n/(n + 1)$, where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm`, `ppm.object.Pairwise`

Examples

```r
ppm(cells ~ QL, DiggleGratton(0.05, 0.1))
```

dilated.areas

Areas of Morphological Dilations

Description

Computes the areas of successive morphological dilations.

Usage

```r
dilated.areas(X, r, W=as.owin(X), ..., constrained=TRUE, exact = FALSE)
```
Arguments

- **X**: Object to be dilated. A point pattern (object of class "ppp"), a line segment pattern (object of class "psp"), or a window (object of class "owin").
- **r**: Numeric vector of radii for the dilations.
- **W**: Window (object of class "owin") inside which the areas will be computed, if constrained=TRUE.
- **...**: Ignored.
- **constrained**: Logical flag indicating whether areas should be restricted to the window W.
- **exact**: Logical flag indicating whether areas should be computed using analytic geometry (which is slower but more accurate). Currently available only when X is a point pattern.

Details

This function computes the areas of the dilations of X by each of the radii r[i]. Areas may also be computed inside a specified window W.

The morphological dilation of a set X by a distance \(r > 0 \) is the subset consisting of all points x such that the distance from x to X is less than or equal to r.

When X is a point pattern, the dilation by a distance r is the union of discs of radius r centred at the points of X.

The argument r should be a vector of nonnegative numbers.

If exact=TRUE and if X is a point pattern, then the areas are computed using analytic geometry, which is slower but much more accurate. Otherwise the computation is performed using distmap.

To compute the dilated object itself, use dilation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, dilation, eroded.areas

Examples

```R
X <- runifpoint(10)
a <- dilated.areas(X, c(0.1, 0.2), W=square(1), exact=TRUE)
```
dilation

Morphological Dilation

Description

Perform morphological dilation of a window, a line segment pattern or a point pattern.

Usage

dilation(w, r, ...)
S3 method for class 'owin'

dilation(w, r, ..., polygonal=NULL, tight=TRUE)
S3 method for class 'ppp'

dilation(w, r, ..., polygonal=TRUE, tight=TRUE)
S3 method for class 'psp'

dilation(w, r, ..., polygonal=TRUE, tight=TRUE)

Arguments

w
A window (object of class "owin" or a line segment pattern (object of class "psp") or a point pattern (object of class "ppp").

r
A positive number: the radius of dilation.

...
extra arguments passed to \texttt{as.mask} controlling the pixel resolution, if the pixel approximation is used.

polygonal
Logical flag indicating whether to compute a polygonal approximation to the dilation (\texttt{polygonal=TRUE}) or a pixel grid approximation (\texttt{polygonal=FALSE}).

tight
Logical flag indicating whether the bounding frame of the window should be taken as the smallest rectangle enclosing the dilated region (\texttt{tight=TRUE}), or should be the dilation of the bounding frame of \texttt{w} (\texttt{tight=FALSE}).

Details

The morphological dilation of a set \(W \) by a distance \(r > 0 \) is the set consisting of all points lying at most \(r \) units away from \(W \). Effectively, dilation adds a margin of width \(r \) onto the set \(W \).

If \texttt{polygonal=TRUE} then a polygonal approximation to the dilation is computed. If \texttt{polygonal=FALSE} then a pixel approximation to the dilation is computed from the distance map of \(w \). The arguments
```
...```
are passed to \texttt{as.mask} to control the pixel resolution.

When \( w \) is a window, the default (when \texttt{polygonal=\texttt{NULL}}) is to compute a polygonal approximation if \( w \) is a rectangle or polygonal window, and to compute a pixel approximation if \( w \) is a window of type "mask".

Value

If \( r > 0 \), an object of class "owin" representing the dilated region. If \( r=0 \), the result is identical to \( w \).
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
erosion for the opposite operation.
owin, as.owin

dirichlet

Dirichlet Tessellation of Point Pattern

description
Computes the Dirichlet tessellation of a spatial point pattern. Also known as the Voronoi or Thiessen tessellation.

Usage
dirichlet(X)

Arguments
X Spatial point pattern (object of class "ppp").

Details
In a spatial point pattern \(X\), the Dirichlet tile associated with a particular point \(X[i]\) is the region of space that is closer to \(X[i]\) than to any other point in \(X\). The Dirichlet tiles divide the two-dimensional plane into disjoint regions, forming a tessellation.

The Dirichlet tessellation is also known as the Voronoi or Thiessen tessellation.

This function computes the Dirichlet tessellation (within the original window of \(X\)) using the function deldir in the package deldir.

To ensure that there is a one-to-one correspondence between the points of \(X\) and the tiles of dirichlet(X), duplicated points in \(X\) should first be removed by \(X \leftarrow \text{unique}(X, \text{rule}="deldir")\).

The tiles of the tessellation will be computed as polygons if the original window is a rectangle or a polygon. Otherwise the tiles will be computed as binary masks.

Examples
```r
plot(dilation(letterR, 0.2))
plot(letterR, add=TRUE, lwd=2, border="red")

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(dilation(X, 0.1))
plot(X, add=TRUE, col="red")
```
Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, delaunay, ppp, dirichlet.vertices

Examples

```r
X <- runifpoint(42)
plot(dirichlet(X))
plot(X, add=TRUE)
```
Value

dirichlet.vertices returns a point pattern (object of class "ppp") in the same window as \( X \).
dirichlet.edges returns a line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

dirichlet

Examples

plot(dirichlet(cells))
plot(dirichlet.vertices(cells), add=TRUE)
ed <- dirichlet.edges(cells)
**Details**

This function computes a set of quadrature weights for a given pattern of points (typically comprising both “data” and ‘dummy” points). See `quad.object` for an explanation of quadrature weights and quadrature schemes.

The weights are computed using the Dirichlet tessellation. First `X` and (optionally) `window` are converted into a point pattern object. Then the Dirichlet tessellation of the points of `X` is computed. The weight attached to a point of `X` is the area of its Dirichlet tile (inside the window `X$window`).

If `exact=TRUE` the Dirichlet tessellation is computed exactly by the Lee-Schachter algorithm using the package `deldir`. Otherwise a pixel raster approximation is constructed and the areas are approximations to the true weights. In all cases the sum of the weights is equal to the area of the window.

**Value**

Vector of nonnegative weights for each point in `X`.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`quad.object`, `gridweights`

**Examples**

```r
Q <- quadscheme(runifpoispp(10))
X <- as.ppp(Q) # data and dummy points together
w <- dirichlet.weights(X, exact=FALSE)
```

---

**Description**

Creates a circular window

**Usage**

disc(radius=1, centre=c(0,0), ..., mask=FALSE, npoly=128, delta=NULL)
Arguments

radius  
   Radius of the circle.

centre  
   The centre of the circle.

mask  
   Logical flag controlling the type of approximation to a perfect circle. See Details.

npoly  
   Number of edges of the polygonal approximation, if mask=FALSE. Incompatible with delta.

delta  
   Tolerance of polygonal approximation: the length of arc that will be replaced by one edge of the polygon. Incompatible with npoly.

...  
   Arguments passed to as.mask determining the pixel resolution, if mask=TRUE.

Details

This command creates a window object representing a disc, with the given radius and centre.

By default, the circle is approximated by a polygon with npoly edges.

If mask=TRUE, then the disc is approximated by a binary pixel mask. The resolution of the mask is controlled by the arguments ... which are passed to as.mask.

The argument radius must be a single positive number. The argument centre specifies the disc centre: it can be either a numeric vector of length 2 giving the coordinates, or a list[HxLyI giving the coordinates of exactly one point, or a point pattern (object of class "ppp") containing exactly one point.

Value

An object of class "owin" (see owin.object) specifying a window.

Note

This function can also be used to generate regular polygons, by setting npoly to a small integer value. For example npoly=5 generates a pentagon and npoly=13 a triskaidecagon.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ellipse, discs, owin.object, owin, as.mask

Examples

# unit disc
W <- disc()
# disc of radius 3 centred at x=10, y=5
W <- disc(3, c(10,5))
#
### Description
Compute area of intersection between a disc and a window

### Usage
\[ \text{discpartarea}(X, r, W) = \text{as.owin}(X) \]

### Arguments
- **X**: Point pattern (object of class "ppp") specifying the centres of the discs. Alternatively, X may be in any format acceptable to \text{as.ppp}.
- **r**: Matrix, vector or numeric value specifying the radii of the discs.
- **W**: Window (object of class "owin") with which the discs should be intersected.

### Details
This algorithm computes the exact area of the intersection between a window \( W \) and a disc (or each of several discs). The centres of the discs are specified by the point pattern \( X \), and their radii are specified by \( r \).

- If \( r \) is a single numeric value, then the algorithm computes the area of intersection between \( W \) and the disc of radius \( r \) centred at each point of \( X \), and returns a one-column matrix containing one entry for each point of \( X \).
- If \( r \) is a vector of length \( m \), then the algorithm returns an \( n \times m \) matrix in which the entry on row \( i \), column \( j \) is the area of the intersection between \( W \) and the disc centred at \( X[i] \) with radius \( r[j] \).
- If \( r \) is a matrix, it should have one row for each point in \( X \). The algorithm returns a matrix in which the entry on row \( i \), column \( j \) is the area of the intersection between \( W \) and the disc centred at \( X[i] \) with radius \( r[i,j] \).

Areas are computed by analytic geometry.

### Value
Numeric matrix, with one row for each point of \( X \).
discretise

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, disc

Examples

data(letterR)
X <- runifpoint(3, letterR)
discpartarea(X, 0.2)

discretise  Safely Convert Point Pattern Window to Binary Mask

Description

Given a point pattern, discretise its window by converting it to a binary pixel mask, adjusting the
mask so that it still contains all the points.

Usage

discretise(X, eps = NULL, dimyx = NULL, xy = NULL)

Arguments

X  A point pattern (object of class "ppp") to be converted.
eps (optional) width and height of each pixel
dimyx (optional) pixel array dimensions
xy (optional) pixel coordinates

Details

This function modifies the point pattern X by converting its observation window X$window to a
binary pixel image (a window of type "mask"). It ensures that no points of X are deleted by the
discretisation.

The window is first discretised using as.mask. It can happen that points of X that were inside
the original window may fall outside the new mask. The discretise function corrects this by
augmenting the mask (so that the mask includes any pixel that contains a point of the pattern).
The arguments eps, dimyx and xy control the fineness of the pixel array. They are passed to
as.mask.

If eps, dimyx and xy are all absent or NULL, and if the window of X is of type "mask" to start with,
then discretise(X) returns X unchanged.

See as.mask for further details about the arguments eps, dimyx, and xy, and the process of con-
verting a window to one of type mask.
Value

A point pattern (object of class "ppp"), identical to \( X \), except that its observation window has been converted to one of type mask.

Error checking

Before doing anything, \texttt{discretise} checks that all the points of the pattern are actually inside the original window. This is guaranteed to be the case if the pattern was constructed using \texttt{ppp} or \texttt{as.ppp}. However anomalies are possible if the point pattern was created or manipulated inappropriately. These will cause an error.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{as.mask}

Examples

\begin{verbatim}
data(demopat) X <- demopat plot(X, main="original pattern") Y <- discretise(X, dimyx=50) plot(Y, main="discretise(X)") stopifnot(X$n == Y$n)

# what happens if we just convert the window to a mask? W <- X$window M <- as.mask(W, dimyx=50) plot(M, main="window of X converted to mask") plot(X, add=TRUE, pch=16) plot(X[M], add=TRUE, pch=1, cex=1.5) XM <- X[M] cat(paste(X$n - XM$n, "points of X lie outside M\n"))
\end{verbatim}

---

discs \hspace{1cm} Union of Discs

Description

Make a spatial region composed of discs with given centres and radii.

Usage

\begin{verbatim}
discs(centres, radii = marks(centres)/2, ..., separate = FALSE, mask = FALSE, trim = TRUE, delta = NULL)
\end{verbatim}
Arguments

centres  Point pattern giving the locations of centres for the discs.
radii   Vector of radii for each disc, or a single number giving a common radius. (Notice that the default assumes that the marks of \(X\) are diameters.)

... Optional arguments passed to \texttt{as.mask} to determine the pixel resolution, if \texttt{mask=TRUE}.

separate Logical. If \texttt{TRUE}, the result is a list containing each disc as a separate entry. If \texttt{FALSE} (the default), the result is a window obtained by forming the union of the discs.

mask   Logical. If \texttt{TRUE}, the result is a binary mask window. If \texttt{FALSE}, the result is a polygonal window. Applies only when \texttt{separate=FALSE}.

trim   Logical value indicating whether to restrict the result to the original window of the centres. Applies only when \texttt{separate=FALSE}.

delta   Argument passed to \texttt{disc} to determine the tolerance for the polygonal approximation of each disc. Applies only when \texttt{mask=FALSE}.

Details

This command is typically applied to a marked point pattern dataset \(X\) in which the marks represent the sizes of objects. The result is a spatial region representing the space occupied by the objects.

If the marks of \(X\) represent the diameters of circular objects, then the result of \texttt{discs(X)} is a spatial region constructed by taking discs, of the specified diameters, centred at the points of \(X\), and forming the union of these discs. If the marks of \(X\) represent the areas of objects, one could take \texttt{discs(X, sqrt(marks(X)/pi))} to produce discs of equivalent area.

A fast algorithm is used to compute the result as a binary mask, when \texttt{mask=TRUE}. This option is recommended unless polygons are really necessary.

If \texttt{mask=FALSE}, the discs will be constructed as polygons by the function \texttt{disc}. To avoid computational problems, the discs will all be constructed using the same physical tolerance value \texttt{delta} passed to \texttt{disc}. The default is such that the smallest disc will be approximated by a 16-sided polygon.

Value

If \texttt{separate=FALSE}, a window (object of class "owin").
If \texttt{separate=TRUE}, a list of windows.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.au.dk>

See Also

disc, union.owin
distcdf

**Examples**

```r
plot(discs(anemones, mask=TRUE, eps=0.5))
```

---

**distcdf**  
*Distribution Function of Interpoint Distance*

**Description**

Computes the cumulative distribution function of the distance between two independent random points in a given window or windows.

**Usage**

```r
distcdf(W, V=W, ..., dW=1, dV=dW, nr=1024)
```

**Arguments**

- **W**: A window (object of class "owin") containing the first random point.
- **V**: Optional. Another window containing the second random point. Defaults to `W`.
- **...**: Arguments passed to `as.mask` to determine the pixel resolution for the calculation.
- **dV**, **dW**: Optional. Probability densities (not necessarily normalised) for the first and second random points respectively. Data in any format acceptable to `as.im`, for example, a function `x,y` or a pixel image or a numeric value. The default corresponds to a uniform distribution over the window.
- **nr**: Integer. The number of values of interpoint distance `r` for which the CDF will be computed. Should be a large value!

**Details**

This command computes the Cumulative Distribution Function $CDF(r) = \text{Prob}(T \leq r)$ of the Euclidean distance $T = \|X_1 - X_2\|$ between two independent random points $X_1$ and $X_2$.

In the simplest case, the command `distcdf(W)`, the random points are assumed to be uniformly distributed in the same window `W`.

Alternatively the two random points may be uniformly distributed in two different windows `W` and `V`.

In the most general case the first point $X_1$ is random in the window `W` with a probability density proportional to `dW`, and the second point $X_2$ is random in a different window `V` with probability density proportional to `dV`.

The calculation is performed by numerical integration of the set covariance function `setcov` for uniformly distributed points, and by computing the covariance function `imcov` in the general case. The accuracy of the result depends on the pixel resolution used to represent the windows: this is controlled by the arguments `...` which are passed to `as.mask`. For example use `eps=0.1` to specify pixels of size 0.1 units.
The arguments \( W \) or \( V \) may also be point patterns (objects of class "ppp"). The result is the cumulative distribution function of the distance from a randomly selected point in the point pattern, to a randomly selected point in the other point pattern or window.

**Value**

An object of class "fv", see \( \text{fv.object} \), which can be plotted directly using \( \text{plot.fv} \).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

\( \text{setcov.as.mask} \).

**Examples**

```r
The unit disc
B <- disc()
plot(distcdf(B))
```

---

**distfun**

*Distance Map as a Function*

**Description**

Compute the distance function of an object, and return it as a function.

**Usage**

```r
distfun(X, ...)
```

## S3 method for class 'ppp'
```
distfun(X, ..., k=1)
```

## S3 method for class 'psp'
```
distfun(X, ...)
```

## S3 method for class 'owin'
```
distfun(X, ..., invert=FALSE)
```
**Arguments**

- **x**: Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), a window (object of class "owin") or a line segment pattern (object of class "psp").

- **...**: Extra arguments are ignored.

- **k**: An integer. The distance to the kth nearest point will be computed.

- **invert**: If TRUE, compute the distance transform of the complement of x.

**Details**

The “distance function” of a set of points \(A\) is the mathematical function \(f\) such that, for any two-dimensional spatial location \((x, y)\), the function value \(f(x, y)\) is the shortest distance from \((x, y)\) to \(A\).

The command \(f <- \text{distfun}(X)\) returns a function in the R language, with arguments \(x, y\), that represents the distance function of \(X\). Evaluating the function \(f\) in the form \(v <- f(x, y)\), where \(x\) and \(y\) are any numeric vectors of equal length containing coordinates of spatial locations, yields the values of the distance function at these locations.

This should be contrasted with the related command `distmap` which computes the distance function of \(X\) on a grid of locations, and returns the distance values in the form of a pixel image.

The result of \(f <- \text{distfun}(X)\) also belongs to the class "funxy" and to the special class "distfun". It can be printed and plotted immediately as shown in the Examples.

A `distfun` object can be converted to a pixel image using `as.im`.

**Value**

A function with arguments \(x, y\). The function also belongs to the class "distfun" which has a method for print. It also belongs to the class "funxy" which has methods for plot, contour and persp.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`distmap, plot.funxy`

**Examples**

```r
data(letterR)
f <- distfun(letterR)
f
plot(f)
f(0.2, 0.3)
plot(distfun(letterR, invert=TRUE), eps=0.1)
```
distfun.lpp

Distance Map on Linear Network

Description

Compute the distance function of a point pattern on a linear network.

Usage

## S3 method for class 'lpp'
distfun(X, ...)

Arguments

- X: A point pattern on a linear network (object of class "lpp").
- ...: Extra arguments are ignored.

Details

On a linear network \( L \), the “geodesic distance function” of a set of points \( A \) in \( L \) is the mathematical function \( f \) such that, for any location \( s \) on \( L \), the function value \( f(s) \) is the shortest-path distance from \( s \) to \( A \).

The command distfun.lpp is a method for the generic command distfun for the class "lpp" of point patterns on a linear network.

If \( X \) is a point pattern on a linear network, \( f \leftarrow \text{distfun}(X) \) returns a function in the \( R \) language that represents the distance function of \( X \). Evaluating the function \( f \) in the form \( v \leftarrow f(x,y) \), where \( x \) and \( y \) are any numeric vectors of equal length containing coordinates of spatial locations, yields the values of the distance function at these locations. More efficiently \( f \) can take the arguments \( x, y, \text{seg}, \text{tp} \) where \( \text{seg} \) and \( \text{tp} \) are the local coordinates on the network.

The function \( f \) obtained from \( f \leftarrow \text{distfun}(X) \) also belongs to the class "linfun". It can be printed and plotted immediately as shown in the Examples. It can be converted to a pixel image using \text{as.linim}.

Value

A function with arguments \( x, y \) and optional arguments \( \text{seg}, \text{tp} \). It also belongs to the class "linfun" which has methods for \text{plot}, \text{print} etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>
distmap

See Also

linfun, methods.linfun.

To identify which point is the nearest neighbour, see nnfun.lpp.

Examples

data(letterR)
X <- runiflpp(3, simplenet)
f <- distfun(X)
f
plot(f)

# using a distfun as a covariate in a point process model:
Y <- runiflpp(4, simplenet)
fit <- lppm(Y, ~D, covariates=list(D=f))

Value

A pixel image (object of class "im") whose grey scale values are the values of the distance map.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
distmap.ppp, distmap.psp, distmap.owin, distfun

Examples

data(cells)
U <- distmap(cells)
data(letterR)
V <- distmap(letterR)
## Not run:
plot(U)
plot(V)

## End(Not run)

distmap.owin  Distance Map of Window

Description
Computes the distance from each pixel to the nearest point in the given window.

Usage

## S3 method for class 'owin'
distmap(X, ..., discretise=FALSE, invert=FALSE)

Arguments

X  A window (object of class "owin").
...
Arguments passed to as.mask to control pixel resolution.
discretise  Logical flag controlling the choice of algorithm when X is a polygonal window. See Details.
invert  If TRUE, compute the distance transform of the complement of the window.
Details

The “distance map” of a window \( W \) is the function \( f \) whose value \( f(u) \) is defined for any two-dimensional location \( u \) as the shortest distance from \( u \) to \( W \).

This function computes the distance map of the window \( x \) and returns the distance map as a pixel image. The greyscale value at a pixel \( u \) equals the distance from \( u \) to the nearest pixel in \( x \).

Additionally, the return value has an attribute "bdry" which is also a pixel image. The grey values in "bdry" give the distance from each pixel to the bounding rectangle of the image.

If \( x \) is a binary pixel mask, the distance values computed are not the usual Euclidean distances. Instead the distance between two pixels is measured by the length of the shortest path connecting the two pixels. A path is a series of steps between neighbouring pixels (each pixel has 8 neighbours). This is the standard ‘distance transform’ algorithm of image processing (Rosenfeld and Kak, 1968; Borgefors, 1986).

If \( x \) is a polygonal window, then exact Euclidean distances will be computed if discretise=FALSE. If discretise=TRUE then the window will first be converted to a binary pixel mask and the discrete path distances will be computed.

The arguments ... are passed to \texttt{as.mask} to control the pixel resolution.

This function is a method for the generic \texttt{distmap}.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The return value has an attribute "bdry" which is a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]

and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{distmap}, \texttt{distmap.ppp}, \texttt{distmap.psp}

Examples

data(letterR)
U <- distmap(letterR)
  ## Not run:
  plot(U)
  plot(attr(U, "bdry"))

  ## End(Not run)
distmap.ppp

Distance Map of Point Pattern

Description

Computes the distance from each pixel to the nearest point in the given point pattern.

Usage

```r
S3 method for class 'ppp'
distmap(X, ...)
```

Arguments

- `X` A point pattern (object of class "ppp").
- `...` Arguments passed to `as.mask` to control pixel resolution.

Details

The "distance map" of a point pattern \( X \) is the function \( f \) whose value \( f(u) \) is defined for any two-dimensional location \( u \) as the shortest distance from \( u \) to \( X \).

This function computes the distance map of the point pattern \( X \) and returns the distance map as a pixel image. The greyscale value at a pixel \( u \) equals the distance from \( u \) to the nearest point of the pattern \( X \).

Additionally, the return value has two attributes, "index" and "bdry", which are also pixel images. The grey values in "bdry" give the distance from each pixel to the bounding rectangle of the image. The grey values in "index" are integers identifying which point of \( X \) is closest.

This is a method for the generic function `distmap`.

Note that this function gives the distance from the centre of each pixel to the nearest data point. To compute the exact distance from a given spatial location to the nearest data point in \( X \), use `distfun` or `nncross`.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The return value has attributes "index" and "bdry" which are also pixel images.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Generic function `distmap` and other methods `distmap.psp, distmap.owin`.
Generic function `distfun`.
Nearest neighbour distance `nncross`
Examples

```r
data(cells)
U <- distmap(cells)
Not run:
plot(U)
plot(attr(U, "bdry"))
plot(attr(U, "index"))

End(Not run)
```

---

**distmap.psp**  
*Distance Map of Line Segment Pattern*

---

**Description**

Computes the distance from each pixel to the nearest line segment in the given line segment pattern.

**Usage**

```r
S3 method for class 'psp'
distmap(X, ...)
```

**Arguments**

- `X`  
  A line segment pattern (object of class "psp").

- `...`  
  Arguments passed to `as.mask` to control pixel resolution.

**Details**

The “distance map” of a line segment pattern $X$ is the function $f$ whose value $f(u)$ is defined for any two-dimensional location $u$ as the shortest distance from $u$ to $X$.

This function computes the distance map of the line segment pattern $X$ and returns the distance map as a pixel image. The greyscale value at a pixel $u$ equals the distance from $u$ to the nearest line segment of the pattern $X$. Distances are computed using analytic geometry.

Additionally, the return value has two attributes, "index" and "bdry", which are also pixel images. The grey values in "bdry" give the distance from each pixel to the bounding rectangle of the image. The grey values in "index" are integers identifying which line segment of $X$ is closest.

This is a method for the generic function `distmap`.

Note that this function gives the exact distance from the centre of each pixel to the nearest line segment. To compute the exact distance from the points in a point pattern to the nearest line segment, use `distfun` or one of the low-level functions `nncross` or `project2segment`.

**Value**

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The return value has attributes "index" and "bdry" which are also pixel images.
**Author(s)**
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**
distmap, distmap.owin, distmap.ppp, distfun, nncross, nearestsegment, project2segment.

**Examples**
```r
a <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Z <- distmap(a)
plot(Z)
plot(a, add=TRUE)
```

---

**dmixpois**

*Mixed Poisson Distribution*

**Description**
Density, distribution function, quantile function and random generation for a mixture of Poisson distributions.

**Usage**
```r
dmixpois(x, mu, sd, invlink = exp, GHorder = 5)
```
```
pmixpois(q, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
```
```
qmixpois(p, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
```
```
rmixpois(n, mu, sd, invlink = exp)
```

**Arguments**
- `x`: vector of (non-negative integer) quantiles.
- `q`: vector of quantiles.
- `p`: vector of probabilities.
- `n`: number of random values to return.
- `mu`: Mean of the linear predictor. A single numeric value.
- `sd`: Standard deviation of the linear predictor. A single numeric value.
- `invlink`: Inverse link function. A function in the R language, used to transform the linear predictor into the parameter lambda of the Poisson distribution.
- `lower.tail`: Logical. If TRUE (the default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.
- `GHorder`: Number of quadrature points in the Gauss-Hermite quadrature approximation. A small positive integer.
Details

These functions are analogous to `dpois`, `ppois`, `qpois` and `rpois` except that they apply to a mixture of Poisson distributions.

In effect, the Poisson mean parameter \( \lambda \) is randomised by setting \( \lambda = \text{invlink}(Z) \) where \( Z \) has a Gaussian \( N(\mu, \sigma^2) \) distribution. The default is \( \text{invlink}=\exp \) which means that \( \lambda \) is lognormal. Set \( \text{invlink}=1 \) to assume that \( \lambda \) is approximately Normal.

For `dmixpois`, `pmixpois` and `qmixpois`, the probability distribution is approximated using Gauss-Hermite quadrature. For `rmixpois`, the deviates are simulated exactly.

Value

Numeric vector: `dmixpois` gives probability masses, `ppois` gives cumulative probabilities, `qpois` gives (non-negative integer) quantiles, and `rpois` generates (non-negative integer) random deviates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/), Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

dpois, gauss.hermite.

Examples

```r
 dmixpois(7, 10, 1, invlink = 1)
 dpois(7, 10)

 pmixpois(7, log(10), 0.2)
 ppois(7, 10)

 qmixpois(0.95, log(10), 0.2)
 qpois(0.95, 10)

 x <- rmixpois(100, log(10), log(1.2))
 mean(x)
 var(x)
```

---

**domain**

*Extract the Domain of any Spatial Object*

**Description**

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts the spatial domain in which the object is defined.
Usage

domain(X, ...)

## S3 method for class 'ppp'
domain(X, ...)

## S3 method for class 'psp'
domain(X, ...)

## S3 method for class 'im'
domain(X, ...)

## S3 method for class 'ppx'
domain(X, ...)

## S3 method for class 'pp3'
domain(X, ...)

## S3 method for class 'lpp'
domain(X, ...)

## S3 method for class 'ppm'
domain(X, ..., from=c("points", "covariates"))

## S3 method for class 'kppm'
domain(X, ..., from=c("points", "covariates"))

## S3 method for class 'lpp'
domain(X, ...)

## S3 method for class 'lppm'
domain(X, ...)

## S3 method for class 'msr'
domain(X, ...)

## S3 method for class 'quad'
domain(X, ...)

## S3 method for class 'quadratcount'
domain(X, ...)

## S3 method for class 'quadrat.test'
domain(X, ...)

## S3 method for class 'tess'
domain(X, ...)
domain

## S3 method for class 'im'
domain(X, ...)

## S3 method for class 'layered'
domain(X, ...)

## S3 method for class 'distfun'
domain(X, ...)

## S3 method for class 'nfun'
domain(X, ...)

## S3 method for class 'funxy'
domain(X, ...)

## S3 method for class 'rmhmodel'
domain(X, ...)

## S3 method for class 'leverage.ppm'
domain(X, ...)

## S3 method for class 'influence.ppm'
domain(X, ...)

### Arguments

- **X**: A spatial object such as a point pattern (in any number of dimensions), line segment pattern or pixel image.
- **...**: Extra arguments. They are ignored by all the methods listed here.
- **from**: Character string. See Details.

### Details

The function `domain` is generic.

For a spatial object `X` in any number of dimensions, `domain(X)` extracts the spatial domain in which `X` is defined.

For a two-dimensional object `X`, typically `domain(X)` is the same as `domain(X)`.

The exception is that, if `X` is a point pattern on a linear network (class "lpp") or a point process model on a linear network (class "lppm"), then `domain(X)` is the linear network on which the points lie, while `Window(X)` is the two-dimensional window containing the linear network.

The argument `from` applies when `X` is a fitted point process model (object of class "ppm" or "kppm"). If `from="data"` (the default), `domain` extracts the window of the original point pattern data to which the model was fitted. If `from="covariates"` then `domain` returns the window in which the spatial covariates of the model were provided.
Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
domain

dummify

Convert Data to Numeric Values by Constructing Dummy Variables

Description

Converts data of any kind to numeric values. A factor is expanded to a set of dummy variables.

Usage

dummify(x)

Arguments

x Vector, factor, matrix or data frame to be converted.

Details

This function converts data (such as a factor) to numeric values in order that the user may calculate, for example, the mean, variance, covariance and correlation of the data.

If x is a numeric vector or integer vector, it is returned unchanged.

If x is a logical vector, it is converted to a 0-1 matrix with 2 columns. The first column contains a 1 if the logical value is FALSE, and the second column contains a 1 if the logical value is TRUE.

If x is a complex vector, it is converted to a matrix with 2 columns, containing the real and imaginary parts.

If x is a factor, the result is a matrix of 0-1 dummy variables. The matrix has one column for each possible level of the factor. The (i,j) entry is equal to 1 when the ith factor value equals the jth level, and is equal to 0 otherwise.
If \( x \) is a matrix or data frame, the appropriate conversion is applied to each column of \( x \).

Note that, unlike `model.matrix`, this command converts a factor into a full set of dummy variables (one column for each level of the factor).

**Value**

A numeric matrix.

**Author(s)**


**Examples**

```r
chara <- sample(letters[1:3], 8, replace=TRUE)
logi <- (runif(8) < 0.3)
comp <- round(4*runif(8) + 3*runif(8) * 1i, 1)
nume <- 8:1 + 0.1
df <- data.frame(nume, chara, logi, comp)
df
dummify(df)
```

---

**Description**

Given a fitted point process model, this function extracts the ‘dummy points’ of the quadrature scheme used to fit the model.

**Usage**

```r
dummy.ppm(object, drop=FALSE)
```

**Arguments**

- `object` fitted point process model (an object of class "ppm").
- `drop` Logical value determining whether to delete dummy points that were not used to fit the model.

**Details**

An object of class "ppm" represents a point process model that has been fitted to data. It is typically produced by the model-fitting algorithm `ppm`.

The maximum pseudolikelihood algorithm in `ppm` approximates the pseudolikelihood integral by a sum over a finite set of quadrature points, which is constructed by augmenting the original data point pattern by a set of “dummy” points. The fitted model object returned by `ppm` contains complete information about this quadrature scheme. See `ppm` or `ppm.object` for further information.
This function `dummy.ppm` extracts the dummy points of the quadrature scheme. A typical use of this function would be to count the number of dummy points, to gauge the accuracy of the approximation to the exact pseudolikelihood.

It may happen that some dummy points are not actually used in fitting the model (typically because the value of a covariate is NA at these points). The argument `drop` specifies whether these unused dummy points shall be deleted (`drop=TRUE`) or retained (`drop=FALSE`) in the return value.

See `ppm.object` for a list of all operations that can be performed on objects of class "ppm".

**Value**

A point pattern (object of class "ppp").

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`ppm.object, ppm.object, ppm`

**Examples**

```r
data(cells)
fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- dummy.ppm(fit)
X$n
this is the number of dummy points in the quadrature scheme
```

---

**duplicated.ppp**  
*Determine Duplicated Points in a Spatial Point Pattern*

**Description**

Determines which points in a spatial point pattern are duplicates of previous points, and returns a logical vector.

**Usage**

```r
S3 method for class 'ppp'
duplicated(x, ..., rule=c("spatstat", "deldir", "unmark"))

S3 method for class 'ppx'
duplicated(x, ...)

S3 method for class 'ppp'
anyDuplicated(x, ...)
```
duplicated.ppp

## S3 method for class 'ppx'
anyDuplicated(x, ...)

### Arguments
- **x**: A spatial point pattern (object of class "ppp" or "ppx").
- **...**: Ignored.
- **rule**: Character string. The rule for determining duplicated points.

### Details
These are methods for the generic functions duplicated and anyDuplicated for point pattern datasets (of class "ppp", see ppp.object, or class "ppx").

anyDuplicated(x) is a faster version of any(duplicated(x)).

Two points in a point pattern are deemed to be identical if their $x, y$ coordinates are the same, and their marks are also the same (if they carry marks). The Examples section illustrates how it is possible for a point pattern to contain a pair of identical points.

This function determines which points in x duplicate other points that appeared earlier in the sequence. It returns a logical vector with entries that are TRUE for duplicated points and FALSE for unique (non-duplicated) points.

If rule="spatstat" (the default), two points are deemed identical if their coordinates are equal according to ==, and their marks are equal according to ==. This is the most stringent possible test. If rule="unmark", duplicated points are determined by testing equality of their coordinates only, using ==. If rule="deldir", duplicated points are determined by testing equality of their coordinates only, using the function duplicatedxy in the package deldir, which currently uses duplicated.data.frame. Setting rule="deldir" will ensure consistency with functions in the deldir package.

### Value
- duplicated(x) returns a logical vector of length equal to the number of points in x.
- anyDuplicated(x) is a number equal to 0 if there are no duplicated points, and otherwise is equal to the index of the first duplicated point.

### Author(s)
and Rolf Turner <r.turner@auckland.ac.nz>

### See Also
- ppp.object, unique.ppp, multiplicity.ppp

### Examples
```r
X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
duplicated(X)
duplicated(X, rule="deldir")
```
edge.Ripley  Ripley’s Isotropic Edge Correction

Description

Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage

edge.Ripley(X, r, W = X$window, method = "C", maxweight = 100)

rmax.Ripley(W)

Arguments

X Point pattern (object of class "ppp").
W Window for which the edge correction is required.
r Vector or matrix of interpoint distances for which the edge correction should be computed.
method Choice of algorithm. Either "interpreted" or "C". This is needed only for debugging purposes.
maxweight Maximum permitted value of the edge correction weight.

Details

The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is used in estimating the $K$ function and in many other contexts.

The function rmax.Ripley computes the maximum value of distance $r$ for which the isotropic edge correction estimate of $K(r)$ is valid.

For a single point $x$ in a window $W$, and a distance $r > 0$, the isotropic edge correction weight is

$$e(u, r) = \frac{2\pi r}{\text{length}(c(u, r) \cap W)}$$

where $c(u, r)$ is the circle of radius $r$ centred at the point $u$. The denominator is the length of the overlap between this circle and the window $W$.

The function edge.Ripley computes this edge correction weight for each point in the point pattern $X$ and for each corresponding distance value in the vector or matrix $r$.

If $r$ is a vector, with one entry for each point in $X$, then the result is a vector containing the edge correction weights $e(X[i], \ r[i])$ for each $i$.

If $r$ is a matrix, with one row for each point in $X$, then the result is a matrix whose $i, j$ entry gives the edge correction weight $e(X[i], \ r[i, j])$. For example edge.Ripley(X, pairdist(X)) computes all the edge corrections required for the $K$-function.

If any value of the edge correction weight exceeds maxwt, it is set to maxwt.

The function rmax.Ripley computes the smallest distance $r$ such that it is possible to draw a circle of radius $r$, centred at a point of $W$, such that the circle does not intersect the interior of $W$. 
Value

A numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

edge.Trans, rmax.Trans, Kest

Examples

```R
v <- edge.Trans(cells, pairdist(cells))

rmax.Trans(Window(cells))
```

Description

Computes Ohser and Stoyan’s translation edge correction weights for a point pattern.

Usage

```R
edge.Trans(X, Y = X, W = X$window,
 exact = FALSE, paired = FALSE,
 ...,
 trim = spatstat.options("magedgewt"),
 dx=NULL, dy=NULL,
 give.rmax=FALSE)
```

```R
rmax.Trans(W, g=setcov(W))
```
Arguments

\(X, Y\) Point patterns (objects of class "ppp").

\(w\) Window for which the edge correction is required.

\(exact\) Logical. If TRUE, a slow algorithm will be used to compute the exact value. If FALSE, a fast algorithm will be used to compute the approximate value.

\(paired\) Logical value indicating whether \(X\) and \(Y\) are paired. If TRUE, compute the edge correction for corresponding points \(X[i], Y[i]\) for all \(i\). If FALSE, compute the edge correction for each possible pair of points \(X[i], Y[j]\) for all \(i\) and \(j\).

\(\ldots\) Ignored.

\(trim\) Maximum permitted value of the edge correction weight.

\(dx, dy\) Alternative data giving the \(x\) and \(y\) coordinates of the vector differences between the points. Incompatible with \(X\) and \(Y\). See Details.

\(give.rmax\) Logical. If TRUE, also compute the value of \(r_{\text{max}}.\text{Trans}(w)\) and return it as an attribute of the result.

\(g\) Optional. Set covariance of \(w\).

Details

The function `edge.Trans` computes Ohser and Stoyan’s translation edge correction weight, which is used in estimating the \(K\) function and in many other contexts.

The function `rmax.Trans` computes the maximum value of distance \(r\) for which the translation edge correction estimate of \(K(r)\) is valid.

For a pair of points \(x\) and \(y\) in a window \(W\), the translation edge correction weight is

\[
e(u, r) = \frac{\text{area}(W)}{\text{area}(W \cap (W + y - x))}
\]

where \(W + y - x\) is the result of shifting the window \(W\) by the vector \(y - x\). The denominator is the area of the overlap between this shifted window and the original window.

The function `edge.Trans` computes this edge correction weight. If \(paired=\text{TRUE}\), then \(X\) and \(Y\) should contain the same number of points. The result is a vector containing the edge correction weights \(e(X[i], Y[i])\) for each \(i\).

If \(paired=\text{FALSE}\), then the result is a matrix whose \(i,j\) entry gives the edge correction weight \(e(X[i], Y[j])\).

Computation is exact if the window is a rectangle. Otherwise,

- if \(exact=\text{TRUE}\), the edge correction weights are computed exactly using `overlap.owin`, which can be quite slow.
- if \(exact=\text{FALSE}\) (the default), the weights are computed rapidly by evaluating the set covariance function `setcov` using the Fast Fourier Transform.

If any value of the edge correction weight exceeds `trim`, it is set to `trim`.

The arguments \(dx\) and \(dy\) can be provided as an alternative to \(X\) and \(Y\). If \(paired=\text{TRUE}\) then \(dx, dy\) should be vectors of equal length such that the vector difference of the \(i\)th pair is \(c(dx[i], dy[i])\).
If paired=FALSE then $dx$, $dy$ should be matrices of the same dimensions, such that the vector difference between $X[i]$ and $Y[j]$ is $c(dx[i,j], dy[i,j])$. The argument $W$ is needed.

The value of $r_{\text{max}}.\text{Trans}$ is the shortest distance from the origin $(0,0)$ to the boundary of the support of the set covariance function of $W$. It is computed by pixel approximation using \texttt{setcov}, unless $W$ is a rectangle, when $r_{\text{max}}.\text{Trans}(W)$ is the length of the shortest side of the rectangle.

**Value**

Numeric vector or matrix.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

$r_{\text{max}}.\text{Trans}$, \texttt{edge.Ripley}, \texttt{setcov}, \texttt{Kest}

**Examples**

```r
v <- edge.Trans(cells)
rm.max.Trans(Window(cells))
```

---

**Description**

Extracts the boundary edges of a window and returns them as a line segment pattern.

**Usage**

```r
edges(x, ..., window = NULL, check = FALSE)
```

**Arguments**

- `x`: A window (object of class "owin"), or data acceptable to \texttt{as.owin}, specifying the window whose boundary is to be extracted.
- `...`: Ignored.
- `window`: Window to contain the resulting line segments. Defaults to \texttt{as.rectangle(x)}.
- `check`: Logical. Whether to check the validity of the resulting segment pattern.
edges2triangles

Details

The boundary edges of the window \( x \) will be extracted as a line segment pattern.

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/], Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

perimeter for calculating the total length of the boundary.

Examples

```r
edges(square(1))
edges(letterR)
```

---

edges2triangles  List Triangles in a Graph

Description

Given a list of edges between vertices, compile a list of all triangles formed by these edges.

Usage

```r
edges2triangles(iedge, jedge, nvert=max(iedge, jedge), ...,
 check=TRUE, friendly=rep(TRUE, nvert))
```

Arguments

- `iedge, jedge` Integer vectors, of equal length, specifying the edges.
- `nvert` Number of vertices in the network.
- `...` Ignored
- `check` Logical. Whether to check validity of input data.
- `friendly` Optional. For advanced use. See Details.
Details

This low level function finds all the triangles (cliques of size 3) in a finite graph with \(n\) vertices and with edges specified by \(i, j\).

The interpretation of \(i, j\) is that each successive pair of entries specifies an edge in the graph. The \(k\)th edge joins vertex \(i[k]\) to vertex \(j[k]\). Entries of \(i\) and \(j\) must be integers from 1 to \(n\).

To improve efficiency in some applications, the optional argument \(\text{friendly}\) can be used. It should be a logical vector of length \(n\) specifying a labelling of the vertices, such that two vertices \(j, k\) which are not friendly (\(\text{friendly}[j] = \text{friendly}[k] = \text{FALSE}\)) are never connected by an edge.

Value

A 3-column matrix of integers, in which each row represents a triangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

edges2vees

Examples

```r
i <- c(1, 2, 5, 5, 1, 4, 2)
j <- c(2, 3, 3, 1, 3, 2, 5)
edges2triangles(i, j)
```

Description

Given a list of edges between vertices, compile a list of all ‘vees’ or dihedral triples formed by these edges.

Usage

```r
edges2vees(i, j, nvert=max(i, j), ..., check=TRUE)
```

Arguments

- \(i, j\): Integer vectors, of equal length, specifying the edges.
- \(nvert\): Number of vertices in the network.
- \(...\): Ignored
- \(check\): Logical. Whether to check validity of input data.
Details

Given a finite graph with nvert vertices and with edges specified by iedge, jedge, this low-level function finds all ‘vees’ or ‘dihedral triples’ in the graph, that is, all triples of vertices (i, j, k) where i and j are joined by an edge and i and k are joined by an edge.

The interpretation of iedge, jedge is that each successive pair of entries specifies an edge in the graph. The kth edge joins vertex iedge[k] to vertex jedge[k]. Entries of iedge and jedge must be integers from 1 to nvert.

Value

A 3-column matrix of integers, in which each row represents a triple of vertices, with the first vertex joined to the other two vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

edges2triangles

Examples

```r
i <- c(1, 2, 5, 5, 1, 4, 2)
j <- c(2, 3, 3, 1, 3, 2, 5)
edges2vees(i, j)
```

---

### eem

**Exponential Energy Marks**

Description

Given a point process model fitted to a point pattern, compute the Stoyan-Grabarnik diagnostic “exponential energy marks” for the data points.

Usage

```r
eem(fit, check=TRUE)
```

Arguments

- **fit**: The fitted point process model. An object of class "ppm".
- **check**: Logical value indicating whether to check the internal format of fit. If there is any possibility that this object has been restored from a dump file, or has otherwise lost track of the environment where it was originally computed, set check=TRUE.
Details

Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial point pattern data. Each point $x[i]$ of the data pattern $X$ is given a ‘mark’ or ‘weight’

$$m[i] = 1/\lambda - \hat{\lambda}(x[i], X)$$

where $\lambda - \hat{\lambda}(x[i], X)$ is the conditional intensity of the fitted model. If the fitted model is correct, then the sum of these marks for all points in a region $B$ has expected value equal to the area of $B$.

The argument `fit` must be a fitted point process model (object of class "ppm"). Such objects are produced by the maximum pseudolikelihood fitting algorithm `ppm`). This fitted model object contains complete information about the original data pattern and the model that was fitted to it.

The value returned by `eem` is the vector of weights $m[i]$ associated with the points $x[i]$ of the original data pattern. The original data pattern (in corresponding order) can be extracted from `fit` using `data.ppm`.

The function `diagnose.ppm` produces a set of sensible diagnostic plots based on these weights.

Value

A vector containing the values of the exponential energy mark for each point in the pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`diagnose.ppm`, `ppm.object`, `data.ppm`, `residuals.ppm`, `ppm` 

Examples

data(cells)
fit <- ppm(cells, ~x, Strauss(r=0.15))
ee <- eem(fit)
sum(ee)/area(cells$window) # should be about 1 if model is correct
Y <- setmarks(cells, ee)
plot(Y, main="Cells data\n Exponential energy marks")
effectfun  

Compute Fitted Effect of a Spatial Covariate in a Point Process Model

**Description**

Compute the trend or intensity of a fitted point process model as a function of one of its covariates.

**Usage**

```r
effectfun(model, covname, ..., se.fit=FALSE)
```

**Arguments**

- `model` A fitted point process model (object of class "ppm").
- `covname` The name of the covariate. A character string.
- `...` The fixed values of other covariates (in the form `name=value`) if required.
- `se.fit` Logical. If `true`, asymptotic standard errors of the estimates will be computed, together with a 95% confidence interval.

**Details**

The object `model` should be an object of class "ppm" representing a point process model fitted to point pattern data.

The model's trend formula should involve a spatial covariate named `covname`. This could be "x" or "y" representing one of the Cartesian coordinates. More commonly the covariate is another, external variable that was supplied when fitting the model.

The command `effectfun` computes the fitted trend of the point process `model` as a function of the covariate named `covname`. The return value can be plotted immediately, giving a plot of the fitted trend against the value of the covariate.

If the model also involves covariates other than `covname`, then these covariates will be held fixed. Values for these other covariates must be provided as arguments to `effectfun` in the form `name=value`.

If `se.fit=TRUE`, the algorithm also calculates the asymptotic standard error of the fitted trend, and a (pointwise) asymptotic 95% confidence interval for the true trend.

This command is just a wrapper for the prediction method `predict.ppm`. For more complicated computations about the fitted intensity, use `predict.ppm`.

**Value**

A data frame containing a column of values of the covariate and a column of values of the fitted trend. If `se.fit=TRUE`, there are 3 additional columns containing the standard error and the upper and lower limits of a confidence interval.

If the covariate named `covname` is numeric (rather than a factor or logical variable), the return value is also of class "Fv" so that it can be plotted immediately.
**Trend and intensity**

For a Poisson point process model, the trend is the same as the intensity of the point process. For a more general Gibbs model, the trend is the first order potential in the model (the first order term in the Gibbs representation). In Poisson or Gibbs models fitted by `ppm`, the trend is the only part of the model that depends on the covariates.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`ppm`, `predict.ppm`, `fv.object`

**Examples**

```r
data(copper)
X <- copper$SouthPoints
D <- distmap(copper$SouthLines)
fit <- ppm(X, ~polynom(Z, 5), covariates=list(Z=D))
plot(effectfun(fit, "Z"))
plot(effectfun(fit, "Z", se.fit=TRUE), shade=c("hi", "lo"))
fit <- ppm(X, ~x + polynom(Z, 5), covariates=list(Z=D))
plot(effectfun(fit, "Z", x=20))
fit <- ppm(X, ~x)
plot(effectfun(fit, "x"))
```

---

**ellipse**

*Elliptical Window.*

**Description**

Create an elliptical window.

**Usage**

```r
ellipse(a, b, centre=c(0,0), phi=0, ..., mask=FALSE, npoly = 128)
```

**Arguments**

- `a, b`  
The half-lengths of the axes of the ellipse.
- `centre`  
The centre of the ellipse.
- `phi`  
The (anti-clockwise) angle through which the ellipse should be rotated (about its centre) starting from an orientation in which the axis of half-length `a` is horizontal.
Emark

mask Logical value controlling the type of approximation to a perfect ellipse. See Details.

... Arguments passed to as.mask to determine the pixel resolution, if mask is TRUE.
npoly The number of edges in the polygonal approximation to the ellipse.

Details

This command creates a window object representing an ellipse with the given centre and axes.

By default, the ellipse is approximated by a polygon with npoly edges.

If mask=TRUE, then the ellipse is approximated by a binary pixel mask. The resolution of the mask is controlled by the arguments ... which are passed to as.mask.

The arguments a and b must be single positive numbers. The argument centre specifies the ellipse centre: it can be either a numeric vector of length 2 giving the coordinates, or a listHxLyI giving the coordinates of exactly one point, or a point pattern (object of class "ppp") containing exactly one point.

Value

An object of class owin (either of type “polygonal” or of type “mask”) specifying an elliptical window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
disc, owin.object, owin, as.mask

Examples

W <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6)
plot(W,lwd=2,border="red")
WM <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6,mask=TRUE,dimyx=512)
plot(WM,add=TRUE,box=FALSE)

Emark Diagnostics for random marking

Description

Estimate the summary functions $E(r)$ and $V(r)$ for a marked point pattern, proposed by Schlather et al (2004) as diagnostics for dependence between the points and the marks.
Usage

Emark(X, r=NULL, 
correction=c("isotropic", "Ripley", "translate"), 
method="density", ..., normalise=FALSE)
Vmark(X, r=NULL, 
correction=c("isotropic", "Ripley", "translate"), 
method="density", ..., normalise=FALSE)

Arguments

X  The observed point pattern. An object of class "ppp" or something acceptable to as.ppp. The pattern should have numeric marks.

r  Optional. Numeric vector. The values of the argument r at which the function \( E(r) \) or \( V(r) \) should be evaluated. There is a sensible default.

correction  A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

method  A character vector indicating the user’s choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

...  Arguments passed to the density estimation routine (density, loess or sm.NN density) selected by method.

normalise  If TRUE, normalise the estimate of \( E(r) \) or \( V(r) \) so that it would have value equal to 1 if the marks are independent of the points.

Details

For a marked point process, Schlather et al (2004) defined the functions \( E(r) \) and \( V(r) \) to be the conditional mean and conditional variance of the mark attached to a typical random point, given that there exists another random point at a distance \( r \) away from it.

More formally,

\[
E(r) = E_{0u}[M(0)]
\]

and

\[
V(r) = E_{0u}[(M(0) - E(u))^2]
\]

where \( E_{0u} \) denotes the conditional expectation given that there are points of the process at the locations 0 and \( u \) separated by a distance \( r \), and where \( M(0) \) denotes the mark attached to the point 0.

These functions may serve as diagnostics for dependence between the points and the marks. If the points and marks are independent, then \( E(r) \) and \( V(r) \) should be constant (not depending on \( r \)). See Schlather et al (2004).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern with numeric marks.

The argument \( r \) is the vector of values for the distance \( r \) at which \( k_f(r) \) is estimated.

This algorithm assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X \$window \)) may have arbitrary shape.
Biases due to edge effects are treated in the same manner as in \texttt{Kest}. The edge corrections implemented here are

- **isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).
- **translate** Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are estimated using density estimation techniques. The user can choose between

- “density” which uses the standard kernel density estimation routine \texttt{density}, and works only for evenly-spaced \( r \) values;
- “loess” which uses the function \texttt{loess} in the package \texttt{modreg};
- “sm” which uses the function \texttt{sm.density} in the package \texttt{sm} and is extremely slow;
- “smrep” which uses the function \texttt{sm.density} in the package \texttt{sm} and is relatively fast, but may require manual control of the smoothing parameter \( h_{mult} \).

**Value**

If \( \text{marks}(X) \) is a numeric vector, the result is an object of class "fv" (see \texttt{fv.object}). If \( \text{marks}(X) \) is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( E(r) \) or \( V(r) \) has been estimated
- \( \text{theo} \) the theoretical, constant value of \( E(r) \) or \( V(r) \) when the marks attached to different points are independent

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( E(r) \) or \( V(r) \) obtained by the edge corrections named.

**Author(s)**

and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

- Mark correlation \texttt{markcorr}, mark variogram \texttt{markvario} for numeric marks.
- Mark connection function \texttt{markconnect} and multitype K-functions \texttt{Kcross, Kdot} for factor-valued marks.
**endpoints.psp**

**Examples**

```r
data(spruces)

plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))
```

---

**Description**

Extracts the endpoints of each line segment in a line segment pattern.

**Usage**

```r
d-segment.psp(x, which="both")
```

**Arguments**

- `x` A line segment pattern (object of class "psp").
- `which` String specifying which endpoint or endpoints should be returned. See Details.

**Details**

This function extracts one endpoint, or both endpoints, from each of the line segments in `x`, and returns these points as a point pattern object.

The argument `which` determines which endpoint or endpoints of each line segment should be returned:

- `which="both"` (the default): both endpoints of each line segment are returned. The result is a point pattern with twice as many points as there are line segments in `x`.
- `which="first"` select the first endpoint of each line segment (returns the points with coordinates x$ends$x0, x$ends$y0).
- `which="second"` select the second endpoint of each line segment (returns the points with coordinates x$ends$x1, x$ends$y1).
- `which="left"` select the left-most endpoint (the endpoint with the smaller x coordinate) of each line segment.
- `which="right"` select the right-most endpoint (the endpoint with the greater x coordinate) of each line segment.
- `which="lower"` select the lower endpoint (the endpoint with the smaller y coordinate) of each line segment.
- `which="upper"` select the upper endpoint (the endpoint with the greater y coordinate) of each line segment.

The result is a point pattern. It also has an attribute "id" which is an integer vector identifying the segment which contributed each point.
Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp.object, ppp.object, midpoints.psp

Examples

```r
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a)
b <- endpoints.psp(a, "left")
plot(b, add=TRUE)
```

Description

Computes simulation envelopes of a summary function.

Usage

```r
envelope(Y, fun, ...)
```

## S3 method for class 'ppp'
envelope(Y, fun=Kest, nsim=99, nrank=1, ..., simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE, clipdata=TRUE, transform=NULL, global=FALSE, ginterval=NULL, alternative=c("two.sided", "less", "greater"), savefuns=FALSE, savepatterns=FALSE, nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL, maxnerr=nsim, do.pwrong=FALSE, envir.simul=NULL)

## S3 method for class 'ppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ..., simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE, clipdata=TRUE, start=NULL, control=update(default.rmhcontrol(Y), nrep=nrep), nrep=1e5, transform=NULL, global=FALSE, ginterval=NULL, alternative=c("two.sided", "less", "greater"),
envelope

savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL, maxnerr=nsim,
do.pwrong=FALSE, envir.simul=NULL)

## S3 method for class 'kppm'
envelope(y, fun=Kest, nsim=99, nrank=1, ..., simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL,
alternative=c("two.sided", "less", "greater"),
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL, maxnerr=nsim,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp") or a fitted point process model (object of class "ppm" or "kppm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the envelopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate is an expression in the R language, then this expression will be evaluated nsim times, to obtain nsim point patterns which are taken as the simulated patterns from which the envelopes are computed. If simulate is a list of point patterns, then the entries in this list will be treated as the simulated patterns from which the envelopes are computed. Alternatively simulate may be an object produced by the envelope command: see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the original data pattern. This option is currently not available for envelope.kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the same marks as the original data pattern. In a multitype point pattern this means that the simulated patterns will have the same number of points of each type as the original data. This option is currently not available for envelope.kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

clipdata Logical flag indicating whether the data point pattern should be clipped to the same window as the simulated patterns, before the summary function for the data is computed. This should usually be TRUE to ensure that the data and simulations are properly comparable.

start,control Optional. These specify the arguments start and control of rmh, giving complete control over the simulation algorithm. Applicable only when Y is a fitted model of class "ppm".
nrep: Number of iterations in the Metropolis-Hastings simulation algorithm. Applicable only when Y is a fitted model of class "ppm".

transform: Optional. A transformation to be applied to the function values, before the envelopes are computed. An expression object (see Details).

global: Logical flag indicating whether envelopes should be pointwise (global=FALSE) or simultaneous (global=TRUE).

ginterval: Optional. A vector of length 2 specifying the interval of r values for the simultaneous critical envelopes. Only relevant if global=TRUE.

alternative: Character string determining whether the envelope corresponds to a two-sided test (side="two.sided", the default) or a one-sided test with a lower critical boundary (side="less") or a one-sided test with an upper critical boundary (side="greater").

savefuns: Logical flag indicating whether to save all the simulated function values.

savepatterns: Logical flag indicating whether to save all the simulated point patterns.

nsim2: Number of extra simulated point patterns to be generated if it is necessary to use simulation to estimate the theoretical mean of the summary function. Only relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE: Logical. If TRUE, critical envelopes will be calculated as sample mean plus or minus nSD times sample standard deviation.

nSD: Number of estimated standard deviations used to determine the critical envelopes, if VARIANCE=TRUE.

Yname: Character string that should be used as the name of the data point pattern Y when printing or plotting the results.

maxnerr: Maximum number of rejected patterns. If fun yields an error when applied to a simulated point pattern (for example, because the pattern is empty and fun requires at least one point), the pattern will be rejected and a new random point pattern will be generated. If this happens more than maxnerr times, the algorithm will give up.

do.pwrong: Logical. If TRUE, the algorithm will also estimate the true significance level of the "wrong" test (the test that declares the summary function for the data to be significant if it lies outside the pointwise critical boundary at any point). This estimate is printed when the result is printed.

envir.simul: Environment in which to evaluate the expression simulate, if not the current environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic based on the simulations. The result is an object that can be plotted to display the envelopes. The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Randomness (CSR), type `plot(envelope(X, Kest, nsim=39))` to see the K function for X plotted together with the envelopes of the K function for 39 simulations of CSR.
The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described here. There are also methods for the classes "pp3", "lpp" and "lppm" which are described separately under envelope.pp3 and envelope.lpp. Envelopes can also be computed from other envelopes, using envelope.envelope.

To create simulation envelopes, the command `envelope(Y, ...)` first generates `nsim` random point patterns in one of the following ways.

- If `Y` is a point pattern (an object of class "ppp") and `simulate=NULL`, then we generate `nsim` simulations of Complete Spatial Randomness (i.e. `nsim` simulated point patterns each being a realisation of the uniform Poisson point process) with the same intensity as the pattern `Y`. (If `Y` is a multitype point pattern, then the simulated patterns are also given independent random marks; the probability distribution of the random marks is determined by the relative frequencies of marks in `Y`.)
- If `Y` is a fitted point process model (an object of class "ppm" or "kppm") and `simulate=NULL`, then this routine generates `nsim` simulated realisations of that model.
- If `simulate` is supplied, then it determines how the simulated point patterns are generated. It may be either
  - an expression in the R language, typically containing a call to a random generator. This expression will be evaluated `nsim` times to yield `nsim` point patterns. For example if `simulate=expression(runifpoint(100))` then each simulated pattern consists of exactly 100 independent uniform random points.
  - a list of point patterns. The entries in this list will be taken as the simulated patterns.
  - an object of class "envelope". This should have been produced by calling `envelope` with the argument `savepatterns=TRUE`. The simulated point patterns that were saved in this object will be extracted and used as the simulated patterns for the new envelope computation. This makes it possible to plot envelopes for two different summary functions based on exactly the same set of simulated point patterns.

The summary statistic `fun` is applied to each of these simulated patterns. Typically `fun` is one of the functions `Kest`, `Gest`, `Fest`, `Jest`, `pcf`, `Kcross`, `Kdot`, `Gcross`, `Gdot`, `Jcross`, `Jdot`, `Kmulti`, `Gmulti`, `Jmulti` or `Kinhom`. It may also be a character string containing the name of one of these functions.

The statistic `fun` can also be a user-supplied function; if so, then it must have arguments `x` and `r` like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

**pointwise:** by default, envelopes are calculated pointwise (i.e. for each value of the distance argument `r`), by sorting the `nsim` simulated values, and taking the `m`-th lowest and `m`-th highest values, where `m = nrank`. For example if `nrank=1`, the upper and lower envelopes are the pointwise maximum and minimum of the simulated values.

The pointwise envelopes are not "confidence bands" for the true value of the function! Rather, they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed by choosing a fixed value of `r`, and rejecting the null hypothesis if the observed function value lies outside the envelope at this value of `r`. This test has exact significance level `alpha = 2 * nrank / (1 + nsim)`.

**simultaneous:** if `global=TRUE`, then the envelopes are determined as follows. First we calculate the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by \textit{fun}; otherwise we perform a separate set of \textit{nsim2} simulations, compute the average of all these simulated values, and take this average as an estimate of the theoretical mean value). Then, for each simulation, we compare the simulated curve to the theoretical curve, and compute the maximum absolute difference between them (over the interval of \textit{r} values specified by \textit{ginterval}). This gives a deviation value \(d_i\) for each of the \textit{nsim} simulations. Finally we take the \(m\)-th largest of the deviation values, where \(m=\text{nr}ank\), and call this \textit{dcrit}. Then the simultaneous envelopes are of the form \(\text{lo} = \text{expected} - \text{dcrit}\) and \(\text{hi} = \text{expected} + \text{dcrit}\) where \(\text{expected}\) is either the theoretical mean value \textit{theo} (if we are testing CSR) or the estimated theoretical value \textit{mmean} (if we are testing another model).

The simultaneous critical envelopes have constant width \(2 \times \text{dcrit}\).

The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley, 1981). The test rejects the null hypothesis if the graph of the observed function lies outside the envelope \textbf{at any value of} \textit{r}. This test has exact significance level \(\text{alpha} = \text{nr}ank/(1 + \text{nsim})\).

This test can also be performed using \texttt{mad.test}.

\textbf{based on sample moments:} if \texttt{VARIANCE=TRUE}, the algorithm calculates the (pointwise) sample mean and sample variance of the simulated functions. Then the envelopes are computed as mean plus or minus \textit{nsd} standard deviations. These envelopes do not have an exact significance interpretation. They are a naive approximation to the critical points of the Neyman-Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "\textit{fv}" containing the summary function for the data point pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or estimated) of the summary function for the model being tested. It can be plotted using \texttt{plot.envelope}. If \texttt{VARIANCE=TRUE} then the return value also includes the sample mean, sample variance and other quantities.

Arguments can be passed to the function \textit{fun} through \texttt{....}. In particular, the argument \textit{correction} determines the edge correction to be used to calculate the summary statistic. See the section on Edge Corrections, and the Examples.

If \(Y\) is a fitted cluster point process model (object of class "\textit{kppm}"), and \texttt{simulate=NULL}, then the model is simulated directly using \texttt{simulate.kppm}.

If \(Y\) is a fitted Gibbs point process model (object of class "\textit{ppm}"), and \texttt{simulate=NULL}, then the model is simulated by running the Metropolis-Hastings algorithm \texttt{rmh}. Complete control over this algorithm is provided by the arguments \texttt{start} and \texttt{control} which are passed to \texttt{rmh}.

For simultaneous critical envelopes (\texttt{global=TRUE}) the following options are also useful:

\texttt{ginterval} determines the interval of \textit{r} values over which the deviation between curves is calculated. It should be a numeric vector of length 2. There is a sensible default (namely, the recommended plotting interval for \textit{fun}(X), or the range of \textit{r} values if \textit{r} is explicitly specified).

\texttt{transform} specifies a transformation of the summary function \textit{fun} that will be carried out before the deviations are computed. Such transforms are useful if \texttt{global=TRUE} or \texttt{VARIANCE=TRUE}. The \texttt{transform} must be an expression object using the symbol \(\text{N}\) to represent the function value (and possibly other symbols recognised by \texttt{with.fv}). For example, the conventional way to normalise the \(K\) function (Ripley, 1981) is to transform it to the \(L\) function \(L(r) = \sqrt{K(r)/\pi}\) and this is implemented by setting \texttt{transform=expression(sqrt(./pi))}.

It is also possible to extract the summary functions for each of the individual simulated point patterns, by setting \texttt{savefuns=TRUE}. Then the return value also has an attribute "\textit{simfuns}" containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1, sim2, ... representing the nsim summary functions.
It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns" which is a list of length nsim containing
all the simulated point patterns.
See plot.envelope and plot.fv for information about how to plot the envelopes.
Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.

Value
An object of class "fv", see fv.object, which can be printed and plotted directly.
Essentially a data frame containing columns
r the vector of values of the argument r at which the summary function fun has
been estimated
obs values of the summary function for the data point pattern
lo lower envelope of simulations
hi upper envelope of simulations
and either
theo theoretical value of the summary function under CSR (Complete Spatial Ran-
domness, a uniform Poisson point process) if the simulations were generated
according to CSR
mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.
Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns" which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings
An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.
The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

Confidence intervals
Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.
Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as the $K$ function. Typically the user has a choice between several possible edge corrections. In a call to `envelope`, the user can specify the edge correction to be applied in `fun`, using the argument `correction`. See the Examples below.

Summary functions in spatstat Summary functions that are available in `spatstat`, such as `Kest`, `Gest` and `pcf`, have a standard argument called `correction` which specifies the name of one or more edge corrections.

The list of available edge corrections is different for each summary function, and may also depend on the kind of window in which the point pattern is recorded. In the case of `Kest` (the default and most frequently used value of `fun`) the best edge correction is Ripley's isotropic correction if the window is rectangular or polygonal, and the translation correction if the window is a binary mask. See the help files for the individual functions for more information.

All the summary functions in `spatstat` recognise the option `correction="best"` which gives the “best” (most accurate) available edge correction for that function.

In a call to `envelope`, if `fun` is one of the summary functions provided in `spatstat`, then the default is `correction="best"`. This means that by default, the envelope will be computed using the “best” available edge correction.

The user can override this default by specifying the argument `correction`. For example the computation can be accelerated by choosing another edge correction which is less accurate than the “best” one, but faster to compute.

User-written summary functions If `fun` is a function written by the user, then `envelope` has to guess what to do.

If `fun` has an argument called `correction`, or has ... arguments, then `envelope` assumes that the function can handle a correction argument. To compute the envelope, `fun` will be called with a correction argument. The default is `correction="best"`, unless overridden in the call to `envelope`.

Otherwise, if `fun` does not have an argument called `correction` and does not have ... arguments, then `envelope` assumes that the function cannot handle a correction argument. To compute the envelope, `fun` is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

dclf.test, mad.test for envelope-based tests.
fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling envelopes.
Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat

# Envelope of K function under CSR
## Not run:
plot(envelope(X))

## End(Not run)

# Translation edge correction (this is also FASTER):
## Not run:
plot(envelope(X, correction="translate"))

## End(Not run)

# Envelope of K function for simulations from Gibbs model
## Not run:
fit <- ppm(cells, ~1, Strauss(0.05))
plot(envelope(fit))
plot(envelope(fit), global=TRUE)

## End(Not run)

# Envelope of K function for simulations from cluster model
fit <- kppm(redwood, ~1, "Thomas")
## Not run:
plot(envelope(fit, Gest))
plot(envelope(fit, Gest, global=TRUE))

## End(Not run)

# Envelope of G function under CSR
## Not run:
plot(envelope(X, Gest))

## End(Not run)

# Envelope of L function under CSR
# L(r) = sqrt(K(r)/pi)
## Not run:
E <- envelope(X, Kest)
plot(E, sqrt(./pi) - r)

## End(Not run)

# Simultaneous critical envelope for L function
# (alternatively, use Lest)
# Not run:
plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))

## End(Not run)

## One-sided envelope
# Not run:
plot(envelope(X, Lest, alternative="less"))

## End(Not run)

# How to pass arguments needed to compute the summary functions:
# We want envelopes for Jcross(X, "A", "B")
# where "A" and "B" are types of points in the dataset 'demopat'

data(demopat)
# Not run:
plot(envelope(demopat, Jcross, i="A", j="B"))

## End(Not run)

# Use of `simulate`
# Not run:
plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
plot(envelope(cells, Gest, simulate=expression(rMatern1(100, 0.02))))

## End(Not run)

# Envelope under random toroidal shifts
data(amacrine)
# Not run:
plot(envelope(amacrine, Kcross, i="on", j="off",
             simulate=expression(rshift(amacrine, radius=0.25))))

## End(Not run)

# Envelope under random shifts with erosion
# Not run:
plot(envelope(amacrine, Kcross, i="on", j="off",
             simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))
## End(Not run)

# Envelope of INHOMOGENEOUS K-function with fitted trend

# The following is valid.
# Setting lambda=fit means that the fitted model is re-fitted to
# each simulated pattern to obtain the intensity estimates for Kinhom.
# (lambda=NULL would also be valid)

fit <- kppm(redwood, ~1, clusters="MatClust")
# Not run:
# plot(envelope(fit, Kinhom, lambda=fit, nsim=19))

## End(Not run)

# Note that the principle of symmetry, essential to the validity of
# simulation envelopes, requires that both the observed and
# simulated patterns be subjected to the same method of intensity
# estimation. In the following example it would be incorrect to set the
# argument 'lambda=red.dens' in the envelope command, because this
# would mean that the inhomogeneous K functions of the simulated
# patterns would be computed using the intensity function estimated
# from the original redwood data, violating the symmetry. There is
# still a concern about the fact that the simulations are generated
# from a model that was fitted to the data; this is only a problem in
# small datasets.

## Not run:
red.dens <- density(redwood, sigma=bw.diggle)
plot(envelope(redwood, Kinhom, sigma=bw.diggle,
 simulate=expression(rpoispp(red.dens))))

## End(Not run)

# Precomputed list of point patterns
## Not run:

nX <- npoints(X)
PatList <- list()
for(i in 1:19) PatList[[i]] <- runifpoint(nX)
E <- envelope(X, Kest, nsim=19, simulate=PatList)

## End(Not run)

# re-using the same point patterns
## Not run:

EK <- envelope(X, Kest, savepatterns=TRUE)
EG <- envelope(X, Gest, simulate=EK)

## End(Not run)
Recompute Envelopes

Description

Given a simulation envelope (object of class "envelope"), compute another envelope from the same simulation data using different parameters.

Usage

```r
S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,
 transform=TRUE, global=TRUE, VARIANCE=FALSE)
```

Arguments

- **Y**: A simulation envelope (object of class "envelope").
- **fun**: Optional. Summary function to be applied to the simulated point patterns.
- **...**: Parameters controlling the type of envelope that is re-computed. See `envelope`.

Details

This function can be used to re-compute a simulation envelope from previously simulated data, using different parameter settings for the envelope: for example, a different significance level, or a global envelope instead of a pointwise envelope.

The function `envelope` is generic. This is the method for the class "envelope".

The argument `Y` should be a simulation envelope (object of class "envelope") produced by any of the methods for `envelope`. Additionally, `Y` must contain either

- the simulated point patterns that were used to create the original envelope (so `Y` should have been created by calling `envelope` with `savepatterns=TRUE`);
- the summary functions of the simulated point patterns that were used to create the original envelope (so `Y` should have been created by calling `envelope` with `savefuns=TRUE`).

If the argument `fun` is given, it should be a summary function that can be applied to the simulated point patterns that were used to create `Y`. The envelope of the summary function `fun` for these point patterns will be computed using the parameters specified in `...`.

If `fun` is not given, then:

- If `Y` contains the summary functions that were used to compute the original envelope, then the new envelope will be computed from these original summary functions.
- Otherwise, if `Y` contains the simulated point patterns, then the `K` function `Kest` will be applied to each of these simulated point patterns, and the new envelope will be based on the `K` functions.
The new envelope will be computed using the parameters specified in \ldots. See \texttt{envelope} for a full list of envelope parameters. Frequently-used parameters include \texttt{nrank} and \texttt{nsim} (to change the number of simulations used and the significance level of the envelope), \texttt{global} (to change from pointwise to global envelopes) and \texttt{VARIANCE} (to compute the envelopes from the sample moments instead of the ranks).

\subsection*{Value}

An envelope (object of class "envelope").

\subsection*{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\subsection*{See Also}

\texttt{envelope}

\subsection*{Examples}

\begin{verbatim}
E <- envelope(cells, Kest, nsim=19, savefuns=TRUE, savepatterns=TRUE)
E2 <- envelope(E, nrank=2)
Eg <- envelope(E, global=TRUE)
EG <- envelope(E, Gest)
EL <- envelope(E, transform=expression(sqrt(/pi)))
\end{verbatim}

---

\texttt{envelope.lpp} \hspace{1cm} \textit{Envelope for Point Patterns on Linear Network}

\subsection*{Description}

Enables envelopes to be computed for point patterns on a linear network.

\subsection*{Usage}

\begin{verbatim}
## S3 method for class 'lpp'
envelope(Y, fun=linearK, nsim=99, nrank=1, ..., simulate=NULL, verbose=TRUE,
      transform=NULL, global=FALSE, ginterval=NULL, alternative=c("two.sided", "less", "greater"),
      savefuns=FALSE, savepatterns=FALSE, nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
      do.pwrong=FALSE, envir.simul=NULL)

## S3 method for class 'lppm'
envelope(Y, fun=linearK, nsim=99, nrank=1, ...)
\end{verbatim}
simulate=NULL, verbose=TRUE,
transform=NULL, global=FALSE, ginterval=NULL,
alternative=c("two.sided", "less", "greater"),
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y          A point pattern on a linear network (object of class "lpp") or a fitted point
          process model on a linear network (object of class "lppm").
fun         Function that is to be computed for each simulated pattern.
nsim        Number of simulations to perform.
nrank       Integer. Rank of the envelope value amongst the nsim simulated values. A rank
          of 1 means that the minimum and maximum simulated values will be used.
...         Extra arguments passed to fun.
simulate    Optional. Specifies how to generate the simulated point patterns. If simulate
          is an expression in the R language, then this expression will be evaluated
          nsim times, to obtain nsim point patterns which are taken as the simulated patterns
          from which the envelopes are computed. If simulate is a list of point patterns,
          then the entries in this list will be treated as the simulated patterns from which
          the envelopes are computed. Alternatively simulate may be an object produced
          by the envelope command: see Details.
verbose     Logical flag indicating whether to print progress reports during the simulations.
transform   Optional. A transformation to be applied to the function values, before the en-
          velopes are computed. An expression object (see Details).
global      Logical flag indicating whether envelopes should be pointwise (global=FALSE)
          or simultaneous (global=TRUE).
ginterval   Optional. A vector of length 2 specifying the interval of r values for the simul-
          taneous critical envelopes. Only relevant if global=TRUE.
alternative Character string determining whether the envelope corresponds to a two-sided
          test (side="two.sided", the default) or a one-sided test with a lower critical
          boundary (side="less") or a one-sided test with an upper critical boundary
          (side="greater").
savefuns    Logical flag indicating whether to save all the simulated function values.
savepatterns Logical flag indicating whether to save all the simulated point patterns.
nsim2       Number of extra simulated point patterns to be generated if it is necessary to
          use simulation to estimate the theoretical mean of the summary function. Only
          relevant when global=TRUE and the simulations are not based on CSR.
VARIANCE    Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
          minus nSD times sample standard deviation.
nSD         Number of estimated standard deviations used to determine the critical envelopes,
          if VARIANCE=TRUE.
Yname
Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

do_pwron
Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir_simul
Environment in which to evaluate the expression simulate, if not the current
environment.

Details
This is a method for the generic function envelope applicable to point patterns on a linear network.
The argument Y can be either a point pattern on a linear network, or a fitted point process model on
a linear network. The function fun will be evaluated for the data and also for nsim simulated point
patterns on the same linear network. The upper and lower envelopes of these evaluated functions
will be computed as described in envelope.
The type of simulation is determined as follows.

- if Y is a point pattern (object of class "lpp") and simulate is missing or NULL, then random
  point patterns will be generated according to a Poisson point process on the linear network on
  which Y is defined, with intensity estimated from Y.
- if Y is a fitted point process model (object of class "lppm") and simulate is missing or NULL,
  then random point patterns will be generated by simulating from the fitted model.
- If simulate is present, it should be an expression that can be evaluated to yield random point
  patterns on the same linear network as Y.

The function fun should accept as its first argument a point pattern on a linear network (object of
class "lpp") and should have another argument called r or a ... argument.

Value
Function value table (object of class "fv") with additional information, as described in envelope.

Author(s)
Ang Qi Wei <aqw@7398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References
Mathematics and Statistics, University of Western Australia.
Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Simulation Envelopes of Summary Function for 3D Point Pattern

Description
Computes simulation envelopes of a summary function for a three-dimensional point pattern.

Usage
```r
S3 method for class 'pp3'
envelope(y, fun=K3est, nsim=99, nrank=1, ...,
simulate=NULL, verbose=TRUE,
transform=NULL, global=FALSE, ginterval=NULL,
alternative=c("two.sided", "less", "greater"),
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL, maxnerr=nsim,
do.pwrong=FALSE, envir.simul=NULL)
```

Arguments
- `y`: A three-dimensional point pattern (object of class "pp3").
- `fun`: Function that computes the desired summary statistic for a 3D point pattern.
- `nsim`: Number of simulated point patterns to be generated when computing the envelopes.
- `nrank`: Integer. Rank of the envelope value amongst the `nsim` simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.
- `...`: Extra arguments passed to `fun`.
simulate

Optional. Specifies how to generate the simulated point patterns. If simulate is an expression in the R language, then this expression will be evaluated nsim times, to obtain nsim point patterns which are taken as the simulated patterns from which the envelopes are computed. If simulate is a list of point patterns, then the entries in this list will be treated as the simulated patterns from which the envelopes are computed. Alternatively simulate may be an object produced by the envelope command: see Details.

verbose

Logical flag indicating whether to print progress reports during the simulations.

transform

Optional. A transformation to be applied to the function values, before the envelopes are computed. An expression object (see Details).

global

Logical flag indicating whether envelopes should be pointwise (global=FALSE) or simultaneous (global=TRUE).

ginterval

Optional. A vector of length 2 specifying the interval of r values for the simultaneous critical envelopes. Only relevant if global=TRUE.

alternative

Character string determining whether the envelope corresponds to a two-sided test (side="two.sided", the default) or a one-sided test with a lower critical boundary (side="less") or a one-sided test with an upper critical boundary (side="greater").

savefuns

Logical flag indicating whether to save all the simulated function values.

savepatterns

Logical flag indicating whether to save all the simulated point patterns.

nsim2

Number of extra simulated point patterns to be generated if it is necessary to use simulation to estimate the theoretical mean of the summary function. Only relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE

Logical. If TRUE, critical envelopes will be calculated as sample mean plus or minus nSD times sample standard deviation.

nSD

Number of estimated standard deviations used to determine the critical envelopes, if VARIANCE=TRUE.

Yname

Character string that should be used as the name of the data point pattern Y when printing or plotting the results.

maxnerr

Maximum number of rejected patterns. If fun yields an error when applied to a simulated point pattern (for example, because the pattern is empty and fun requires at least one point), the pattern will be rejected and a new random point pattern will be generated. If this happens more than maxnerr times, the algorithm will give up.

do.pwrong

Logical. If TRUE, the algorithm will also estimate the true significance level of the “wrong” test (the test that declares the summary function for the data to be significant if it lies outside the pointwise critical boundary at any point). This estimate is printed when the result is printed.

envir.simul

Environment in which to evaluate the expression simulate, if not the current environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern data.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described in the help file for `envelope`. This function `envelope.pp3` is the method for three-dimensional point patterns (objects of class "pp3").

For the most basic use, if you have a 3D point pattern `x` and you want to test Complete Spatial Randomness (CSR), type `plot(envelope(x, K3est, nsim=39))` to see the three-dimensional $K$ function for `x` plotted together with the envelopes of the three-dimensional $K$ function for 39 simulations of CSR.

To create simulation envelopes, the command `envelope(y, ...)` first generates `nsim` random point patterns in one of the following ways.

- If `simulate=NULL`, then we generate `nsim` simulations of Complete Spatial Randomness (i.e. `nsim` simulated point patterns each being a realisation of the uniform Poisson point process) with the same intensity as the pattern `y`.
- If `simulate` is supplied, then it determines how the simulated point patterns are generated. See `envelope` for details.

The summary statistic `fun` is applied to each of these simulated patterns. Typically `fun` is one of the functions `kSest`, `gSest`, `fSest` or `pcfSest`. It may also be a character string containing the name of one of these functions.

For further information, see the documentation for `envelope`.

**Value**

A function value table (object of class "fv") which can be plotted directly. See `envelope` for further details.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

`pp3`, `rpoispp3`, `K3est`, `G3est`, `F3est`, `pcf3est`.

**Examples**

```r
X <- rpoispp3(20, box3())
Not run:
plot(envelope(X, nsim=39))
End(Not run)
```
erosed.areas

Areas of Morphological Erosions

Description
Computes the areas of successive morphological erosions of a window.

Usage
erosed.areas(w, r, subset=NULL)

Arguments
- **w**: A window.
- **r**: Numeric vector of radii at which erosions will be performed.
- **subset**: Optional window inside which the areas should be computed.

Details
This function computes the areas of the erosions of the window \( w \) by each of the radii \( r[i] \).

The morphological erosion of a set \( W \) by a distance \( r > 0 \) is the subset consisting of all points \( x \in W \) such that the distance from \( x \) to the boundary of \( W \) is greater than or equal to \( r \). In other words it is the result of trimming a margin of width \( r \) off the set \( W \).

The argument \( r \) should be a vector of positive numbers. The argument \( w \) should be a window (an object of class "owin", see \texttt{owin.object} for details) or can be given in any format acceptable to \texttt{as.owin()}.

Unless \( w \) is a rectangle, the computation is performed using a pixel raster approximation.

To compute the eroded window itself, use \texttt{erosion}.

Value
Numeric vector, of the same length as \( r \), giving the areas of the successive erosions.

Author(s)
Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>\ http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also
\texttt{owin, as.owin, erosion}

Examples
```
w <- owin(c(0,1),c(0,1))
a <- eroded.areas(w, seq(0.01,0.49,by=0.01))```
Morphological Erosion

Description

Perform morphological erosion of a window, a line segment pattern or a point pattern.

Usage

erosion(w, r, ...)
S3 method for class 'owin'
erosion(w, r, shrink.frame=TRUE, ...,
 strict=FALSE, polygonal=NULL)
S3 method for class 'ppp'
 erosion(w, r,...)
S3 method for class 'psp'
erosion(w, r,...)

Arguments

- **w**: A window (object of class "owin" or a line segment pattern (object of class "psp") or a point pattern (object of class "ppp").
- **r**: positive number: the radius of erosion.
- **shrink.frame**: logical: if TRUE, erode the bounding rectangle as well.
- **...**: extra arguments to as.mask controlling the pixel resolution, if pixel approximation is used.
- **strict**: Logical flag determining the fate of boundary pixels, if pixel approximation is used. See details.
- **polygonal**: Logical flag indicating whether to compute a polygonal approximation to the erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological erosion of a set W by a distance $r > 0$ is the subset consisting of all points $x \in W$ such that the distance from x to the boundary of W is greater than or equal to r. In other words it is the result of trimming a margin of width r off the set W.

If polygonal=TRUE then a polygonal approximation to the erosion is computed. If polygonal=FALSE then a pixel approximation to the erosion is computed from the distance map of w. The arguments "..." are passed to as.mask to control the pixel resolution. The erosion consists of all pixels whose distance from the boundary of w is strictly greater than r (if strict=TRUE) or is greater than or equal to r (if strict=FALSE).

When w is a window, the default (when polygonal=NULL) is to compute a polygonal approximation if w is a rectangle or polygonal window, and to compute a pixel approximation if w is a window of type "mask".
If `shrink.frame` is false, the resulting window is given the same outer, bounding rectangle as the original window `w`. If `shrink.frame` is true, the original bounding rectangle is also eroded by the same distance `r`.

To simply compute the area of the eroded window, use `eroded.areas`.

Value

If \(r > 0 \), an object of class "owin" representing the eroded region (or NULL if this region is empty). If \(r=0 \), the result is identical to `w`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

dilation for the opposite operation.

owin, as.owin, eroded.areas

Examples

```r
plot(letterR, main="erosion(letterR, 0.2)"
plot(erosion(letterR, 0.2), add=TRUE, col="red")
```

eval.fasp

Evaluate Expression Involving Function Arrays

Description

Evaluates any expression involving one or more function arrays (`fasp` objects) and returns another function array.

Usage

```r
eval.fasp(expr, envir, dotonly=TRUE)
```

Arguments

- `expr` An expression involving the names of objects of class "fasp".
- `envir` Optional. The environment in which to evaluate the expression, or a named list containing "fasp" objects to be used in the expression.
- `dotonly` Logical. Passed to `eval.fv`.
Details

This is a wrapper to make it easier to perform pointwise calculations with the arrays of summary functions used in spatial statistics.

A function array (object of class "fasp") can be regarded as a matrix whose entries are functions. Objects of this kind are returned by the command `alltypes`.

Suppose `X` is an object of class "fasp". Then `eval.fasp(X+3)` effectively adds 3 to the value of every function in the array `X`, and returns the resulting object.

Suppose `X` and `Y` are two objects of class "fasp" which are compatible (for example the arrays must have the same dimensions). Then `eval.fasp(X + Y)` will add the corresponding functions in each cell of the arrays `X` and `Y`, and return the resulting array of functions.

Suppose `X` is an object of class "fasp" and `f` is an object of class "fv". Then `eval.fasp(X + f)` will add the function `f` to the functions in each cell of the array `X`, and return the resulting array of functions.

In general, `expr` can be any expression involving (a) the names of objects of class "fasp" or "fv", (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First `eval.fasp` determines which of the variable names in the expression `expr` refer to objects of class "fasp". The expression is then evaluated for each cell of the array using `eval.fv`.

The expression `expr` must be vectorised. There must be at least one object of class "fasp" in the expression. All such objects must be compatible.

Value

Another object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`fasp.object`, `Kest`

Examples

```r
# manipulating the K function
K <- alltypes(amacrine, "K")

# expressions involving a fasp object
eval.fasp(K + 3)
L <- eval.fasp(sqrt(K/pi))

# expression involving two fasp objects
D <- eval.fasp(K - L)

# subtracting the unmarked K function from the cross-type K functions
K0 <- Kest(unmark(amacrine))
DK <- eval.fasp(K - K0)
```
Use of 'envir'

```r
S <- eval.fasp(1-G, list(G=alltypes(amacrine, "G")))
```

eval.fv

Evaluate Expression Involving Functions

Description

Evaluates any expression involving one or more function value (fv) objects, and returns another object of the same kind.

Usage

```r
eval.fv(expr, envir, dotonly=TRUE)
```

Arguments

- **expr**: An expression.
- **envir**: Optional. The environment in which to evaluate the expression, or a named list containing "fv" objects to be used in the expression.
- **dotonly**: Logical. See Details.

Details

This is a wrapper to make it easier to perform pointwise calculations with the summary functions used in spatial statistics.

An object of class "fv" is essentially a data frame containing several different statistical estimates of the same function. Such objects are returned by `Kest` and its relatives.

For example, suppose `X` is an object of class "fv" containing several different estimates of the Ripley’s K function $K(r)$, evaluated at a sequence of values of r. Then `eval.fv(X+3)` effectively adds 3 to each function estimate in `X`, and returns the resulting object.

Suppose `X` and `Y` are two objects of class "fv" which are compatible (in particular they have the same vector of r values). Then `eval.im(X + Y)` will add the corresponding function values in `X` and `Y`, and return the resulting function.

In general, `expr` can be any expression involving (a) the names of objects of class "fv", (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First `eval.fv` determines which of the variable names in the expression `expr` refer to objects of class "fv". Each such name is replaced by a vector containing the function values. The expression is then evaluated. The result should be a vector; it is taken as the new vector of function values.

The expression `expr` must be vectorised. There must be at least one object of class "fv" in the expression. If the objects are not compatible, they will be made compatible by `harmonise.fv`.

If `dotonly=TRUE` (the default), the expression will be evaluated only for those columns of an "fv" object that contain values of the function itself (rather than values of the derivative of the function, the hazard rate, etc). If `dotonly=FALSE`, the expression will be evaluated for all columns.
For example the result of \texttt{Fest} includes several columns containing estimates of the empty space function $F(r)$, but also includes an estimate of the hazard $h(r)$ of $F(r)$. Transformations that are valid for F may not be valid for h. Accordingly, h would normally be omitted from the calculation.

The columns of an object x that represent the function itself are identified by its “dot” names, \texttt{fvnames(x, ".")}. They are the columns normally plotted by \texttt{plot.fv} and identified by the symbol "." in plot formulas in \texttt{plot.fv}.

\textbf{Value}

Another object of class "fv".

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{See Also}

\texttt{fv.object, Kest}

\textbf{Examples}

\begin{verbatim}
manipulating the K function
X <- rpoispp(42)
Ks <- Kest(X)

eval.fv(Ks + 3)
Ls <- eval.fv(sqrt(Ks/pi))

manipulating two K functions
Y <- rpoispp(20)
Kr <- Kest(Y)

Kdif <- eval.fv(Ks - Kr)
Z <- eval.fv(sqrt(Ks/pi) - sqrt(Kr/pi))

Use of 'envir'
U <- eval.fv(sqrt(K), list(K=Kest(cells)))
\end{verbatim}
eval.im

Arguments

- **expr**: An expression.
- **envir**: Optional. The environment in which to evaluate the expression, or a named list containing pixel images to be used in the expression.
- **harmonize**: Logical. Whether to resolve inconsistencies between the pixel grids.

Details

This function is a wrapper to make it easier to perform pixel-by-pixel calculations in an image.

Pixel images in **spatstat** are represented by objects of class "im" (see **im.object**). These are essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then eval.im(X+3) will add 3 to the value of every pixel in X, and return the resulting pixel image.

Suppose X and Y are two pixel images with compatible dimensions: they have the same number of pixels, the same physical size of pixels, and the same bounding box. Then eval.im(X + Y) will add the corresponding pixel values in X and Y, and return the resulting pixel image.

In general, expr can be any expression in the R language involving (a) the names of pixel images, (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.im determines which of the variable names in the expression expr refer to pixel images. Each such name is replaced by a matrix containing the pixel values. The expression is then evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression expr must be vectorised. There must be at least one pixel image in the expression.

All images must have compatible dimensions. If harmonize=TRUE, images that have incompatible dimensions will be resampled so that they are compatible. If harmonize=FALSE, images that are incompatible will cause an error.

Value

An image object of class "im".

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- **as.im**, **compatible.im**, **harmonise.im**, **im.object**

Examples

test images
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y }, unit.square())

eval.im(X + 3)
eval.im(X - Y)
eval.linim

Evaluate Expression Involving Pixel Images on Linear Network

Description

Evaluates any expression involving one or more pixel images on a linear network, and returns a pixel image on the same linear network.

Usage

eval.linim(expr, envir, harmonize=TRUE)

Arguments

expr An expression in the R language, involving the names of objects of class "linim".
envir Optional. The environment in which to evaluate the expression.
harmonize Logical. Whether to resolve inconsistencies between the pixel grids.

Details

This function a wrapper to make it easier to perform pixel-by-pixel calculations. It is one of several functions whose names begin with eval which work on objects of different types. This particular function is designed to work with objects of class "linim" which represent pixel images on a linear network.

Suppose \(X\) is a pixel image on a linear network (object of class "linim"). Then \(\text{eval.linim}(X+3)\) will add 3 to the value of every pixel in \(X\), and return the resulting pixel image on the same linear network.

Suppose \(X\) and \(Y\) are two pixel images on the same linear network, with compatible pixel dimensions. Then \(\text{eval.linim}(X + Y)\) will add the corresponding pixel values in \(X\) and \(Y\), and return the resulting pixel image on the same linear network.

In general, \(\text{expr}\) can be any expression in the R language involving (a) the names of pixel images, (b) scalar constants, and (c) functions which are vectorised. See the Examples.

First \(\text{eval.linim}\) determines which of the variable names in the expression \(\text{expr}\) refer to pixel images. Each such name is replaced by a matrix containing the pixel values. The expression is then evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression \(\text{expr}\) must be vectorised. There must be at least one linear pixel image in the expression.

All images must have compatible dimensions. If \(\text{harmonize}=\text{TRUE}\), images that have incompatible dimensions will be resampled so that they are compatible. If \(\text{harmonize}=\text{FALSE}\), images that are incompatible will cause an error.

eval.im(abs(X - Y))
Z <- eval.im(sin(X * pi) + Y)

Use of 'envir'
W <- eval.im(sin(U), list(U=density(cells)))

```r
# Code
```
ewcdf

Weighted Empirical Cumulative Distribution Function

Description

Compute a weighted version of the empirical cumulative distribution function.

Usage

ewcdf(x, weights = rep(1/length(x), length(x)))

Arguments

x Numeric vector of observations.
weights Numeric vector of non-negative weights for x.

Details

This is a modification of the standard function ecdf allowing the observations x to have weights. The weighted e.c.d.f. (empirical cumulative distribution function) Fn is defined so that, for any real number y, the value of Fn(y) is equal to the total weight of all entries of x that are less than or equal to y. That is Fn(y) = sum(weights[x <= y]).

Thus Fn is a step function which jumps at the values of x. The height of the jump at a point y is the total weight of all entries in x number of tied observations at that value. Missing values are ignored.
If weights is omitted, the default is equivalent to \texttt{ecdf(x)} except for the class membership.

The result of \texttt{ewcdf} is a function, of class "ewcdf", inheriting from the classes "ecdf" and "stepfun". The class \texttt{ewcdf} has methods for print and quantile. The inherited class \texttt{ecdf} has methods for plot and summary.

Value

A function, of class "ewcdf", inheriting from "ecdf" and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{ecdf}.
\texttt{quantile.ewcdf}

Examples

\begin{verbatim}
x <- rnorm(100)
w <- runif(100)
plot(ewcdf(x,w))
\end{verbatim}

\begin{verbatim}
exactMLEstrauss
\end{verbatim}

\textit{Exact Maximum Pseudolikelihood Estimate for Stationary Strauss Process}

Description

Computes, to very high accuracy, the Maximum Pseudolikelihood Estimates of the parameters of a stationary Strauss point process.

Usage

\begin{verbatim}
extactMLEstrauss(X, R, ngrid = 2048, plotit = FALSE, project=TRUE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{X} Data to which the Strauss process will be fitted. A point pattern dataset (object of class "\texttt{ppp}").
 \item \textbf{R} Interaction radius of the Strauss process. A non-negative number.
 \item \textbf{ngrid} Grid size for calculation of integrals. An integer, giving the number of grid points in the \textit{x} and \textit{y} directions.
 \item \textbf{plotit} Logical. If \textit{TRUE}, the log pseudolikelihood is plotted on the current device.
 \item \textbf{project} Logical. If \textit{TRUE} (the default), the parameter \(\gamma\) is constrained to lie in the interval \([0, 1]\). If \textit{FALSE}, this constraint is not applied.
\end{itemize}
Details

This function is intended mainly for technical investigation of algorithm performance. Its practical use is quite limited.

It fits the stationary Strauss point process model to the point pattern dataset \(X \) by maximum pseudolikelihood (with the border edge correction) using an algorithm with very high accuracy. This algorithm is more accurate than the default behaviour of the model-fitting function \(\text{ppm} \) because the discretisation is much finer.

Ripley (1988) and Baddeley and Turner (2000) derived the log pseudolikelihood for the stationary Strauss process, and eliminated the parameter \(\beta \), obtaining an exact formula for the partial log pseudolikelihood as a function of the interaction parameter \(\gamma \) only. The algorithm evaluates this expression to a high degree of accuracy, using numerical integration on a \(n \times n \) lattice, uses \(\text{optim} \) to maximise the log pseudolikelihood with respect to \(\gamma \), and finally recovers \(\beta \).

The result is a vector of length 2, containing the fitted coefficients \(\log \beta \) and \(\log \gamma \). These values correspond to the entries that would be obtained with \(\text{coef}((\text{ppm}(X, ~1, \text{Strauss}(R))) \). The fitted coefficients are typically accurate to within \(10^{-6} \) as shown in Baddeley and Turner (2013).

Note however that (by default) \(\text{exactMPLestrauss} \) constrains the parameter \(\gamma \) to lie in the interval \([0, 1]\) in which the point process is well defined (Kelly and Ripley, 1976) whereas \(\text{ppm} \) does not constrain the value of \(\gamma \) (by default). This behaviour is controlled by the argument \(\text{project} \) to \(\text{ppm} \) and \(\text{exactMPLestrauss} \). The default for \(\text{ppm} \) is \(\text{project=} \text{FALSE} \), while the default for \(\text{exactMPLestrauss} \) is \(\text{project=} \text{TRUE} \).

Value

Vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \text{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm
Examples

```r
if(interactive()) {
  exactMLEstrauss(cells, 0.1)
  coef(ppm(cells, ~1, Strauss(0.1)))
  coef(ppm(cells, ~1, Strauss(0.1), nd=128))
  exactMLEstrauss(redwood, 0.04)
  exactMLEstrauss(redwood, 0.04, project=FALSE)
  coef(ppm(redwood, ~1, Strauss(0.04)))
}
```

expand.owin Apply Expansion Rule

Description

Applies an expansion rule to a window.

Usage

```r
expand.owin(W, ...)
```

Arguments

- `W` A window.

- `...` Arguments passed to `rmhexpand` to determine an expansion rule.

Details

The argument `W` should be a window (an object of class "owin").

This command applies the expansion rule specified by the arguments `...` to the window `W`, yielding another window.

The arguments `...` are passed to `rmhexpand` to determine the expansion rule.

For other transformations of the scale, location and orientation of a window, see `shift`, `affine` and `rotate`.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
Extract.anylist

See Also

rmhexpand about expansion rules.
shift, rotate, affine for other types of manipulation.

Examples

expand.owin(square(1), 9)
expand.owin(square(1), distance=0.5)
expand.owin(letterR, length=2)
expand.owin(letterR, distance=0.1)

Extract.anylist Extract or Replace Subset of a List of Things

Description

Extract or replace a subset of a list of things.

Usage

S3 method for class 'anylist'
x[i, ...]

S3 replacement method for class 'anylist'
x[i] <- value

Arguments

x An object of class "anylist" representing a list of things.
i Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset.
... Ignored.

Details

These are the methods for extracting and replacing subsets for the class "anylist".
The argument x should be an object of class "anylist" representing a list of things. See anylist.
The method replaces a designated subset of x, and returns an object of class "anylist".

Value

Another object of class "anylist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
Extract a subset of a function array (an object of class "fasp").

Usage

```r
# S3 method for class 'fasp'
x[I, J, drop=TRUE,...]
```

Arguments

- `x`: A function array. An object of class "fasp".
- `I`: any valid expression for a subset of the row indices of the array.
- `J`: any valid expression for a subset of the column indices of the array.
- `drop`: Logical. When the selected subset consists of only one cell of the array, if `drop=FALSE` the result is still returned as a 1 x 1 array of functions (class "fasp") while if `drop=TRUE` it is returned as a function (class "fv").
- `...`: Ignored.

Details

A function array can be regarded as a matrix whose entries are functions. See `fasp.object` for an explanation of function arrays.

This routine extracts a sub-array according to the usual conventions for matrix indexing.

Value

A function array (of class "fasp"). Exceptionally, if the array has only one cell, and if `drop=TRUE`, then the result is a function value table (class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
Extract.fv

Extract or Replace Subset of Function Values

Description

Extract or replace a subset of an object of class "fv".

Usage

```r
## S3 method for class 'fv'
x[i, j, ... , drop=FALSE]

## S3 replacement method for class 'fv'
x[i, j] <- value

## S3 replacement method for class 'fv'
x$name <- value
```

Arguments

- `x`: a function value object, of class "fv" (see `fv.object`). Essentially a data frame.
- `i`: any appropriate subset index. Selects a subset of the rows of the data frame, i.e. a subset of the domain of the function(s) represented by `x`.
- `j`: any appropriate subset index for the columns of the data frame. Selects some of the functions present in `x`.
- `name`: the name of a column of the data frame.
- `...`: Ignored.

Examples

```r
# Lansing woods data - multitype points with 6 types
data(lansing)

# compute 6 x 6 array of all cross-type K functions
a <- alltypes(lansing, "K")

# extract first three marks only
b <- a[1:3,1:3]
## Not run: plot(b)
# subset pertaining to hickories
h <- a[levels(lansing$marks) == "hickory",]
## Not run: plot(h)
```
drop Logical. If TRUE, the result is a data frame or vector containing the selected rows and columns of data. If FALSE (the default), the result is another object of class "fv".

value Replacement value for the column or columns selected by name or j.

Details

These functions extract a designated subset of an object of class "fv", or replace the designated subset with other data, or delete the designated subset.

The subset is specified by the row index i and column index j, or by the column name name. Either i or j may be missing, or both may be missing.

The function [.fv is a method for the generic operator [for the class "fv". It extracts the designated subset of x, and returns it as another object of class "fv" (if drop=FALSE) or as a data frame or vector (if drop=TRUE).

The function [<- .fv is a method for the generic operator [<- for the class "fv". If value is NULL, the designated subset of x will be deleted from x. Otherwise, the designated subset of x will be replaced by the data contained in value. The return value is the modified object x.

The function $<-.fv is a method for the generic operator $<- for the class "fv". If value is NULL, the designated column of x will be deleted from x. Otherwise, the designated column of x will be replaced by the data contained in value. The return value is the modified object x.

Value

The result of [.fv with drop=TRUE is a data frame or vector.

Otherwise, the result is another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object

Examples

K <- Kest(cells)

discard the estimates of K(r) for r > 0.1
Ksub <- K[K$r <= 0.1,]

extract the border method estimates
bor <- K[, "border", drop=TRUE]
or equivalently
bor <- K$border

remove the border-method estimates
K$border <- NULL
Extract or Replace Subset of Hyperframe

Description

Extract or replace a subset of a hyperframe.

Usage

```r
## S3 method for class 'hyperframe'
x[i, j, drop, strip=drop, ...]
## S3 replacement method for class 'hyperframe'
x[i, j] <- value
## S3 method for class 'hyperframe'
x$name
## S3 replacement method for class 'hyperframe'
x$name <- value
```

Arguments

- `x` A hyperframe (object of class "hyperframe").
- `i, j` Row and column indices.
- `drop, strip` Logical values indicating what to do when the hyperframe has only one row or column. See Details.
- `...` Ignored.
- `name` Name of a column of the hyperframe.
- `value` Replacement value for the subset. A hyperframe or (if the subset is a single column) a list or an atomic vector.

Details

These functions extract a designated subset of a hyperframe, or replace the designated subset with another hyperframe.

The function `[.hyperframe` is a method for the subset operator `[for the class "hyperframe". It extracts the subset of `x` specified by the row index `i` and column index `j`.

The argument `drop` determines whether the array structure will be discarded if possible. The argument `strip` determines whether the list structure in a row or column or cell will be discarded if possible. If `drop=FALSE` (the default), the return value is always a hyperframe or data frame. If `drop=TRUE`, and if the selected subset has only one row, or only one column, or both, then

- if `strip=FALSE`, the result is a list, with one entry for each array cell that was selected.
- if `strip=TRUE`,
Extract.hyperframe

- if the subset has one row containing several columns, the result is a list or (if possible) an atomic vector;
- if the subset has one column containing several rows, the result is a list or (if possible) an atomic vector;
- if the subset has exactly one row and exactly one column, the result is the object (or atomic value) contained in this row and column.

The function \[,.\text{hyperframe}\] is a method for the subset replacement operator \([<-\text{ for the class } \text{"hyperframe"}]. It replaces the designated subset with the hyperframe value. The subset of \(x\) to be replaced is designated by the arguments \(i\) and \(j\) as above. The replacement value should be a hyperframe with the appropriate dimensions, or (if the specified subset is a single column) a list of the appropriate length.

The function \$.\text{hyperframe}\ is a method for \$ for hyperframes. It extracts the relevant column of the hyperframe. The result is always a list (i.e. equivalent to using \[.\text{hyperframe with strip=FALSE}]\).

The function \$<-\text{hyperframe}\ is a method for \$<- for hyperframes. It replaces the relevant column of the hyperframe. The replacement value should be a list of the appropriate length.

Value

A hyperframe (of class "hyperframe").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe

Examples

```r
h <- hyperframe(X=list(square(1), square(2)), Y=list(sin, cos))
h
h[1, ]
h[, drop=TRUE]
h[1, 1]
h[ , 1, drop=TRUE]
h[1,1]
h[1,1,drop=TRUE]
h[1,1,drop=TRUE,strip=FALSE]
h[1,1] <- list(square(3))
# extract column
h$X
# replace existing column
h$Y <- list(cells, cells)
# add new column
h$Z <- list(cells, cells)
```
Description

Extract a subset or subregion of a pixel image.

Usage

```r
## S3 method for class 'im'
x[i, j, ...], drop=TRUE, tight=FALSE,
    raster=NULL, rescue=is.owin(i)]
```

Arguments

- `x`: A two-dimensional pixel image. An object of class "im".
- `i`: Object defining the subregion or subset to be extracted. Either a spatial window (an object of class "owin"), or a pixel image with logical values, or a point pattern (an object of class "ppp"), or any type of index that applies to a matrix, or something that can be converted to a point pattern by `as.ppp` (using the window of `x`).
- `j`: An integer or logical vector serving as the column index if matrix indexing is being used. Ignored if `i` is a spatial object.
- `...`: Ignored.
- `drop`: Logical value. Locations in `w` that lie outside the spatial domain of the image `x` return a pixel value of `NA` if `drop=FALSE`, and are omitted if `drop=TRUE`.
- `tight`: Logical value. If `tight=TRUE`, and if the result of the subset operation is an image, the image will be trimmed to the smallest possible rectangle.
- `raster`: Optional. An object of class "owin" or "im" determining a pixel grid.
- `rescue`: Logical value indicating whether rectangular blocks of data should always be returned as pixel images.

Details

This function extracts a subset of the pixel values in a pixel image. (To reassign the pixel values, see `<-.im`).

The image `x` must be an object of class "im" representing a pixel image defined inside a rectangle in two-dimensional space (see `im.object`).

The subset to be extracted is determined by the arguments `i, j` according to the following rules (which are checked in this order):

1. `i` is a spatial object such as a window, a pixel image with logical values, or a point pattern; or
2. `i,j` are indices for the matrix `as.matrix(x)`; or
3. `i` can be converted to a point pattern by `as.ppp(i, W=Window(x))`, and `i` is not a matrix.
If \(i \) is a spatial window (an object of class "owin"), the values of the image inside this window are extracted (after first clipping the window to the spatial domain of the image if necessary).

If \(i \) is a pixel image with logical values, it is interpreted as a spatial window (with TRUE values inside the window and FALSE outside).

If \(i \) is a point pattern (an object of class "ppp"), then the values of the pixel image at the points of this pattern are extracted. This is a simple way to read the pixel values at a given spatial location.

At locations outside the spatial domain of the image, the pixel value is undefined, and is taken to be NA. The logical argument drop determines whether such NA values will be returned or omitted. It also influences the format of the return value.

If \(i \) is a point pattern (or something that can be converted to a point pattern), then \(x[i, \ \text{drop=FALSE}] \) is a numeric vector containing the pixel values at each of the points of the pattern. Its length is equal to the number of points in the pattern \(i \). It may contain NAs corresponding to points which lie outside the spatial domain of the image \(x \). By contrast, \(X[i] \) or \(X[i, \ \text{drop=TRUE}] \) contains only those pixel values which are not NA. It may be shorter.

If \(i \) is a spatial window then \(X[i, \ \text{drop=FALSE}] \) is an another pixel image of the same dimensions as \(x \) obtained by setting all pixels outside the window \(i \) to have value NA. When the result is displayed by \texttt{plot.im} the effect is that the pixel image \(x \) is clipped to the window \(i \).

If \(i \) is a spatial window then \(X[i, \ \text{drop=TRUE}] \) is either:

- a numeric vector containing the pixel values for all pixels that lie inside the window \(i \). This happens if \(i \) is not a rectangle (i.e. \(i$type != \text{"rectangle"} \)) or if \(\text{rescue=FALSE} \).

- a pixel image. This happens only if \(i \) is a rectangle (\(i$type = \text{"rectangle"} \)) and \(\text{rescue=TRUE} \) (the default).

If the optional argument \texttt{raster} is given, then it should be a binary image mask or a pixel image. Then \(x \) will first be converted to an image defined on the pixel grid implied by \texttt{raster}, before the subset operation is carried out. In particular, \(x[i, \ \text{raster=i, drop=FALSE}] \) will return an image defined on the same pixel array as the object \(i \).

If \(i \) does not satisfy any of the conditions above, then the algorithm attempts to interpret \(i \) and \(j \) as indices for the matrix \(\text{as.matrix}(x) \). Either \(i \) or \(j \) may be missing or blank. The result is usually a vector or matrix of pixel values. Exceptionally the result is a pixel image if \(i,j \) determines a rectangular subset of the pixel grid, and if the user specifies \(\text{rescue=TRUE} \).

Finally, if none of the above conditions is met, the object \(i \) may also be a data frame or list of \(x,y \) coordinates which will be converted to a point pattern, taking the observation window to be \(\text{window}(x) \). Then the pixel values at these points will be extracted as a vector.

Value

Either a pixel image or a vector of pixel values. See Details.

Warnings

If you have a 2-column matrix containing the \(x,y \) coordinates of point locations, then to prevent this being interpreted as an array index, you should convert it to a \texttt{data.frame} or to a point pattern. If \(W \) is a window or a pixel image, then \(x[W, \ \text{drop=FALSE}] \) will return an image defined on the same pixel array as the original image \(x \). If you want to obtain an image whose pixel dimensions agree with those of \(W \), use the \texttt{raster} argument, \(x[W, \ \text{raster=W, drop=FALSE}] \).
Description

Extract a subset of an influence object, or extract the influence values at specified locations.
Usage

```r
## S3 method for class 'influence.ppm'
x[i, ...]
```

Arguments

- `x`: A influence object (of class "influence.ppm") computed by `influence.ppm`.
- `i`: Subset index (passed to `.ppp`). Either a spatial window (object of class "owin") or an integer index.
- `...`: Ignored.

Details

An object of class "influence.ppm" contains the values of the likelihood influence for a point process model, computed by `influence.ppm`. This is effectively a marked point pattern obtained by marking each of the original data points with its likelihood influence.

This function extracts a designated subset of the influence values, either as another influence object, or as a vector of numeric values.

The function `[.influence.ppm is a method for [. for the class "influence.ppm". The argument `i` should be an index applicable to a point pattern. It may be either a spatial window (object of class "owin") or a sequence index. The result will be another influence object (of class `influence.ppm`).

To extract the influence values as a numeric vector, use `marks(as.ppp(x))`.

Value

Another object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`influence.ppm`

Examples

```r
fit <- ppm(cells, ~x)
infl <- influence(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
infl[b]
infl[1:5]
marks(as.ppp(infl))[1:3]
```
Extract.layered
Extract or Replace Subset of a Layered Object

Description

Extract or replace some or all of the layers of a layered object, or extract a spatial subset of each layer.

Usage

```r
## S3 method for class 'layered'
x[i, j, drop=FALSE, ...]
```

```r
## S3 replacement method for class 'layered'
x[i] <- value
```

```r
## S3 replacement method for class 'layered'
x[[i]] <- value
```

Arguments

- `x`: A layered object (class "layered").
- `i`: Subset index for the list of layers. A logical vector, integer vector or character vector specifying which layers are to be extracted or replaced.
- `j`: Subset index to be applied to the data in each layer. Typically a spatial window (class "owin").
- `drop`: Logical. If `i` specifies only a single layer and `drop=TRUE`, then the contents of this layer will be returned.
- `...`: Ignored.
- `value`: List of objects which shall replace the designated subset, or an object which shall replace the designated element.

Details

A layered object represents data that should be plotted in successive layers, for example, a background and a foreground. See *layered*.

The function `[,layered` extracts a designated subset of a layered object. It is a method for `[` for the class "layered".

The functions `[,layered` and `[[<-.layered` replace a designated subset or designated entry of the object by new values. They are methods for `<-[` and `[[<-[` for the "layered" class.

The index `i` specifies which layers will be retained. It should be a valid subset index for the list of layers.

The index `j` will be applied to each layer. It is typically a spatial window (class "owin") so that each of the layers will be restricted to the same spatial region. Alternatively `j` may be any subset index which is permissible for the "[" method for each of the layers.
Value

Usually an object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

layered

Examples

eexample(layered)
L[-2]
L[, square(0.5)]

L[[3]] <- japonesepines
L

Extract.leverage.ppm Extract Subset of Leverage Object

Description

Extract a subset of a leverage map, or extract the leverage values at specified locations.

Usage

S3 method for class ‘leverage.ppm’

x[i, ...]

Arguments

- **x**: A leverage object (of class "leverage.ppm") computed by leverage.ppm.
- **i**: Subset index (passed to [.im). Either a spatial window (object of class "owin") or a spatial point pattern (object of class "ppp").
- **...**: Further arguments passed to [.im, especially the argument drop.
Details

An object of class "leverage.ppm" contains the values of the leverage function for a point process model, computed by \texttt{leverage.ppm}.

This function extracts a designated subset of the leverage values, either as another leverage object, or as a vector of numeric values.

The function \texttt{[.leverage.ppm} is a method for \texttt{[} for the class "leverage.ppm". The argument \texttt{i} should be either

- a spatial window (object of class "owin") determining a region where the leverage map is required. The result will typically be another leverage map (object of class \texttt{leverage.ppm}).
- a spatial point pattern (object of class "ppp") specifying locations at which the leverage values are required. The result will be a numeric vector.

The subset operator for images, \texttt{[.im}, is applied to the leverage map. If this yields a pixel image, then the result of \texttt{[.leverage.ppm} is another leverage object. Otherwise, a vector containing the numeric values of leverage is returned.

Value

Another object of class "leverage.ppm", or a vector of numeric values of leverage.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{leverage.ppm}.

Examples

\begin{verbatim}
fit <- ppm(cells, ~x)
lev <- leverage(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
lev[b]
lev[cells]
\end{verbatim}
Usage

```r
## S3 method for class 'linnet'
x[i, ...]
```

Arguments

- `x` A linear network (object of class "linnet").
- `i` Spatial window defining the subregion. An object of class "owin".
- `...` Ignored.

Details

This function computes the intersection between the linear network `x` and the domain specified by `i`.

This function is a method for the subset operator "[" for linear networks (objects of class "linnet"). It is provided mainly for completeness.

The index `i` should be a window.

Value

Another linear network (object of class "linnet").

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
plot(simplenet)
B <- owin(c(0,1),c(0.2,0.5))
plot(simplenet[B], add=TRUE, col="red")
plot(B, add=TRUE, border="green")
```

Extract.listof

Extract or Replace Subset of a List of Things

Description

Replace a subset of a list of things.

Usage

```r
## S3 replacement method for class 'listof'
x[i] <- value
```
Arguments

x An object of class "listof" representing a list of things which all belong to one class.
i Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset.

Details

This is a subset replacement method for the class "listof".
The argument x should be an object of class "listof" representing a list of things that all belong to one class.
The method replaces a designated subset of x, and returns an object of class "listof".

Value

Another object of class "listof".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.listof, summary.listof

Examples

x <- list(A=runif(10), B=runif(10), C=runif(10))
class(x) <- c("listof", class(x))
x[1] <- list(A=rnorm(10))
Arguments

- **x**: A point pattern on a linear network (object of class "lpp").
- **i**: Subset index. A valid subset index in the usual \(\mathbb{R} \) sense, indicating which points should be retained.
- **j**: Spatial window (object of class "owin") delineating the region that should be retained.
- **...**: Ignored.

Details

This function extracts a designated subset of a point pattern on a linear network.

The function \([. lpp\) is a method for \([\) for the class "lpp". It extracts a designated subset of a point pattern. The argument \(i \) should be a subset index in the usual \(\mathbb{R} \) sense: either a numeric vector of positive indices (identifying the points to be retained), a numeric vector of negative indices (identifying the points to be deleted) or a logical vector of length equal to the number of points in the point pattern \(x \). In the latter case, the points \((x \times[i], x[y[i]]) \) for which \(subset[i] = \text{TRUE} \) will be retained, and the others will be deleted.

The argument \(j \), if present, should be a spatial window. The pattern inside the region will be retained. Line segments that cross the boundary of the window are deleted in the current implementation.

Use the function `unmark` to remove marks from a marked point pattern.

Value

A point pattern on a linear network (of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `lpp`

Examples

```r
# Chicago crimes data - remove cases of assault
chicago[marks(chicago) != "assault"]
```
Extract.msr

Extract Subset of Signed or Vector Measure

Description

Extract a subset of a signed measure or vector-valued measure.

Usage

```r
## S3 method for class 'msr'
Extract(x, i, j, NNN)
```

Arguments

- `x`: A signed or vector measure. An object of class "msr" (see `msr`).
- `i`: Object defining the subregion or subset to be extracted. Either a spatial window (an object of class "owin"), or a pixel image with logical values, or any type of index that applies to a matrix.
- `j`: Subset index selecting the vector coordinates to be extracted, if `x` is a vector-valued measure.
- `NNN`: Ignored.

Details

This operator extracts a subset of the data which determines the signed measure or vector-valued measure `x`. The result is another measure.

Value

An object of class "msr".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`msr`

Examples

```r
example(msr)
rp[square(0.5)]
rs[, 2:3]
```
Extract Subset of Window

Description

Extract a subset of a window.

Usage

```r
## S3 method for class 'owin'
x[i, ...]
```

Arguments

- `x`: A spatial window (object of class "owin").
- `i`: Object defining the subregion. Either a spatial window, or a pixel image with logical values.
- `...`: Ignored.

Details

This function computes the intersection between the window `x` and the domain specified by `i`, using `intersect.owin`.

This function is a method for the subset operator "[" for spatial windows (objects of class "owin"). It is provided mainly for completeness.

The index `i` may be either a window, or a pixel image with logical values (the TRUE values of the image specify the spatial domain).

Value

Another spatial window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`intersect.owin`

Examples

```r
W <- owin(c(2.5, 3.2), c(1.4, 2.9))
plot(letterR)
plot(letterR[W], add=TRUE, col="red")
```
Extract or Replace Subset of Point Pattern

Description

Extract or replace a subset of a point pattern. Extraction of a subset has the effect of thinning the points and/or trimming the window.

Usage

```r
# S3 method for class 'ppp'
x[i, j, drop, ...]
# S3 replacement method for class 'ppp'
x[i, j] <- value
```

Arguments

- **x**: A two-dimensional point pattern. An object of class "ppp".
- **i**: Subset index. Either a valid subset index in the usual R sense, indicating which points should be retained, or a window (an object of class "owin") delineating a subset of the original observation window.
- **value**: Replacement value for the subset. A point pattern.
- **j**: Redundant. Included for backward compatibility.
- **drop, ...**: Ignored. These arguments are required for compatibility with the generic function.

Details

These functions extract a designated subset of a point pattern, or replace the designated subset with another point pattern.

The function `[.ppp is a method for `[for the class "ppp". It extracts a designated subset of a point pattern, either by "thinning" (retaining/deleting some points of a point pattern) or "trimming" (reducing the window of observation to a smaller subregion and retaining only those points which lie in the subregion) or both.

The pattern will be “thinned” if `i` is a subset index in the usual R sense: either a numeric vector of positive indices (identifying the points to be retained), a numeric vector of negative indices (identifying the points to be deleted) or a logical vector of length equal to the number of points in the point pattern `x`. In the latter case, the points `(x$x[i], x$y[i])` for which `subset[i]=TRUE` will be retained, and the others will be deleted.

The pattern will be “trimmed” if `i` is an object of class "owin" specifying a window of observation. The points of `x` lying inside the new window will be retained. Alternatively `i` may be a pixel image (object of class "im") with logical values; the pixels with the value `TRUE` will be interpreted as a window.
The function \langle=. ppp is a method for \langle= for the class "ppp". It replaces the designated subset with the point pattern value. The subset of x to be replaced is designated by the argument i as above.

The replacement point pattern value must lie inside the window of the original pattern x. The ordering of points in x will be preserved if the replacement pattern value has the same number of points as the subset to be replaced. Otherwise the ordering is unpredictable.

If the original pattern x has marks, then the replacement pattern value must also have marks, of the same type.

Use the function \texttt{unmark} to remove marks from a marked point pattern.

Use the function \texttt{split.ppp} to select those points in a marked point pattern which have a specified mark.

\textbf{Value}

A point pattern (of class "ppp").

\textbf{Warnings}

The function does not check whether window is a subset of x$\$window. Nor does it check whether value lies inside x$\$window.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{See Also}

\texttt{subset.ppp}.

\texttt{ppp.object, owin.object, unmark, split.ppp, cut.ppp}

\textbf{Examples}

data(longleaf)
Longleaf pines data
Not run:
plot(longleaf)

End(Not run)

adult trees defined to have diameter at least 30 cm
adult <- (longleaf$marks >= 30)
longadult <- longleaf[adult]
Not run:
plot(longadult)

End(Not run)
note that the marks are still retained.
Use unmark(longadult) to remove the marks
New Zealand trees data
data(nztrees)
Not run:
plot(nztrees) # plot shows a line of trees at the far right
abline(v=148, lty=2) # cut along this line

End(Not run)
nzw <- owin(c(0,148),c(0,95)) # the subwindow
trim dataset to this subwindow
nzsub <- nztrees[nzw]
Not run:
plot(nzsub)

End(Not run)

Redwood data
data(redwood)
Not run:
plot(redwood)

End(Not run)
Random thinning: delete 60% of data
retain <- (runif(redwood$n) < 0.4)
thinred <- redwood[retain]
Not run:
plot(thinred)

End(Not run)
Scramble 60% of data
modif <- (runif(redwood$n) < 0.6)
scramble <- function(x) { runifpoint(xn, xwindow) }
redwood[modif] <- scramble(redwood[modif])

Lansing woods data - multitype points
data(lansing)

Hickory trees
hicks <- split(lansing)$hickory

Trees in subwindow
win <- owin(c(0.3, 0.6),c(0.2, 0.5))
lsub <- lansing[win]

Scramble the locations of trees in subwindow, retaining their marks
lansing[win] <- scramble(lsub) %mark% (lsub$marks)
Description

Extract a subset of a multidimensional point pattern.

Usage

```r
## S3 method for class 'ppx'
x[i, ...]
```

Arguments

- `x`: A multidimensional point pattern (object of class "ppx").
- `i`: Subset index. A valid subset index in the usual R sense, indicating which points should be retained.
- `...`: Ignored.

Details

This function extracts a designated subset of a multidimensional point pattern.

The function `[.ppx` is a method for `[for the class "ppx". It extracts a designated subset of a point pattern. The argument `i` should be a subset index in the usual R sense: either a numeric vector of positive indices (identifying the points to be retained), a numeric vector of negative indices (identifying the points to be deleted) or a logical vector of length equal to the number of points in the point pattern `x`. In the latter case, the points \((x$x[i], x$y[i])\) for which `subset[i]=TRUE` will be retained, and the others will be deleted.

Use the function `unmark` to remove marks from a marked point pattern.

Value

A multidimensional point pattern (of class "ppx") in the same domain.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `ppx`

Examples

```r
df <- data.frame(x=runif(4), y=runif(4), z=runif(4))
x <- ppx(data=df, coord.type=c("s","s","t"))
x[-2]
```
Extract Subset of Line Segment Pattern

Description

Extract a subset of a line segment pattern.

Usage

```r
## S3 method for class 'psp'
x[i, j, drop, ...]
```

Arguments

- `x`: A two-dimensional line segment pattern. An object of class "psp".
- `i`: Subset index. Either a valid subset index in the usual R sense, indicating which segments should be retained, or a window (an object of class "owin") delineating a subset of the original observation window.
- `j`: Redundant - included for backward compatibility.
- `drop`: Ignored. Required for compatibility with generic function.
- `...`: Ignored.

Details

These functions extract a designated subset of a line segment pattern. The function `.[.psp` is a method for `[for the class "psp". It extracts a designated subset of a line segment pattern, either by "thinning" (retaining/deleting some line segments of a line segment pattern) or "trimming" (reducing the window of observation to a smaller subregion and clipping the line segments to this boundary) or both.

The pattern will be "thinned" if `subset` is specified. The line segments designated by `subset` will be retained. Here `subset` can be a numeric vector of positive indices (identifying the line segments to be retained), a numeric vector of negative indices (identifying the line segments to be deleted) or a logical vector of length equal to the number of line segments in the line segment pattern `x`. In the latter case, the line segments for which `subset[i]=TRUE` will be retained, and the others will be deleted.

The pattern will be "trimmed" if `window` is specified. This should be an object of class `owin` specifying a window of observation to which the line segment pattern `x` will be trimmed. Line segments of `x` lying inside the new window will be retained unchanged. Line segments lying partially inside the new window and partially outside it will be clipped so that they lie entirely inside.

Both "thinning" and "trimming" can be performed together.

Value

A line segment pattern (of class "psp").
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
psp.object, owin.object

Examples
a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
plot(a)
thinning
id <- sample(c(TRUE, FALSE), 20, replace=TRUE)
b <- a[id]
plot(b, add=TRUE, lwd=3)
trimming
plot(a)
w <- owin(c(0.1,0.7), c(0.2, 0.8))
b <- a[w]
plot(b, add=TRUE, col="red")

Description
Extract a subset of a quadrature scheme.

Usage
S3 method for class 'quad'
x[...]

Arguments

- **x**
 A quadrature scheme (object of class "quad").

- **...**
 Arguments passed to [.ppp to determine the subset.

Details
This function extracts a designated subset of a quadrature scheme.
The function [.quad is a method for [. for the class "quad". It extracts a designated subset of a quadrature scheme.
The subset to be extracted is determined by the arguments ... which are interpreted by [.ppp. Thus it is possible to take the subset consisting of all quadrature points that lie inside a given region, or a subset of quadrature points identified by numeric indices.
Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, [.ppp.

Examples

data(nztrees)
Q <- quadscheme(nztrees)
W <- owin(c(0,148),c(0,95)) # a subwindow
Q[W]

Description

Replace a subset of a list of things.

Usage

S3 method for class 'solist'
x[i, ...]

S3 replacement method for class 'solist'
x[i] <- value

Arguments

x An object of class "solist" representing a list of two-dimensional spatial objects.
i Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset.
... Ignored.

Details

This is a subset replacement method for the class "solist".
The argument x should be an object of class "solist" representing a list of two-dimensional spatial objects. See solist.
The method replaces a designated subset of x, and returns an object of class "solist".
Value

Another object of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

solist, plot.solist, summary.solist

Examples

x <- solist(japanesepines, cells, redwood)
x[1] <- list(finpines)
Value

Another object of class "splitppp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

split.ppp, plot.splitppp, summary.splitppp

Examples

data(amacrine) # multitype point pattern
y <- split(amacrine)
y[1]
y["off"]
y[1] <- list(runifpoint(42, amacrine$window))

Extract or Replace Subset of Tessellation

Description

Extract, change or delete a subset of the tiles of a tessellation, to make a new tessellation.

Usage

S3 method for class 'tess'
x[...]
S3 replacement method for class 'tess'
x[...] <- value

Arguments

x A tessellation (object of class "tess").

... One argument that specifies the subset to be extracted or changed. Any valid format for the subset index in a list.

value Replacement value for the selected tiles of the tessellation. A list of windows (objects of class "owin") or NULL.
Details

A tessellation (object of class "tess", see `tess`) is effectively a list of tiles (spatial regions) that cover a spatial region. The subset operator [.tess extracts some of these tiles and forms a new tessellation, which of course covers a smaller region than the original.

The replacement operator changes the selected tiles. The replacement value may be either NULL (which causes the selected tiles to be removed from x) or a list of the same length as the selected subset. The entries of value may be windows (objects of class "owin") or NULL to indicate that the corresponding tile should be deleted.

Generally it does not make sense to replace a tile in a tessellation with a completely different tile, because the tiles are expected to fit together. However this facility is sometimes useful for making small adjustments to polygonal tiles.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess,

Examples

```r
A <- tess(xgrid=0:4, ygrid=0:3)
B <- A[c(1, 3, 7)]
E <- A[-1]
A[c(2, 5, 11)] <- NULL
```

Empty Space Function of a Three-Dimensional Point Pattern

Description

Estimates the empty space function $F_3(r)$ from a three-dimensional point pattern.

Usage

```r
F3est(X, ..., rmax = NULL, nval = 128, vside = NULL,
      correction = c("rs", "km", "cs"),
      sphere = c("fudge", "ideal", "digital"))
```
Arguments

- **x**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **rmax**: Optional. Maximum value of argument \(r \) for which \(F_3(r) \) will be estimated.
- **nrval**: Optional. Number of values of \(r \) for which \(F_3(r) \) will be estimated. A large value of nrval is required to avoid discretisation effects.
- **vside**: Optional. Side length of the voxels in the discrete approximation.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.
- **sphere**: Optional. Character string specifying how to calculate the theoretical value of \(F_3(r) \) for a Poisson process. See Details.

Details

For a stationary point process \(\Phi \) in three-dimensional space, the empty space function is

\[
F_3(r) = P(d(0, \Phi) \leq r)
\]

where \(d(0, \Phi) \) denotes the distance from a fixed origin 0 to the nearest point of \(\Phi \).

The three-dimensional point pattern \(x \) is assumed to be a partial realisation of a stationary point process \(\Phi \). The empty space function of \(\Phi \) can then be estimated using techniques described in the References.

The box containing the point pattern is discretised into cubic voxels of side length \(vside \). The distance function \(d(u, \Phi) \) is computed for every voxel centre point \(u \) using a three-dimensional version of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution function of these values, with appropriate edge corrections, is the estimate of \(F_3(r) \).

The available edge corrections are:

- "rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
- "km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
- "cs": the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and Stoyan, 1998)

The result includes a column theo giving the theoretical value of \(F_3(r) \) for a uniform Poisson process (Complete Spatial Randomness). This value depends on the volume of the sphere of radius \(r \) measured in the discretised distance metric. The argument sphere determines how this will be calculated.

- If sphere="ideal" the calculation will use the volume of an ideal sphere of radius \(r \) namely \((4/3)\pi r^3\). This is not recommended because the theoretical values of \(F_3(r) \) are inaccurate.
- If sphere="fudge" then the volume of the ideal sphere will be multiplied by 0.78, which gives the approximate volume of the sphere in the discretised distance metric.
- If sphere="digital" then the volume of the sphere in the discretised distance metric is computed exactly using another distance transform. This takes longer to compute, but is exact.
Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Warnings

A small value of vside and a large value of nrval are required for reasonable accuracy. The default value of vside ensures that the total number of voxels is 2^{22} or about 4 million. To change the default number of voxels, see spatstat.options("nvoxel").

Author(s)

References

See Also

G3est, K3est, pcf3est.

Examples

```r
X <- rpoispp3(42)
Z <- F3est(X)
if(interactive()) plot(Z)
```
Usage

fardist(X, ...)

S3 method for class 'owin'
fardist(X, ..., squared=FALSE)

S3 method for class 'ppp'
fardist(X, ..., squared=FALSE)

Arguments

x A spatial object such as a window or point pattern.

... Arguments passed to `as.mask` to determine the pixel resolution, if required.

squared Logical. If TRUE, the squared distances will be returned.

Details

The function `fardist` is generic, with methods for the classes `owin` and `ppp`.

For a window `W`, the command `fardist(W)` returns a pixel image in which the value at each pixel is the largest distance from that pixel to the boundary of `W`.

For a point pattern `X`, with window `W`, the command `fardist(X)` returns a numeric vector with one entry for each point of `X`, giving the largest distance from that data point to the boundary of `W`.

Value

For `fardist.owin`, a pixel image (object of class "im").

For `fardist.ppp`, a numeric vector.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

Examples

fardist(cells)

plot(FR <- fardist(letterR))
Function Arrays for Spatial Patterns

Description

A class "fasp" to represent a “matrix” of functions, amenable to plotting as a matrix of plot panels.

Details

An object of this class is a convenient way of storing (and later plotting, editing, etc) a set of functions $f_{i,j}(r)$ of a real argument r, defined for each possible pair (i, j) of indices $1 \leq i, j \leq n$. We may think of this as a matrix or array of functions $f_{i,j}$.

Function arrays are particularly useful in the analysis of a multitype point pattern (a point pattern in which the points are identified as belonging to separate types). We may want to compute a summary function for the points of type i only, for each of the possible types i. This produces a $1 \times m$ array of functions. Alternatively we may compute a summary function for each possible pair of types (i, j). This produces an $m \times m$ array of functions.

For multitype point patterns the command alltypes will compute arrays of summary functions for each possible type or for each possible pair of types. The function alltypes returns an object of class "fasp".

An object of class "fasp" is a list containing at least the following components:

- **fns** A list of data frames, each representing one of the functions.
- **which** A matrix representing the spatial arrangement of the functions. If \[\text{which}[[i,j]] = k \] then the function represented by \[\text{fns}[[k]] \] should be plotted in the panel at position (i, j). If \[\text{which}[[i,j]] = \text{NA} \] then nothing is plotted in that position.
- **titles** A list of character strings, providing suitable plotting titles for the functions.
- **default.formulae** A list of default formulae for plotting each of the functions.
- **title** A character string, giving a default title for the array when it is plotted.

Functions available

There are methods for plot, print and "[" for this class.

The plot method displays the entire array of functions. The method [.fasp selects a sub-array using the natural indices i, j.

The command eval.fasp can be used to apply a transformation to each function in the array, and to combine two arrays.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
See Also

`alltypes, plot.fasp, [.fasp, eval.fasp`

Examples

```r
# multitype point pattern
data(amacrine)
GG <- alltypes(amacrine, "G")
plot(GG)

# select the row corresponding to cells of type "on"
Gon <- GG["on", ]
plot(Gon)

# extract the G function for i = "on", j = "off"
Gonoff <- GG["on", "off", drop=TRUE]

# Fisher variance stabilising transformation
GGfish <- eval.fasp(asin(sqrt(GG)))
plot(GGfish)
```

Description

Estimates the empty space function $F(r)$ or its hazard rate $h(r)$ from a point pattern in a window of arbitrary shape.

Usage

```r
Fest(X, ..., eps=NULL, r=NULL, breaks=NULL,
   correction=c("rs", "km", "cs"),
   domain=NULL)

Fhazard(X, ...)
```

Arguments

- **X** The observed point pattern, from which an estimate of $F(r)$ will be computed. An object of class ppp, or data in any format acceptable to `as.ppp()`.
- **...** Extra arguments, passed from `Fhazard` to `Fest`. Extra arguments to `Fest` are ignored.
- **eps** Optional. A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- **r** Optional. Numeric vector. The values of the argument r at which $F(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on r.
breaks

correction

domain

This argument is for internal use only.

Optional. The edge correction(s) to be used to estimate $F(r)$. A vector of character strings selected from "none", "rs", "km", "cs" and "best".

Optional. Calculations will be restricted to this subset of the window. See Details.

Details

Fest computes an estimate of the empty space function $F(r)$, and fhazard computes an estimate of its hazard rate $h(r)$.

The empty space function (also called the “spherical contact distribution” or the “point-to-nearest-event” distribution) of a stationary point process X is the cumulative distribution function F of the distance from a fixed point in space to the nearest point of X.

An estimate of F derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory analyses, the estimate of F is a useful statistic summarising the sizes of gaps in the pattern. For inferential purposes, the estimate of F is usually compared to the true value of F for a completely random (Poisson) point process, which is

$$F(r) = 1 - e^{-\lambda \pi r^2}$$

where λ is the intensity (expected number of points per unit area). Deviations between the empirical and theoretical F curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the empty space function F from the point pattern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X) may have arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by asp.

The algorithm uses two discrete approximations which are controlled by the parameter eps and by the spacing of values of r respectively. (See below for details.) First-time users are strongly advised not to specify these arguments.

The estimation of F is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Chiu-Stoyan estimator (Chiu and Stoyan, 1998).

Our implementation makes essential use of the distance transform algorithm of image processing (Borgefors, 1986). A fine grid of pixels is created in the observation window. The Euclidean distance between two pixels is approximated by the length of the shortest path joining them in the grid, where a path is a sequence of steps between adjacent pixels, and horizontal, vertical and diagonal steps have length 1, 1 and $\sqrt{2}$ respectively in pixel units. If the pixel grid is sufficiently fine then this is an accurate approximation.

The parameter eps is the pixel width of the rectangular raster used to compute the distance transform (see below). It must not be too large: the absolute error in distance values due to discretisation is bounded by eps.
If \(\text{eps} \) is not specified, the function checks whether the window \(\text{X} \cdot \text{window} \) contains pixel raster information. If so, then \(\text{eps} \) is set equal to the pixel width of the raster; otherwise, \(\text{eps} \) defaults to 1/100 of the width of the observation window.

The argument \(r \) is the vector of values for the distance \(r \) at which \(F(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \text{hist}) for the computation of histograms of distances. The estimators are computed from histogram counts. This introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \(r \). However, if it is specified, \(r \) must satisfy \(r[1] = 0 \), and \(\max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the spacing of successive \(r \) values must be very fine (ideally not greater than \(\text{eps}/4 \)).

The algorithm also returns an estimate of the hazard rate function, \(h(r) \) of \(F(r) \). The hazard rate is defined by

\[
h(r) = -\frac{d}{dr} \log(1 - F(r))
\]

The hazard rate of \(F \) has been proposed as a useful exploratory statistic (Baddeley and Gill, 1994). The estimate of \(h(r) \) given here is a discrete approximation to the hazard rate of the Kaplan-Meier estimator of \(F \). Note that \(F \) is absolutely continuous (for any stationary point process \(X \)), so the hazard function always exists (Baddeley and Gill, 1997).

If the argument \text{domain} is given, the estimate of \(F(r) \) will be based only on the empty space distances measured from locations inside \text{domain} (although their nearest data points may lie outside \text{domain}). This is useful in bootstrap techniques. The argument \text{domain} should be a window (object of class "\text{owin}") or something acceptable to \text{as.owin}. It must be a subset of the window of the point pattern \(X \).

The naive empirical distribution of distances from each location in the window to the nearest point of the data pattern, is a biased estimate of \(F \). However this is also returned by the algorithm (if \text{correction}="none"), as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical \(F \) as if it were an unbiased estimator of \(F \).

Value

An object of class "\text{fv}" , see \text{fv.object}, which can be plotted directly using \text{plot.fv}.

The result of \text{Fest} is essentially a data frame containing up to seven columns:

- \textit{r} the values of the argument \(r \) at which the function \(F(r) \) has been estimated
- \textit{rs} the “reduced sample” or “border correction” estimator of \(F(r) \)
- \textit{km} the spatial Kaplan-Meier estimator of \(F(r) \)
- \textit{hazard} the hazard rate \(\lambda(r) \) of \(F(r) \) by the spatial Kaplan-Meier method
- \textit{cs} the Chiu-Stoyan estimator of \(F(r) \)
- \textit{raw} the uncorrected estimate of \(F(r) \), i.e. the empirical distribution of the distance from a random point in the window to the nearest point of the data pattern \(X \)
- \textit{theo} the theoretical value of \(F(r) \) for a stationary Poisson process of the same estimated intensity.

The result of \text{Fhazard} contains only three columns
For the values of the argument r at which the hazard rate $h(r)$ has been estimated

the spatial Kaplan-Meier estimate of the hazard rate $h(r)$

the theoretical value of $h(r)$ for a stationary Poisson process of the same estimated intensity.

Warnings

The reduced sample (border method) estimator of F is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of r. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of F is always nondecreasing but its maximum value may be less than 1.

The estimate of hazard rate $h(r)$ returned by the algorithm is an approximately unbiased estimate for the integral of $h()$ over the corresponding histogram cell. It may exhibit oscillations due to discretisation effects. We recommend modest smoothing, such as kernel smoothing with kernel width equal to the width of a histogram cell, using `Smooth.fv`.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

Gest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

Fc <- Fest(cells, 0.01)

Tip: don't use F for the left hand side!
That's an abbreviation for FALSE
plot(Fc)

P-P style plot
plot(Fc, cbind(km, theo) ~ theo)

The empirical F is above the Poisson F
indicating an inhibited pattern

Not run:
plot(Fc, . ~ theo)
plot(Fc, asin(sqrt(.)) ~ asin(sqrt(theo)))

End(Not run)

Fiksel

The Fiksel Interaction

Description

Creates an instance of Fiksel's double exponential pairwise interaction point process model, which can then be fitted to point pattern data.

Usage

Fiksel(r, hc=NA, kappa)

Arguments

r The interaction radius of the Fiksel model
hc The hard core distance
kappa The rate parameter
Details

Fiksel (1984) introduced a pairwise interaction point process with the following interaction function \(c \). For two points \(u \) and \(v \) separated by a distance \(d = \| u - v \| \), the interaction \(c(u, v) \) is equal to 0 if \(d < h \), equal to 1 if \(d > r \), and equal to
\[
\exp(a \exp(-\kappa d))
\]
if \(h \leq d \leq r \), where \(h, r, \kappa, a \) are parameters.

A graph of this interaction function is shown in the Examples. The interpretation of the parameters is as follows.

- \(h \) is the hard core distance: distinct points are not permitted to come closer than a distance \(h \) apart.
- \(r \) is the interaction range: points further than this distance do not interact.
- \(\kappa \) is the rate or slope parameter, controlling the decay of the interaction as distance increases.
- \(a \) is the interaction strength parameter, controlling the strength and type of interaction. If \(a \) is zero, the process is Poisson. If \(a \) is positive, the process is clustered. If \(a \) is negative, the process is inhibited (regular).

The function \(\text{ppm()} \), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Fiksel pairwise interaction is yielded by the function \(\text{fikselHI} \). See the examples below.

The parameters \(h, r, \kappa \) must be fixed and given in the call to \(\text{Fiksel}() \), while the canonical parameter \(a \) is estimated by \(\text{ppm}() \).

To estimate \(h, r, \kappa \) it is possible to use \text{profilepl}. The maximum likelihood estimator of \(h \) is the minimum interpoint distance.

If the hard core distance argument \(hc \) is missing or \(\text{NA} \), it will be estimated from the data when \(\text{ppm} \) is called. The estimated value of \(hc \) is the minimum nearest neighbour distance multiplied by \(n/(n + 1) \), where \(n \) is the number of data points.

See also Stoyan, Kendall and Mecke (1987) page 161.

Value

An object of class "interact" describing the interpoint interaction structure of the Fiksel process with interaction radius \(r \), hard core distance \(hc \) and rate parameter \(\kappa \).

Author(s)

Adrian Baddeley <Adrian.Badleley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm, pairwise.family, ppm.object, StraussHard`

Examples

```r
Fiksel(r=1, hc=0.02, kappa=2)
# prints a sensible description of itself

data(spruces)
X <- unmark(spruces)
fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
plot(fitin(fit))
```

Finhom

Inhomogeneous Empty Space Function

Description

Estimates the inhomogeneous empty space function of a non-stationary point pattern.

Usage

```r
Finhom(X, lambda = NULL, lmin = NULL, ...,
      sigma = NULL, varcov = NULL,
      r = NULL, breaks = NULL, ratio = FALSE, update = TRUE)
```

Arguments

- **X**: The observed data point pattern, from which an estimate of the inhomogeneous F function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`
- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function $x \mapsto \lambda(x)$ which can be evaluated to give the intensity value at any location.
- **lmin**: Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.
- **sigma, varcov**: Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when `lambda` is estimated by kernel smoothing.
Extra arguments passed to `as.mask` to control the pixel resolution, or passed to `density.ppp` to control the smoothing bandwidth.

- **r** vector of values for the argument r at which the inhomogeneous K function should be evaluated. Not normally given by the user; there is a sensible default.

- **breaks** This argument is for internal use only.

- **ratio** Logical. If TRUE, the numerator and denominator of the estimate will also be saved, for use in analysing replicated point patterns.

- **update** Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data X (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to X.

Details

This command computes estimates of the inhomogeneous F-function (van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the empty space function F for homogeneous point patterns computed by `fest`.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous F function is computed using the border correction, equation (6) in Van Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point process. It may be either

- a **numeric vector** containing the values of the intensity function at the points of the pattern X.
- a **pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- a **fitted point process model** (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the trend is computed.)
- a **function** which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern X. The value `lambda[i]` is assumed to be the the (estimated) value of the intensity λ(\(x_i\)) for the point \(x_i\) of the pattern X. Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to lambda using `blur`, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If lambda is a function, then it will be evaluated in the form `lambda(x, y)` where x and y are vectors of coordinates of the points of X. It should return a numeric vector with length equal to the number of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate `lambda[i]` for the point \(x[i]\) is computed by removing \(x[i]\) from the point pattern, applying kernel smoothing to the remaining points.
using `density.ppp`, and evaluating the smoothed intensity at the point $X[i]$. The smoothing kernel bandwidth is controlled by the arguments `sigma` and `varcov`, which are passed to `density.ppp` along with any extra arguments.

Value

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

Author(s)

References

See Also

`ginhom`, `jinhom`, `fest`

Examples

```r
## Not run:
plot(Finhom(swedishpines, sigma=bw.diggle, adjust=2))

## End(Not run)
plot(Finhom(swedishpines, sigma=10))
```

finpines

Pine saplings in Finland.

Description

The data record the locations of 126 pine saplings in a Finnish forest, their heights and their diameters.

The dataset `finpines` is a marked point pattern containing the locations of the saplings marked by their heights and their diameters.

Sapling locations are given in metres (to six significant digits); heights are in metres (rounded to the nearest 0.1 metre, except in one case to the nearest 0.05 metres); diameters are in centimetres (rounded to the nearest centimetre).
The data were recorded by Professor Seppo Kellomaki, Faculty of Forestry, University of Joensuu, Finland, and subsequently massaged by Professor Antti Penttinen, Department of Statistics, University of Jyväskylä, Finland.

Originally the point locations were observed in polar coordinates with rather poor angular precision. Hence the coordinates are imprecise for large radius because of rounding errors: indeed the alignments can be observed by eye.

The data were manipulated by Prof Penttinen by making small angular perturbations at random. After this transformation, the original data (in a circular plot) were clipped to a square window, for convenience.

Professor Penttinen emphasises that the data were intended only for initial experimentation. They have some strange features. For example, if the height is less than 1.3 metres then the diameter can be uncertain. Also there are some very close pairs of points. Some pairs of trees (namely (58,59), (78,79), (96,97) and (102,103)) violate the requirement that the interpoint distance should be greater than half the sum of their diameters.

These data have subsequently been analysed by Van Lieshout (2004).

Usage

data(finpines)

Format

Object of class "ppp" representing the point pattern of sapling locations marked by their heights and diameters. See ppp.object for details of the format.

Source

Prof Antti Penttinen

References

Examples

data(finpines)
plot(unmark(finpines), main="Finnish pines: locations")
plot(finpines, which.marks="height", main="heights")
plot(finpines, which.marks="diameter", main="diameters")
plot(finpines, which.marks="diameter",
 main="diameters to scale", markscale=1/200)
Description

Given a point process model that has been fitted to point pattern data, this function extracts the
interpoint interaction part of the model as a separate object.

Usage

fitin(object)
S3 method for class 'ppm'
fitin(object)

Arguments

object A fitted point process model (object of class "ppm").

Details

An object of class "ppm" describes a fitted point process model. It contains information about the
original data to which the model was fitted, the spatial trend that was fitted, the interpoint interaction
that was fitted, and other data. See ppm.object for details of this class.

The function fitin extracts from this model the information about the fitted interpoint interaction
only. The information is organised as an object of class "fii" (fitted interpoint interaction). This
object can be printed or plotted.

Users may find this a convenient way to plot the fitted interpoint interaction term, as shown in the
Examples.

For a pairwise interaction, the plot of the fitted interaction shows the pair interaction function (the
contribution to the probability density from a pair of points as a function of the distance between
them). For a higher-order interaction, the plot shows the strongest interaction (the value most dif-
ferent from 1) that could ever arise at the given distance.

The fitted interaction coefficients can also be extracted from this object using coef.

Value

An object of class "fii" representing the fitted interpoint interaction. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
See Also
Methods for handling fitted interactions: \texttt{methods.fii}, \texttt{reach.fii}, \texttt{as.interact.fii}.
Background: \texttt{ppm}, \texttt{ppm.object}.

Examples

```r
# unmarked
model <- ppm(swedishpines ~1, PairPiece(seq(3,19,by=4)))
f <- fitin(model)
f
plot(f)

# extract fitted interaction coefficients
coef(f)

# multitype
# fit the stationary multitype Strauss process to 'amacrine'
r <- 0.02 * matrix(c(1,2,2,1), nrow=2,ncol=2)
model <- ppm(amacrine ~1, MultiStrauss(r))
f <- fitin(model)
f
plot(f)
```

\textbf{fitted.mppm} \hspace{2cm} \textit{Fitted Conditional Intensity for Multiple Point Process Model}

\textbf{Description}

Given a point process model fitted to multiple point patterns, compute the fitted conditional intensity of the model at the points of each data pattern, or at the points of the quadrature schemes used to fit the model.

\textbf{Usage}

```r
## S3 method for class 'mppm'
fitted(object, ..., type = "lambda", dataonly = FALSE)
```

\textbf{Arguments}

- \textbf{object} \hspace{1cm} The fitted model. An object of class "mppm" obtained from \texttt{mppm}.
- \textbf{...} \hspace{1cm} Ignored.
- \textbf{type} \hspace{1cm} Type of fitted values: either "trend" for the spatial trend, or "lambda" or "cif" for the conditional intensity.
- \textbf{dataonly} \hspace{1cm} If \texttt{TRUE}, fitted values are computed only for the points of the data point patterns. If \texttt{FALSE}, fitted values are computed for the points of the quadrature schemes used to fit the model.
This function evaluates the conditional intensity \(\hat{\lambda}(u, x) \) or spatial trend \(\hat{b}(u) \) of the fitted point process model for certain locations \(u \), for each of the original point patterns \(x \) to which the model was fitted.

The locations \(u \) at which the fitted conditional intensity/trend is evaluated, are the points of the quadrature schemes used to fit the model in \texttt{mppm}. They include the data points (the points of the original point pattern datasets) and other “dummy” points in the window of observation.

Use \texttt{predict.mppm} to compute the fitted conditional intensity at other locations or with other values of the explanatory variables.

A list of vectors (one for each row of the original hyperframe, i.e. one vector for each of the original point patterns) containing the values of the fitted conditional intensity or (if type="trend") the fitted spatial trend.

Entries in these vector correspond to the quadrature points (data or dummy points) used to fit the model. The quadrature points can be extracted from object by \texttt{quad.mppm(object)}.

Adrian Baddeley <adrian.baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <rolf@math.unb.ca> \url{http://www.math.unb.ca/~rolf}

\texttt{mppm, predict.mppm}

model <- \texttt{mppm(Bugs ~ x, data=hyperframe(Bugs=waterstriders), interaction= Strauss(7))}
cifs <- fitted(model)

\begin{verbatim}
S3 method for class 'ppm'
fitted(object, ..., type="lambda", dataonly=FALSE,
 new.coef=NULL, leaveoneout=FALSE, drop=FALSE, check=TRUE, repair=TRUE)
\end{verbatim}
Arguments

- **object**: The fitted point process model (an object of class "ppm")
 - Ignored.

- **type**: String (partially matched) indicating whether the fitted value is the conditional intensity ("lambda") or the trend ("trend").

- **dataonly**: Logical. If TRUE, then values will only be computed at the points of the data point pattern. If FALSE, then values will be computed at all the points of the quadrature scheme used to fit the model, including the points of the data point pattern.

- **new.coef**: Numeric vector of parameter values to replace the fitted model parameters coef(object).

- **leaveoneout**: Logical. If TRUE the fitted value at each data point will be computed using a leave-one-out method. See Details.

- **drop**: Logical value determining whether to delete quadrature points that were not used to fit the model.

- **check**: Logical value indicating whether to check the internal format of object. If there is any possibility that this object has been restored from a dump file, or has otherwise lost track of the environment where it was originally computed, set check=TRUE.

- **repair**: Logical value indicating whether to repair the internal format of object, if it is found to be damaged.

Details

The argument object must be a fitted point process model (object of class "ppm"). Such objects are produced by the model-fitting algorithm ppm.

This function evaluates the conditional intensity \(\hat{\lambda}(u, x) \) or spatial trend \(\hat{b}(u) \) of the fitted point process model for certain locations \(u \), where \(x \) is the original point pattern dataset to which the model was fitted.

The locations \(u \) at which the fitted conditional intensity/trend is evaluated, are the points of the quadrature scheme used to fit the model in ppm. They include the data points (the points of the original point pattern dataset \(x \)) and other “dummy” points in the window of observation.

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-out’ rule: the fitted value at \(X[i] \) is effectively computed by deleting this point from the data and re-fitting the model to the reduced pattern \(X[-i] \), then predicting the value at \(X[i] \). (Instead of literally performing this calculation, we apply a Taylor approximation using the leverage computed in dfbetas.ppm.

The argument drop is explained in quad.ppm.

Use predict.ppm to compute the fitted conditional intensity at other locations or with other values of the explanatory variables.

Value

A vector containing the values of the fitted conditional intensity or (if type="trend") the fitted spatial trend.
Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm.object, ppm, predict.ppm

Examples

```r
str <- ppm(cells ~ x, Strauss(r=0.1))
lambda <- fitted(str)

# extract quadrature points in corresponding order
quadpoints <- union.quad(quad.ppm(str))

# plot conditional intensity values
# as circles centred on the quadrature points
quadmarked <- setmarks(quadpoints, lambda)
plot(quadmarked)

if(!interactive()) str <- ppm(cells ~ x)

lambdaX <- fitted(str, leaveoneout=TRUE)
```

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for each pixel.

Usage

```r
## S3 method for class 'slrm'
fitted(object, ...)
```
Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

Details

This is a method for the generic function fitted for spatial logistic regression models (objects of class "slrm", usually obtained from the function slrm).

The algorithm computes the fitted probabilities of the presence of a random point in each pixel.

Value

A pixel image (object of class "im") containing the fitted probability for each pixel.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and
Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, fitted

Examples

```r
X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(fitted(fit))
```

Description

Exchanges the \(x\) and \(y\) coordinates in a spatial dataset.

Usage

```r
flipxy(X)
  ## S3 method for class 'owin'
flipxy(X)
  ## S3 method for class 'ppp'
flipxy(X)
  ## S3 method for class 'psp'
flipxy(X)
  ## S3 method for class 'im'
flipxy(X)
```
Arguments

X Spatial dataset. An object of class "owin", "ppp", "psp" or "im".

Details

This function swaps the x and y coordinates of a spatial dataset. This could also be performed using the command `affine`, but `flipxy` is faster.

The function `flipxy` is generic, with methods for the classes of objects listed above.

Value

Another object of the same type, representing the result of swapping the x and y coordinates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`affine`, `reflect`, `rotate`, `shift`

Examples

```r
data(cells)
X <- flipxy(cells)
```

flu

Influenza Virus Proteins

Description

Replicated spatial point patterns giving the locations of two different virus proteins on the membranes of cells infected with influenza virus.

Usage

`data(flu)`

Format

A `hyperframe` with 41 rows and four columns:

- **pattern** List of spatial point patterns (objects of class "ppp") with points of two types, identifying the locations of two different proteins on a membrane sheet.
- **virustype** Factor identifying whether the infecting virus was the wild type (wt) or mutant (mut1).
flu

stain Factor identifying whether the membrane sheet was stained for the proteins \(M2 \) and \(M1 \) (stain="M2-M1") or stained for the proteins \(M2 \) and \(HA \) (stain="M2-HA").

frameid Integer. Serial number of the microscope frame in the original experiment. Frame identifier is not unique across different values of virustype and stain.

The row names of the hyperframe can be used as succinct labels in plots.

Details

The data consist of 41 spatial point patterns, each giving the locations of two different virus proteins on the membranes of cells infected with influenza virus.

Chen et al (2008) conducted the experiment and used spatial analysis to establish evidence for an interaction between the influenza virus proteins \(M1 \) and \(M2 \) that is important for the study of viral replication.

Canine kidney cells were infected with human influenza, Udorn strain, either the wild type or a mutant which encodes a defective \(M2 \) protein. At twelve hours post-infection, membrane sheets were prepared and stained for viral proteins, using two antibodies conjugated to gold particles of two sizes (6 nanometre and 12 nanometre diameter) enabling localisation of two different proteins on each sheet. The 6 nm particles were stained for \(M2 \) (ion channel protein), while the 12 nm particles were stained either for \(M1 \) (matrix protein) or for \(HA \) (hemagglutinin). Membrane sheets were visualised in electron microscopy.

Experimental technique and spatial analysis of the membranes stained for \(M2 \) and \(M1 \) is reported in Chen et al (2008). Analysis of the membranes stained for \(M2 \) and \(HA \) is reported in Rossman et al (2010). The \(M2-HA \) data shows a stronger association between the two proteins which has also been observed biochemically and functionally (Rossman et al, 2010).

The dataset flu is a hyperframe with one row for each membrane sheet. The column named pattern contains the spatial point patterns of gold particle locations, with two types of points (either \(M1 \) and \(M2 \) or \(HA \) and \(M2 \)). The column named virustype is a factor identifying the virus: either wild type \(wt \) or mutant \(mut1 \). The column named stain is a factor identifying whether the membrane was stained for \(M1 \) and \(M2 \) (stain="M2-M1") or stained for \(HA \) and \(M2 \) (stain="M2-HA"). The row names of the hyperframe are a succinct summary of the experimental conditions and can be used as labels in plots. See the Examples.

Source

Data generously provided by Dr G.P. Leser and Dr R.A. Lamb. Please cite Chen et al (2008) in any use of these data.

References

Examples

```r
data(flu)
flu
Y <- flu$pattern[10]
Y <- flu[10, 1, drop=TRUE]
wildM1 <- with(flu, virustype == "wt" & stain == "M2-M1")
plot(flu[wildM1, 1, drop=TRUE],
     main=c("flu data", "wild type virus, M2-M1 stain"),
     pch=c(3,16), cex=0.4, cols=2:3)
```

foo

Foo is Not a Variable

Description

Prints an explanation of the placeholder name foo.

Usage

foo()

Details

The name foo is used by computer scientists as a place holder, to represent the name of any desired object or function. It is not the name of an actual object or function; it serves only as an example, to explain a concept.

However, many users misinterpret this convention, and actually type the command foo or foo(). Then they email the package author to inform them that foo is not defined.

To avoid this correspondence, we have now defined an object called foo.

The function foo() prints a message explaining that foo is not really the name of a variable.

The function can be executed simply by typing foo without parentheses.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

beginner

Examples

foo
Extract or Change the Plot Formula for a Function Value Table

Description

Extract or change the default plotting formula for an object of class "fv" (function value table).

Usage

```r
# S3 method for class 'fv'
formula(x, ...)

formula(x, ...) <- value

# S3 replacement method for class 'fv'
formula(x, ...) <- value
```

Arguments

- `x` An object of class "fv", containing the values of several estimates of a function.
- `...` Arguments passed to other methods.
- `value` New value of the formula. Either a `formula` or a character string.

Details

A function value table (object of class "fv", see `fv.object`) is a convenient way of storing and plotting several different estimates of the same function.

The default behaviour of `plot(x)` for a function value table `x` is determined by a formula associated with `x` called its plot formula. See `plot.fv` for explanation about these formulae.

The function `formula.fv` is a method for the generic command `formula`. It extracts the plot formula associated with the object.

The function `formula<-` is generic. It changes the formula associated with an object.

The function `formula<-.fv` is the method for `formula<-` for the class "fv". It changes the plot formula associated with the object.

Value

The result of `formula.fv` is a character string containing the plot formula. The result of `formula<-.fv` is a new object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
See Also

fv, plot.fv, formula.

Examples

```r
K <- Kest(cells)
formula(K)
formula(K) <- (iso ~ r)
```

Description

Extract the trend formula, or the terms in the trend formula, in a fitted Gibbs point process model.

Usage

```r
## S3 method for class 'ppm'
formula(x, ...)
## S3 method for class 'ppm'
terms(x, ...)
```

Arguments

- `x` An object of class "ppm", representing a fitted point process model.
- `...` Arguments passed to other methods.

Details

These functions are methods for the generic commands `formula` and `terms` for the class "ppm". An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained from the model-fitting function `ppm`.

The method `formula.ppm` extracts the trend formula from the fitted model `x` (the formula originally specified as the argument `trend` to `ppm`). The method `terms.ppm` extracts the individual terms in the trend formula.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
See Also

ppm, as.owin, coef.ppm, extractAIC.ppm, fitted.ppm, logLik.ppm, model.frame.ppm, model.matrix.ppm, plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, update.ppm, vcov.ppm.

Examples

data(cells)
fit <- ppm(cells, ~x)
formula(fit)
terms(fit)

Frame

Extract or Change the Containing Rectangle of a Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions extract or change the containing rectangle inside which the object is defined.

Usage

Frame(X)

Default S3 method:
Frame(X)

Frame(X) <- value

S3 replacement method for class 'owin'
Frame(X) <- value

S3 replacement method for class 'ppp'
Frame(X) <- value

S3 replacement method for class 'im'
Frame(X) <- value

Arguments

X A spatial object such as a point pattern, line segment pattern or pixel image.
value A rectangular window (object of class "owin" of type "rectangle") to be used as the new containing rectangle for X.

Details

The functions Frame and Frame<- are generic.

Frame(X) extracts the rectangle inside which X is defined.
Frame(X) <- R changes the rectangle inside which X is defined to the new rectangle R.
Value

The result of `Frame` is a rectangular window (object of class "owin" of type "rectangle").
The result of `Frame<-` is the updated object `X`, of the same class as `X`.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

Window

Examples

```r
Frame(cells)
X <- demopat
Frame(X)
Frame(X) <- owin(c(0, 11000), c(400, 8000))
```

fryplot

Fry Plot of Point Pattern

Description

Displays the Fry plot (Patterson plot) of a spatial point pattern.

Usage

```r
fryplot(X, ..., width=NULL, from=NULL, to=NULL, axes=FALSE)
frypoints(X, from=NULL, to=NULL, dmax=Inf)
```

Arguments

- `X`
 A point pattern (object of class "ppp") or something acceptable to `as.ppp`.
- `...`
 Optional arguments to control the appearance of the plot.
- `width`
 Optional parameter indicating the width of a box for a zoomed-in view of the Fry plot near the origin.
- `from, to`
 Optional. Subset indices specifying which points of `X` will be considered when forming the vectors (drawn from each point of `from`, to each point of `to`).
- `axes`
 Logical value indicating whether to draw axes, crossing at the origin.
- `dmax`
 Maximum distance between points. Pairs at greater distances do not contribute to the result. The default means there is no maximum distance.
Details

The function `fryplot` generates a Fry plot (or Patterson plot); `frypoints` returns the points of the Fry plot as a point pattern dataset.

Fry (1979) and Hanna and Fry (1979) introduced a manual graphical method for investigating features of a spatial point pattern of mineral deposits. A transparent sheet, marked with an origin or centre point, is placed over the point pattern. The transparent sheet is shifted so that the origin lies over one of the data points, and the positions of all the other data points are copied onto the transparent sheet. This procedure is repeated for each data point in turn. The resulting plot (the Fry plot) is a pattern of $n(n-1)$ points, where n is the original number of data points. This procedure was previously proposed by Patterson (1934, 1935) for studying inter-atomic distances in crystals, and is also known as a Patterson plot.

The function `fryplot` generates the Fry/Patterson plot. Standard graphical parameters such as `main`, `pch`, `lwd`, `col`, `bg`, `cex` can be used to control the appearance of the plot. To zoom in (to view only a subset of the Fry plot at higher magnification), use the argument `width` to specify the width of a rectangular field of view centred at the origin, or the standard graphical arguments `xlim` and `ylim` to specify another rectangular field of view. (The actual field of view may be slightly larger, depending on the graphics device.)

The function `frypoints` returns the points of the Fry plot as a point pattern object. There may be a large number of points in this pattern, so this function should be used only if further analysis of the Fry plot is required.

Fry plots are particularly useful for recognising anisotropy in regular point patterns. A void around the origin in the Fry plot suggests regularity (inhibition between points) and the shape of the void gives a clue to anisotropy in the pattern. Fry plots are also useful for detecting periodicity or rounding of the spatial coordinates.

In mathematical terms, the Fry plot of a point pattern X is simply a plot of the vectors $X[i] - X[j]$ connecting all pairs of distinct points in X.

The Fry plot is related to the K function (see `Kest`) and the reduced second moment measure (see `kmeasure`). For example, the number of points in the Fry plot lying within a circle of given radius is an unnormalised and uncorrected version of the K function. The Fry plot has a similar appearance to the plot of the reduced second moment measure `kmeasure` when the smoothing parameter `sigma` is very small.

The Fry plot does not adjust for the effect of the size and shape of the sampling window. The density of points in the Fry plot tapers off near the edges of the plot. This is an edge effect, a consequence of the bounded sampling window. In geological applications this is usually not important, because interest is focused on the behaviour near the origin where edge effects can be ignored. To correct for the edge effect, use `Kmeasure` or `Kest` or its relatives.

Value

`fryplot` returns `NULL`. `frypoints` returns a point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
funxy

References

See Also

`Kmeasure, Kest`

Examples

```r
## unmarked data
fryplot(cells)
Y <- frypoints(cells)

## numerical marks
fryplot(longleaf, width=4, axes=TRUE)

## multitype points
fryplot(amacrine, width=0.2,
       from=(marks(amacrine) == "on"),
       chars=c(3,16), cols=2:3,
       main="Fry plot centred at an On-cell")
points(0,0)
```

```
funxy

Spatial Function Class

Description

A simple class of functions of spatial location

Usage

`funxy(f, W)`

Arguments

- `f` A function in the R language with arguments `x, y` (at least)
- `W` Window (object of class "owin") inside which the function is well-defined.
Details

This creates an object of class "funxy". This is a simple mechanism for handling a function of spatial location \( f(x, y) \) to make it easier to display and manipulate.

\( f \) should be a function in the \( \mathbb{R} \) language. The first two arguments of \( f \) must be named \( x \) and \( y \) respectively.

\( w \) should be a window (object of class "owin") inside which the function \( f \) is well-defined.

The function \( f \) should be vectorised: that is, if \( x \) and \( y \) are numeric vectors of the same length \( n \), then \( v <- f(x, y) \) should be a vector of length \( n \).

Value

A function, in fact a copy of \( f \), which also belongs to the class "funxy". This class has methods for print, plot, contour and persp.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.funxy

Examples

```r
f <- function(x, y) { x^2 + y^2 - 1}
g <- funxy(f, square(2))
g(0.2, 0.3)
g
```

---

**fv**

Create a Function Value Table

Description

Advanced Use Only. This low-level function creates an object of class "fv" from raw numerical data.

Usage

```r
fv(x, argu = "r", ylab = NULL, valu = NULL, fmla = NULL, alim = NULL, labl = names(x), desc = NULL, unitname = NULL, fname = NULL, yexp = ylab)
```
Arguments

- **x**: A data frame with at least 2 columns containing the values of the function argument and the corresponding values of (one or more versions of) the function.
- **argu**: String. The name of the column of `x` that contains the values of the function argument.
- **ylab**: Either `NULL`, or an R language expression representing the mathematical name of the function. See Details.
- **valu**: String. The name of the column of `x` that should be taken as containing the function values, in cases where a single column is required.
- **fmla**: Either `NULL`, or a formula specifying the default plotting behaviour. See Details.
- **alim**: Optional. The default range of values of the function argument for which the function will be plotted. Numeric vector of length 2.
- **labl**: Optional. Plot labels for the columns of `x`. A vector of strings, with one entry for each column of `x`.
- **desc**: Optional. Descriptions of the columns of `x`. A vector of strings, with one entry for each column of `x`.
- **unitname**: Optional. Name of the unit (usually a unit of length) in which the function argument is expressed. Either a single character string, or a vector of two character strings giving the singular and plural forms, respectively.
- **fname**: Optional. The name of the function itself. A character string.
- **yexp**: Optional. Alternative form of `ylab` more suitable for annotating an axis of the plot. See Details.

Details

This documentation is provided for experienced programmers who want to modify the internal behaviour of `spatstat`. Other users please see `fv.object`.

The low-level function `fv` is used to create an object of class "fv" from raw numerical data.

The data frame `x` contains the numerical data. It should have one column (typically but not necessarily named "argu") giving the values of the function argument for which the function has been evaluated; and at least one other column, containing the corresponding values of the function.

Typically there is more than one column of function values. These columns typically give the values of different versions or estimates of the same function, for example, different estimates of the $K$ function obtained using different edge corrections. However they may also contain the values of related functions such as the derivative or hazard rate.

`argu` specifies the name of the column of `x` that contains the values of the function argument (typically `argu="r"` but this is not compulsory).

`valu` specifies the name of another column that contains the ‘recommended’ estimate of the function. It will be used to provide function values in those situations where a single column of data is required. For example, `envelope` computes its simulation envelopes using the recommended value of the summary function.

`fmla` specifies the default plotting behaviour. It should be a formula, or a string that can be converted to a formula. Variables in the formula are names of columns of `x`. See `plot.fv` for the interpretation of this formula.
alim specifies the recommended range of the function argument. This is used in situations where statistical theory or statistical practice indicates that the computed estimates of the function are not trustworthy outside a certain range of values of the function argument. By default, \texttt{plot.fv} will restrict the plot to this range.

\texttt{fname} is a string giving the name of the function itself. For example, the $K$ function would have \texttt{fname="K"}.

\texttt{ylab} is a mathematical expression for the function value, used when labelling an axis of the plot, or when printing a description of the function. It should be an R language object. For example the $K$ function’s mathematical name \(K(r)\) is rendered by \texttt{ylab=\texttt{substitute}(\texttt{K(r)}, \texttt{NULL})}.

If \texttt{yexp} is present, then \texttt{ylab} will be used only for printing, and \texttt{yexp} will be used for annotating axes in a plot. (Otherwise \texttt{yexp} defaults to \texttt{ylab}). For example the cross-type $K$ function \(K_{1,2}(r)\) is rendered by something like \texttt{ylab=\texttt{substitute}(Kcross[i,j][r], list(i=1,j=2))} and \texttt{yexp=\texttt{substitute}(Kcross[list(i,j)][r], list(i=1,j=2))} to get the most satisfactory behaviour.

\texttt{labl} is a character vector specifying plot labels for each column of \texttt{x}. These labels will appear on the plot axes (in non-default plots), legends and printed output. Entries in \texttt{labl} may contain the string "%s" which will be replaced by \texttt{fname}. For example the border-corrected estimate of the $K$ function has label "%sbord(r)" which becomes "%bord(r)".

\texttt{desc} is a character vector containing intelligible explanations of each column of \texttt{x}. Entries in \texttt{desc} may contain the string "%s" which will be replaced by \texttt{ylab}. For example the border correction estimate of the $K$ function has description "border correction estimate of %s".

**Value**

An object of class "fv", see \texttt{fv.object}.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

See \texttt{plot.fv} for plotting an "fv" object.

See \texttt{as.function.fv} to convert an "fv" object to an R function.

Use \texttt{cbind.fv} to combine several "fv" objects. Use \texttt{bind.fv} to glue additional columns onto an existing "fv" object.

Use \texttt{range.fv} to compute the range of $y$ values for a function, and \texttt{with.fv} for more complicated calculations.

The functions \texttt{fvnames}, \texttt{fvnames<} allow the user to use standard abbreviations to refer to columns of an "fv" object.

*Undocumented* functions for modifying an "fv" object include \texttt{tweak.fv.entry} and \texttt{rebadge.fv}.
Examples

```r
df <- data.frame(r=seq(0,5,by=0.1))
df <- transform(df, a=pi*r^2, b=3*r^2)
X <- fv(df, "r", substitute(A(r), NULL),
 "a", cbind(a, b) ~ r,
 alim=c(0,4),
 labl=c("r", "%s[true](r)", "%s[approx](r)"),
 desc=c("radius of circle",
 "true area %s",
 "rough area %s"),
 fname="A")
X
```

<table>
<thead>
<tr>
<th>fv.object</th>
<th>Function Value Table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

A class “fv” to support the convenient plotting of several estimates of the same function.

Details

An object of this class is a convenient way of storing and plotting several different estimates of the same function.

It is a data frame with extra attributes indicating the recommended way of plotting the function, and other information.

There are methods for `print` and `plot` for this class.

Objects of class “fv” are returned by `Fest`, `Gest`, `Jest`, and `Kest` along with many other functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Objects of class “fv” are returned by `Fest`, `Gest`, `Jest`, and `Kest` along with many other functions. See `plot.fv` for plotting an “fv” object. See `as.function.fv` to convert an “fv” object to an R function.

Use `cbind.fv` to combine several “fv” objects. Use `bind.fv` to glue additional columns onto an existing “fv” object.

Undocumented functions for modifying an “fv” object include `fvnames`, `fvnames<-`, `tweak.fv.entry` and `rebadge.fv`. 
Examples

```r
data(cells)
K <- Kest(cells)

class(K)

K # prints a sensible summary

plot(K)
```

---

### Abbreviations for Groups of Columns in Function Value Table

**Description**

Groups of columns in a function value table (object of class "fv") identified by standard abbreviations.

**Usage**

```r
fvnames(X, a = ".")
fvnames(X, a = ".") <- value
```

**Arguments**

- `X`: Function value table (object of class "fv"). See `fv.object`.
- `a`: One of the standard abbreviations listed below.
- `value`: Character vector containing names of columns of `X`.

**Details**

An object of class "fv" represents a table of values of a function, usually a summary function for spatial data such as the $K$-function, for which several different statistical estimators may be available. The different estimates are stored as columns of the table.

Auxiliary information carried in the object `X` specifies some columns or groups of columns of this table that should be used for particular purposes. For convenience these groups can be referred to by standard abbreviations which are recognised by various functions in the `spatstat` package, such as `plot.fv`.

These abbreviations are:

- ".x" the function argument
- ".y" the recommended value of the function
- "." all function values to be plotted by default (in order of plotting)
- ".s" the upper and lower limits of shading (for envelopes and confidence intervals)
- ".a" all function values
The command `fvnames(X, a)` expands the abbreviation `a` and returns a character vector containing the names of the columns.

The assignment `fvnames(X, a) <- value` changes the definition of the abbreviation `a` to the character vector `value`. It does not change the labels of any columns.

Note that `fvnames(x, ".")` lists the columns of values that will be plotted by default, in the order that they would be plotted, not in order of the column position. The order in which curves are plotted affects the colours and line styles associated with the curves.

**Value**

For `fvnames`, a character vector.

For `fvnames<-`, the updated object.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`fv.object`, `plot.fv`

**Examples**

```r
K <- Kest(cells)
fvnames(K, ".y")
fvnames(K, ".y") <- "trans"
```

---

**G3est**

*Nearest Neighbour Distance Distribution Function of a Three-Dimensional Point Pattern*

**Description**

Estimates the nearest-neighbour distance distribution function $G_3(r)$ from a three-dimensional point pattern.

**Usage**

`G3est(X, ..., rmax = NULL, nrval = 128, correction = c("rs", "km", "Hanisch"))`
Arguments

- **x**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **rmax**: Optional. Maximum value of argument \( r \) for which \( G_3(r) \) will be estimated.
- **nrval**: Optional. Number of values of \( r \) for which \( G_3(r) \) will be estimated. A large value of \( nrval \) is required to avoid discretisation effects.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.

Details

For a stationary point process \( \Phi \) in three-dimensional space, the nearest-neighbour function is

\[
G_3(r) = P(d^*(x, \Phi) \leq r \mid x \in \Phi)
\]

the cumulative distribution function of the distance \( d^*(x, \Phi) \) from a typical point \( x \) in \( \Phi \) to its nearest neighbour, i.e. to the nearest other point of \( \Phi \).

The three-dimensional point pattern \( X \) is assumed to be a partial realisation of a stationary point process \( \Phi \). The nearest neighbour function of \( \Phi \) can then be estimated using techniques described in the References. For each data point, the distance to the nearest neighbour is computed. The empirical cumulative distribution function of these values, with appropriate edge corrections, is the estimate of \( G_3(r) \).

The available edge corrections are:

- "rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
- "kn": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
- "Hanisch": the three-dimensional generalisation of the Hanisch estimator (Hanisch, 1984).

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame containing the function values.

Warnings

A large value of \( nrval \) is required in order to avoid discretisation effects (due to the use of histograms in the calculation).

Author(s)

References


See Also

`f3est, k3est, pcf3est`

Examples

```r
X <- rpoispp(42)
Z <- G3est(X)
if(interactive()) plot(Z)
```

Description

Point pattern of retinal ganglion cells identified as ‘on’ or ‘off’. A marked point pattern.

Usage

data(ganglia)

Format

An object of class "ppp" representing the point pattern of cell locations. Entries include

- `x`: Cartesian $x$-coordinate of cell
- `y`: Cartesian $y$-coordinate of cell
- `marks`: factor with levels `off` and `on` indicating “off” and “on” cells

See `ppp.object` for details of the format.

Notes

**Important: these data are INCORRECT. See below.**

The data represent a pattern of beta-type ganglion cells in the retina of a cat recorded in Figure 6(a) of Wassle et al. (1981).
The pattern was first analysed by Wässle et al (1981) using nearest neighbour distances. The data used in their analysis are not available.

The present dataset ganglia was scanned from Figure 6(a) of Wässle et al (1981) in the early 1990's, but we have no further information. This dataset is the one analysed by Van Lieshout and Baddeley (1999) using multitype J functions, and by Stoyan (1995) using second order methods (pair correlation and mark correlation).

It has now been discovered that these data are incorrect. They are not faithful to the scale in Figure 6 of Wässle et al (1981), and they contain some scanning errors. Hence they should not be used to address the original scientific question. They have been retained only for comparison with other analyses in the statistical literature.

A new, corrected dataset, scanned from the original microscope image, has been provided under the name betacells. Use that dataset for any further study.

**Warnings**

These data are incorrect. Use the new corrected dataset betacells.

**Source**

Wässle et al (1981), data supplied by Marie-Colette van Lieshout and attributed to Peter Diggle

**References**


---

<table>
<thead>
<tr>
<th>gauss.hermite</th>
<th>Gauss-Hermite Quadrature Approximation to Expectation for Normal Distribution</th>
</tr>
</thead>
</table>

**Description**

Calculates an approximation to the expected value of any function of a normally-distributed random variable, using Gauss-Hermite quadrature.

**Usage**

```
 gauss.hermite(f, mu = 0, sd = 1, ..., order = 5)
```
Arguments

f  The function whose moment should be approximated.
mu  Mean of the normal distribution.
sd  Standard deviation of the normal distribution.
...  Additional arguments passed to f.
order  Number of quadrature points in the Gauss-Hermite quadrature approximation. A small positive integer.

Details

This algorithm calculates the approximate expected value of \( f(Z) \) when \( Z \) is a normally-distributed random variable with mean \( \mu \) and standard deviation \( \sigma \). The expected value is an integral with respect to the Gaussian density; this integral is approximated using Gauss-Hermite quadrature.

The argument \( f \) should be a function in the \( R \) language whose first argument is the variable \( Z \). Additional arguments may be passed through \( ... \). The value returned by \( f \) may be a single numeric value, a vector, or a matrix. The values returned by \( f \) for different values of \( Z \) must have compatible dimensions.

The result is a weighted average of several values of \( f \).

Value

Numeric value, vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

Examples

```r
 gauss.hermite(function(x) x^2, 3, 1)
```

Description

Given a point process model fitted to a point pattern dataset, this function computes the *compensator* of the nearest neighbour distance distribution function \( G \) based on the fitted model (as well as the usual nonparametric estimates of \( G \) based on the data alone). Comparison between the nonparametric and model-compensated \( G \) functions serves as a diagnostic for the model.
Usage

Gcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "Hanisch"),
conditional = !is.poisson(object),
restrict=FALSE,
model=NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction),
ppmcorrection="border",
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").
r Optional. Vector of values of the argument \(r\) at which the function \(G(r)\) should
be computed. This argument is usually not specified. There is a sensible default.
breaks This argument is for internal use only.
correction Edge correction(s) to be employed in calculating the compensator. Options are
"border", "Hanisch" and "best".
conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.
restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using \texttt{update.ppm}, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.
trend,interaction,rbord

Optional. Arguments passed to \texttt{ppm} to fit a point process model to the data, if
object is a point pattern. See \texttt{ppm} for details.

... Extra arguments passed to \texttt{ppm}.

ppmcorrection The correction argument to \texttt{ppm}.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with \texttt{hi.res}.

hi.res Optional. List of parameters passed to \texttt{quadscheme}. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.
Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a point pattern dataset. It computes different estimates of the nearest neighbour distance distribution function $G$ of the dataset, which should be approximately equal if the model is a good fit to the data.

The first argument, `object`, is usually a fitted point process model (object of class "ppm"), obtained from the model-fitting function `ppm`.

For convenience, `object` can also be a point pattern (object of class "ppp"). In that case, a point process model will be fitted to it, by calling `ppm` using the arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the border correction for the pseudolikelihood). See `ppm` for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and computes the standard nonparametric estimates of the $G$ function. It then also computes the model-compensated $G$ function. The different functions are returned as columns in a data frame (of class "fv"). The interpretation of the columns is as follows (ignoring edge corrections):

- `bord`: the nonparametric border-correction estimate of $G(r)$,
  \[
  \hat{G}(r) = \frac{\sum_i I\{d_i \leq r\} I\{b_i > r\}}{\sum_i I\{b_i > r\}}
  \]
  where $d_i$ is the distance from the $i$-th data point to its nearest neighbour, and $b_i$ is the distance from the $i$-th data point to the boundary of the window $W$.

- `bcom`: the model compensator of the border-correction estimate
  \[
  C \hat{G}(r) = \frac{\int \lambda(u, x) I\{b(u) > r\} I\{d(u, x) \leq r\}}{1 + \sum_i I\{b_i > r\}}
  \]
  where $\lambda(u, x)$ denotes the conditional intensity of the model at the location $u$, and $d(u, x)$ denotes the distance from $u$ to the nearest point in $x$, while $b(u)$ denotes the distance from $u$ to the boundary of the window $W$.

- `han`: the nonparametric Hanisch estimate of $G(r)$
  \[
  \hat{G}(r) = \frac{D(r)}{D(\infty)}
  \]
  where
  \[
  D(r) = \sum_i I\{x_i \in W_{\ominus d_i}\} I\{d_i \leq r\}
  \]
  \[
  \frac{\text{area}(W_{\ominus d_i})}{\text{area}(W_{\ominus d_i})}
  \]
  in which $W_{\ominus r}$ denotes the erosion of the window $W$ by a distance $r$.

- `hcom`: the corresponding model-compensated function
  \[
  C G(r) = \int_W \frac{\lambda(u, x) I\{u \in W_{\ominus d(u)}\} I\{d(u) \leq r\}}{D(\infty) \text{area}(W_{\ominus d(u)}) + 1}
  \]
  where $d(u) = d(u, x)$ is the (‘empty space’) distance from location $u$ to the nearest point of $x$. 

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed. If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE. See Appendix E of Baddeley, Rubak and Møller (2011). See also spatstat.options('eroded.intensity'). Thus, by default, the reweighting estimator is computed for non-Poisson models.

The border-corrected and Hanisch-corrected estimates of $G(r)$ are approximately unbiased estimates of the $G$-function, assuming the point process is stationary. The model-compensated functions are unbiased estimates of the mean value of the corresponding nonparametric estimate, assuming the model is true. Thus, if the model is a good fit, the mean value of the difference between the nonparametric and model-compensated estimates is approximately zero.

To compute the difference between the nonparametric and model-compensated functions, use Gres.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Ege Rubak and Jesper Møller.

References


See Also

Related functions: Gest, Gres.
Model fitting: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gcom(fit0)
plot(G0)
# uniform Poisson is clearly not correct

# Hanisch estimates only
plot(Gcom(fit0), cbind(han, hcom) ~ r)

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gcom(fit1), cbind(han, hcom) ~ r)

# Try adjusting interaction distance

fit2 <- update(fit1, Strauss(0.10))
plot(Gcom(fit2), cbind(han, hcom) ~ r)

G3 <- Gcom(cells, interaction=Strauss(0.12))
plot(G3, cbind(han, hcom) ~ r)

---

**Gcross**

**Multitype Nearest Neighbour Distance Function (i-to-j)**

**Description**

For a multitype point pattern, estimate the distribution of the distance from a point of type \(i\) to the nearest point of type \(j\).

**Usage**

\[
\text{Gcross}(X, i, j, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"))
\]

**Arguments**

- **X**
  - The observed point pattern, from which an estimate of the cross type distance distribution function \(G_{ij}(r)\) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**
  - The type (mark value) of the points in \(X\) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \(\text{marks}(X)\).

- **j**
  - The type (mark value) of the points in \(X\) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of \(\text{marks}(X)\).

- **r**
  - Optional. Numeric vector. The values of the argument \(r\) at which the distribution function \(G_{ij}(r)\) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \(r\).

- **breaks**
  - This argument is for internal use only.

- **...**
  - Ignored.

- **correction**
  - Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best".
Details

This function Gcross and its companions Gdot and Gmulti are generalisations of the function Gest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument X must be a point pattern (object of class “ppp”) or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The arguments 1 and j will be interpreted as levels of the factor X$marks. (Warning: this means that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “cross-type” (type i to type j) nearest neighbour distance distribution function of a multitype point process is the cumulative distribution function $G_{ij}(r)$ of the distance from a typical random point of the process with type i the nearest point of type j.

An estimate of $G_{ij}(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type i points were independent of the process of type j points, then $G_{ij}(r)$ would equal $F_j(r)$, the empty space function of the type j points. For a multitype Poisson point process where the type i points have intensity $\lambda_i$, we have

$$G_{ij}(r) = 1 - e^{-\lambda_j \pi r^2}$$

Deviations between the empirical and theoretical $G_{ij}$ curves may suggest dependence between the points of types i and j.

This algorithm estimates the distribution function $G_{ij}(r)$ from the point pattern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as X$window) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Gest.

The argument r is the vector of values for the distance r at which $G_{ij}(r)$ should be evaluated. It is also used to determine the breakpoints (in the sense of hist) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, $\lambda(r)$, of $G_{ij}(r)$. This estimate should be used with caution as $G_{ij}(r)$ is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other point of the pattern, is a biased estimate of $G_{ij}$. However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical $G_{ij}$ as if it were an unbiased estimator of $G_{ij}$.

Value

An object of class "fv" (see fv.object).
Essentially a data frame containing six numeric columns

- **r**: the values of the argument $r$ at which the function $G_{ij}(r)$ has been estimated
- **rs**: the “reduced sample” or “border correction” estimator of $G_{ij}(r)$
- **han**: the Hanisch-style estimator of $G_{ij}(r)$
- **km**: the spatial Kaplan-Meier estimator of $G_{ij}(r)$
- **hazard**: the hazard rate $\lambda(r)$ of $G_{ij}(r)$ by the spatial Kaplan-Meier method
- **raw**: the uncorrected estimate of $G_{ij}(r)$, i.e. the empirical distribution of the distances from each point of type $i$ to the nearest point of type $j$
- **theo**: the theoretical value of $G_{ij}(r)$ for a marked Poisson process with the same estimated intensity (see below).

**Warnings**

The arguments $i$ and $j$ are always interpreted as levels of the factor `marks`. They are converted to character strings if they are not already character strings. The value $i=1$ does **not** refer to the first level of the factor.

The function $G_{ij}$ does not necessarily have a density.

The reduced sample estimator of $G_{ij}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of $G_{ij}$ is always nondecreasing but its maximum value may be less than 1.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


See Also

Gdot, Gest, Gmulti

Examples

# amacrine cells data
G01 <- Gcross(amacrine)

# equivalent to:
## Not run:
G01 <- Gcross(amacrine, "off", "on")
## End(Not run)

plot(G01)

# empty space function of 'on' points
## Not run:
F1 <- Fest(split(amacrine)$on, r = G01$r)
lines(F1$r, F1$km, lty=3)
## End(Not run)

# synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, pp$n, replace=TRUE))
G <- Gcross(pp, "0", "1")  # note: "0" not 0

Gdot

Multitype Nearest Neighbour Distance Function (i-to-any)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type \( i \) to the nearest other point of any type.

Usage

Gdot(X, i, r=NULL, breaks=NULL, ..., correction=c("km", "rs", "han"))

Arguments

X  
The observed point pattern, from which an estimate of the distance distribution function \( G_{i\bullet}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i  
The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \( \text{marks}(X) \).
Optional. Numeric vector. The values of the argument \( r \) at which the distribution function \( G_{i\bullet}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

This argument is for internal use only.

Ignored.

Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best".

This function \texttt{Gdot} and its companions \texttt{Gcross} and \texttt{Gmulti} are generalisations of the function \texttt{Gest} to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the \texttt{spatstat} package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor. The argument will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i \) will be interpreted as the number 3, not the 3rd smallest level.)

The “dot-type” (type \( i \) to any type) nearest neighbour distance distribution function of a multitype point process is the cumulative distribution function \( G_{i\bullet}(r) \) of the distance from a typical random point of the process with type \( i \) the nearest other point of the process, regardless of type.

An estimate of \( G_{i\bullet}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the type \( i \) points were independent of all other points, then \( G_{i\bullet}(r) \) would equal \( G_{ii}(r) \), the nearest neighbour distance distribution function of the type \( i \) points alone. For a multitype Poisson point process with total intensity \( \lambda \), we have

\[
G_{i\bullet}(r) = 1 - e^{-\lambda \pi r^2}
\]

Deviations between the empirical and theoretical \( G_{i\bullet} \) curves may suggest dependence of the type \( i \) points on the other points.

This algorithm estimates the distribution function \( G_{i\bullet}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X \$ \text{window} \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \texttt{Gest}.

The argument \( r \) is the vector of values for the distance \( r \) at which \( G_{i\bullet}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.
The algorithm also returns an estimate of the hazard rate function, $\lambda(r)$, of $G_{i\bullet}(r)$. This estimate should be used with caution as $G_{i\bullet}(r)$ is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern $x$ to the nearest other point of the pattern, is a biased estimate of $G_{i\bullet}$. However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical $G_{i\bullet}$ as if it were an unbiased estimator of $G_{i\bullet}$.

**Value**

An object of class "fv" (see `fv.object`).

Essentially a data frame containing six numeric columns

- $r$: the values of the argument $r$ at which the function $G_{i\bullet}(r)$ has been estimated
- $rs$: the “reduced sample” or “border correction” estimator of $G_{i\bullet}(r)$
- $han$: the Hanisch-style estimator of $G_{i\bullet}(r)$
- $km$: the spatial Kaplan-Meier estimator of $G_{i\bullet}(r)$
- $hazard$: the hazard rate $\lambda(r)$ of $G_{i\bullet}(r)$ by the spatial Kaplan-Meier method
- $raw$: the uncorrected estimate of $G_{i\bullet}(r)$, i.e. the empirical distribution of the distances from each point of type $i$ to the nearest other point of any type.
- $theo$: the theoretical value of $G_{i\bullet}(r)$ for a marked Poisson process with the same estimated intensity (see below).

**Warnings**

The argument $i$ is interpreted as a level of the factor `X$marks. It is converted to a character string if it is not already a character string. The value $i=1$ does not refer to the first level of the factor.

The function $G_{i\bullet}$ does not necessarily have a density.

The reduced sample estimator of $G_{i\bullet}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.

The spatial Kaplan-Meier estimator of $G_{i\bullet}$ is always nondecreasing but its maximum value may be less than 1.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**References**


### See Also

`Gcross, Gest, Gmulti`

### Examples

```r
amacrine cells data
g0. <- Gdot(amacrine, "off")
plot(g0.)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gdot(pp, "0")
G <- Gdot(pp, 0) # equivalent
```

---

### Description

Estimates the nearest neighbour distance distribution function $G(r)$ from a point pattern in a window of arbitrary shape.

### Usage

```r
Gest(X, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"), domain=NULL)
```

### Arguments

- **X**: The observed point pattern, from which an estimate of $G(r)$ will be computed. An object of class `ppp`, or data in any format acceptable to `as.ppp()`.
- **r**: Optional. Numeric vector. The values of the argument $r$ at which $G(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **breaks**: This argument is for internal use only.
... Ignored.
correction Optional. The edge correction(s) to be used to estimate $G(r)$. A vector of character strings selected from "none", "rs", "km", "Hanisch" and "best".
domain Optional. Calculations will be restricted to this subset of the window. See Details.

Details

The nearest neighbour distance distribution function (also called the “event-to-event” or “inter-event” distribution) of a point process $X$ is the cumulative distribution function $G$ of the distance from a typical random point of $X$ to the nearest other point of $X$.

An estimate of $G$ derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory analyses, the estimate of $G$ is a useful statistic summarising one aspect of the “clustering” of points. For inferential purposes, the estimate of $G$ is usually compared to the true value of $G$ for a completely random (Poisson) point process, which is

$$G(r) = 1 - e^{-\lambda \pi r^2}$$

where $\lambda$ is the intensity (expected number of points per unit area). Deviations between the empirical and theoretical $G$ curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the nearest neighbour distance distribution function $G$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as $\text{window}$) may have arbitrary shape.

The argument $X$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The estimation of $G$ is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The edge corrections implemented here are the border method or “reduced sample” estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Hanisch estimator (Hanisch, 1984).

The argument $r$ is the vector of values for the distance $r$ at which $G(r)$ should be evaluated. It is also used to determine the breakpoints (in the sense of hist) for the computation of histograms of distances. The estimators are computed from histogram counts. This introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify $r$. However, if it is specified, $r$ must satisfy $r[1] = 0$, and $\text{max}(r)$ must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of $r$ must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, $\lambda(r)$, of $G(r)$. The hazard rate is defined as the derivative

$$\lambda(r) = -\frac{d}{dr} \log(1 - G(r))$$

This estimate should be used with caution as $G$ is not necessarily differentiable.

If the argument domain is given, the estimate of $G(r)$ will be based only on the nearest neighbour distances measured from points falling inside domain (although their nearest neighbours may lie
outside domain). This is useful in bootstrap techniques. The argument domain should be a window (object of class "owin") or something acceptable to `as.owin`. It must be a subset of the window of the point pattern X.

The naive empirical distribution of distances from each point of the pattern X to the nearest other point of the pattern, is a biased estimate of G. However it is sometimes useful. It can be returned by the algorithm, by selecting `correction="none"`. Care should be taken not to use the uncorrected empirical G as if it were an unbiased estimator of G.

To simply compute the nearest neighbour distance for each point in the pattern, use `nndist`. To determine which point is the nearest neighbour of a given point, use `nnwhich`.

**Value**

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

Essentially a data frame containing some or all of the following columns:

- `r`: the values of the argument r at which the function G(r) has been estimated
- `rs`: the “reduced sample” or “border correction” estimator of G(r)
- `km`: the spatial Kaplan-Meier estimator of G(r)
- `hazard`: the hazard rate λ(r) of G(r) by the spatial Kaplan-Meier method
- `raw`: the uncorrected estimate of G(r), i.e. the empirical distribution of the distances from each point in the pattern X to the nearest other point of the pattern
- `han`: the Hanisch correction estimator of G(r)
- `theo`: the theoretical value of G(r) for a stationary Poisson process of the same estimated intensity.

**Warnings**

The function G does not necessarily have a density. Any valid c.d.f. may appear as the nearest neighbour distance distribution function of a stationary point process.

The reduced sample estimator of G is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of G is always nondecreasing but its maximum value may be less than 1.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


See Also

`nndist, nnwhich, Fest, Jest, Kest, km.rs, reduced.sample, kaplan.meier`

Examples

```r
data(cells)
G <- Gest(cells)
plot(G)

P-P style plot
plot(G, cbind(km, theo) ~ theo)

the empirical G is below the Poisson G,
indicating an inhibited pattern

Not run:
plot(G, . ~ r)
plot(G, . ~ theo)
plot(G, asin(sqrt(.)) ~ asin(sqrt(theo)))

End(Not run)
```

---

**Geyer**

**Geyer’s Saturation Point Process Model**

**Description**

Creates an instance of Geyer’s saturation point process model which can then be fitted to point pattern data.

**Usage**

`Geyer(r, sat)`

**Arguments**

- `r` Interaction radius. A positive real number.
- `sat` Saturation threshold. A positive real number.
Details

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process (see Strauss) in which the total contribution to the potential from each point (from its pairwise interaction with all other points) is trimmed to a maximum value \( s \). This model is implemented in the function `Geyer()`.

The saturation point process with interaction radius \( r \), saturation threshold \( s \), and parameters \( \beta \) and \( \gamma \), is the point process in which each point \( x_i \) in the pattern \( X \) contributes a factor

\[
\beta \gamma^{\min(s, t(x_i, X))}
\]

to the probability density of the point pattern, where \( t(x_i, X) \) denotes the number of ‘close neighbours’ of \( x_i \) in the pattern \( X \). A close neighbour of \( x_i \) is a point \( x_j \) with \( j \neq i \) such that the distance between \( x_i \) and \( x_j \) is less than or equal to \( r \).

If the saturation threshold \( s \) is set to infinity, this model reduces to the Strauss process (see Strauss) with interaction parameter \(\gamma^2 \). If \( s = 0 \), the model reduces to the Poisson point process. If \( s \) is a finite positive number, then the interaction parameter \( \gamma \) may take any positive value (unlike the case of the Strauss process), with values \( \gamma < 1 \) describing an ‘ordered’ or ‘inhibitive’ pattern, and values \( \gamma > 1 \) describing a ‘clustered’ or ‘attractive’ pattern.

The nonstationary saturation process is similar except that the value \( \beta \) is replaced by a function \( \beta(x_i) \) of location.

The function `ppm()`, which fits point process models to point pattern data, requires an argument of class “interact” describing the interpoint interaction structure of the model to be fitted. The appropriate description of the saturation process interaction is yielded by `Geyer(r, sat)` where the arguments \( r \) and \( sat \) specify the Strauss interaction radius \( r \) and the saturation threshold \( s \), respectively. See the examples below.

Note the only arguments are the interaction radius \( r \) and the saturation threshold \( sat \). When \( r \) and \( sat \) are fixed, the model becomes an exponential family. The canonical parameters \( \log(\beta) \) and \( \log(\gamma) \) are estimated by `ppm()`, not fixed in `Geyer()`.

Value

An object of class “interact” describing the interpoint interaction structure of Geyer’s saturation point process with interaction radius \( r \) and saturation threshold \( sat \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm, pairwise.family, ppm.object, Strauss, SatPiece

Examples

data(cells)
ppm(cells, ~1, Geyer(r=0.07, sat=2))
# fit the stationary saturation process to 'cells'

Gfox
Foxall's Distance Functions

Description

Given a point pattern \( X \) and a spatial object \( Y \), compute estimates of Foxall’s \( G \) and \( J \) functions.

Usage

Gfox(X, Y, r = NULL, breaks = NULL, correction = c("km", "rs", "han"), ...)  
Jfox(X, Y, r = NULL, breaks = NULL, correction = c("km", "rs", "han"), ...)

Arguments

- **X**: A point pattern (object of class "ppp") from which distances will be measured.
- **Y**: An object of class "ppp", "psp" or "owin" to which distances will be measured.
- **r**: Optional. Numeric vector. The values of the argument \( r \) at which \( Gfox(r) \) or \( Jfox(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **breaks**: This argument is for internal use only.
- **correction**: Optional. The edge correction(s) to be used to estimate \( Gfox(r) \) or \( Jfox(r) \). A vector of character strings selected from "none", "rs", "km", "cs" and "best".
- **...**: Extra arguments affecting the discretisation of distances. These arguments are ignored by Gfox, but Jfox passes them to Hest to determine the discretisation of the spatial domain.

Details

Given a point pattern \( X \) and another spatial object \( Y \), these functions compute two nonparametric measures of association between \( X \) and \( Y \), introduced by Foxall (Foxall and Baddeley, 2002).

Let the random variable \( R \) be the distance from a typical point of \( X \) to the object \( Y \). Foxall’s \( G \)-function is the cumulative distribution function of \( R \):

\[
G(r) = P(R \leq r)
\]
Let the random variable $S$ be the distance from a fixed point in space to the object $Y$. The cumulative distribution function of $S$ is the (unconditional) spherical contact distribution function

$$H(r) = P(S \leq r)$$

which is computed by `Hest`.

Foxall’s $J$-function is the ratio

$$J(r) = \frac{1 - G(r)}{1 - H(r)}$$

For further interpretation, see Foxall and Baddeley (2002).

Accuracy of `jfox` depends on the pixel resolution, which is controlled by the arguments `eps`, `dimyx` and `xy` passed to `as.mask`. For example, use `eps=0.1` to specify square pixels of side 0.1 units, and `dimyx=256` to specify a 256 by 256 grid of pixels.

**Value**

A function value table (object of class "fv") which can be printed, plotted, or converted to a data frame of values.

**Author(s)**


**References**


**See Also**

`gest`, `hest`, `jest`, `fest`  

**Examples**

```r
data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
G <- Gfox(X,Y)
J <- jfox(X,Y, correction="km")

Not run:
J <- jfox(X,Y, correction="km", eps=0.25)

End(Not run)
```
Inhomogeneous Nearest Neighbour Function

Description

Estimates the inhomogeneous nearest neighbour function $G$ of a non-stationary point pattern.

Usage

Ginhom(X, lambda = NULL, lmin = NULL, ...,
       sigma = NULL, varcov = NULL,
       r = NULL, breaks = NULL, ratio = FALSE, update = TRUE)

Arguments

X

The observed data point pattern, from which an estimate of the inhomogeneous $G$ function will be computed. An object of class "ppp" or in a format recognised by as.ppp()

lambda

Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

lmin

Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

sigma, varcov

Optional arguments passed to density.ppp to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.

...

Extra arguments passed to as.mask to control the pixel resolution, or passed to density.ppp to control the smoothing bandwidth.

r

vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.

breaks

This argument is for internal use only.

ratio

Logical. If TRUE, the numerator and denominator of the estimate will also be saved, for use in analysing replicated point patterns.

update

Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data $X$ (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to $X$.

Details

This command computes estimates of the inhomogeneous $G$-function (van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the nearest-neighbour distance distribution function $G$ for homogeneous point patterns computed by Gest.
The argument \( X \) should be a point pattern (object of class "ppp").

The inhomogeneous \( G \) function is computed using the border correction, equation (7) in Van Lieshout (2010).

The argument \( \lambda \) should supply the (estimated) values of the intensity function \( \lambda \) of the point process. It may be either

- **a numeric vector** containing the values of the intensity function at the points of the pattern \( X \).
- **a pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- **a fitted point process model** (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data \( X \) before the trend is computed.)
- **a function** which can be evaluated to give values of the intensity at any locations.

**omitted:** if \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If \( \lambda \) is a numeric vector, then its length should be equal to the number of points in the pattern \( X \). The value \( \lambda[i] \) is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern \( X \). Each value must be a positive number; NA's are not allowed.

If \( \lambda \) is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \( \lambda \) using \( \text{blur} \), then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \( \lambda \) is a function, then it will be evaluated in the form \( \lambda(x,y) \) where \( x \) and \( y \) are vectors of coordinates of the points of \( X \). It should return a numeric vector with length equal to the number of points in \( X \).

If \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate \( \lambda[i] \) for the point \( X[i] \) is computed by removing \( X[i] \) from the point pattern, applying kernel smoothing to the remaining points using \( \text{density.ppp} \), and evaluating the smoothed intensity at the point \( X[i] \). The smoothing kernel bandwidth is controlled by the arguments \( \sigma \) and \( \text{varcov} \), which are passed to \( \text{density.ppp} \) along with any extra arguments.

**Value**

An object of class "fv", see \( \text{fv.object} \), which can be plotted directly using \( \text{plot.fv} \).

**Author(s)**


**References**


See Also

`Finhom, Jinhom, Gest`

Examples

```r
Not run
plot(Ginhom(swedishpines, sigma=bw.diggle, adjust=2))

End(Not run)
plot(Ginhom(swedishpines, sigma=10))
```

---

### Gmulti

**Marked Nearest Neighbour Distance Function**

**Description**

For a marked point pattern, estimate the distribution of the distance from a typical point in subset \( s \) to the nearest point of subset \( J \).

**Usage**

```r
Gmulti(X, I, J, r=NULL, breaks=NULL, ...,

 disjoint=NULL, correction=c("rs", "km", "hanishc"))
```

**Arguments**

- **X**: The observed point pattern, from which an estimate of the multitype distance distribution function \( G_{IJ}(r) \) will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset of points of \( X \) from which distances are measured.
- **J**: Subset of points in \( X \) to which distances are measured.
- **r**: Optional. Numeric vector. The values of the argument \( r \) at which the distribution function \( G_{IJ}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **breaks**: This argument is for internal use only.
- **correction**: Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "hanisch" and "best".
- **disjoint**: Optional flag indicating whether the subsets \( I \) and \( J \) are disjoint. If missing, this value will be computed by inspecting the vectors \( I \) and \( J \).
**Details**

The function `gmulti` generalises `gest` (for unmarked point patterns) and `Gdot` and `Gcross` (for multitype point patterns) to arbitrary marked point patterns.

Suppose $X_I, X_J$ are subsets, possibly overlapping, of a marked point process. This function computes an estimate of the cumulative distribution function $G_{IJ}(r)$ of the distance from a typical point of $X_I$ to the nearest distinct point of $X_J$.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to `as.ppp`.

The arguments $I$ and $J$ specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to `np.points(X)`, or integer vectors with entries in the range 1 to `np.points(X)`, or negative integer vectors.

Alternatively, $I$ and $J$ may be functions that will be applied to the point pattern $X$ to obtain index vectors. If $I$ is a function, then evaluating $I(X)$ should yield a valid subset index. This option is useful when generating simulation envelopes using `envelope`.

This algorithm estimates the distribution function $G_{IJ}(r)$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as `X$window`) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in `gest`.

The argument $r$ is the vector of values for the distance $r$ at which $G_{IJ}(r)$ should be evaluated. It is also used to determine the breakpoints (in the sense of `hist`) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify $r$. However, if it is specified, $r$ must satisfy $r[1] = 0$, and $\max(r)$ must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of $r$ must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, $\lambda(r)$, of $G_{IJ}(r)$. This estimate should be used with caution as $G_{IJ}(r)$ is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern $X$ to the nearest other point of the pattern, is a biased estimate of $G_{IJ}$. However this is also returned by the algorithm, as it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical $G_{IJ}$ as if it were an unbiased estimator of $G_{IJ}$.

**Value**

An object of class "fv" (see `fv.object`).

Essentially a data frame containing six numeric columns

- `$r$` the values of the argument $r$ at which the function $G_{IJ}(r)$ has been estimated
- `$rs$` the "reduced sample" or "border correction" estimator of $G_{IJ}(r)$
- `$han$` the Hanisch-style estimator of $G_{IJ}(r)$
- `$km$` the spatial Kaplan-Meier estimator of $G_{IJ}(r)$
- `hazard` the hazard rate $\lambda(r)$ of $G_{IJ}(r)$ by the spatial Kaplan-Meier method
raw the uncorrected estimate of $G_{IJ}(r)$, i.e., the empirical distribution of the distances from each point of type $i$ to the nearest point of type $j$
theo the theoretical value of $G_{IJ}(r)$ for a marked Poisson process with the same estimated intensity

Warnings

The function $G_{IJ}$ does not necessarily have a density.
The reduced sample estimator of $G_{IJ}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0, 1]$.
The spatial Kaplan-Meier estimator of $G_{IJ}$ is always nondecreasing but its maximum value may be less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Gcross, Gdot, Gest

Examples

data(longleaf)
# Longleaf Pine data: marks represent diameter

Gm <- Gmulti(longleaf, longleaf$marks <= 15, longleaf$marks >= 25)
plot(Gm)
**gordon**  
*People in Gordon Square*

**Description**

This dataset records the location of people sitting on a grass patch in Gordon Square, London, at 3pm on a sunny afternoon.

The dataset gordon is a point pattern (object of class "ppp") containing the spatial coordinates of each person.

The grass patch is an irregular polygon with two holes.

Coordinates are given in metres.

**Usage**

`data(gordon)`

**Source**

Andrew Bevan, University College London.

**References**


**Examples**

`data(gordon)`

`plot(gordon)`

---

**gorillas**  
*Gorilla Nesting Sites*

**Description**

Locations of nesting sites of gorillas, and associated covariates, in a National Park in Cameroon.

**Usage**

`data(gorillas)`

**Format**

`gorillas` is a marked point pattern (object of class "ppp") representing nest site locations.

`gorillas.extra` is a named list of 7 pixel images (objects of class "im") containing spatial covariates. It also belongs to the class "listof".

All spatial coordinates are in metres. The coordinate reference system is WGS_84_UTM_Zone_32N.
Details

These data come from a study of gorillas in the Kagwene Gorilla Sanctuary, Cameroon, by the Wildlife Conservation Society Takamanda-Mone Landscape Project (WCS-TMLP). A detailed description and analysis of the data is reported in Funwi-Gabga and Mateu (2012).

The dataset gorillas is a marked point pattern (object of class "ppp") giving the spatial locations of 647 nesting sites of gorilla groups observed in the sanctuary over time. Locations are given as UTM (Zone 32N) coordinates in metres. The observation window is the boundary of the sanctuary, represented as a polygon. Marks attached to the points are:

- **group**  Identifier of the gorilla group that constructed the nest site: a categorical variable with values major or minor.
- **season** Season in which data were collected: categorical, either rainy or dry.
- **date** Day of observation. A value of class "Date".

Note that the data contain duplicated points (two points at the same location). To determine which points are duplicates, use duplicated.ppp. To remove the duplication, use unique.ppp.

The accompanying dataset gorillas.extra contains spatial covariate information. It is a named list containing seven pixel images (objects of class "im") giving the values of seven covariates over the study region. It also belongs to the class "listof" so that it can be plotted. The component images are:

- **aspect** Compass direction of the terrain slope. Categorical, with levels N, NE, E, SE, S, SW, W and NW.
- **elevation** Digital elevation of terrain, in metres.
- **heat** Heat Load Index at each point on the surface (Beer’s aspect), discretised. Categorical with values Warmest (Beer’s aspect between 0 and 0.999), Moderate (Beer’s aspect between 1 and 1.999), Coolest (Beer’s aspect equals 2).
- **slopeangle** Terrain slope, in degrees.
- **slopetype** Type of slope. Categorical, with values Valley, Toe (toe slope), Flat, Midslope, Upper and Ridge.
- **vegetation** Vegetation or cover type. Categorical, with values Disturbed (highly disturbed forest), Colonising (colonising forest), Grassland (savannah), Primary (primary forest), Secondary (secondary forest), and Transition (transitional vegetation).
- **waterdist** Euclidean distance from nearest water body, in metres.

For further information see Funwi-Gabga and Mateu (2012).

Raw Data

For demonstration and training purposes, the raw data file for the vegetation covariate is also provided in the spatstat package installation, as the file vegetation.asc in the folder rawdata/gorillas. Use system.file to obtain the file path: system.file("rawdata/gorillas/vegetation.asc", package="spatstat"). This is a text file in the simple ASCII file format of the geospatial library GDAL. The file can be read by the function readGDAL in the rgdal package, or alternatively read directly using scan.
Source

Field data collector: Wildlife Conservation Society Takamanda-Mone Landscape Project (WCS-TMLP). Please acknowledge WCS-TMLP in any use of these data.

Data kindly provided by Funwi-Gabga Neba, Data Coordinator of A.P.E.S. Database Project, Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

The collaboration of Prof Jorge Mateu, Universitat Jaume I, Castellon, Spain is gratefully acknowledged.

References


Examples

```r
summary(gorillas)
plot(gorillas)
plot(gorillas.extra)
```

---

**Gres**  
*Residual G Function*

**Description**

Given a point process model fitted to a point pattern dataset, this function computes the residual $G$ function, which serves as a diagnostic for goodness-of-fit of the model.

**Usage**

```r
Gres(object, ...)
```

**Arguments**

- `object` Object to be analysed. Either a fitted point process model (object of class "ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object of class "quad"), or the value returned by a previous call to `gcom`.
- `...` Arguments passed to `gcom`. 
Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a point pattern dataset. It computes a residual version of the $G$ function of the dataset, which should be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Gres first calls Gcom to compute both the nonparametric estimate of the $G$ function and its model compensator. Then Gres computes the difference between them, which is the residual $G$-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a previous call to Gcom. Then Gres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Ege Rubak and Jesper Møller.

References


See Also

Related functions: Gcom, Gest.
Model-fitting: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gres(fit0)
plot(G0)
# Hanisch correction estimate
plot(G0, hres ~ r)
# uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gres(fit1), hres ~ r)
# fit looks approximately OK; try adjusting interaction distance

plot(Gres(cells, interaction=Strauss(0.12)))
# How to make envelopes

## Not run:
Description

Generates a rectangular grid of points in a window

Usage

gridcentres(window, nx, ny)

Arguments

window A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of points in each row of the rectangular grid.
ny Number of points in each column of the rectangular grid.

Details

This function creates a rectangular grid of points in the window.

The bounding rectangle of the window is divided into a regular \( nx \times ny \) grid of rectangular tiles.

The function returns the \( x, y \) coordinates of the centres of these tiles.

Note that some of these grid points may lie outside the window, if window is not of type "rectangle".

The function inside.owin can be used to select those grid points which do lie inside the window.

See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) and for other miscellaneous purposes.

Value

A list with two components \( x \) and \( y \), which are numeric vectors giving the coordinates of the points of the rectangular grid.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
gridweights

See Also
quad.object, quadscheme, inside.owin, stratrand

Examples

```r
w <- unit.square()
xy <- gridcentres(w, 10, 15)
Not run:
plot(w)
points(xy)
End(Not run)

bdry <- list(x=c(0.1, 0.3, 0.7, 0.4, 0.2),
 y=c(0.1, 0.1, 0.5, 0.7, 0.3))
w <- owin(c(0, 1), c(0, 1), poly=bdry)
xy <- gridcentres(w, 30, 30)
ok <- inside.owin(xyx, xyy, w)
Not run:
plot(w)
points(xy$x[ok], xy$y[ok])
End(Not run)
```

gridweights

*Compute Quadrature Weights Based on Grid Counts*

Description

Computes quadrature weights for a given set of points, using the “counting weights” for a grid of rectangular tiles.

Usage

```
gridweights(X, ntile, ..., window=NULL, verbose=FALSE, npix=NULL, areas=NULL)
```

Arguments

- `X` Data defining a point pattern.
- `ntile` Number of tiles in each row and column of the rectangular grid. An integer vector of length 1 or 2.
- `...` Ignored.
- `window` Default window for the point pattern
- `verbose` Logical flag. If `TRUE`, information will be printed about the computation of the grid weights.
- `npix` Dimensions of pixel grid to use when computing a digital approximation to the tile areas.
- `areas` Vector of areas of the tiles, if they are already known.
Description

This function computes a set of quadrature weights for a given pattern of points (typically comprising both “data” and “dummy” points). See \quad.object\ for an explanation of quadrature weights and quadrature schemes.

The weights are computed by the “counting weights” rule based on a regular grid of rectangular tiles. First \texttt{X} and (optionally) \texttt{window} are converted into a point pattern object. Then the bounding rectangle of the window of the point pattern is divided into a regular \texttt{ntile[1]} \times \texttt{ntile[2]} grid of rectangular tiles. The weight attached to a point of \texttt{X} is the area of the tile in which it lies, divided by the number of points of \texttt{X} lying in that tile.

For non-rectangular windows the tile areas are currently calculated by approximating the window as a binary mask. The accuracy of this approximation is controlled by \texttt{npix}, which becomes the argument \texttt{dimyx} of \texttt{as.mask}.

Value

Vector of nonnegative weights for each point in \texttt{X}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, dirichlet.weights

Examples

\begin{verbatim}
Q <- quadscheme(runifpoispp(10))
X <- as.ppp(Q) # data and dummy points together
w <- gridweights(X, 10)
w <- gridweights(X, c(10, 10))
\end{verbatim}

\begin{verbatim}
grow.rectangle \quad Add margins to rectangle
\end{verbatim}

Description

Adds a margin to a rectangle.

Usage

\begin{verbatim}
grow.rectangle(W, xmargin=0, ymargin=xmargin)
\end{verbatim}
Arguments

- **w**: A window (object of class "owin"). Must be of type "rectangle".
- **xmargin**: Width of horizontal margin to be added. A single nonnegative number, or a vector of length 2 indicating margins of unequal width at left and right.
- **ymargin**: Height of vertical margin to be added. A single nonnegative number, or a vector of length 2 indicating margins of unequal width at bottom and top.

Details

This is a simple convenience function to add a margin of specified width and height on each side of a rectangular window. Unequal margins can also be added.

Value

Another object of class "owin" representing the window after margins are added.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

trim.rectangle, dilation, erosion, owin.object

Examples

```r
w <- square(10)
add a margin of width 1 on all four sides
square11 <- grow.rectangle(w, 1)

add margin of width 3 on the right side
and margin of height 4 on top.
v <- grow.rectangle(w, c(0,3), c(0,4))
```

---

**hamster**

*Aherne's hamster tumour data*

Description

Point pattern of cell nuclei in hamster kidney, each nucleus classified as either 'dividing' or 'pyknotic'. A multitype point pattern.

Usage

data(hamster)
Format

An object of class "ppp" representing the point pattern of cell locations. Entries include
x Cartesian x-coordinate of cell
y Cartesian y-coordinate of cell
marks factor with levels "dividing" and "pyknotic".

See **ppp.object** for details of the format.

**Notes**

These data were presented and analysed by Diggle (1983, section 7.3).

The data give the positions of the centres of the nuclei of certain cells in a histological section of tissue from a laboratory-induced metastasising lymphoma in the kidney of a hamster.

The nuclei are classified as either "pyknotic" (corresponding to dying cells) or "dividing" (corresponding to cells arrested in metaphase, i.e. in the act of dividing). The background void is occupied by unrecorded, interphase cells in relatively large numbers.

The sampling window is a square, originally about 0.25 mm square in real units, which has been rescaled to the unit square.

**Source**

Dr W. A. Aherne, Department of Pathology, University of Newcastle-upon-Tyne, UK. Data supplied by Prof. Peter Diggle

**References**


---

<table>
<thead>
<tr>
<th>Hardcore</th>
<th>The Hard Core Point Process Model</th>
</tr>
</thead>
</table>

**Description**

Creates an instance of the hard core point process model which can then be fitted to point pattern data.

**Usage**

```r
Hardcore(hc=NA)
```

**Arguments**

- **hc**  
  The hard core distance
Details

A hard core process with hard core distance \( h \) and abundance parameter \( \beta \) is a pairwise interaction point process in which distinct points are not allowed to come closer than a distance \( h \) apart.

The probability density is zero if any pair of points is closer than \( h \) units apart, and otherwise equals

\[
 f(x_1, \ldots, x_n) = \alpha \beta^{n(x)}
\]

where \( x_1, \ldots, x_n \) represent the points of the pattern, \( n(x) \) is the number of points in the pattern, and \( \alpha \) is the normalising constant.

The function \( \text{ppm()} \), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the hard core process pairwise interaction is yielded by the function \( \text{hardcoreHI()} \). See the examples below.

If the hard core distance argument \( hc \) is missing or \( \text{NA} \), it will be estimated from the data when \( \text{ppm} \) is called. The estimated value of \( hc \) is the minimum nearest neighbour distance multiplied by \( n/\(n+1\) \), where \( n \) is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the hard core process with hard core distance \( hc \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Strauss, StraussHard, MultiHard, ppm, pairwise.family, ppm.object

Examples

Harcore(0.02)
# prints a sensible description of itself

data(cells)

## Not run:
ppm(cells, ~1, Hardcore(0.05))
# fit the stationary hard core process to 'cells'

## End(Not run)
harmonic

```r
ppm(cells, ~1, Hardcore())

ppm(cells, ~ polynom(x,y,3), Hardcore(0.05))
fit a nonstationary hard core process
with log-cubic polynomial trend
```

### harmonic

**Basis for Harmonic Functions**

**Description**

Evaluates a basis for the harmonic polynomials in $x$ and $y$ of degree less than or equal to $n$.

**Usage**

```r
harmonic(x, y, n)
```

**Arguments**

- **x**: Vector of $x$ coordinates
- **y**: Vector of $y$ coordinates
- **n**: Maximum degree of polynomial

**Details**

This function computes a basis for the harmonic polynomials in two variables $x$ and $y$ up to a given degree $n$ and evaluates them at given $x$, $y$ locations. It can be used in model formulas (for example in the model-fitting functions `lm`, `glm`, `gam` and `ppm`) to specify a linear predictor which is a harmonic function.

A function $f(x, y)$ is harmonic if

$$\frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f = 0.$$ 

The harmonic polynomials of degree less than or equal to $n$ have a basis consisting of $2n$ functions. This function was implemented on a suggestion of P. McCullagh for fitting nonstationary spatial trend to point process models.

**Value**

A data frame with $2 \times n$ columns giving the values of the basis functions at the coordinates. Each column is labelled by an algebraic expression for the corresponding basis function.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
**harmonise**

**Make Objects Compatible**

**Description**

Converts several objects of the same class to a common format so that they can be combined or compared.

**Usage**

```r
harmonise(...)
harmonize(...)
```

**Arguments**

`...` Any number of objects of the same class.

**Details**

This generic command takes any number of objects of the same class, and attempts to make them compatible in the sense of compatible so that they can be combined or compared. There are methods for the classes "fv" ([harmonise.fv](#)) and "im" ([harmonise.im](#)).

All arguments ... must be objects of the same class. The result will be a list, of length equal to the number of arguments ..., containing new versions of each of these objects, converted to a common format. If the arguments were named (name=value) then the return value also carries these names.

**Examples**

```r
data(longleaf)
X <- unmark(longleaf)
inhomogeneous point pattern

fit Poisson point process with log-cubic intensity
fit.3 <- ppm(X, ~ polynom(x,y,3), Poisson())

fit Poisson process with log-cubic-harmonic intensity
fit.h <- ppm(X, ~ harmonic(x,y,3), Poisson())

Likelihood ratio test
lrt <- 2 * (fit.3$maxlogpl - fit.h$maxlogpl)
x <- fit.3$x
y <- fit.3$y
df <- ncol(polynom(x,y,3)) - ncol(harmonic(x,y,3))
pval <- 1 - pchisq(lrt, df=df)
```

**See Also**

`ppm`
Value

A list, of length equal to the number of arguments . . ., whose entries are objects of the same class. If the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

See Also

compatible, harmonise.fv, harmonise.im

Description

Convert several objects of class "fv" to the same values of the function argument.

Usage

```r
S3 method for class 'fv'
harmonise(...)
... Any number of function tables (objects of class "fv").
```

Arguments

```r
... Any number of function tables (objects of class "fv").
```

Details

A function value table (object of class "fv") is essentially a data frame giving the values of a function \( f(x) \) (or several alternative estimates of this value) at equally-spaced values of the function argument \( x \).

The command `harmonise` is generic. This is the method for objects of class "fv". This command makes any number of "fv" objects compatible, in the loose sense that they have the same sequence of values of \( x \). They can then be combined by `cbind.fv`, but not necessarily by `eval.fv`.

All arguments . . . must be function value tables (objects of class "fv"). The result will be a list, of length equal to the number of arguments . . ., containing new versions of each of these functions, converted to a common sequence of \( x \) values. If the arguments were named (name=value) then the return value also carries these names.
The range of \( x \) values in the resulting functions will be the intersection of the ranges of \( x \) values in the original functions. The spacing of \( x \) values in the resulting functions will be the finest (narrowest) of the spacings of the \( x \) values in the original functions. Function values are interpolated using \texttt{approxfun}.

The resulting objects are \textbf{not} guaranteed to be compatible in the strict sense of \texttt{compatible.fv}, so they cannot necessarily be combined using \texttt{eval.fv} or \texttt{collapse.fv}.

\textbf{Value}

A list, of length equal to the number of arguments \ldots, whose entries are objects of class "fv". If the arguments were named (name=value) then the return value also carries these names.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

\textbf{See Also}

\texttt{fv.object}, \texttt{cbind.fv}, \texttt{eval.fv}, \texttt{compatible.fv}

\textbf{Examples}

\begin{verbatim}
H <- harmonise(K=Kest(cells), G=Gest(cells))
H
## Not run:
## generates a warning about duplicated columns
cbind(H$K, H$G)
## End(Not run)
\end{verbatim}
Arguments
...
Any number of pixel images (objects of class "im") or data which can be converted to pixel images by \texttt{as.im}.

Details

This function makes any number of pixel images compatible, by converting them all to a common pixel grid.

The command \texttt{harmonise} is generic. This is the method for objects of class "im".

At least one of the arguments ... must be a pixel image. Some arguments may be windows (objects of class "owin"), functions (\texttt{function(x,y)}) or numerical constants. These will be converted to images using \texttt{as.im}.

The common pixel grid is determined by inspecting all the pixel images in the argument list, computing the bounding box of all the images, then finding the image with the highest spatial resolution, and extending its pixel grid to cover the bounding box.

The return value is a list with entries corresponding to the input arguments. If the arguments were named (name=value) then the return value also carries these names.

If you just want to determine the appropriate pixel resolution, without converting the images, use \texttt{commongrid}.

Value

A list, of length equal to the number of arguments ..., whose entries are pixel images.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{commonGrid, compatible.im, as.im}

Examples

\begin{verbatim}
A <- setcov(square(1))
B <- function(x,y) { x }
G <- density(runifpoint(42))
harmonise(X=A, Y=B, Z=G)
\end{verbatim}
Description

The spatial mosaic of vegetation of the heather plant (*Calluna vulgaris*) recorded in a 10 by 20 metre sampling plot in Sweden.

Usage

data(heather)

Format

A list with three entries, representing the same data at different spatial resolutions:

- **coarse**: original heather data, 100 by 200 pixels
- **medium**: current heather data, 256 by 512 pixels
- **fine**: finest resolution data, 778 by 1570 pixels

Each of these entries is an object of class "owin" containing a binary pixel mask.

Notes on data

These data record the spatial mosaic of vegetation of the heather plant (*Calluna vulgaris*) in a 10 by 20 metre sampling plot near Jädraås, Sweden. They were recorded and first analysed by Diggle (1981).

The dataset `heather` contains three different versions of the data that have been analysed by different writers over the decades.

**coarse**: Data as originally digitised by Diggle in 1983 at 100 by 200 pixels resolution (i.e. 10 pixels = 1 metre).

These data were entered by hand in the form of a run-length encoding (original file no longer available) and translated by a program into a 100 by 200 pixel binary image. There are known to be some errors in the image which arise from errors in counting the run-length so that occasionally there will be an unexpected ‘spike’ on one single column.

**fine**: A fine scale digitisation of the original map, prepared by CWI (Centre for Computer Science, Amsterdam, Netherlands) in 1994.

The original hand-drawn map was scanned by Adrian Baddeley, and processed by Chris Jonker, Henk Heijmans and Adrian Baddeley to yield a clean binary image of 778 by 1570 pixels resolution.

**medium**: The version of the heather data currently supplied on Professor Diggle’s website. This is a 256 by 512 pixel image. The method used to create this image is not stated.
History of analysis of data

The data were recorded, presented and analysed by Diggle (1983). He proposed a Boolean model consisting of discs of random size with centres generated by of a Poisson point process.

Renshaw and Ford (1983) reported that spectral analysis of the data suggested the presence of strong row and column effects. However, this may have been attributable to errors in the run-length encoding of the original data.

Hall (1985) and Hall (1988, pp 301-318) took a bootstrap approach.

Ripley (1988, pp. 121-122, 131-135] used opening and closing functions to argue that a Boolean model of discs is inappropriate.

Cressie (1991, pp. 763-770) tried a more general Boolean model.

Source

Peter Diggle

References


---

**Hest**

**Spherical Contact Distribution Function**

**Description**

Estimates the spherical contact distribution function of a random set.

**Usage**

\[
\text{Hest}(X, r=NULL, breaks=NULL, ..., \\
\text{correction=c("km", "rs", "han"),} \\
\text{conditional=TRUE})
\]
Arguments

\(X\)  The observed random set. An object of class "ppp", "psp" or "owin".

\(r\)  Optional. Vector of values for the argument \(r\) at which \(H(r)\) should be evaluated. Users are advised not to specify this argument; there is a sensible default.

\(\text{breaks}\)  This argument is for internal use only.

...  Arguments passed to \texttt{as.mask} to control the discretisation.

\(\text{correction}\)  Optional. The edge correction(s) to be used to estimate \(H(r)\). A vector of character strings selected from "none", "rs", "km", "han" and "best".

\(\text{conditional}\)  Logical value indicating whether to compute the conditional or unconditional distribution. See Details.

Details

The spherical contact distribution function of a stationary random set \(X\) is the cumulative distribution function \(H\) of the distance from a fixed point in space to the nearest point of \(X\), given that the point lies outside \(X\). That is, \(H(r)\) equals the probability that \(X\) lies closer than \(r\) units away from the fixed point \(x\), given that \(X\) does not cover \(x\).

Let \(D = d(x, X)\) be the shortest distance from an arbitrary point \(x\) to the set \(X\). Then the spherical contact distribution function is

\[
H(r) = P(D \leq r | D > 0)
\]

For a point process, the spherical contact distribution function is the same as the empty space function \(F\) discussed in \texttt{Fest}.

The argument \(X\) may be a point pattern (object of class "ppp"), a line segment pattern (object of class "psp") or a window (object of class "owin"). It is assumed to be a realisation of a stationary random set.

The algorithm first calls \texttt{distmap} to compute the distance transform of \(X\), then computes the Kaplan-Meier and reduced-sample estimates of the cumulative distribution following Hansen et al (1999). If \texttt{conditional=TRUE} (the default) the algorithm returns an estimate of the spherical contact function \(H(r)\) as defined above. If \texttt{conditional=FALSE}, it instead returns an estimate of the cumulative distribution function \(H^*(r) = P(D \leq r)\) which includes a jump at \(r = 0\) if \(X\) has nonzero area.

Accuracy depends on the pixel resolution, which is controlled by the arguments \(\text{eps}\), \(\text{dimyx}\) and \(\text{xy}\) passed to \texttt{as.mask}. For example, use \(\text{eps}=0.1\) to specify square pixels of side 0.1 units, and \(\text{dimyx}=256\) to specify a 256 by 256 grid of pixels.

Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing up to six columns:

\(r\)  the values of the argument \(r\) at which the function \(H(r)\) has been estimated

\(\text{rs}\)  the “reduced sample” or “border correction” estimator of \(H(r)\)

\(\text{km}\)  the spatial Kaplan-Meier estimator of \(H(r)\)

\(\text{hazard}\)  the hazard rate \(\lambda(r)\) of \(H(r)\) by the spatial Kaplan-Meier method
han
the spatial Hanisch-Chiu-Stoyan estimator of $H(r)$

raw
the uncorrected estimate of $H(r)$, i.e. the empirical distribution of the distance from a fixed point in the window to the nearest point of $X$

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also
fest

Examples

```r
X <- runifpoint(42)
H <- Hest(X)
Y <- rpoisline(10)
H <- Hest(Y)
H <- Hest(Y, dimyx=256)
data(heather)
H <- Hest(heather$coarse)
H <- Hest(heather$coarse, conditional=FALSE)
```

hextess

Hexagonal Grid or Tessellation

Description

Construct a hexagonal grid of points, or a hexagonal tessellation.
**hexgrid**

Usage

```r
demo(hextess, verbose = FALSE)
```

Arguments

- `w`: Window in which to construct the hexagonal grid or tessellation. An object of class "owin".
- `s`: Side length of hexagons. A positive number.
- `offset`: Numeric vector of length 2 specifying a shift of the hexagonal grid. See Details.
- `origin`: Numeric vector of length 2 specifying the initial origin of the hexagonal grid, before the offset is applied. See Details.
- `trim`: Logical value indicating whether to restrict the result to the window `w`. See Details.

Details

- **hexgrid** constructs a hexagonal grid of points on the window `w`. If `trim=TRUE` (the default), the grid is intersected with `w` so that all points lie inside `w`. If `trim=FALSE`, then we retain all grid points which are the centres of hexagons that intersect `w`.

- **hextess** constructs a tessellation of hexagons on the window `w`. If `trim=TRUE` (the default), the tessellation is restricted to the interior of `w`, so that there will be some fragmentary hexagons near the boundary of `w`. If `trim=FALSE`, the tessellation consists of all hexagons which intersect `w`.

The points of `hexgrid(...)` are the centres of the tiles of `hextess(...)` in the same order.

In the initial position of the grid or tessellation, one of the grid points (tile centres) is placed at the origin, which defaults to the midpoint of the bounding rectangle of `w`. The grid can be shifted relative to this origin by specifying the offset.

Value

- The value of `hexgrid` is a point pattern (object of class "ppp").
- The value of `hextess` is a tessellation (object of class "tess").

Author(s)

and Rolf Turner `<r.turner@auckland.ac.nz>`

See Also

tess
Examples

```r
if(interactive()) {
 W <- Window(chorley)
 s <- 0.7
} else {
 W <- letterR
 s <- 0.3
}
plot(hextess(W, s))
plot(hexgrid(W, s), add=TRUE)
```

---

**hierpair.family**  
Hierarchical Pairwise Interaction Process Family

**Description**

An object describing the family of all hierarchical pairwise interaction Gibbs point processes.

**Details**

**Advanced Use Only!**

This structure would not normally be touched by the user. It describes the hierarchical pairwise interaction family of point process models.

Anyway, `hierpair.family` is an object of class "isf" containing a function `hierpair.family$eval` for evaluating the sufficient statistics of any hierarchical pairwise interaction point process model taking an exponential family form.

**Author(s)**

Rolf Turner &lt;r.turner@auckland.ac.nz&gt; and Ege Rubak.

**See Also**

Other families: `pairwise.family`, `pairsat.family`, `ord.family`, `inorder.family`.
Hierarchical Strauss interaction: `HierStrauss`. 
Description

Creates an instance of the hierarchical Strauss point process model which can then be fitted to point pattern data.

Usage

HierStrauss(radii, types=NULL, archy=NULL)

Arguments

radii Matrix of interaction radii
types Optional; vector of all possible types (i.e. the possible levels of the marks variable in the data)
archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä, 1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in which the types are ordered so that the points of type \( j \) depend on the points of type \( 1, 2, \ldots, j - 1 \).

The hierarchical version of the (stationary) Strauss process with \( m \) types, with interaction radii \( r_{ij} \) and parameters \( \beta_j \) and \( \gamma_{ij} \) is a point process in which each point of type \( j \) contributes a factor \( \beta_j \) to the probability density of the point pattern, and a pair of points of types \( i \) and \( j \) closer than \( r_{ij} \) units apart contributes a factor \( \gamma_{ij} \) to the density provided \( i \leq j \).

The nonstationary hierarchical Strauss process is similar except that the contribution of each individual point \( x_i \) is a function \( \beta(x_i) \) of location and type, rather than a constant beta.

The function \texttt{ppm()}, which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the hierarchical Strauss process pairwise interaction is yielded by the function \texttt{HierStrauss()}. See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from the point pattern data set to which the HierStrauss interaction is applied, when the user calls \texttt{ppm}. However, the user should be confident that the ordering of types in the dataset corresponds to the ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either a vector of integers or a character vector matching the possible types. The default is the sequence \( 1, 2, \ldots, m \) meaning that type \( j \) depends on types \( 1, 2, \ldots, j - 1 \).

The matrix radii must be symmetric, with entries which are either positive numbers or \texttt{NA}. A value of \texttt{NA} indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in \texttt{HierStrauss}. The canonical parameters \( \log(\beta_j) \) and \( \log(\gamma_{ij}) \) are estimated by \texttt{ppm()}, not fixed in \texttt{HierStrauss()}. 
Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical Strauss process with interaction radii \[ r_{i,j} \].

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

References


See Also

*MultiStrauss* for the corresponding symmetrical interaction.

Examples

```r
r <- matrix(10 * c(3,4,4,3), nrow=2,ncol=2)
HierStrauss(r)
prints a sensible description of itself
ppm(ants ~ 1, HierStrauss(r, c("Messor", "Cataglyphis")))
fit the stationary hierarchical Strauss process to ants data
```

---

**hist.im**

*Histogram of Pixel Values in an Image*

Description

Computes and displays a histogram of the pixel values in a pixel image. The `hist` method for class "im".

Usage

```r
S3 method for class 'im'
hist(x, ..., probability=FALSE)
```

Arguments

- `x` A pixel image (object of class "im").
- `...` Arguments passed to `hist.default` or `barplot`.
- `probability` Logical. If `TRUE`, the histogram will be normalised to give probabilities or probability densities.
Details

This function computes and (by default) displays a histogram of the pixel values in the image x. An object of class "im" describes a pixel image. See im.object) for details of this class.

The function hist.im is a method for the generic function hist for the class "im".

Any arguments in ... are passed to hist.default (for numeric valued images) or barplot (for factor or logical images). For example, such arguments control the axes, and may be used to suppress the plotting.

Value

For numeric-valued images, an object of class "histogram" as returned by hist.default. This object can be plotted.

For factor-valued or logical images, an object of class "barplotdata", which can be plotted. This is a list with components called counts (contingency table of counts of the numbers of pixels taking each possible value), probs (corresponding relative frequencies) and mids (graphical x-coordinates of the midpoints of the bars in the barplot).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

spatialcdf for the cumulative distribution function of an image.

hist, hist.default, barplot.

For information about pixel images see im.object, summary.im.

Examples

X <- as.im(function(x,y) {x^2}, unit.square())
hist(X)
hist(cut(X,3))

hopskel

| Hopkins-Skellam Test |

Description

Perform the Hopkins-Skellam test of Complete Spatial Randomness, or simply calculate the test statistic.
Usage

hopskel(X)

hopskel.test(X, ..., alternative=c("two.sided", "less", "greater", "clustered", "regular"),
method=c("asymptotic", "MonteCarlo"),
nsim=999)

Arguments

X Point pattern (object of class "ppp").
alternative String indicating the type of alternative for the hypothesis test. Partially matched.
method Method of performing the test. Partially matched.
nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is required.
... Ignored.

Details

Hopkins and Skellam (1954) proposed a test of Complete Spatial Randomness based on comparing nearest-neighbour distances with point-event distances.

If the point pattern X contains n points, we first compute the nearest-neighbour distances $P_1, \ldots, P_n$ so that $P_i$ is the distance from the $i$th data point to the nearest other data point. Then we generate another completely random pattern U with the same number n of points, and compute for each point of U the distance to the nearest point of X, giving distances $I_1, \ldots, I_n$. The test statistic is

$$A = \frac{\sum_i P_i^2}{\sum_i I_i^2}$$

The null distribution of A is roughly an $F$ distribution with shape parameters $(2n, 2n)$. (This is equivalent to using the test statistic $H = A/(1 + A)$ and referring $H$ to the Beta distribution with parameters $(n, n)$).

The function hopskel calculates the Hopkins-Skellam test statistic $A$, and returns its numeric value. This can be used as a simple summary of spatial pattern: the value $H = 1$ is consistent with Complete Spatial Randomness, while values $H < 1$ are consistent with spatial clustering, and values $H > 1$ are consistent with spatial regularity.

The function hopskel.test performs the test. If method="asymptotic" (the default), the test statistic $H$ is referred to the $F$ distribution. If method="MonteCarlo", a Monte Carlo test is performed using nsim simulated point patterns.

Value

The value of hopskel is a single number.

The value of hopskel.test is an object of class "htest" representing the outcome of the test. It can be printed.
**humberside**

**Author(s)**

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**References**


**See Also**

[clarkevans], [clarkevans.test], [nndist], [nncross]

**Examples**

```r
hopskel(redwood)
hopskel(redwood)
hopskel.test(redwood, alternative="clustered")
```

---

**humberside**

*Humberside Data on Childhood Leukaemia and Lymphoma*

**Description**

Spatial locations of cases of childhood leukaemia and lymphoma, and randomly-selected controls, in North Humberside. A marked point pattern.

**Usage**

data(humberside)

**Format**

The dataset `humberside` is an object of class "ppp" representing a marked point pattern. Entries include

- **x**  Cartesian $x$-coordinate of home address
- **y**  Cartesian $y$-coordinate of home address
- **marks**  factor with levels case and control indicating whether this is a disease case or a control.

See [ppp.object](#) for details of the format.

The dataset `humberside.convex` is an object of the same format, representing the same point pattern data, but contained in a larger, 5-sided convex polygon.
Notes

Cuzick and Edwards (1990) first presented and analysed these data. The data record 62 cases of childhood leukaemia and lymphoma diagnosed in the North Humberside region of England between 1974 and 1986, together with 141 controls selected at random from the birth register for the same period.

The data are represented as a marked point pattern, with the points giving the spatial location of each individual’s home address (actually, the centroid for the postal code) and the marks identifying cases and controls.

Coordinates are expressed in units of 100 metres, and the resolution is 100 metres. At this resolution, there are some duplicated points. To determine which points are duplicates, use duplicated.ppp. To remove the duplication, use unique.ppp.

Two versions of the dataset are supplied, both containing the same point coordinates, but using different windows. The dataset humberside has a polygonal window with 102 edges which closely approximates the Humberside region, while humberside.convex has a convex 5-sided polygonal window originally used by Diggle and Chetwynd (1991) and shown in Figure 1 of that paper. (This pentagon has been modified slightly from the original data, by shifting two vertices horizontally by 1 unit, so that the pentagon contains all the data points.)

Source

Dr Ray Cartwright and Dr Freda Alexander. Published and analysed in Cuzick and Edwards (1990), see Table 1. Pentagonal boundary from Diggle and Chetwynd (1991), Figure 1. Point coordinates and pentagonal boundary supplied by Andrew Lawson. Detailed region boundary was digitised by Adrian Baddeley, 2005, from a reprint of Cuzick and Edwards (1990).

References


Examples

```r
humberside
summary(humberside)
plot(humberside)
plot(humberside.convex$window, add=TRUE, lty=2)
```

---

Hybrid

**Hybrid Interaction Point Process Model**

**Description**

Creates an instance of a hybrid point process model which can then be fitted to point pattern data.
Hybrid

Usage

Hybrid(...)

Arguments

... Two or more interactions (objects of class "interact") or objects which can be converted to interactions. See Details.

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2013) is a point process model created by combining two or more point process models, or an interpoint interaction created by combining two or more interpoint interactions.

The hybrid of two point processes, with probability densities \( f(x) \) and \( g(x) \) respectively, is the point process with probability density

\[
h(x) = c f(x) g(x)
\]

where \( c \) is a normalising constant.

Equivalently, the hybrid of two point processes with conditional intensities \( \lambda(u, x) \) and \( \kappa(u, x) \) is the point process with conditional intensity

\[
\phi(u, x) = \lambda(u, x) \kappa(u, x).
\]

The hybrid of \( m > 3 \) point processes is defined in a similar way.

The function `ppm`, which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of a hybrid interaction is yielded by the function `Hybrid()`.

The arguments ... will be interpreted as interpoint interactions (objects of class "interact") and the result will be the hybrid of these interactions. Each argument must either be an interpoint interaction (object of class "interact"), or a point process model (object of class "ppm") from which the interpoint interaction will be extracted.

The arguments ... may also be given in the form `name=value`. This is purely cosmetic: it can be used to attach simple mnemonic names to the component interactions, and makes the printed output from `print.ppm` neater.

Value

An object of class "interact" describing an interpoint interaction structure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

References

hybrid.family

See Also

ppm

Examples

Hybrid(Strauss(0.1), Geyer(0.2, 3))

Hybrid(Ha=Hardcore(0.05), St=Strauss(0.1), Ge=Geyer(0.2, 3))

fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))

fit

cr <- rmhcontrol(nrep=5e4, expand=1)

plot(simulate(fit, control=cr))

# hybrid components can be models (including hybrid models)
Hybrid(fit, S=Softcore(0.5))

# plot.fii only works if every component is a pairwise interaction
data(swedishpines)

fit2 <- ppm(swedishpines, ~1, Hybrid(DG=DiggleGratton(2,10), S=Strauss(5)))

plot(fitin(fit2))

plot(fitin(fit2), separate=TRUE, mar.panel=rep(4,4))

hybrid.family

Hybrid Interaction Family

Description

An object describing the family of all hybrid interactions.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the family of all hybrid point
process models.

If you need to create a specific hybrid interaction model for use in modelling, use the function
Hybrid.

Anyway, hybrid.family is an object of class "isf" containing a function hybrid.family$eval
for evaluating the sufficient statistics of any hybrid interaction point process model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
hyperframe

See Also
Use `Hybrid` to make hybrid interactions.
Other families: `pairwise.family`, `pairsat.family`, `ord.family`, `inorder.family`.

---

**hyperframe**

**Hyper Data Frame**

**Description**

Create a hyperframe: a two-dimensional array in which each column consists of values of the same atomic type (like the columns of a data frame) or objects of the same class.

**Usage**

```r
hyperframe(...,
 row.names=NULL, check.rows=FALSE, check.names=TRUE,
 stringsAsFactors=default.stringsAsFactors())
```

**Arguments**

... Arguments of the form value or tag=value. Each value is either an atomic vector, or a list of objects of the same class, or a single atomic value, or a single object. Each value will become a column of the array. The tag determines the name of the column. See Details.
row.names, check.rows, check.names, stringsAsFactors Arguments passed to `data.frame` controlling the names of the rows, whether to check that rows are consistent, whether to check validity of the column names, and whether to convert character columns to factors.

**Details**

A hyperframe is like a data frame, except that its entries can be objects of any kind.
A hyperframe is a two-dimensional array in which each column consists of values of one atomic type (as in a data frame) or consists of objects of one class.
The arguments ... are any number of arguments of the form value or tag=value. Each value will become a column of the array. The tag determines the name of the column.
Each value can be either

- an atomic vector or factor (i.e. numeric vector, integer vector, character vector, logical vector, complex vector or factor)
- a list of objects which are all of the same class
- one atomic value, which will be replicated to make an atomic vector or factor
- one object, which will be replicated to make a list of objects.

All columns (vectors, factors and lists) must be of the same length, if their length is greater than 1.
Value

An object of class "hyperframe".

Methods for Hyperframes

There are methods for print, plot, summary, with, split, [, [<, $<-, names, as.data.frame, as.list, cbind and rbind for the class of hyperframes. There is also is.hyperframe and as.hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.hyperframe, as.hyperframe.ppx, plot.hyperframe, [.hyperframe, with.hyperframe, split.hyperframe, as.data.frame.hyperframe, cbind.hyperframe, rbind.hyperframe

Examples

# equivalent to a data frame
hyperframe(X=1:10, Y=3)

# list of functions
hyperframe(f=list(sin, cos, tan))

# table of functions and matching expressions
hyperframe(f=list(sin, cos, tan), 
           e=list(expression(sin(x)), expression(cos(x)), expression(tan(x))))

hyperframe(X=1:10, Y=letters[1:10], Z=factor(letters[1:10]), 
           stringsAsFactors=FALSE)

lambda <- runif(4, min=50, max=100)
X <- lapply(as.list(lambda), function(x) { rpoispp(x) })
h <- hyperframe(lambda=lambda, X=X)
h

h$lambda2 <- lambda^2
h[, "lambda3"] <- lambda^3
h[, "x"] <- X

hyytiala

Scots pines and other trees at Hyytiala
**Description**

This dataset is a spatial point pattern of trees recorded at Hyytiälä, Finland. The majority of the trees are Scots pines. See Kokkila et al (2002).

The dataset `hyytiala` is a point pattern (object of class "ppp") containing the spatial coordinates of each tree, marked by species (a factor with levels aspen, birch, pine and rowan). The survey region is a 20 by 20 metre square. Coordinates are given in metres.

**Usage**

```r
data(hyytiala)
```

**Source**

Nicolas Picard

**References**


**Examples**

```r
data(hyytiala)
plot(hyytiala, cols=2:5)
```

**identify.ppp**

*Identify Points in a Point Pattern*

**Description**

If a point pattern is plotted in the graphics window, this function will find the point of the pattern which is nearest to the mouse position, and print its mark value (or its serial number if there is no mark).

**Usage**

```r
S3 method for class 'ppp'
identify(x, ...)
```

**Arguments**

- `x` A point pattern (object of class "ppp").
- `...` Arguments passed to `identify.default`. 
Details

This is a method for the generic function `identify` for point pattern objects.
The point pattern `x` should first be plotted using `plot.ppp`. Then `identify(x)` reads the position of the graphics pointer each time the left mouse button is pressed. It then finds the point of the pattern `x` closest to the mouse position. If this closest point is sufficiently close to the mouse pointer, its index (and its mark if any) will be returned as part of the value of the call.

Each time a point of the pattern is identified, text will be displayed next to the point, showing its serial number (if `x` is unmarked) or its mark value (if `x` is marked).

Value

If `x` is unmarked, the result is a vector containing the serial numbers of the points in the pattern `x` that were identified. If `x` is marked, the result is a 2-column matrix, the first column containing the serial numbers and the second containing the marks for these points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`identify`, `clickppp`

---

identify.psp  Identify Segments in a Line Segment Pattern

Description

If a line segment pattern is plotted in the graphics window, this function will find the segment which is nearest to the mouse position, and print its serial number.

Usage

```r
S3 method for class 'psp'
identify(x, ..., labels=seq_len(nsegments(x)), n=nsegments(x), plot=TRUE)
```

Arguments

- `x`  A line segment pattern (object of class "psp").
- `...`  Ignored.
- `labels`  Labels associated with the segments, to be plotted when the segments are identified. A character vector or numeric vector of length equal to the number of segments in `x`.
- `n`  Maximum number of segments to be identified.
- `plot`  Logical. Whether to plot the labels when a segment is identified.
Details

This is a method for the generic function \texttt{identify} for line segment pattern objects.

The line segment pattern \( x \) should first be plotted using \texttt{plot.psp}. Then \texttt{identify(x)} reads the position of the graphics pointer each time the left mouse button is pressed. It then finds the segment in the pattern \( x \) that is closest to the mouse position. This segment's index will be returned as part of the value of the call.

Each time a segment is identified, text will be displayed next to the point, showing its serial number (or the relevant entry of \texttt{labels}).

Value

Vector containing the serial numbers of the segments in the pattern \( x \) that were identified.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{identify, identify.ppp}.

---

\textbf{idw} \hspace{1cm} \textit{Inverse-distance weighted smoothing of observations at irregular points}

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations using inverse-distance weighting.

Usage

\texttt{idw(X, power=2, at="pixels", \ldots)}

Arguments

\begin{itemize}
  \item \texttt{X} \hspace{1cm} A marked point pattern (object of class "ppp").
  \item \texttt{power} \hspace{1cm} Numeric. Power of distance used in the weighting.
  \item \texttt{at} \hspace{1cm} String specifying whether to compute the intensity values at a grid of pixel locations (at="pixels") or only at the points of \( X \) (at="points").
  \item \texttt{\ldots} \hspace{1cm} Arguments passed to \texttt{as.mask} to control the pixel resolution of the result.
\end{itemize}
Details

This function performs spatial smoothing of numeric values observed at a set of irregular locations. Smoothing is performed by inverse distance weighting. If the observed values are \(v_1, \ldots, v_n\) at locations \(x_1, \ldots, x_n\) respectively, then the smoothed value at a location \(u\) is

\[
g(u) = \frac{\sum_i w_i v_i}{\sum_i w_i}
\]

where the weights are the inverse \(p\)-th powers of distance,

\[
w_i = \frac{1}{d(u, x_i)^p}
\]

where \(d(u, x_i) = ||u - x_i||\) is the Euclidean distance from \(u\) to \(x_i\).

The argument \(X\) must be a marked point pattern (object of class "ppp", see \texttt{ppp.object}). The points of the pattern are taken to be the observation locations \(x_i\), and the marks of the pattern are taken to be the numeric values \(v_i\) observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column of marks.

If \texttt{at="pixels"} (the default), the smoothed mark value is calculated at a grid of pixels, and the result is a pixel image. The arguments \ldots control the pixel resolution. See \texttt{as.mask}.

If \texttt{at="points"}, the smoothed mark values are calculated at the data points only, using a leave-one-out rule (the mark value at a data point is excluded when calculating the smoothed value for that point).

An alternative to inverse-distance weighting is kernel smoothing, which is performed by \texttt{Smooth.ppp}.

Value

If \(X\) has a single column of marks:

- If \texttt{at="pixels"} (the default), the result is a pixel image (object of class "im"). Pixel values are values of the interpolated function.
- If \texttt{at="points"}, the result is a numeric vector of length equal to the number of points in \(X\). Entries are values of the interpolated function at the points of \(X\).

If \(X\) has a data frame of marks:

- If \texttt{at="pixels"} (the default), the result is a named list of pixel images (object of class "im"). There is one image for each column of marks. This list also belongs to the class \texttt{listof}, for which there is a plot method.
- If \texttt{at="points"}, the result is a data frame with one row for each point of \(X\), and one column for each column of marks. Entries are values of the interpolated function at the points of \(X\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>
See Also

density.ppp, ppp.object, im.object.

See Smooth.ppp for kernel smoothing and nnmark for nearest-neighbour interpolation.

To perform other kinds of interpolation, see also the akima package.

Examples

# data frame of marks: trees marked by diameter and height
data(finpines)
plot(idw(finpines))
idw(finpines, at="points")[1:5,

<table>
<thead>
<tr>
<th>iest</th>
<th>Estimate the I-function</th>
</tr>
</thead>
</table>

Description

Estimates the summary function $I(r)$ for a multitype point pattern.

Usage

iest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

x
The observed point pattern, from which an estimate of $I(r)$ will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps
the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r
Optional. Numeric vector of values for the argument r at which $I(r)$ should be
evaluated. There is a sensible default. First-time users are strongly advised not
to specify this argument. See below for important conditions on r.

breaks
This argument is for internal use only.

correction
Optional. Vector of character strings specifying the edge correction(s) to be used
by Jest.

Details

The $I$ function summarises the dependence between types in a multitype point process (Van Lieshout
and Baddeley, 1999) It is based on the concept of the $J$ function for an unmarked point process (Van
Lieshout and Baddeley, 1996). See Jest for information about the $J$ function.

The $I$ function is defined as

$$I(r) = \sum_{i=1}^{m} p_i J_{ii}(r) - J_{**}(r)$$
where $J_{...}$ is the $J$ function for the entire point process ignoring the marks, while $J_{ii}$ is the $J$ function for the process consisting of points of type $i$ only, and $p_i$ is the proportion of points which are of type $i$.

The $I$ function is designed to measure dependence between points of different types, even if the points are not Poisson. Let $X$ be a stationary multitype point process, and write $X_i$ for the process of points of type $i$. If the processes $X_i$ are independent of each other, then the $I$-function is identically equal to 0. Deviations $I(r) < 1$ or $I(r) > 1$ typically indicate negative and positive association, respectively, between types. See Van Lieshout and Baddeley (1999) for further information.

An estimate of $I$ derived from a multitype spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern. The estimate of $I(r)$ is compared against the constant function 0. Deviations $I(r) < 1$ or $I(r) > 1$ may suggest negative and positive association, respectively.

This algorithm estimates the $I$-function from the multitype point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial marked point process in the plane, observed through a bounded window.

The argument $X$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp(). It must be a multitype point pattern (it must have a marks vector which is a factor).

The function Jest is called to compute estimates of the $J$ functions in the formula above. In fact three different estimates are computed using different edge corrections. See Jest for information.

**Value**

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

- $r$ the vector of values of the argument $r$ at which the function $I$ has been estimated
- $rs$ the “reduced sample” or “border correction” estimator of $I(r)$ computed from the border-corrected estimates of $J$ functions
- $km$ the spatial Kaplan-Meier estimator of $I(r)$ computed from the Kaplan-Meier estimates of $J$ functions
- $han$ the Hanisch-style estimator of $I(r)$ computed from the Hanisch-style estimates of $J$ functions
- $un$ the uncorrected estimate of $I(r)$ computed from the uncorrected estimates of $J$
- $theo$ the theoretical value of $I(r)$ for a stationary Poisson process: identically equal to 0

**Note**

Sizeable amounts of memory may be needed during the calculation.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
References


See Also

`jest`

Examples

data(amacrine)
Ic <- Iest(amacrine)
plot(Ic, main="Amacrine Cells data")
# values are below 1=0, suggesting negative association
# between 'on' and 'off' cells.

---

**im**

*Create a Pixel Image Object*

Description

Creates an object of class "im" representing a two-dimensional pixel image.

Usage

```r
im(mat, xcol=seq_len(ncol(mat)), yrow=seq_len(nrow(mat)),
 xrange=NULL, yrange=NULL,
 unitname=NULL)
```

Arguments

- `mat` matrix or vector containing the pixel values of the image.
- `xcol` vector of *x* coordinates for the pixel grid
- `yrow` vector of *y* coordinates for the pixel grid
- `xrange, yrange` Optional. Vectors of length 2 giving the *x* and *y* limits of the enclosing rectangle. (Ignored if `xcol, yrow` are present.)
- `unitname` Optional. Name of unit of length. Either a single character string, or a vector of two character strings giving the singular and plural forms, respectively.
Details

This function creates an object of class "im" representing a two-dimensional pixel image. See \texttt{im.object} for details of this class.

The matrix \texttt{mat} contains the ‘greyscale’ values for a rectangular grid of pixels. Note carefully that the entry \texttt{mat[i,j]} gives the pixel value at the location \((\text{xcoll}_j, \text{yrow}_i)\). That is, the row index of the matrix \texttt{mat} corresponds to increasing \(y\) coordinate, while the column index of \texttt{mat} corresponds to increasing \(x\) coordinate. Thus \texttt{yrow} has one entry for each row of \texttt{mat} and \texttt{xcol} has one entry for each column of \texttt{mat}. Under the usual convention in \(\mathbb{R}\), a correct display of the image would be obtained by transposing the matrix, e.g. \texttt{image.default(xcol, yrow, t(mat))}, if you wanted to do it by hand.

The entries of \texttt{mat} may be numeric (real or integer), complex, logical, character, or factor values. If \texttt{mat} is not a matrix, it will be converted into a matrix with \texttt{nrow(mat) = length(yrow)} and \texttt{ncol(mat) = length(xcol)}.

To make a factor-valued image, note that \(\mathbb{R}\) has a quirky way of handling matrices with factor-valued entries. The command \texttt{matrix} cannot be used directly, because it destroys factor information. To make a factor-valued image, do one of the following:

- Create a factor containing the pixel values, say \texttt{mat <- factor(...)}, and then assign matrix dimensions to it by \texttt{dim(mat) <- c(nr, nc)} where \(nr, nc\) are the numbers of rows and columns. The resulting object \texttt{mat} is both a factor and a vector.
- Supply \texttt{mat} as a one-dimensional factor and specify the arguments \texttt{xcol} and \texttt{yrow} to determine the dimensions of the image.
- Use the functions \texttt{cut.im} or \texttt{eval.im} to make factor-valued images from other images).

For a description of the methods available for pixel image objects, see \texttt{im.object}.

To convert other kinds of data to a pixel image (for example, functions or windows), use \texttt{as.im}.

Warnings

The internal representation of images is likely to change in future releases of \texttt{spatstat}. The safe way to extract pixel values from an image object is to use \texttt{as.matrix.im} or \texttt{[.im}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{im.object, as.im, as.matrix.im, [.im, eval.im}

Examples

\begin{verbatim}
vec <- rnorm(1200)
mat <- matrix(vec, nrow=30, ncol=40)
whitenoise <- im(mat)
whitenoise <- im(mat, xrange=c(0,1), yrange=c(0,1))
whitenoise <- im(mat, xcol=seq(0,1,length=40), yrow=seq(0,1,length=30))
\end{verbatim}
whitenoise <- im(vec, xcol=seq(0,1,length=40), yrow=seq(0,1,length=30))
plot(whitenoise)

# Factor-valued images:
f <- factor(letters[1:12])
dim(f) <- c(3,4)
Z <- im(f)

# Factor image from other image:
cutwhite <- cut(whitenoise, 3)
plot(cutwhite)

# Factor image from raw data
Cutmat <- cut(mat, 3)
dim(Cutmat) <- c(30,40)
cutwhite <- im(Cutmat)
plot(cutwhite)

---

**im.apply**

*Apply Function Pixelwise to List of Images*

**Description**

Returns a pixel image obtained by applying a function to the values of corresponding pixels in several pixel images.

**Usage**

`im.apply(X, FUN, ...)`

**Arguments**

- **X**
  - A list of pixel images (objects of class "im").

- **FUN**
  - A function that can be applied to vectors, or a character string giving the name of such a function.

- **...**
  - Additional arguments to FUN.

**Details**

The argument `X` should be a list of pixel images (objects of class "im"). If the images do not have identical pixel grids, they will be converted to a common grid using `harmonise.im`.

At each pixel location, the values of the images in `X` at that pixel will be extracted as a vector. The function `FUN` will be applied to this vector. The result (which should be a single value) becomes the pixel value of the resulting image.

**Value**

A pixel image (object of class "im").
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
eval.im for algebraic operations with images.

Examples
DA <- density(split(amacrine))
DA
im.apply(DA, max)

im.object                  Class of Images

Description
A class "im" to represent a two-dimensional pixel image.

Details
An object of this class represents a two-dimensional pixel image. It specifies
• the dimensions of the rectangular array of pixels
• \( x \) and \( y \) coordinates for the pixels
• a numeric value ("grey value") at each pixel

If \( X \) is an object of type \( \text{im} \), it contains the following elements:

- \( \mathbf{v} \) matrix of values
- \( \text{dim} \) dimensions of matrix \( \mathbf{v} \)
- \( \text{xrange} \) range of \( x \) coordinates of image window
- \( \text{yrange} \) range of \( y \) coordinates of image window
- \( \text{xstep} \) width of one pixel
- \( \text{ystep} \) height of one pixel
- \( \text{xcen} \) vector of \( x \) coordinates of centres of pixels
- \( \text{ycen} \) vector of \( y \) coordinates of centres of pixels

Users are strongly advised not to manipulate these entries directly.

Objects of class "im" may be created by the functions \( \text{im} \) and \( \text{as.im} \). Image objects are also returned by various functions including \( \text{distmap}, \text{Kmeasure}, \text{setcov}, \text{eval.im} \) and \( \text{cut.im} \).

Image objects may be displayed using the methods \( \text{plot.im}, \text{image.im}, \text{persp.im} \) and \( \text{contour.im} \). There are also methods \( \text{print.im} \) for printing information about an image, \( \text{summary.im} \) for summarising an image, \( \text{mean.im} \) for calculating the average pixel value, \( \text{hist.im} \) for plotting a his-
rogram of pixel values, quantile.im for calculating quantiles of pixel values, and cut.im for dividing the range of pixel values into categories.

Pixel values in an image may be extracted using the subset operator [.im]. To extract all pixel values from an image object, use as.matrix.im. The levels of a factor-valued image can be extracted and changed with levels and levels<-. Calculations involving one or more images (for example, squaring all the pixel values in an image, converting numbers to factor levels, or subtracting one image from another) can often be done easily using eval.im. To find all pixels satisfying a certain constraint, use solutionset.

Note carefully that the entry v[i,j] gives the pixel value at the location (xcol[j], yrow[i]). That is, the row index of the matrix v corresponds to increasing y coordinate, while the column index of mat corresponds to increasing x coordinate. Thus yrow has one entry for each row of v and xcol has one entry for each column of v. Under the usual convention in R, a correct display of the image would be obtained by transposing the matrix, e.g. image.default(xcol, yrow, t(v)), if you wanted to do it by hand.

Warnings

The internal representation of images is likely to change in future releases of spatstat. Do not address the entries in an image directly. To extract all pixel values from an image object, use as.matrix.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im, as.im, plot.im, persp.im, eval.im, [.im

---

### imcov

**Spatial Covariance of a Pixel Image**

**Description**

Computes the unnormalised spatial covariance function of a pixel image.

**Usage**

imcov(X, Y=X)

**Arguments**

- **X** A pixel image (object of class "im".
- **Y** Optional. Another pixel image.

Details

The (unc centred, unnormalised) spatial covariance function of a pixel image $X$ in the plane is the function $C(v)$ defined for each vector $v$ as

$$C(v) = \int X(u)X(u-v) \, du$$

where the integral is over all spatial locations $u$, and where $X(u)$ denotes the pixel value at location $u$.

This command computes a discretised approximation to the spatial covariance function, using the Fast Fourier Transform. The return value is another pixel image (object of class "im") whose greyscale values are values of the spatial covariance function.

If the argument $Y$ is present, then `imcov(X,Y)` computes the set cross-covariance function $C(u)$ defined as

$$C(v) = \int X(u)Y(u-v) \, du.$$

Note that `imcov(X,Y)` is equivalent to `convolve.im(X,Y,reflectY=TRUE)`.

Value

A pixel image (an object of class "im") representing the spatial covariance function of $X$, or the cross-covariance of $X$ and $Y$.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`setcov`, `convolve.im`, `owin`, `as.owin`, `erosion`

Examples

```r
X <- as.im(square(1))
v <- imcov(X)
plot(v)
```
Usage

```r
improve.kppm(object, type=c("quasi", "wclik1", "clik1"), rmax = NULL,
 eps.rmax = 0.01, dimyx = 50, maxIter = 100, tolerance = 1e-06,
 fast = TRUE, vcov = FALSE, fast.vcov = FALSE, verbose = FALSE,
 save.internals = FALSE)
```

Arguments

- **object**: Fitted cluster point process model (object of class "kppm").
- **type**: A character string indicating the method of estimation. Current options are "clik1", "wclik1" and "quasi" for, respectively, first order composite (Poisson) likelihood, weighted first order composite likelihood and quasi-likelihood.
- **rmax**: Optional. The dependence range. Not usually specified by the user.
- **eps.rmax**: Numeric. A small positive number which is used to determine `rmax` from the tail behaviour of the pair correlation function. Namely `rmax` is the smallest value of `r` at which \((g(r) - 1)/(g(0) - 1)\) falls below `eps.rmax`. Ignored if `rmax` is provided.
- **dimyx**: Pixel array dimensions. See Details.
- **maxIter**: Integer. Maximum number of iterations of iterative weighted least squares (Fisher scoring).
- **tolerance**: Numeric. Tolerance value specifying when to stop iterative weighted least squares (Fisher scoring).
- **fast**: Logical value indicating whether tapering should be used to make the computations faster (requires the package `Matrix`).
- **vcov**: Logical value indicating whether to calculate the asymptotic variance covariance/matrix.
- **fast.vcov**: Logical value indicating whether tapering should be used for the variance/covariance matrix to make the computations faster (requires the package `Matrix`). Caution: This is expected to underestimate the true asymptotic variances/covariances.
- **verbose**: A logical indicating whether the details of computations should be printed.
- **save.internals**: A logical indicating whether internal quantities should be saved in the returned object (mostly for development purposes).

Details

This function reestimates the intensity parameters in a fitted "kppm" object. If `type="clik1"` estimates are based on the first order composite (Poisson) likelihood, which ignores dependence between the points. Note that `type="clik1"` is mainly included for testing purposes and is not recommended for the typical user; instead the more efficient `kppm` with `improve.type="none"` should be used.

When `type="quasi"` or `type="wclik1"` the dependence structure between the points is incorporated in the estimation procedure by using the estimated pair correlation function in the estimating equation.

In all cases the estimating equation is based on dividing the observation window into small subregions and count the number of points in each subregion. To do this the observation window is first
converted into a digital mask by \texttt{as.mask} where the resolution is controlled by the argument \texttt{dimyx}. The computational time grows with the cube of the number of subregions, so fine grids may take very long to compute (or even run out of memory).

**Value**

A fitted cluster point process model of class "kppm".

**Author(s)**

Abdollah Jalilian <jalilian@razi.ac.ir>

and Rasmus Waagepetersen <rw@math.aau.dk> adapted for \texttt{spatstat} by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Ege Rubak <rubak@math.aau.dk>

**References**


**See Also**

\texttt{ppm, kppm, improve.kppm}

**Examples**

```r
fit a Thomas process using minimum contrast estimation method
to model interaction between points of the pattern
fit0 <- kppm(bei ~ elev + grad, data = bei.extra)

fit the log-linear intensity model with quasi-likelihood method
fit1 <- improve.kppm(fit0, type="quasi")

compare
coef(fit0)
coef(fit1)
```

**Description**

Find the largest circle contained in a given window.
incircle

Usage

incircle(W)

Arguments

W

A window (object of class "owin").

Details

Given a window \( W \) of any type and shape, this function determines the largest circle that is contained inside \( W \).

For non-rectangular windows, the incircle is computed approximately by finding the maximum of the distance map (see \texttt{distmap}) of the complement of the window.

Value

A list with entries \( x, y, r \) giving the location \( (x, y) \) and radius \( r \) of the incircle.

Author(s)

Adrian Baddeley \(<\texttt{Adrian.Baddeley@uwa.edu.au}> \texttt{http://www.maths.uwa.edu.au/~adrian/}\) and Rolf Turner \(<\texttt{r.turner@auckland.ac.nz}>\)

See Also

centroid.owin

Examples

\begin{verbatim}
W <- square(1)
Wc <- incircle(W)
plot(W)
plot(disc(Wc$r, c(Wc$x, Wc$y)), add=TRUE)

data(letterR)
plot(letterR)
Rc <- incircle(letterR)
plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)

W <- as.mask(letterR)
plot(W)
Rc <- incircle(W)
plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)
\end{verbatim}
Description

Compute the change in the value of a function \( f \) when the function argument increases by \( \delta \).

Usage

\[ \text{increment.fv}(f, \delta) \]

Arguments

- \( f \) : Object of class "fv" representing a function.
- \( \delta \) : Numeric. The increase in the value of the function argument.

Details

This command computes the new function

\[ g(x) = f(x + h) - f(x - h) \]

where \( h = \frac{\delta}{2} \). The value of \( g(x) \) is the change in the value of \( f \) over an interval of length \( \delta \) centred at \( x \).

Value

Another object of class "fv" compatible with \( X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

fv.object, deriv.fv

Examples

\[ \text{plot(increment.fv(Kest(cells), 0.05))} \]
**Description**

Define the coordinates of one or more straight lines in the plane.

**Usage**

```r
infline(a = NULL, b = NULL, h = NULL, v = NULL, p = NULL, theta = NULL)
S3 method for class 'infline'
print(x, ...)
S3 method for class 'infline'
plot(x, ...)
```

**Arguments**

- `a, b` Numeric vectors of equal length giving the intercepts `a` and slopes `b` of the lines. Incompatible with `h, v, p, theta`
- `h` Numeric vector giving the positions of horizontal lines when they cross the `y` axis. Incompatible with `a, b, v, p, theta`
- `v` Numeric vector giving the positions of vertical lines when they cross the `x` axis. Incompatible with `a, b, h, p, theta`
- `p, theta` Numeric vectors of equal length giving the polar coordinates of the line. Incompatible with `a, b, h, v`
- `x` An object of class "infline"
- `...` Extra arguments passed to `print` for printing or `abline` for plotting

**Details**

The class `infline` is a convenient way to handle infinite straight lines in the plane. The position of a line can be specified in several ways:

- its intercept `a` and slope `b` in the equation `y = a + bx` can be used unless the line is vertical.
- for vertical lines we can use the position `v` where the line crosses the `y` axis.
- for horizontal lines we can use the position `h` where the line crosses the `x` axis.
- the polar coordinates `p` and `θ` can be used for any line. The line equation is

\[ y \cos \theta + x \sin \theta = p \]

The command `infline` will accept line coordinates in any of these formats. The arguments `a, b, h, v` have the same interpretation as they do in the line-plotting function `abline`.

The command `infline` converts between different coordinate systems (e.g. from `a, b` to `p, theta`) and returns an object of class "infline" that contains a representation of the lines in each appropriate coordinate system. This object can be printed and plotted.
Value

The value of `infline` is an object of class "infline" which is basically a data frame with columns a,b,h,v,p,theta. Each row of the data frame represents one line. Entries may be NA if a coordinate is not applicable to a particular line.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
infline(a=10:13,b=1)
inline(p=1:3, theta=pi/4)
plot(c(-1,1),c(-1,1),type="n",xlab="",ylab="", asp=1)
plot(inline(p=0.4, theta=seq(0,pi,length=20)))
```

Description

Computes the influence measure for a fitted spatial point process model.

Usage

```r
S3 method for class 'ppm'
influence(model, ..., drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
```

Arguments

- `model` Fitted point process model (object of class "ppm").
- `...` Ignored.
- `drop` Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contributions from quadrature points that were not used to fit the model.
- `iScore, iHessian` Components of the score vector and Hessian matrix for the irregular parameters, if required. See Details.
- `iArgs` List of extra arguments for the functions `iScore`, `iHessian` if required.
Details

Given a fitted spatial point process model model, this function computes the influence measure described in Baddeley, Chang and Song (2013).

The function influence is generic, and influence.ppm is the method for objects of class "ppm" representing point process models.

The influence of a point process model is a value attached to each data point (i.e. each point of the point pattern to which the model was fitted). The influence value $s(x_i)$ at a data point $x_i$ represents the change in the maximised log (pseudo)likelihood that occurs when the point $x_i$ is deleted. A relatively large value of $s(x_i)$ indicates a data point with a large influence on the fitted model.

If the point process model trend has irregular parameters that were fitted (using ippm) then the influence calculation requires the first and second derivatives of the log trend with respect to the irregular parameters. The argument iscore should be a list, with one entry for each irregular parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or log conditional intensity) with respect to each irregular parameter. The argument ihessian should be a list, with $p^2$ entries where $p$ is the number of irregular parameters, of R functions that compute the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of influence.ppm is an object of class "influence.ppm". It can be plotted (by plot.influence.ppm), or converted to a marked point pattern by as.ppp (see as.ppp.influence.ppm).

Value

An object of class "influence.ppm" that can be plotted (by plot.influence.ppm). There are also methods for print, [, as.ppp and as.owin.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

leverage.ppm, dfbetas.ppm, plot.influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(influence(fit))
inorder.family  Infinite Order Interaction Family

Description

An object describing the family of all Gibbs point processes with infinite interaction order.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the interaction structure of Gibbs point processes which have infinite order of interaction, such as the area-interaction process AreaInter.

Anyway, inorder.family is an object of class "isf" containing a function inorder.family$eval for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

AreaInter to create the area interaction process structure.

Other families: pairwise.family, pairsat.family, ord.family.

inside.owin  Test Whether Points Are Inside A Window

Description

Test whether points lie inside or outside a given window.

Usage

inside.owin(x, y, w)
inside.owin

Arguments

- **x**: Vector of \(x\) coordinates of points to be tested. (Alternatively, a point pattern object providing both \(x\) and \(y\) coordinates.)
- **y**: Vector of \(y\) coordinates of points to be tested.
- **w**: A window. This should be an object of class \texttt{owin}, or can be given in any format acceptable to \texttt{as.owin()}.  

Details

This function tests whether each of the points \((x[i], y[i])\) lies inside or outside the window \(w\) and returns \texttt{TRUE} if it is inside.

The boundary of the window is treated as being inside.

If \(w\) is of type "rectangle" or "polygonal", the algorithm uses analytic geometry (the discrete Stokes theorem). Computation time is linear in the number of points and (for polygonal windows) in the number of vertices of the boundary polygon. Boundary cases are correct to single precision accuracy.

If \(w\) is of type "mask" then the pixel closest to \((x[i], y[i])\) is tested. The results may be incorrect for points lying within one pixel diameter of the window boundary.

Normally \(x\) and \(y\) must be numeric vectors of equal length (length zero is allowed) containing the coordinates of points. Alternatively \(x\) can be a point pattern (object of class "ppp") while \(y\) is missing; then the coordinates of the point pattern are extracted.

Value

Logical vector whose \(i\)th entry is \texttt{TRUE} if the corresponding point \((x[i], y[i])\) is inside \(w\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{owin.object, as.owin}

Examples

```r
hexagonal window
k <- 6
theta <- 2 * pi * (0:(k-1))/k
c0 <- cos(theta)
si <- sin(theta)
mas <- owin(c(-1,1), c(-1,1), poly=list(x=c0, y=si))
Not run:
plot(mas)
End(Not run)
```
integral.im

integral.im  Integral of a Pixel Image

Description
Computes the integral of a pixel image.

Usage
integral(f, domain=NULL, ...)

## S3 method for class 'im'
integral(f, domain=NULL, ...)

Arguments

- **f**  A pixel image (object of class "im") with pixel values that can be treated as numeric or complex values.
- **domain**  Optional. Window specifying the domain of integration.
- **...**  Ignored.

Details
The function integral is generic, with methods for "im", "msr", "linim" and "linfun".

The method integral.im treats the pixel image f as a function of the spatial coordinates, and computes its integral. The integral is calculated by summing the pixel values and multiplying by the area of one pixel.

The pixel values of f may be numeric, integer, logical or complex. They cannot be factor or character values.

The logical values TRUE and FALSE are converted to 1 and 0 respectively, so that the integral of a logical image is the total area of the TRUE pixels, in the same units as unitname(x).

Value
A single numeric or complex value.
**integral.linim**

**Author(s)**
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**See Also**
eval.im, [.im

**Examples**

```r
approximate integral of f(x,y) dx dy
f <- function(x,y)(3*x^2 + 2*y)
Z <- as.im(f, square(1))
integral.im(Z)
correct answer is 2

D <- density(cells)
integral.im(D)
should be approximately equal to number of points = 42

integrate over the subset [0.1,0.9] x [0.2,0.8]
W <- owin(c(0.1,0.9), c(0.2,0.8))
integral.im(D, W)
```

**integral.linim**  
*Integral on a Linear Network*

**Description**
Computes the integral (total value) of a function or pixel image over a linear network.

**Usage**

```r
S3 method for class 'linim'
integral(f, domain=NULL, ...)

S3 method for class 'linfun'
integral(f, domain=NULL, ...)
```

**Arguments**

- `f`  
  A pixel image on a linear network (class "linim") or a function on a linear network (class "linfun").

- `domain`  
  Optional window specifying the domain of integration.

- `...`  
  Ignored.
Details

The integral (total value of the function over the network) is calculated.

Value

A numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

linim, integral.im

Examples

# make some data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplenet)
integral(xcoord)
X <- as.linim(xcoord)
integral(X)
Value

A numeric value (for a signed measure) or a vector of values (for a vector-valued measure).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

msr, integral

Examples

```r
fit <- ppm(cells, ~x)
rp <- residuals(fit)
integral(rp)
```

intensity

Intensity of a Dataset or a Model

Description

Generic function for computing the intensity of a spatial dataset or spatial point process model.

Usage

```r
intensity(X, ...)
```

Arguments

X

A spatial dataset or a spatial point process model.

...  

Further arguments depending on the class of X.

Details

This is a generic function for computing the intensity of a spatial dataset or spatial point process model. There are methods for point patterns (objects of class "ppp") and fitted point process models (objects of class "ppm").

The empirical intensity of a dataset is the average density (the average amount of ‘stuff’ per unit area or volume). The empirical intensity of a point pattern is computed by the method `intensity.ppp`.

The theoretical intensity of a stochastic model is the expected density (expected amount of ‘stuff’ per unit area or volume). The theoretical intensity of a fitted point process model is computed by the method `intensity.ppm`. 
Empirical Intensity of Point Pattern on Linear Network

Description
Computes the average number of points per unit length in a point pattern on a linear network.

Usage
```r
S3 method for class 'lpp'
intensity(x, ...)
```

Arguments
- `x`: A point pattern on a linear network (object of class "lpp").
- `...`: Ignored.

Details
This is a method for the generic function `intensity`. It computes the empirical intensity of a point pattern on a linear network (object of class "lpp"), i.e., the average density of points per unit length. If the point pattern is multitype, the intensities of the different types are computed separately.

Value
A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible type).

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also
- `intensity`, `intensity.ppp`
Examples

```r
intensity(chicago)
```

Description

Computes the intensity of a fitted point process model.

Usage

```r
S3 method for class 'ppm'
intensity(X, ...)
```

Arguments

- `X`: A fitted point process model (object of class "ppm").
- `...`: Arguments passed to `predict.ppm` in some cases. See Details.

Details

This is a method for the generic function `intensity` for fitted point process models (class "ppm"). The intensity of a point process model is the expected number of random points per unit area.

If `X` is a Poisson point process model, the intensity of the process is computed exactly. The result is a numerical value if `X` is a stationary Poisson point process, and a pixel image if `X` is non-stationary. (In the latter case, the resolution of the pixel image is controlled by the arguments `...` which are passed to `predict.ppm`.)

If `X` is another Gibbs point process model, the intensity is computed approximately using the Poisson-saddlepoint approximation (Baddeley and Nair, 2012a, 2012b). Currently this is implemented only for pairwise interactions. In the non-stationary case the pseudostationary solution (Baddeley and Nair, 2012b) is used.

Value

A numeric value (if the model is stationary) or a pixel image.

Author(s)

References


See Also

intensity, intensity.ppp

Examples

```r
fitP <- ppm(swedishpines ~ 1)
intensity(fitP)
fitS <- ppm(swedishpines ~ 1, Strauss(9))
intensity(fitS)
fitSx <- ppm(swedishpines ~ x, Strauss(9))
lamsx <- intensity(fitSx)
```

Description

Computes the average number of points per unit area in a point pattern dataset.

Usage

```r
S3 method for class 'ppp'
intensity(X, ..., weights=NULL)

S3 method for class 'splitppp'
intensity(X, ..., weights=NULL)
```

Arguments

- `X` A point pattern (object of class "ppp").
- `weights` Optional. Numeric vector of weights attached to the points of `X`. Alternatively, an expression which can be evaluated to give a vector of weights.
- `...` Ignored.
Details

This is a method for the generic function \texttt{intensity}. It computes the empirical intensity of a point pattern (object of class "ppp"), i.e. the average density of points per unit area.

If the point pattern is multitype, the intensities of the different types are computed separately.

Note that the intensity will be computed as the number of points per square unit, based on the unit of length for \( X \), given by \texttt{unitname}(X). If the unit of length is a strange multiple of a standard unit, like 5.7 metres, then it can be converted to the standard unit using \texttt{rescale}. See the Examples.

If \texttt{weights} are given, then the intensity is computed as the total \texttt{weight} per square unit. The argument \texttt{weights} should be a numeric vector of weights for each point of \( X \) (weights may be negative or zero).

Alternatively \texttt{weights} can be an expression which will be evaluated for the dataset to yield a vector of weights. The expression may involve the Cartesian coordinates \( x, y \) of the points, and the marks of the points, if any. Variable names permitted in the expression include \( x \) and \( y \), the name \texttt{marks} if \( X \) has a single column of marks, the names of any columns of marks if \( X \) has a data frame of marks, and the names of constants or functions that exist in the global environment. See the Examples.

Value

A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible type).

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{intensity,intensity.ppm}

Examples

\begin{verbatim}
japnepines
intensity(japnepines)
unitname(japnepines)
intensity(rescale(japnepines))

intensity(amacrine)
intensity(split(amacrine))

# numeric vector of weights
volumes <- with(marks(finpines), (pi/4) * height * diameter^2)
intensity(finpines, weights=volumes)

# expression for weights
intensity(finpines, weights=expression((pi/4) * height * diameter^2))
\end{verbatim}
Intensity Estimates Using Quadrat Counts

Description

Uses quadra count data to estimate the intensity of a point pattern in each tile of a tessellation, assuming the intensity is constant in each tile.

Usage

```r
S3 method for class 'quadratcount'
intensity(X, ..., image=FALSE)
```

Arguments

- `X`: An object of class "quadratcount".
- `image`: Logical value specifying whether to return a table of estimated intensities (the default) or a pixel image of the estimated intensity (`image=TRUE`).
- `...`: Arguments passed to `as.mask` to determine the resolution of the pixel image, if `image=TRUE`.

Details

This is a method for the generic function `intensity`. It computes an estimate of the intensity of a point pattern from its quadrat counts.

The argument `X` should be an object of class "quadratcount". It would have been obtained by applying the function `quadratcount` to a point pattern (object of class "ppp"). It contains the counts of the numbers of points of the point pattern falling in each tile of a tessellation.

Using this information, `intensity.quadratcount` divides the quadrat counts by the tile areas, yielding the average density of points per unit area in each tile of the tessellation.

If `image=FALSE` (the default), these intensity values are returned in a contingency table. Cells of the contingency table correspond to tiles of the tessellation.

If `image=TRUE`, the estimated intensity function is returned as a pixel image. For each pixel, the pixel value is the estimated intensity in the tile which contains that pixel.

Value

If `image=FALSE` (the default), a contingency table. If `image=TRUE`, a pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
**interp.colourmap**

Interpolate smoothly between specified colours

**Description**

Given a colourmap object which maps numbers to colours, this function interpolates smoothly between the colours, yielding a new colour map.

**Usage**

```r
interp.colourmap(m, n = 512)
```

**Arguments**

- `m`: A colour map (object of class "colourmap").
- `n`: Number of colour steps to be created in the new colour map.

**Details**

Given a colourmap object `m`, which maps numerical values to colours, this function interpolates the mapping, yielding a new colour map.

This makes it easy to build a colour map that has smooth gradation between different colours or shades. First specify a small vector of numbers `x` which should be mapped to specific colours `y`. Use `m <- colourmap(y, inputs=x)` to create a colourmap that represents this simple mapping. Then apply `interp.colourmap(m)` to obtain a smooth transition between these points.

**Value**

Another colour map (object of class "colourmap").

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

colourmap, tweak.colourmap, colourtools.
Examples

```r
co <- colourmap(inputs=c(0, 0.5, 1), c("black", "red", "white"))
plot(interp.colourmap(co))
```

Description

Interpolates the values of a pixel image at any desired location in the frame.

Usage

```r
interp.im(Z, x, y=NULL)
```

Arguments

- `Z` Pixel image (object of class "im") with numeric or integer values.
- `x, y` Vectors of Cartesian coordinates. Alternatively `x` can be a point pattern and `y` can be missing.

Details

A value at each location \((x[i], y[i])\) will be interpolated using the pixel values of `Z` at the four surrounding pixel centres, by simple bilinear interpolation.

At the boundary (where \((x[i], y[i])\) is not surrounded by four pixel centres) the value at the nearest pixel is taken.

The arguments `x, y` can be anything acceptable to `xy.coords`.

Value

Vector of interpolated values, with `NA` for points that lie outside the domain of the image.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
opa <- par(mfrow=c(1,2))
coarse image
V <- as.im(function(x, y) { x^2 + y }, owin(), dimyx=10)
plot(V, main="coarse image", col=terrain.colors(256))

lookup value at location (0.5,0.5)
V[list(x=0.5,y=0.5)]
```
# interpolated value at location (0.5, 0.5)
interp.im(V, 0.5, 0.5)
# true value is 0.75

# how to obtain an interpolated image at a desired resolution
U <- as.im(interp.im, W=owin(), Z=V, dimyx=256)
plot(U, main="interpolated image", col=terrain.colors(256))
par(oma)

---

**intersect.owin**  
*Intersection, Union or Set Subtraction of Two Windows*

**Description**

Yields the intersection, union or set subtraction of two windows.

**Usage**

```r
intersect.owin(A, B, ..., fatal=TRUE)
union.owin(A, B, ...)
setminus.owin(A, B, ...)
```

**Arguments**

- `A` A window object (see Details).
- `B` A window object.
- `...` Optional arguments passed to `as.mask` to control the discretisation, if required.
- `fatal` Logical. Determines what happens if the intersection is empty.

**Details**

The function `intersect.owin` computes the intersection between the two windows `A` and `B`, while `union.owin` computes their union. The function `setminus.owin` computes the intersection of `A` with the complement of `B`.

The arguments `A` and `B` must be window objects (either objects of class "owin", or data that can be coerced to this class by `as.owin`).

If the intersection is empty, then if `fatal=FALSE` the result is NULL, while if `fatal=TRUE` an error occurs.

The intersection or union of more than two windows can also be computed. For `intersect.owin` and `union.owin` the arguments `...` can include additional window objects.

**Value**

A window (object of class "owin").
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.tumer@auckland.ac.nz>

See Also

is.subset.owin, overlap.owin, boundingbox, owin.object

Examples

# rectangles
u <- unit.square()
v <- owin(c(0.5,3.5), c(0.4,2.5))
# polygon
data(letterR)
# mask
m <- as.mask(letterR)

# two rectangles
intersect.owin(u, v)
union.owin(u,v)
setminus.owin(u,v)

# polygon and rectangle
intersect.owin(letterR, v)
union.owin(letterR,v)
setminus.owin(letterR,v)

# mask and rectangle
intersect.owin(m, v)
union.owin(m,v)
setminus.owin(m,v)

# mask and polygon
p <- rotate(v, 0.2)
intersect.owin(m, p)
union.owin(m,p)
setminus.owin(m,p)

# two polygons
A <- letterR
B <- rotate(letterR, 0.2)
plot(boundingbox(A,B), main="intersection")
w <- intersect.owin(A, B)
plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)
plot(B, add=TRUE)

plot(boundingbox(A,B), main="union")
w <- union.owin(A,B)
plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)
Description

Yields the intersection of two tessellations, or the intersection of a tessellation with a window.

Usage

\[ \text{intersect.tess}(X, Y, \ldots, \text{keepmarks}=\text{FALSE}) \]

Arguments

- **X, Y**
  - Two tessellations (objects of class "tess"), or windows (objects of class "tess"), or other data that can be converted to tessellations by \text{as.tess}.

- **\ldots**
  - Optional arguments passed to \text{as.mask} to control the discretisation, if required.

- **keepmarks**
  - Logical value. If \text{TRUE}, the marks attached to the tiles of \text{X} and \text{Y} will be retained as marks of the intersection tiles.

Details

A tessellation is a collection of disjoint spatial regions (called \text{tiles}) that fit together to form a larger spatial region. See \text{tess}.

If \text{X} and \text{Y} are not tessellations, they are first converted into tessellations by \text{as.tess}.

The function \text{intersect.tess} then computes the intersection between the two tessellations. This is another tessellation, each of whose tiles is the intersection of a tile from \text{X} and a tile from \text{Y}.

One possible use of this function is to slice a window \text{W} into subwindows determined by a tessellation. See the Examples.

Value

A tessellation (object of class "tess").
invoke.symbolmap

Plot Data Using Graphics Symbol Map

Description

Apply a graphics symbol map to a vector of data values and plot the resulting symbols.

Usage

invoke.symbolmap(map, values, x, y = NULL, ..., add = FALSE, do.plot = TRUE, started = add && do.plot)
<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map</code></td>
</tr>
<tr>
<td><code>values</code></td>
</tr>
<tr>
<td><code>x, y</code></td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td><code>add</code></td>
</tr>
<tr>
<td><code>do.plot</code></td>
</tr>
<tr>
<td><code>started</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A symbol map is an association between data values and graphical symbols. This command applies the symbol map <code>map</code> to the data <code>values</code> and plots the resulting symbols at the locations given by <code>xy.coords(x, y)</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Invisibly) the maximum diameter of the symbols, in user coordinate units.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrian Baddeley <a href="mailto:Adrian.Baddeley@uwa.edu.au">Adrian.Baddeley@uwa.edu.au</a> <a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>, Rolf Turner <a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a> and Ege Rubak.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot.symbolmap</code> to plot the graphics map itself.</td>
</tr>
<tr>
<td><code>symbolmap</code> to create a graphics map.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
</table>
| g <- symbolmap(range=c(-1,1),
shape=function(x) ifelse(x > 0, "circles", "squares"),
size=function(x) sqrt(ifelse(x > 0, x/pi, -x))/15,
bg=function(x) ifelse(x > 0, "green", "red"))
plot(square(1), main="")
a <- invoke.symbolmap(g, runif(10, -1, 1), runifpoint(10), add=TRUE)
a |
Description

Plot spatial data with interactive (point-and-click) control over the plot.

Usage

```r
iplot(x, ...)
S3 method for class 'ppp'
iplot(x, ..., xname)
S3 method for class 'linnet'
iplot(x, ..., xname)
S3 method for class 'lpp'
iplot(x, ..., xname)
S3 method for class 'layered'
iplot(x, ..., xname, visible)
Default S3 method:
iplot(x, ..., xname)
```

Arguments

- `x`: The spatial object to be plotted. An object of class "ppp", "psp", "im", "owin", "linnet", "lpp" or "layered".
- `...`: Ignored.
- `xname`: Optional. Character string to use as the title of the dataset.
- `visible`: Optional. Logical vector indicating which layers of `x` should initially be turned on (visible).

Details

The function `iplot` generates a plot of the spatial dataset `x` and allows interactive control over the appearance of the plot using a point-and-click interface.

The function `iplot` is generic, with methods for point patterns (`iplot.ppp`), layered objects (`iplot.layered`) and a default method. The default method will handle objects of class "ppp", "im" and "owin" at least.

A new popup window is launched. The spatial dataset `x` is displayed in the middle of the window using the appropriate plot method.

The left side of the window contains buttons and sliders allowing the user to change the plot parameters.
ippm

The right side of the window contains navigation controls for zooming (changing magnification), panning (shifting the field of view relative to the data), redrawing and exiting.

If the user clicks in the area where the point pattern is displayed, the field of view will be re-centred at the point that was clicked.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

istat

Examples

```r
if(interactive()) {
 iplot(cells)
 iplot(amacrine)
 iplot(lansing)
 L <- layered(D=distmap(cells), P=cells,
 plotargs=list(list(ribbon=FALSE), list(pch=16)))
 iplot(L)
}
```

ippm

Fit Point Process Model Involving Irregular Trend Parameters

Description

Experimental extension to ppm which finds optimal values of the irregular trend parameters in a point process model.

Usage

```r
ippm(Q, ...,
 iScore=NULL,
 start=list(),
 covfunargs=start,
 nlm.args=list(),
 silent=FALSE,
 warn.unused=TRUE)
```
Arguments

- **Q,** ... Arguments passed to `ppm` to fit the point process model.
- **iscore** Optional. A named list of \( \mathbb{R} \) functions that compute the partial derivatives of the logarithm of the trend, with respect to each irregular parameter. See Details.
- **start** Named list containing initial values of the irregular parameters over which to optimise.
- **covfunargs** Argument passed to `ppm`. A named list containing values for all irregular parameters required by the covariates in the model. Must include all the parameters named in `start`.
- **nlm.args** Optional list of arguments passed to `nlm` to control the optimization algorithm.
- **silent** Logical. Whether to print warnings if the optimization algorithm fails to converge.
- **warn.unused** Logical. Whether to print a warning if some of the parameters in `start` are not used in the model.

Details

This function is an experimental extension to the point process model fitting command `ppm`. The extension allows the trend of the model to include irregular parameters, which will be maximised by a Newton-type iterative method, using `nlm`.

For the sake of explanation, consider a Poisson point process with intensity function \( \lambda(u) \) at location \( u \). Assume that

\[
\lambda(u) = \exp(\alpha + \beta Z(u)) f(u, \gamma)
\]

where \( \alpha, \beta, \gamma \) are parameters to be estimated, \( Z(u) \) is a spatial covariate function, and \( f \) is some known function. Then the parameters \( \alpha, \beta \) are called **regular** because they appear in a loglinear form; the parameter \( \gamma \) is called **irregular**.

To fit this model using `ippm`, we specify the intensity using the `trend` formula in the same way as usual for `ppm`. The trend formula is a representation of the log intensity. In the above example the log intensity is

\[
\log \lambda(u) = \alpha + \beta Z(u) + \log f(u, \gamma)
\]

So the model above would be encoded with the trend formula `~Z + offset(log(f))`. Note that the irregular part of the model is an **offset** term, which means that it is included in the log trend as it is, without being multiplied by another regular parameter.

The optimisation runs faster if we specify the derivative of \( \log f(u, \gamma) \) with respect to \( \gamma \). We call this the **irregular score**. To specify this, the user must write an \( \mathbb{R} \) function that computes the irregular score for any value of \( \gamma \) at any location \((x, y)\).

Thus, to code such a problem,

1. The argument `trend` should define the log intensity, with the irregular part as an offset;
2. The argument `start` should be a list containing initial values of each of the irregular parameters;
3. The argument `iscore`, if provided, must be a list (with one entry for each entry of `start`) of functions with arguments \( x, y, \ldots \), that evaluate the partial derivatives of \( \log f(u, \gamma) \) with respect to each irregular parameter.
The coded example below illustrates the model with two irregular parameters $\gamma, \delta$ and irregular term $f((x, y), (\gamma, \delta)) = 1 + \exp(\gamma - \delta x^3)$.

Arguments ... passed to ppm may also include interaction. In this case the model is not a Poisson point process but a more general Gibbs point process; the trend formula trend determines the first-order trend of the model (the first order component of the conditional intensity), not the intensity.

Value

A fitted point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, profilepl

Examples

```r
nd <- 32

gamma0 <- 3
delta0 <- 5
POW <- 3
Terms in intensity
Z <- function(x,y) { -2*y }
f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) }
True intensity
lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) }
Simulate realisation
lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0))
set.seed(42)
X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0)
Partial derivatives of log f
DlogfDgamma <- function(x,y, gamma, delta) {
 topbit <- exp(gamma - delta * x^POW)
 topbit/(1 + topbit)
}
DlogfDdelta <- function(x,y, gamma, delta) {
 topbit <- exp(gamma - delta * x^POW)
 - (x^POW) * topbit/(1 + topbit)
}
irregular score
Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta)
fit model
ippm(X, ~Z + offset(log(f)),
```
is.convex

Test Whether a Window is Convex

Description

Determines whether a window is convex.

Usage

is.convex(x)

Arguments

x Window (object of class "owin").

Details

If x is a rectangle, the result is TRUE.

If x is polygonal, the result is TRUE if x consists of a single polygon and this polygon is equal to the minimal convex hull of its vertices computed by chull.

If x is a mask, the algorithm first extracts all boundary pixels of x using vertices. Then it computes the (polygonal) convex hull $K$ of the boundary pixels. The result is TRUE if every boundary pixel lies within one pixel diameter of an edge of $K$.

Value

Logical value, equal to TRUE if x is convex.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, convexhull.xy, vertices
is.dppm

Recognise Fitted Determinantal Point Process Models

Description
Check that an object inherits the class dppm

Usage
is.dppm(x)

Arguments
x Any object.

Value
A single logical value.

Author(s)
Ege Rubak <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

is.nempty

Test Whether An Object Is Empty

Description
Checks whether the argument is an empty window, an empty point pattern, etc.

Usage
is.nempty(x)

Arguments
x A window (object of class "owin"), a point pattern (object of class "ppp"), or a line segment pattern (object of class "psp").
Details

This function tests whether the object $x$ represents an empty spatial object, such as an empty window, a point pattern with zero points, or a line segment pattern with zero line segments.

An empty window can be obtained as the output of `intersect.owin`, `erosion`, `opening`, `complement.owin` and some other operations.

An empty point pattern or line segment pattern can be obtained as the result of simulation.

Value

Logical value.

Author(s)

Adrian Baddeley \<adrian.Baddeley@uwa.edu.au\> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner \<r.turner@auckland.ac.nz\>

---

**is.hybrid**

**Test Whether Object is a Hybrid**

Description

Tests where a point process model or point process interaction is a hybrid of several interactions.

Usage

```r
is.hybrid(x)
```

```
S3 method for class 'ppm'
is.hybrid(x)
```

```
S3 method for class 'interact'
is.hybrid(x)
```

Arguments

- `x` A point process model (object of class "ppm") or a point process interaction structure (object of class "interact").

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2012) is a point process model created by combining two or more point process models, or an interpoint interaction created by combining two or more interpoint interactions.

The function `is.hybrid` is generic, with methods for point process models (objects of class "ppm") and point process interactions (objects of class "interact"). These functions return TRUE if the object $x$ is a hybrid, and FALSE if it is not a hybrid.

Hybrids of two or more interpoint interactions are created by the function `Hybrid`. Such a hybrid interaction can then be fitted to point pattern data using `ppm`. 
is.im

Value

TRUE if the object is a hybrid, and FALSE otherwise.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Hybrid

Examples

S <- Strauss(0.1)
is.hybrid(S)
H <- Hybrid(Strauss(0.1), Geyer(0.2, 3))
is.hybrid(H)
data(redwood)
fit <- ppm(redwood, ~1, H)
is.hybrid(fit)

is.im

Test Whether An Object Is A Pixel Image

Description

Tests whether its argument is a pixel image (object of class "im").

Usage

is.im(x)

Arguments

x

Any object.

Details

This function tests whether the argument x is a pixel image object of class "im". For details of this
class, see im.object.
The object is determined to be an image if it inherits from class "im".
is.lpp

Test Whether An Object Is A Point Pattern on a Linear Network

Description

Checks whether its argument is a point pattern on a linear network (object of class "lpp").

Usage

is.lpp(x)

Arguments

x Any object.

Details

This function tests whether the object x is a point pattern object of class "lpp".

Value

TRUE if x is a point pattern of class "lpp", otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
Description

Generic function to test whether a given object (usually a point pattern or something related to a point pattern) has “marks” attached to the points.

Usage

```
is.marked(X, ...)
```

Arguments

- `X` Object to be inspected
- `...` Other arguments.

Details

“Marks” are observations attached to each point of a point pattern. For example the `longleaf` dataset contains the locations of trees, each tree being marked by its diameter; the `amacrine` dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell.

Other objects related to point patterns, such as point process models, may involve marked points.

This function tests whether the object `X` contains or involves marked points. It is generic; methods are provided for point patterns (objects of class "ppp") and point process models (objects of class "ppm").

Value

Logical value, equal to TRUE if `X` is marked.

Author(s)


and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`is.marked.ppp, is.marked.ppm`
is.marked.ppm

Test Whether A Point Process Model is Marked

Description

Tests whether a fitted point process model involves “marks” attached to the points.

Usage

```
S3 method for class 'ppm'
is.marked(X, ...)

S3 method for class 'lppm'
is.marked(X, ...)
```

Arguments

- **X**
  - Fitted point process model (object of class "ppm") usually obtained from `ppm`. Alternatively, a model of class "lppm".
  - ... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the `longleaf` dataset contains the locations of trees, each tree being marked by its diameter; the `amacrine` dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell.

The argument `X` is a fitted point process model (an object of class "ppm") typically obtained by fitting a model to point pattern data using `ppm`.

This function returns TRUE if the original data (to which the model `X` was fitted) were a marked point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks (i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if `X` is a model that was fitted to a marked point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
is.marked.ppp

See Also

is.marked, is.marked.ppp

Examples

X <- lansing
# Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.marked(fit1)
# TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.marked(fit2)
# TRUE

# Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.marked(fit3)
# FALSE

is.marked.ppp  Test Whether A Point Pattern is Marked

Description

Tests whether a point pattern has “marks” attached to the points.

Usage

## S3 method for class 'ppp'
is.marked(X, na.action="warn", ...)

Arguments

X  Point pattern (object of class "ppp")
na.action  String indicating what to do if NA values are encountered amongst the marks.
Options are "warn", "fatal" and "ignore".
...  Ignored.
Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell.

This function tests whether the point pattern $X$ contains or involves marked points. It is a method for the generic function is.marked.

The argument na.action determines what action will be taken if the point pattern has a vector of marks but some or all of the marks are NA. Options are “fatal” to cause a fatal error; “warn” to issue a warning and then return TRUE; and “ignore” to take no action except returning TRUE.

Value

Logical value, equal to TRUE if $X$ is a marked point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.marked, is.marked.ppm

Examples

data(cells)
is.marked(cells)  #FALSE
data(longleaf)
is.marked(longleaf)  #TRUE

Description

Generic function to test whether a given object (usually a point pattern or something related to a point pattern) has “marks” attached to the points which classify the points into several types.

Usage

is.multitype(X, ...)

Arguments

X  Object to be inspected
...  Other arguments.
Details

“Marks” are observations attached to each point of a point pattern. For example, the longleaf dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell. Other objects related to point patterns, such as point process models, may involve marked points.

This function tests whether the object X contains or involves marked points, and that the marks are a factor.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the longleaf dataset is not multitype (the marks are real numbers).

This function is generic; methods are provided for point patterns (objects of class "ppp") and point process models (objects of class "ppm").

Value

Logical value, equal to TRUE if X is multitype.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.multitype.ppp, is.multitype.ppm

Description

Tests whether a fitted point process model involves “marks” attached to the points that classify the points into several types.

Usage

```r
S3 method for class 'ppm'
is.multitype(X, ...)

S3 method for class 'lppm'
is.multitype(X, ...)
```

Arguments

- `X` Fitted point process model (object of class "ppm") usually obtained from ppm. Alternatively a model of class "lppm".
- `...` Ignored.
Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a multitype point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks (i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a multitype point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.multitype.is.multitype.ppp

Examples

X <- lansing
# Multitype point pattern --- trees marked by species

fit1 <- ppm(X, - marks, Poisson())
is.multitype(fit1)
# TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.multitype(fit2)
# TRUE

# Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.multitype(fit3)
# FALSE
is.multitype.ppp

Test Whether A Point Pattern is Multitype

Description
Tests whether a point pattern has “marks” attached to the points which classify the points into several types.

Usage

```r
S3 method for class 'ppp'
is.multitype(x, na.action="warn", ...)

S3 method for class 'lpp'
is.multitype(x, na.action="warn", ...)
```

Arguments

- `x` Point pattern (object of class "ppp" or "lpp")
- `na.action` String indicating what to do if NA values are encountered amongst the marks. Options are "warn", "fatal" and "ignore".
- `...` Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark attached to the location of the cell.

This function tests whether the point pattern `x` contains or involves marked points, and that the marks are a factor. It is a method for the generic function `is.multitype`.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the longleaf dataset is not multitype (the marks are real numbers).

The argument `na.action` determines what action will be taken if the point pattern has a vector of marks but some or all of the marks are NA. Options are "fatal" to cause a fatal error; "warn" to issue a warning and then return TRUE; and "ignore" to take no action except returning TRUE.

Value

Logical value, equal to TRUE if `x` is a multitype point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
is.owin

Test Whether An Object Is A Window

Description

Checks whether its argument is a window (object of class "owin").

Usage

is.owin(x)

Arguments

x Any object.

Details

This function tests whether the object x is a window object of class "owin". See owin.object for details of this class.

The result is determined to be TRUE if x inherits from "owin", i.e. if x has "owin" amongst its classes.

Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
is.ppm  Test Whether An Object Is A Fitted Point Process Model

Description

Checks whether its argument is a fitted point process model (object of class "ppm", "kppm", "lppm" or "slrm").

Usage

is.ppm(x)
is.kppm(x)
is.lppm(x)
is.slrm(x)

Arguments

x  Any object.

Details

These functions test whether the object x is a fitted point process model object of the specified class. The result of is.ppm(x) is TRUE if x has "ppm" amongst its classes, and otherwise FALSE. Similarly for the other functions.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

is.ppp  Test Whether An Object Is A Point Pattern

Description

Checks whether its argument is a point pattern (object of class "ppp").

Usage

is.ppp(x)
is.rectangle

Arguments

x Any object.

Details

This function tests whether the object x is a point pattern object of class "ppp". See ppm.object for details of this class.

The result is determined to be TRUE if x inherits from "ppp", i.e. if x has "ppp" amongst its classes.

Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

is.rectangle Determine Type of Window

Description

Determine whether a window is a rectangle, a polygonal region, or a binary mask.

Usage

is.rectangle(w)
ispolygonal(w)
is.mask(w)

Arguments

w Window to be inspected. An object of class "owin".

Details

These simple functions determine whether a window w (object of class "owin") is a rectangle (is.rectangle(w) = TRUE), a domain with polygonal boundary (is.polygonal(w) = TRUE), or a binary pixel mask (is.mask(w) = TRUE).

Value

Logical value, equal to TRUE if w is a window of the specified type.
is.stationary

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
owin

is.stationary Recognise Stationary and Poisson Point Process Models

Description
Given a point process model that has been fitted to data, determine whether the model is a stationary point process, and whether it is a Poisson point process.

Usage

is.stationary(x)
## S3 method for class 'ppm'
is.stationary(x)
## S3 method for class 'kppm'
is.stationary(x)
## S3 method for class 'lppm'
is.stationary(x)
## S3 method for class 'slrm'
is.stationary(x)
## S3 method for class 'rmhmodel'
is.stationary(x)

is.poisson(x)
## S3 method for class 'ppm'
is.poisson(x)
## S3 method for class 'kppm'
is.poisson(x)
## S3 method for class 'lppm'
is.poisson(x)
## S3 method for class 'slrm'
is.poisson(x)
## S3 method for class 'rmhmodel'
is.poisson(x)
## S3 method for class 'interact'
is.poisson(x)

Arguments
x A fitted spatial point process model (object of class "ppm", "kppm", "lppm" or "slrm") or similar object.
is.stationary

Details

The argument x represents a fitted spatial point process model or a similar object.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for the classes "ppm" (Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial logistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algorithm). Additionally is.poisson has a method for class "interact" (interaction structures for Gibbs models).

is.poisson.kppm will return FALSE, unless the model x is degenerate: either x has zero intensity so that its realisations are empty with probability 1, or it is a log-Gaussian Cox process where the log intensity has zero variance.

is.poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.marked to determine whether a model is a marked point process.

summary.ppm for detailed information.

Model-fitting functions ppm, kppm, lppm, slrm.

Examples

data(cells)
data(redwood)

fit <- ppm(cells, ~x)
is.stationary(fit)
is.poisson(fit)

fut <- kppm(redwood, ~1, "MatClust")
is.stationary(fut)
is.poisson(fut)

fot <- slrm(cells ~ x)
is.stationary(fot)
is.poisson(fot)
**issubset.owin** **Determine Whether One Window is Contained In Another**

**Description**
Tests whether window A is a subset of window B.

**Usage**
issubset.owin(A, B)

**Arguments**
- `A`: A window object (see Details).
- `B`: A window object (see Details).

**Details**
This function tests whether the window A is a subset of the window B.

The arguments A and B must be window objects (either objects of class "owin", or data that can be coerced to this class by `as.owin`).

Various algorithms are used, depending on the geometrical type of the two windows.

Note that if B is not rectangular, the algorithm proceeds by discretising A, converting it to a pixel mask using `as.mask`. In this case the resulting answer is only “approximately correct”. The accuracy of the approximation can be controlled: see `as.mask`.

**Value**
Logical scalar; TRUE if A is a sub-window of B, otherwise FALSE.

**Author(s)**
and Rolf Turner <r.turner@auckland.ac.nz>

**Examples**
w1 <- as.owin(c(0,1,0,1))
w2 <- as.owin(c(-1,2,-1,2))
issubset.owin(w1,w2) # Returns TRUE.
issubset.owin(w2,w1) # Returns FALSE.
**Description**

Compute various summary functions for a point pattern using a point-and-click interface.

**Usage**

```r
istat(x, xname)
```

**Arguments**

- `x` The spatial point pattern to be analysed. An object of class "ppp".
- `xname` Optional. Character string to use as the title of the dataset.

**Details**

This command launches an interactive (point-and-click) interface which offers a choice of spatial summary functions that can be applied to the point pattern `x`.

The selected summary function is computed for the point pattern `x` and plotted in a popup window.

The selection of functions includes `Kest`, `Lest`, `pcf`, `Fest`, `Gest` and `Jest`. For the function `pcf` it is possible to control the bandwidth parameter `bw`.

There is also an option to show simulation envelopes of the summary function.

**Value**

`NULL`.

**Note**

Before adjusting the bandwidth parameter `bw`, it is advisable to select *No simulation envelopes* to save a lot of computation time.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`iplot`
Examples

```r
if(interactive()) {
 data(swedishpines)
 istsat(swedishpines)
}
```

---

**japanesepines**  
*Japanese Pines Point Pattern*

---

**Description**

The data give the locations of Japanese black pine saplings in a square sampling region in a natural forest. The observations were originally collected by Numata (1961).

These data are used as a standard example in the textbook of Diggle (2003); see pages 1, 14, 19, 22, 24, 56–57 and 61.

**Usage**

```r
data(japanesepines)
```

**Format**

An object of class "ppp" representing the point pattern of tree locations in a 5.7 x 5.7 metre square, rescaled to the unit square and rounded to two decimal places.

See `ppp.object` for details of the format of a point pattern object.

**Source**

Diggle (2003), obtained from Numata (1961)

**References**


Description

For a multitype point pattern, estimate the multitype $J$ function summarising the interpoint dependence between points of type $i$ and of type $j$.

Usage

```
jcross(X, i, j, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the multitype $J$ function $J_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
- **i**: The type (mark value) of the points in $X$ from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.
- **j**: The type (mark value) of the points in $X$ to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.
- **eps**: A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- **r**: Optional. Numeric vector. The values of the argument $r$ at which the function $J_{ij}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **breaks**: This argument is for internal use only.
- **...**: Ignored.
- **correction**: Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best".

Details

This function `jcross` and its companions `jdot` and `jmulti` are generalisations of the function `jest` to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible "colours" or "types". In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to `as.ppp`. It must be a marked point pattern, and the mark vector $X$`$marks` must be a factor. The
argument \( i \) will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i = 3 \) will be interpreted as the number 3, \textbf{not} the 3rd smallest level).

The “type \( i \) to type \( j \)” multitype \( J \) function of a stationary multitype point process \( X \) was introduced by Van Lieshout and Baddeley (1999). It is defined by

\[
J_{ij}(r) = \frac{1 - G_{ij}(r)}{1 - F_j(r)}
\]

where \( G_{ij}(r) \) is the distribution function of the distance from a type \( i \) point to the nearest point of type \( j \), and \( F_j(r) \) is the distribution function of the distance from a fixed point in space to the nearest point of type \( j \) in the pattern.

An estimate of \( J_{ij}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the subprocess of type \( i \) points is independent of the subprocess of points of type \( j \), then \( J_{ij}(r) \equiv 1 \). Hence deviations of the empirical estimate of \( J_{ij} \) from the value 1 may suggest dependence between types.

This algorithm estimates \( J_{ij}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X \$ \text{window} \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \texttt{Jest}, using the Kaplan-Meier and border corrections. The main work is done by \texttt{Gmulti} and \texttt{Fest}.

The argument \( r \) is the vector of values for the distance \( r \) at which \( J_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must exceed the radius of the largest disc contained in the window.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing six numeric columns

- \( J \) the recommended estimator of \( J_{ij}(r) \), currently the Kaplan-Meier estimator.
- \( r \) the values of the argument \( r \) at which the function \( J_{ij}(r) \) has been estimated
- \( \text{km} \) the Kaplan-Meier estimator of \( J_{ij}(r) \)
- \( \text{rs} \) the “reduced sample” or “border correction” estimator of \( J_{ij}(r) \)
- \( \text{han} \) the Hanisch-style estimator of \( J_{ij}(r) \)
- \( \text{un} \) the “uncorrected” estimator of \( J_{ij}(r) \) formed by taking the ratio of uncorrected empirical estimators of \( 1 - G_{ij}(r) \) and \( 1 - F_j(r) \), see \texttt{Gdot} and \texttt{Fest}.
- \( \text{theo} \) the theoretical value of \( J_{ij}(r) \) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of \texttt{Gcross} and \texttt{Fest} for the point pattern.

\textbf{Warnings}

The arguments \( i \) and \( j \) are always interpreted as levels of the factor \( X \$ \text{marks} \). They are converted to character strings if they are not already character strings. The value \( i = 1 \) does \textbf{not} refer to the first level of the factor.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`jdot`, `jest`, `jmulti`

Examples

```r
Lansing woods data: 6 types of trees
data(lansing)

Jhm <- Jcross(lansing, "hickory", "maple")
diagnostic plot for independence between hickories and maples
plot(Jhm)

synthetic example with two types "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jcross(pp)
```

### jdot

**Multitype J Function (i-to-any)**

**Description**

For a multitype point pattern, estimate the multitype **J** function summarising the interpoint dependence between the type **i** points and the points of any type.

**Usage**

`jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)`

**Arguments**

- **X** The observed point pattern, from which an estimate of the multitype **J** function \(J_{i\bullet}(r)\) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
i The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \( \text{marks}(X) \).

eps A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.

r numeric vector. The values of the argument \( r \) at which the function \( J_{i \star}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best".

Details

This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible "colours" or "types". In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor. The argument \( i \) will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i \) will be interpreted as the number \( 3 \), not the 3rd smallest level.)

The "type \( i \) to any type" multitype \( J \) function of a stationary multitype point process \( X \) was introduced by Van Lieshout and Baddeley (1999). It is defined by

\[
J_{i \star}(r) = \frac{1 - G_{i \star}(r)}{1 - F_{\star}(r)}
\]

where \( G_{i \star}(r) \) is the distribution function of the distance from a type \( i \) point to the nearest other point of the pattern, and \( F_{\star}(r) \) is the distribution function of the distance from a fixed point in space to the nearest point of the pattern.

An estimate of \( J_{i \star}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the pattern is a marked Poisson point process, then \( J_{i \star}(r) \equiv 1 \). If the subprocess of type \( i \) points is independent of the subprocess of points of all types not equal to \( i \), then \( J_{i \star}(r) \) equals \( J_{ii}(r) \), the ordinary \( J \) function (see Jest and Van Lieshout and Baddeley (1996)) of the points of type \( i \). Hence deviations from zero of the empirical estimate of \( J_{i \star} - J_{ii} \) may suggest dependence between types.

This algorithm estimates \( J_{i \star}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X \$ \text{window} \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier and border corrections. The main work is done by Gmulti and Fest.
The argument \( r \) is the vector of values for the distance \( r \) at which \( J_{i*}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must exceed the radius of the largest disc contained in the window.

**Value**

An object of class "fv" (see `fv.object`).

Essentially a data frame containing six numeric columns

- \( J \) the recommended estimator of \( J_{i*}(r) \), currently the Kaplan-Meier estimator.
- \( r \) the values of the argument \( r \) at which the function \( J_{i*}(r) \) has been estimated
- \( km \) the Kaplan-Meier estimator of \( J_{i*}(r) \)
- \( rs \) the “reduced sample” or “border correction” estimator of \( J_{i*}(r) \)
- \( han \) the Hanisch-style estimator of \( J_{i*}(r) \)
- \( un \) the “uncorrected” estimator of \( J_{i*}(r) \) formed by taking the ratio of uncorrected empirical estimators of \( 1 - G_{i*}(r) \) and \( 1 - F_{i*}(r) \), see `Gdot` and `Fest`.
- \( theo \) the theoretical value of \( J_{i*}(r) \) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of `Gdot` and `Fest` for the point pattern.

**Warnings**

The argument \( i \) is interpreted as a level of the factor \( X \$\text{marks} \). It is converted to a character string if it is not already a character string. The value \( i=1 \) does not refer to the first level of the factor.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

`Jcross`, `Jest`, `Jmulti`
## Examples

```r
Lansing woods data: 6 types of trees
data(lansing)

Jh. <- Jdot(lansing, "hickory")
plot(Jh.)

diagnostic plot for independence between hickories and other trees
Jhh <- Jest(lansing[lansing$marks == "hickory",])
plot(Jhh, add=TRUE, legendpos="bottom")

Not run:
synthetic example with two marks "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a", "b"), 30, replace=TRUE))
J <- Jdot(pp, "a")

End(Not run)
```

---

### Jest

Estimate the J-function

**Description**

Estimates the summary function \( J(r) \) for a point pattern in a window of arbitrary shape.

**Usage**

```r
Jest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)
```

**Arguments**

- **X**: The observed point pattern, from which an estimate of \( J(r) \) will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **...**: Ignored.
- **eps**: the resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
- **r**: vector of values for the argument \( r \) at which \( J(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- **breaks**: This argument is for internal use only.
- **correction**: Optional. Character string specifying the choice of edge correction(s) in `Fest` and `Gest`. See Details.
Details

The $J$ function (Van Lieshout and Baddeley, 1996) of a stationary point process is defined as

$$J(r) = \frac{1 - G(r)}{1 - F(r)}$$

where $G(r)$ is the nearest neighbour distance distribution function of the point process (see Gest) and $F(r)$ is its empty space function (see Fest).

For a completely random (uniform Poisson) point process, the $J$-function is identically equal to 1. Deviations $J(r) < 1$ or $J(r) > 1$ typically indicate spatial clustering or spatial regularity, respectively. The $J$-function is one of the few characteristics that can be computed explicitly for a wide range of point processes. See Van Lieshout and Baddeley (1996), Baddeley et al (2000), Thonnes and Van Lieshout (1999) for further information.

An estimate of $J$ derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern. The estimate of $J(r)$ is compared against the constant function $1$. Deviations $J(r) < 1$ or $J(r) > 1$ may suggest spatial clustering or spatial regularity, respectively.

This algorithm estimates the $J$-function from the point pattern $x$. It assumes that $x$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $x$ as $x$window) may have arbitrary shape.

The argument $x$ is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The functions Fest and Gest are called to compute estimates of $F(r)$ and $G(r)$ respectively. These estimates are then combined by simply taking the ratio $J(r) = (1 - G(r))/(1 - F(r))$.

In fact several different estimates are computed using different edge corrections (Baddeley, 1998).

The Kaplan-Meier estimate (returned as km) is the ratio $J = (1 - G)/(1 - F)$ of the Kaplan-Meier estimates of $1 - F$ and $1 - G$ computed by Fest and Gest respectively. This is computed if correction=NULL or if correction includes "km".

The Hanisch-style estimate (returned as han) is the ratio $J = (1 - G)/(1 - F)$ where $F$ is the Chiu-Stoyan estimate of $F$ and $G$ is the Hanisch estimate of $G$. This is computed if correction=NULL or if correction includes "cs" or "han".

The reduced-sample or border corrected estimate (returned as rs) is the same ratio $J = (1 - G)/(1 - F)$ of the border corrected estimates. This is computed if correction=NULL or if correction includes "rs" or "border".

These edge-corrected estimators are slightly biased for $J$, since they are ratios of approximately unbiased estimators. The logarithm of the Kaplan-Meier estimate is exactly unbiased for $\log J$.

The uncorrected estimate (returned as un and computed only if correction includes "none") is the ratio $J = (1 - G)/(1 - F)$ of the uncorrected ("raw") estimates of the survival functions of $F$ and $G$, which are the empirical distribution functions of the empty space distances Fest(x, ...)raw and of the nearest neighbour distances Gest(x, ...)raw. The uncorrected estimates of $F$ and $G$ are severely biased. However the uncorrected estimate of $J$ is approximately unbiased (if the process is close to Poisson); it is insensitive to edge effects, and should be used when edge effects are severe (see Baddeley et al, 2000).
The algorithm for `fest` uses two discrete approximations which are controlled by the parameter \( \varepsilon \) and by the spacing of values of \( r \) respectively. See `fest` for details. First-time users are strongly advised not to specify these arguments.

Note that the value returned by `jest` includes the output of `fest` and `gest` as attributes (see the last example below). If the user is intending to compute the \( F, G \) and \( J \) functions for the point pattern, it is only necessary to call `jest`.

**Value**

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

Essentially a data frame containing

- \( r \) the vector of values of the argument \( r \) at which the function \( J \) has been estimated
- \( rs \) the "reduced sample" or "border correction" estimator of \( J(r) \) computed from the border-corrected estimates of \( F \) and \( G \)
- \( km \) the spatial Kaplan-Meier estimator of \( J(r) \) computed from the Kaplan-Meier estimates of \( F \) and \( G \)
- \( han \) the Hanisch-style estimator of \( J(r) \) computed from the Hanisch estimate of \( G \) and the Chiu-Stoyan estimate of \( F \)
- \( un \) the uncorrected estimate of \( J(r) \) computed from the uncorrected estimates of \( F \) and \( G \)
- \( theo \) the theoretical value of \( J(r) \) for a stationary Poisson process: identically equal to 1

The data frame also has attributes

- \( F \) the output of `fest` for this point pattern, containing three estimates of the empty space function \( F(r) \) and an estimate of its hazard function
- \( G \) the output of `gest` for this point pattern, containing three estimates of the nearest neighbour distance distribution function \( G(r) \) and an estimate of its hazard function

**Note**

Sizeable amounts of memory may be needed during the calculation.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


See Also

`jinhom, fest, gest, kest, km.rs, reduced.sample, kaplan.meier`

Examples

```r
data(cells)
J <- Jest(cells, 0.01)
plot(J, main="cells data")
values are far above J = 1, indicating regular pattern

data(redwood)
J <- Jest(redwood, 0.01, legendpos="center")
plot(J, main="redwood data")
values are below J = 1, indicating clustered pattern
```

### jinhom

*Inhomogeneous J-function*

#### Description

Estimates the inhomogeneous *J* function of a non-stationary point pattern.

#### Usage

```
jinhom(X, lambda = NULL, lmin = NULL, ...,
 sigma = NULL, varcov = NULL,
 r = NULL, breaks = NULL, update = TRUE)
```
Arguments

- **X**: The observed data point pattern, from which an estimate of the inhomogeneous $J$ function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`

- **lambda**: Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm") or a function $\lambda(x,y)$ which can be evaluated to give the intensity value at any location.

- **lmin**: Optional. The minimum possible value of the intensity over the spatial domain. A positive numerical value.

- **sigma, varcov**: Optional arguments passed to `density.ppp` to control the smoothing bandwidth, when `lambda` is estimated by kernel smoothing.

- **...**: Extra arguments passed to `as.mask` to control the pixel resolution, or passed to `density.ppp` to control the smoothing bandwidth.

- **r**: vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.

- **breaks**: This argument is for internal use only.

- **update**: Logical. If `lambda` is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data $X$ (using `update.ppm` or `update.kppm`) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to $X$.

Details

This command computes estimates of the inhomogeneous $J$-function (Van Lieshout, 2010) of a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the $J$ function for homogeneous point patterns computed by `Jest`.

The argument $X$ should be a point pattern (object of class "ppp").

The inhomogeneous $J$ function is computed as $J_{inhom}(r) = (1 - G_{inhom}(r))/(1 - F_{inhom}(r))$ where $G_{inhom}, F_{inhom}$ are the inhomogeneous $G$ and $F$ functions computed using the border correction (equations (7) and (6) respectively in Van Lieshout, 2010).

The argument `lambda` should supply the (estimated) values of the intensity function $\lambda$ of the point process. It may be either

- **a numeric vector** containing the values of the intensity function at the points of the pattern $X$.

- **a pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.

- **a fitted point process model** (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If update=TRUE the model will first be refitted to the data $X$ before the trend is computed.)

- **a function** which can be evaluated to give values of the intensity at any locations.

**omitted**: if `lambda` is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.
If \( \lambda \) is a numeric vector, then its length should be equal to the number of points in the pattern \( X \). The value \( \lambda[i] \) is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern \( X \). Each value must be a positive number; NA’s are not allowed.

If \( \lambda \) is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \( \lambda \) using \texttt{blur}, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \( \lambda \) is a function, then it will be evaluated in the form \( \lambda(x, y) \) where \( x \) and \( y \) are vectors of coordinates of the points of \( X \). It should return a numeric vector with length equal to the number of points in \( X \).

If \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate \( \lambda[i] \) for the point \( X[i] \) is computed by removing \( X[i] \) from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point \( X[i] \). The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

**Value**

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

**Author(s)**

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \texttt{http://www.maths.uwa.edu.au/~adrian/} and Ege Rubak.

**References**


**See Also**

\texttt{Ginmother, Finhom, Jest}

**Examples**

```r
Not run:
plot(Jinhom(swedishpines, sigma=bw.diggle, adjust=2))

End(Not run)
plot(Jinhom(swedishpines, sigma=10))
```
Description
For a marked point pattern, estimate the multitype $J$ function summarising dependence between the points in subset $I$ and those in subset $J$.

Usage
\[
\text{jmulti}(X, I, J, \text{eps}=\text{NULL}, r=\text{NULL}, \text{breaks}=\text{NULL}, \ldots, \text{disjoint}=\text{NULL}, \text{correction}=\text{NULL})
\]

Arguments
- **X** The observed point pattern, from which an estimate of the multitype distance distribution function $J_{I,J}(r)$ will be computed. It must be a marked point pattern. See under Details.
- **I** Subset of points of X from which distances are measured. See Details.
- **J** Subset of points in X to which distances are measured. See Details.
- **eps** A positive number. The pixel resolution of the discrete approximation to Euclidean distance (see \text{jest}). There is a sensible default.
- **r** numeric vector. The values of the argument $r$ at which the distribution function $J_{I,J}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **breaks** This argument is for internal use only.
- **...** Ignored.
- **disjoint** Optional flag indicating whether the subsets I and J are disjoint. If missing, this value will be computed by inspecting the vectors I and J.
- **correction** Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best".

Details
The function \text{jmulti} generalises \text{Jest} (for unmarked point patterns) and \text{Jdot} and \text{Jcross} (for multitype point patterns) to arbitrary marked point patterns.

Suppose $X_I$, $X_J$ are subsets, possibly overlapping, of a marked point process. Define

\[
J_{I,J}(r) = \frac{1 - G_{I,J}(r)}{1 - F_J(r)}
\]

where $F_J(r)$ is the cumulative distribution function of the distance from a fixed location to the nearest point of $X_J$, and $G_{I,J}(r)$ is the distribution function of the distance from a typical point of $X_I$ to the nearest distinct point of $X_J$. 
The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \as.ppp\.

The arguments \( I \) and \( J \) specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to \( \text{npoints}(X) \), or integer vectors with entries in the range 1 to \( \text{npoints}(X) \), or negative integer vectors.

Alternatively, \( I \) and \( J \) may be \textbf{functions} that will be applied to the point pattern \( X \) to obtain index vectors. If \( I \) is a function, then evaluating \( I(X) \) should yield a valid subset index. This option is useful when generating simulation envelopes using \envelope\.

It is assumed that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X subsidized window \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \jest\.

The argument \( r \) is the vector of values for the distance \( r \) at which \( J_{ij}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \texttt{hist}) for the computation of histograms of distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts. In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \max(r) \) must be larger than the radius of the largest disc contained in the window. Furthermore, the successive entries of \( r \) must be finely spaced.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing six numeric columns:

- \( r \): the values of the argument \( r \) at which the function \( J_{ij}(r) \) has been estimated
- \( rs \): the “reduced sample” or “border correction” estimator of \( J_{ij}(r) \)
- \( km \): the spatial Kaplan-Meier estimator of \( J_{ij}(r) \)
- \( han \): the Hanisch-style estimator of \( J_{ij}(r) \)
- \( un \): the uncorrected estimate of \( J_{ij}(r) \), formed by taking the ratio of uncorrected empirical estimators of \( 1 - G_{ij}(r) \) and \( 1 - F_J(r) \), see \texttt{Gdot} and \texttt{Fest}.\n- \( theo \): the theoretical value of \( J_{ij}(r) \) for a marked Poisson process with the same estimated intensity, namely 1.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \href{http://www.maths.uwa.edu.au/~adrian/}{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{References}

See Also

jcross, jdot, Jest

Examples

data(longleaf)
  # Longleaf Pine data: marks represent diameter

Jm <- Jmulti(longleaf, marks(longleaf) <= 15, marks(longleaf) >= 25)
plot(Jm)

K3est

K-function of a Three-Dimensional Point Pattern

Description

Estimates the \( K \)-function from a three-dimensional point pattern.

Usage

K3est(X, ..., rmax = NULL, nrval = 128,
  correction = c("translation", "isotropic"),
  ratio=FALSE)

Arguments

X Three-dimensional point pattern (object of class "pp3").
...

rmax Optional. Maximum value of argument \( r \) for which \( K_3(r) \) will be estimated.

nrval Optional. Number of values of \( r \) for which \( K_3(r) \) will be estimated. A large value of nrval is required to avoid discretisation effects.

correction Optional. Character vector specifying the edge correction(s) to be applied. See Details.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

For a stationary point process \( \Phi \) in three-dimensional space, the three-dimensional \( K \) function is

\[
K_3(r) = \frac{1}{\lambda} E(N(\Phi, x, r) \mid x \in \Phi)
\]

where \( \lambda \) is the intensity of the process (the expected number of points per unit volume) and \( N(\Phi, x, r) \) is the number of points of \( \Phi \), other than \( x \) itself, which fall within a distance \( r \) of \( x \). This is the
three-dimensional generalisation of Ripley’s $K$ function for two-dimensional point processes (Ripley, 1977).

The three-dimensional point pattern $X$ is assumed to be a partial realisation of a stationary point process $\Phi$. The distance between each pair of distinct points is computed. The empirical cumulative distribution function of these values, with appropriate edge corrections, is renormalised to give the estimate of $K_3(r)$.

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley, 1977; Baddeley et al, 1993).

Value

A function value table (object of class ”fv”) that can be plotted, printed or coerced to a data frame containing the function values.

Author(s)


References


See Also

F3est, G3est, pcf3est

Examples

X <- rpoispp3(42)
Z <- K3est(X)
if(interactive()) plot(Z)
Kaplan-Meier Estimator using Histogram Data

Description

Compute the Kaplan-Meier estimator of a survival time distribution function, from histogram data

Usage

kaplan.meier(obs, nco, breaks, upperobs=0)

Arguments

obs vector of n integers giving the histogram of all observations (censored or uncensored survival times)
nco vector of n integers giving the histogram of uncensored observations (those survival times that are less than or equal to the censoring time)
breaks Vector of n + 1 breakpoints which were used to form both histograms.
upperobs Number of observations beyond the rightmost breakpoint, if any.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose \( T_i \) are the survival times of individuals \( i = 1, \ldots, M \) with unknown distribution function \( F(t) \) which we wish to estimate. Suppose these times are right-censored by random censoring times \( C_i \). Thus the observations consist of right-censored survival times \( \tilde{T}_i = \min(T_i, C_i) \) and non-censoring indicators \( D_i = 1 \{ T_i \leq C_i \} \) for each \( i \).

If the number of observations \( M \) is large, it is efficient to use histograms. Form the histogram \( \text{obs} \) of all observed times \( \tilde{T}_i \). That is, \( \text{obs}[k] \) counts the number of values \( \tilde{T}_i \) in the interval \( [\text{breaks}[k], \text{breaks}[k+1]) \) for \( k > 1 \) and \( [\text{breaks}[1], \text{breaks}[2]) \) for \( k = 1 \). Also form the histogram \( \text{nco} \) of all uncensored times, i.e. those \( \tilde{T}_i \) such that \( D_i = 1 \). These two histograms are the arguments passed to kaplan.meier.

The vectors \( \text{km} \) and \( \lambda \) returned by kaplan.meier are (histogram approximations to) the Kaplan-Meier estimator of \( F(t) \) and its hazard rate \( \lambda(t) \). Specifically, \( \text{km}[k] \) is an estimate of \( F(\text{breaks}[k+1]) \), and \( \lambda[k] \) is an estimate of the average of \( \lambda(t) \) over the interval \( (\text{breaks}[k], \text{breaks}[k+1]) \).

The histogram breaks must include 0. If the histogram breaks do not span the range of the observations, it is important to count how many survival times \( \tilde{T}_i \) exceed the rightmost breakpoint, and give this as the value upperobs.

Value

A list with two elements:

km Kaplan-Meier estimate of the survival time c.d.f. \( F(t) \)
lambda corresponds to the Nelson-Aalen estimate of the hazard rate \( \lambda(t) \)

These are numeric vectors of length \( n \).

**Author(s)**

and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

reduced.sample, km.rs

---

**Kcom**

*Model Compensator of K Function*

**Description**

Given a point process model fitted to a point pattern dataset, this function computes the *compensator* of the \( K \) function based on the fitted model (as well as the usual nonparametric estimates of \( K \) based on the data alone). Comparison between the nonparametric and model-compensated \( K \) functions serves as a diagnostic for the model.

**Usage**

```r
Kcom(object, r = NULL, breaks = NULL, ..., correction = c("border", "isotropic", "translate"), conditional = !is.poisson(object), restrict = FALSE, model = NULL, trend = ~1, interaction = Poisson(), rbord = reach(interaction), compute.var = TRUE, truecoef = NULL, hi.res = NULL)
```

**Arguments**

- **object**
  Object to be analysed. Either a fitted point process model (object of class "ppm") or a point pattern (object of class "ppp") or quadrature scheme (object of class "quad").
- **r**
  Optional. Vector of values of the argument \( r \) at which the function \( K(r) \) should be computed. This argument is usually not specified. There is a sensible default.
- **breaks**
  This argument is for advanced use only.
- **...**
  Ignored.
- **correction**
  Optional vector of character strings specifying the edge correction(s) to be used. See `kest` for options.
- **conditional**
  Optional. Logical value indicating whether to compute the estimates for the conditional case. See Details.
Kcom

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE) or the reweighting estimator (restrict=FALSE, the default). Applies only if conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to the data using update.ppm, if object is a point pattern. Overrides the arguments trend,interaction,rbord.

trend,interaction,rbord Optional. Arguments passed to ppm to fit a point process model to the data, if object is a point pattern. See ppm for details.

compute.var Logical value indicating whether to compute the Poincare variance bound for the residual $K$ function (calculation is only implemented for the isotropic correction).

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true coefficient vector of the point process model, in calculating the diagnostic. Incompatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present, the model will be re-fitted at high resolution as specified by these parameters. The coefficients of the resulting fitted model will be taken as the true coefficients. Then the diagnostic will be computed for the default quadrature scheme, but using the high resolution coefficients.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a point pattern dataset. It computes an estimate of the $K$ function of the dataset, together with a model compensator of the $K$ function, which should be approximately equal if the model is a good fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point process model will be fitted to it, by calling ppm using the arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the border correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and computes the standard nonparametric estimates of the $K$ function. It then also computes the model compensator of the $K$ function. The different function estimates are returned as columns in a data frame (of class "fv").

The argument correction determines the edge correction(s) to be applied. See Kest for explanation of the principle of edge corrections. The following table gives the options for the correction argument, and the corresponding column names in the result:

<table>
<thead>
<tr>
<th>correction</th>
<th>description of correction</th>
<th>nonparametric</th>
<th>compensator</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;isotropic&quot;</td>
<td>Ripley isotropic correction</td>
<td>iso</td>
<td>icom</td>
</tr>
<tr>
<td>&quot;translate&quot;</td>
<td>Ohser-Stoyan translation correction</td>
<td>trans</td>
<td>tcom</td>
</tr>
<tr>
<td>&quot;border&quot;</td>
<td>border correction</td>
<td>border</td>
<td>bcom</td>
</tr>
</tbody>
</table>
The nonparametric estimates can all be expressed in the form

\[ \hat{K}(r) = \sum_i \sum_{j<i} e(x_i, x_j, r, x) I\{d(x_i, x_j) \leq r\} \]

where \( x_i \) is the \( i \)-th data point, \( d(x_i, x_j) \) is the distance between \( x_i \) and \( x_j \), and \( e(x_i, x_j, r, x) \) is a term that serves to correct edge effects and to re-normalise the sum. The corresponding model compensator is

\[ C \hat{K}(r) = \int_W \lambda(u, x) \sum_j e(u, x_j, r, x \cup u) I\{d(u, x_j) \leq r\} \]

where the integral is over all locations \( u \) in the observation window, \( \lambda(u, x) \) denotes the conditional intensity of the model at the location \( u \), and \( x \cup u \) denotes the data point pattern \( x \) augmented by adding the extra point \( u \).

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed. If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects. The modification is determined by the arguments conditional and restrict. The value of conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE. See Appendix D of Baddeley, Rubak and Møller (2011). Thus, by default, the reweighting estimator is computed for non-Poisson models.

The nonparametric estimates of \( K(r) \) are approximately unbiased estimates of the \( K \)-function, assuming the point process is stationary. The model compensators are unbiased estimates of the mean values of the corresponding nonparametric estimates, assuming the model is true. Thus, if the model is a good fit, the mean value of the difference between the nonparametric estimates and model compensators is approximately zero.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Ege Rubak and Jesper Møller.

References


See Also

Related functions: Kres, Kest.
Point process models: ppm.
Examples

```r
fit0 <- ppm(cells, ~1) # uniform Poisson

if(interactive()) {
 plot(Kcom(fit0))
 # compare the isotropic-correction estimates
 plot(Kcom(fit0), cbind(iso, icom) ~ r)
 # uniform Poisson is clearly not correct
}

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kcom(fit1)
K1
if(interactive()) {
 plot(K1)
 plot(K1, cbind(iso, icom) ~ r)
 plot(K1, cbind(trans, tcom) ~ r)
 # how to plot the difference between nonparametric estimates and compensators
 plot(K1, iso - icom ~ r)
 # fit looks approximately OK; try adjusting interaction distance
}

fit2 <- ppm(cells, ~1, Strauss(0.12))

K2 <- Kcom(fit2)
if(interactive()) {
 plot(K2)
 plot(K2, cbind(iso, icom) ~ r)
 plot(K2, iso - icom ~ r)
}
```

### Description

For a multitype point pattern, estimate the multitype $K$ function which counts the expected number of points of type $j$ within a given distance of a point of type $i$.

### Usage

```r
Kcross(X, i, j, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)
```

### Arguments

- **X**: The observed point pattern, from which an estimate of the cross type $K$ function $K_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \( \text{marks}(X) \).

The type (mark value) of the points in \( X \) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of \( \text{marks}(X) \).

numeric vector. The values of the argument \( r \) at which the distribution function \( K_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

This argument is for internal use only.

A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

Ignored.

Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

This function \( kcross \) and its companions \( kdot \) and \( kmulti \) are generalisations of the function \( kest \) to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the \( \text{spatstat} \) package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \( \text{as.ppp} \). It must be a marked point pattern, and the mark vector \( X\$\text{marks} \) must be a factor.

The arguments \( i \) and \( j \) will be interpreted as levels of the factor \( X\$\text{marks} \). If \( i \) and \( j \) are missing, they default to the first and second level of the marks factor, respectively.

The “cross-type” (type \( i \) to type \( j \) ) \( K \) function of a stationary multitype point process \( X \) is defined so that \( \lambda_j K_{ij}(r) \) equals the expected number of additional random points of type \( j \) within a distance \( r \) of a typical point of type \( i \) in the process \( X \). Here \( \lambda_j \) is the intensity of the type \( j \) points, i.e. the expected number of points of type \( j \) per unit area. The function \( K_{ij} \) is determined by the second order moment properties of \( X \).

An estimate of \( K_{ij}(r) \) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type \( i \) points were independent of the process of type \( j \) points, then \( K_{ij}(r) \) would equal \( \pi r^2 \). Deviations between the empirical \( K_{ij} \) curve and the theoretical curve \( \pi r^2 \) may suggest dependence between the points of types \( i \) and \( j \).

This algorithm estimates the distribution function \( K_{ij}(r) \) from the point pattern \( X \). It assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X\$\text{window} \)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \( \text{Kest} \), using the border correction.
The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of \( \text{Kcross} \); see \texttt{pcf}.

**Value**

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( K_{ij}(r) \) has been estimated
- \texttt{theo} the theoretical value of \( K_{ij}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{ij}(r) \) obtained by the edge corrections named.

If \texttt{ratio=TRUE} then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of \( K(r) \).

**Warnings**

The arguments \( i \) and \( j \) are always interpreted as levels of the factor \( X\$marks \). They are converted to character strings if they are not already character strings. The value \( i=1 \) does not refer to the first level of the factor.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

- \texttt{Kdot, Kest, Kmulti, pcf}
Examples

# amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

## Not run:
K10 <- Kcross(amacrine, "on", "off")

# synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1)  # equivalent

# End(Not run)

Kcross.inhom

Inhomogeneous Cross K Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross \( K \) function, which counts the expected number of points of type \( j \) within a given distance of a point of type \( i \), adjusted for spatially varying intensity.

Usage

Kcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL, ..., r=NULL, breaks=NULL, correction = c("border", "isotropic", "Ripley", "translate"), sigma=NULL, varcov=NULL, lambdaIJ=NULL)

Arguments

- **X**
  The observed point pattern, from which an estimate of the inhomogeneous cross type \( K \) function \( K_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**
  The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.

- **j**
  The type (mark value) of the points in \( X \) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.

- **lambdaI**
  Optional. Values of the estimated intensity of the sub-process of points of type \( i \). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \( i \) points in \( X \), or a function \( \lambda(x,y) \) which can be evaluated to give the intensity value at any location.
Optional. Values of the the estimated intensity of the sub-process of points of type \(j\). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \(j\) points in \(x\), or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

\(r\) Optional. Numeric vector giving the values of the argument \(r\) at which the cross K function \(K_{ij}(r)\) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \(r\).

This argument is for advanced use only.

correction A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

\(\sigma\) Standard deviation of isotropic Gaussian smoothing kernel, used in computing leave-one-out kernel estimates of \(\lambda_i\), \(\lambda_d\) if they are omitted.

\(\text{varcov}\) Variance-covariance matrix of anisotropic Gaussian kernel, used in computing leave-one-out kernel estimates of \(\lambda_i\), \(\lambda_d\) if they are omitted. Incompatible with \(\sigma\).

Optional. A matrix containing estimates of the product of the intensities \(\lambda_i\) and \(\lambda_j\) for each pair of points of types \(i\) and \(j\) respectively.

Details

This is a generalisation of the function \(K_{cross}\) to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \(K_{inhom}\).

The inhomogeneous cross-type K function is described by Møller and Waagepetersen (2003, pages 48-49 and 51-53).

Briefly, given a multitype point process, suppose the sub-process of points of type \(j\) has intensity function \(\lambda_j(u)\) at spatial locations \(u\). Suppose we place a mass of \(1/\lambda_j(\zeta)\) at each point \(\zeta\) of type \(j\). Then the expected total mass per unit area is 1. The inhomogeneous "cross-type" K function \(K_{inhom}^{ij}(r)\) equals the expected total mass within a radius \(r\) of a point of the process of type \(i\).

If the process of type \(i\) points were independent of the process of type \(j\) points, then \(K_{inhom}^{ij}(r)\) would equal \(\pi r^2\). Deviations between the empirical \(K_{ij}\) curve and the theoretical curve \(\pi r^2\) suggest dependence between the points of types \(i\) and \(j\).

The argument \(X\) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern, and the mark vector \(X\$marks\) must be a factor.

The arguments \(i\) and \(j\) will be interpreted as levels of the factor \(X\$marks\). (Warning: this means that an integer value \(i=3\) will be interpreted as the number 3, \textbf{not} the 3rd smallest level). If \(i\) and \(j\) are missing, they default to the first and second level of the marks factor, respectively.

The argument \(\lambda_i\) supplies the values of the intensity of the sub-process of points of type \(i\). It may be either

\textbf{a pixel image} (object of class "im") which gives the values of the type \(i\) intensity at all locations in the window containing \(X\);
**a numeric vector** containing the values of the type i intensity evaluated only at the data points of type i. The length of this vector must equal the number of type i points in X.

**a function** which can be evaluated to give values of the intensity at any locations.

**omitted:** if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp along with any extra arguments.

Similarly lambdaJ should contain estimated values of the intensity of the sub-process of points of type j. It may be either a pixel image, a function, a numeric vector, or omitted.

The optional argument lambdaIJJ is for advanced use only. It is a matrix containing estimated values of the products of these two intensities for each pair of data points of types i and j respectively.

The argument r is the vector of values for the distance r at which K_{ij}(r) should be evaluated. The values of r must be increasing nonnegative numbers and the maximum r value must exceed the radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

**Value**

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

- r the values of the argument r at which the function K_{ij}(r) has been estimated
- theo the theoretical value of K_{ij}(r) for a marked Poisson process, namely \pi r^2

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function K_{ij}(r) obtained by the edge corrections named.

**Warnings**

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted to character strings if they are not already character strings. The value i=1 does not refer to the first level of the factor.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
References


See Also

`kcross`, `Kinhom`, `Kdot.inhom`, `Kmulti.inhom`, `pcf`

Examples

```r
Lansing Woods data
data(lansing)
lansing <- lansing[seq(1,lansing$n, by=10)]
ma <- split(lansing)$maple
wh <- split(lansing)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
K <- Kcross.inhom(lansing, "whiteoak", "maple", lambdaW, lambdaM)

method (2): leave-one-out
K <- Kcross.inhom(lansing, "whiteoak", "maple", sigma=0.15)

method (3): fit parametric intensity model
fit <- ppm(lansing, ~marks * polynom(x,y,2))
evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, lansing$marks)
K <- Kcross.inhom(lansing, "whiteoak", "maple",
lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kcross.inhom(X, "A", "B",
lambda1=as.im(50, X$window), lambda2=lamB)
```
Usage

Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)

Arguments

X
The observed point pattern, from which an estimate of the multitype K function $K_i \cdot (r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

r
numeric vector. The values of the argument r at which the distribution function $K_i \cdot (r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on r.

breaks
This argument is for internal use only.

correction
A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

... Ignored.

ratio
Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

This function Kdot and its companions Kcross and Kmulti are generalisations of the function Kest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible "colours" or "types". In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. If i is missing, it defaults to the first level of the marks factor, i = levels(X$marks)[1].

The "type i to any type" multitype K function of a stationary multitype point process X is defined so that $\lambda K_i \cdot (r)$ equals the expected number of additional random points within a distance r of a typical point of type i in the process X. Here $\lambda$ is the intensity of the process, i.e. the expected number of points of X per unit area. The function $K_i \cdot$ is determined by the second order moment properties of X.

An estimate of $K_i \cdot (r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the subprocess of type i points were independent of the subprocess of points of all types not equal to i, then $K_i \cdot (r)$ would equal $\pi r^2$. Deviations between the empirical $K_i \cdot$ curve and the theoretical curve $\pi r^2$ may suggest dependence between types.
This algorithm estimates the distribution function $K_i(r)$ from the point pattern $X$. It assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as X$\text{window}$) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in \texttt{Kest}, using the border correction.

The argument $r$ is the vector of values for the distance $r$ at which $K_i(r)$ should be evaluated. The values of $r$ must be increasing nonnegative numbers and the maximum $r$ value must exceed the radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of \texttt{Kdot}; see \texttt{pcf}.

\textbf{Value}

An object of class "fv" (see \texttt{fv.object}). Essentially a data frame containing numeric columns

- $r$: the values of the argument $r$ at which the function $K_i(r)$ has been estimated
- \texttt{theo}: the theoretical value of $K_i(r)$ for a marked Poisson process, namely $\pi r^2$

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $K_i(r)$ obtained by the edge corrections named.

If \texttt{ratio=TRUE} then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of $K(r)$.

\textbf{Warnings}

The argument $i$ is interpreted as a level of the factor $X$\texttt{marks}. It is converted to a character string if it is not already a character string. The value $i=1$ does not refer to the first level of the factor.

The reduced sample estimator of $K_i$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0,1]$.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{References}

Kdot.inhom

Inhomogeneous Multitype K Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot $K$ function, which counts the expected number of points of any type within a given distance of a point of type $i$, adjusted for spatially varying intensity.

Usage

Kdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, ..., r=NULL, breaks=NULL, correction = c("border", "isotropic", "Ripley", "translate"), sigma=NULL, varcov=NULL, lambdaIdot=NULL)

Arguments

X

The observed point pattern, from which an estimate of the inhomogeneous cross type $K$ function $K_{i*}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

i

The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).

See Also

Kdot, Kest, Kmulti.pcf

Examples

# Lansing woods data: 6 types of trees
data(lansing)

## Not run:
Kh. <- Kdot(lansing, "hickory")

## End(Not run)

# diagnostic plot for independence between hickories and other trees
plot(Kh.)

## Not run:
# synthetic example with two marks "a" and "b"
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
K <- Kdot(pp, "a")

## End(Not run)
Optional. Values of the estimated intensity of the sub-process of points of type \( i \). Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the type \( i \) points in \( X \), or a function \((x, y)\) which can be evaluated to give the intensity value at any location.

\( \lambda_{\text{dot}} \)

Optional. Values of the estimated intensity of the entire point process. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in \( X \), or a function \((x, y)\) which can be evaluated to give the intensity value at any location.

Ignored.

Optional. Numeric vector giving the values of the argument \( r \) at which the cross \( K \) function \( K_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

This argument is for internal use only.

A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

Standard deviation of isotropic Gaussian smoothing kernel, used in computing leave-one-out kernel estimates of \( \lambda_{i} \), \( \lambda_{\text{dot}} \) if they are omitted.

Variance-covariance matrix of anisotropic Gaussian kernel, used in computing leave-one-out kernel estimates of \( \lambda_{i} \), \( \lambda_{\text{dot}} \) if they are omitted. Incompatible with sigma.

Optional. A matrix containing estimates of the product of the intensities \( \lambda_{i} \) and \( \lambda_{\text{dot}} \) for each pair of points, the first point of type \( i \) and the second of any type.

This is a generalisation of the function \( \text{kdot} \) to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \( \text{kinhom} \).

Briefly, given a multitype point process, consider the points without their types, and suppose this unmarked point process has intensity function \( \lambda(u) \) at spatial locations \( u \). Suppose we place a mass of \( 1/\lambda(\zeta) \) at each point \( \zeta \) of the process. Then the expected total mass per unit area is 1. The inhomogeneous "dot-type" \( K \) function \( K_{i\bullet}(r) \) equals the expected total mass within a radius \( r \) of a point of the process of type \( i \), discounting this point itself.

If the process of type \( i \) points were independent of the points of other types, then \( K_{i\bullet}(r) \) would equal \( \pi r^2 \). Deviations between the empirical \( K_{i\bullet} \) curve and the theoretical curve \( \pi r^2 \) suggest dependence between the points of types \( i \) and \( j \) for \( j \neq i \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \text{as.ppp}. It must be a marked point pattern, and the mark vector \( X \$ \text{marks} \) must be a factor.

The argument \( i \) will be interpreted as a level of the factor \( X \$ \text{marks} \). (Warning: this means that an integer value \( i=3 \) will be interpreted as the number 3, \textbf{not} the 3rd smallest level). If \( i \) is missing, it defaults to the first level of the marks factor, \( i = \text{levels}(X \$ \text{marks})[1] \).

The argument \( \lambda_{i} \) supplies the values of the intensity of the sub-process of points of type \( i \). It may be either
a pixel image (object of class "im") which gives the values of the type i intensity at all locations in the window containing \( \chi \);

a numeric vector containing the values of the type i intensity evaluated only at the data points of type i. The length of this vector must equal the number of type i points in \( \chi \).

a function of the form \( \text{function}(x, y) \) which can be evaluated to give values of the intensity at any locations.

omitted: if \( \lambda_i \) is omitted then it will be estimated using a leave-one-out kernel smoother.

If \( \lambda_i \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of \( \lambda_i \) for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using \( \text{density.ppp} \), and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments \( \text{sigma} \) and \( \text{varcov} \), which are passed to \( \text{density.ppp} \) along with any extra arguments.

Similarly the argument \( \lambda_{idot} \) should contain estimated values of the intensity of the entire point process. It may be either a pixel image, a numeric vector of length equal to the number of points in \( \chi \), a function, or omitted.

For advanced use only, the optional argument \( \lambda_{idot} \) is a matrix containing estimated values of the products of these two intensities for each pair of points, the first point of type i and the second of any type.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{i \bullet}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must exceed the radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in \( \text{Kest} \).

The pair correlation function can also be applied to the result of \( \text{Kcross.inhom} \); see \( \text{pcf} \).

Value

An object of class "fv" (see \( \text{fv.object} \)).

Essentially a data frame containing numeric columns

\[
\begin{align*}
\text{r} & \quad \text{the values of the argument \( r \) at which the function } K_{i \bullet}(r) \text{ has been estimated} \\
\text{theo} & \quad \text{theoretical value of } K_{i \bullet}(r) \text{ for a marked Poisson process, namely } \pi r^2
\end{align*}
\]

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{i \bullet}(r) \) obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor \( \chi \$\text{marks} \). It is converted to a character string if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also
Kdot, Kinhom, Kcross.inhom, Kmulti.inhom, pcf

Examples
# Lansing Woods data
data(lansing)
lansing <- lansing[seq(1,lansing$n, by=10)]
ma <- split(lansing)$maple
lg <- unmark(lansing)

# Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaMdot <- density.ppp(lg, sigma=0.15, at="points")
K <- Kdot.inhom(lansing, "maple", lambda=lambdaM, lambdaMdot=lambdaMdot)

# Equivalent
K <- Kdot.inhom(lansing, "maple", sigma=0.15)

# synthetic example: type A points have intensity 50,
# type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y)(50 + 100 * x), owin())
lamdotB <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kdot.inhom(X, "B", lambdaA=lamB, lambdaMdot=lamdotB)

Kest

K-function

Description
Estimates Ripley’s reduced second moment function $K(r)$ from a point pattern in a window of arbitrary shape.

Usage
Kest(X, ..., r=NULL, breaks=NULL, correction=c("border", "isotropic", "Ripley", "translate"), nlarge=3000, domain=NULL, var.approx=FALSE, ratio=FALSE)
Arguments

X
The observed point pattern, from which an estimate of \( K(r) \) will be computed. An object of class "ppp", or data in any format acceptable to \code{as.ppp}().

...  
Ignored.

r
Optional. Vector of values for the argument \( r \) at which \( K(r) \) should be evaluated. Users are advised \textit{not} to specify this argument; there is a sensible default.

breaks
This argument is for internal use only.

correction
Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "rigid", "none", "good" or "best". It specifies the edge correction(s) to be applied.

nlarge
Optional. Efficiency threshold. If the number of points exceeds \code{nlarge}, then only the border correction will be computed (by default), using a fast algorithm.

domain
Optional. Calculations will be restricted to this subset of the window. See Details.

var.approx
Logical. If \code{TRUE}, the approximate variance of \( \hat{K}(r) \) under CSR will also be computed.

ratio
Logical. If \code{TRUE}, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

The \( K \) function (variously called “Ripley’s K-function” and the “reduced second moment function”) of a stationary point process \( X \) is defined so that \( \lambda K(r) \) equals the expected number of additional random points within a distance \( r \) of a typical random point of \( X \). Here \( \lambda \) is the intensity of the process, i.e. the expected number of points of \( X \) per unit area. The \( K \) function is determined by the second order moment properties of \( X \).

An estimate of \( K \) derived from a spatial point pattern dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1977, 1988). In exploratory analyses, the estimate of \( K \) is a useful statistic summarising aspects of inter-point “dependence” and “clustering”. For inferential purposes, the estimate of \( \hat{K} \) is usually compared to the true value of \( K \) for a completely random (Poisson) point process, which is \( K(r) = \pi r^2 \). Deviations between the empirical and theoretical \( K \) curves may suggest spatial clustering or spatial regularity.

This routine \code{Kest} estimates the \( K \) function of a stationary point process, given observation of the process inside a known, bounded window. The argument \( X \) is interpreted as a point pattern object (of class "ppp", see \code{ppp.object}) and can be supplied in any of the formats recognised by \code{as.ppp}().

The estimation of \( K \) is hampered by edge effects arising from the unobservability of points of the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998; Ripley, 1988). The corrections implemented here are

\textbf{border} the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.

\textbf{isotropic/Ripley} Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented for rectangular and polygonal windows (not for binary masks).
**translate/translation** Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.

**rigid** Rigid motion correction (Ohser and Stoyan, 1981). Implemented for all window geometries, but slow for complex windows.

**none** Uncorrected estimate. An estimate of the K function without edge correction. (i.e. setting $e_{ij} = 1$ in the equation below. This estimate is biased and should not be used for data analysis, unless you have an extremely large point pattern (more than 100,000 points).

**best** Selects the best edge correction that is available for the geometry of the window. Currently this is Ripley’s isotropic correction for a rectangular or polygonal window, and the translation correction for masks.

**good** Selects the best edge correction that can be computed in a reasonable time. This is the same as "best" for datasets with fewer than 3000 points; otherwise the selected edge correction is "border", unless there are more than 100,000 points, when it is "none".

The estimates of $K(r)$ are of the form

$$ \hat{K}(r) = \frac{a}{n(n-1)} \sum_i \sum_j I(d_{ij} \leq r) e_{ij} $$

where $a$ is the area of the window, $n$ is the number of data points, and the sum is taken over all ordered pairs of points $i$ and $j$ in $X$. Here $d_{ij}$ is the distance between the two points, and $I(d_{ij} \leq r)$ is the indicator that equals 1 if the distance is less than or equal to $r$. The term $e_{ij}$ is the edge correction weight (which depends on the choice of edge correction listed above).

Note that this estimator assumes the process is stationary (spatially homogeneous). For inhomogeneous point patterns, see `Kinhom`.

If the point pattern $X$ contains more than about 3000 points, the isotropic and translation edge corrections can be computationally prohibitive. The computations for the border method are much faster, and are statistically efficient when there are large numbers of points. Accordingly, if the number of points in $X$ exceeds the threshold `nlarge`, then only the border correction will be computed. Setting `nlarge=Inf` or `correction="best"` will prevent this from happening. Setting `nlarge=0` is equivalent to selecting only the border correction with correction="border".

If $X$ contains more than about 100,000 points, even the border correction is time-consuming. You may want to consider setting `correction="none"` in this case. There is an even faster algorithm for the uncorrected estimate.

Approximations to the variance of $\hat{K}(r)$ are available, for the case of the isotropic edge correction estimator, assuming complete spatial randomness (Ripley, 1988; Lotwick and Silverman, 1982; Diggle, 2003, pp 51-53). If `var.approx=TRUE`, then the result of `Kest` also has a column named `rip` giving values of Ripley’s (1988) approximation to $\text{var}(\hat{K}(r))$, and (if the window is a rectangle) a column named `ls` giving values of Lotwick and Silverman’s (1982) approximation.

If the argument `domain` is given, the calculations will be restricted to a subset of the data. In the formula for $K(r)$ above, the first point $i$ will be restricted to lie inside `domain`. The result is an approximately unbiased estimate of $K(r)$ based on pairs of points in which the first point lies inside `domain` and the second point is unrestricted. This is useful in bootstrap techniques. The argument `domain` should be a window (object of class "owin") or something acceptable to `as.owin`. It must be a subset of the window of the point pattern $X$.

The estimator `Kest` ignores marks. Its counterparts for multitype point patterns are `Kcross`, `Kdot`, and for general marked point patterns see `Kmulti`. 
Some writers, particularly Stoyan (1994, 1995) advocate the use of the “pair correlation function”

$$g(r) = \frac{K'(r)}{2\pi r}$$

where $K'(r)$ is the derivative of $K(r)$. See \texttt{pcf} on how to estimate this function.

\textbf{Value}

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- $r$ the vector of values of the argument $r$ at which the function $K$ has been estimated
- \texttt{theo} the theoretical value $K(r) = \pi r^2$ for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $K(r)$ obtained by the edge corrections named.

If \texttt{var.approx=TRUE} then the return value also has columns \texttt{rip} and \texttt{ls} containing approximations to the variance of $K(r)$ under CSR.

If \texttt{ratio=TRUE} then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of $K(r)$.

\textbf{Envelopes, significance bands and confidence intervals}

To compute simulation envelopes for the $K$-function under CSR, use \texttt{envelope}.

To compute a confidence interval for the true $K$-function, use \texttt{varblock} or \texttt{lohboot}.

\textbf{Warnings}

The estimator of $K(r)$ is approximately unbiased for each fixed $r$. Bias increases with $r$ and depends on the window geometry. For a rectangular window it is prudent to restrict the $r$ values to a maximum of $1/4$ of the smaller side length of the rectangle. Bias may become appreciable for point patterns consisting of fewer than 15 points.

While $K(r)$ is always a non-decreasing function, the estimator of $K$ is not guaranteed to be non-decreasing. This is rarely a problem in practice.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{References}


**See Also**

- `localK` to extract individual summands in the $K$ function.
- `pcf` for the pair correlation.
- `Fest, Gest, Jest` for alternative summary functions.
- `Kcross, Kdot, Kinhom, Kmulti` for counterparts of the $K$ function for multitype point patterns.
- `reduced.sample` for the calculation of reduced sample estimators.

**Examples**

```r
pp <- runifpoint(50)
K <- Kest(pp)
data(cells)
K <- Kest(cells, correction="isotropic")
plot(K)
plot(K, main="K function for cells")
plot the L function
plot(K, sqrt(iso/pi) ~ r)
plot(K, sqrt(./pi) ~ r, ylab="L(r)", main="L function for cells")
```

---

**Kest.fft**

*K-function using FFT*

**Description**

Estimates the reduced second moment function $K(r)$ from a point pattern in a window of arbitrary shape, using the Fast Fourier Transform.

**Usage**

```r
Kest.fft(X, sigma, r=NULL, breaks=NULL)
```
Arguments

\textbf{X} \qquad \text{The observed point pattern, from which an estimate of } K(r) \text{ will be computed.}\n\text{An object of class "ppp", or data in any format acceptable to \texttt{as.ppp}().}\n
\textbf{sigma} \quad \text{standard deviation of the isotropic Gaussian smoothing kernel.}\n
\textbf{r} \quad \text{vector of values for the argument } r \text{ at which } K(r) \text{ should be evaluated. There is a sensible default.}\n
\textbf{breaks} \quad \text{This argument is for internal use only.}\n
Details

This is an alternative to the function \texttt{Kest} for estimating the \textit{K} function. It may be useful for very large patterns of points.\n
Whereas \texttt{Kest} computes the distance between each pair of points analytically, this function discretises the point pattern onto a rectangular pixel raster and applies Fast Fourier Transform techniques to estimate \( K(t) \). The hard work is done by the function \texttt{Kmeasure}.\n
The result is an approximation whose accuracy depends on the resolution of the pixel raster. The resolution is controlled by setting the parameter \texttt{npixel} in \texttt{spatstat.options}.\n
Value

An object of class "fv" (see \texttt{fv.object}). Essentially a data frame containing columns\n
\texttt{r} \quad \text{the vector of values of the argument } r \text{ at which the function } K \text{ has been estimated}\n
\texttt{border} \quad \text{the estimates of } K(r) \text{ for these values of } r\n
\texttt{theo} \quad \text{the theoretical value } K(r) = \pi r^2 \text{ for a stationary Poisson process}\n
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}\nand Rolf Turner <r.turner@auckland.ac.nz>\n
References

Cressie, N.A.C. \textit{Statistics for spatial data}. John Wiley and Sons, 1991.\n
Diggle, P.J. \textit{Statistical analysis of spatial point patterns}. Academic Press, 1983.\n
Ripley, B.D. \textit{Statistical inference for spatial processes}. Cambridge University Press, 1988.\n
**Kinhom**

**Inhomogeneous K-function**

**Description**

Estimates the inhomogeneous \( K \) function of a non-stationary point pattern.

**Usage**

```r
Kinhom(X, lambda=NULL, ..., r=NULL, breaks=NULL, correction=c("border", "bord.modif", "isotropic", "translate"), renormalise=TRUE, normpower=1, update=TRUE, leaveoneout=TRUE, nlarge=1000, lambda2=NULL, reciprolambda=NULL, reciprolambda2=NULL, sigma=NULL, varcov=NULL)
```

**Arguments**

- **X**
  - The observed data point pattern, from which an estimate of the inhomogeneous \( K \) function will be computed. An object of class "ppp" or in a format recognised by `as.ppp()`.

- **lambda**
  - Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern \( X \), a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm" or "kppm") or a function \( x \rightarrow y \) which can be evaluated to give the intensity value at any location.

- **...**
  - Extra arguments. Ignored if `lambda` is present. Passed to `density.ppp` if `lambda` is omitted.

**See Also**

`Kest, Kmeasure, spatstat.options`

**Examples**

```r
pp <- runifpoint(10000)
Not run:
spatstat.options(npixel=512)

End(Not run)
Kpp <- Kest.fft(pp, 0.01)
plot(Kpp)
```
$r$ vector of values for the argument $r$ at which the inhomogeneous $K$ function should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE (the default), the model will first be refitted to the data X (using update.ppm or update.kppm) before the fitted intensity is computed. If update=FALSE, the fitted intensity of the model will be computed without fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to use a leave-one-out rule when calculating the intensity.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then only the border correction will be computed, using a fast algorithm.

lambda2 Advanced use only. Matrix containing estimates of the products $\lambda(x_i)\lambda(x_j)$ of the intensities at each pair of data points $x_i$ and $x_j$.

reciplambda Alternative to lambda. Values of the estimated reciprocal $1/\lambda$ of the intensity function. Either a vector giving the reciprocal intensity values at the points of the pattern X, a pixel image (object of class "im") giving the reciprocal intensity values at all locations, or a function(x,y) which can be evaluated to give the reciprocal intensity value at any location.

reciplambda2 Advanced use only. Alternative to lambda2. A matrix giving values of the estimated reciprocal products $1/\lambda(x_i)\lambda(x_j)$ of the intensities at each pair of data points $x_i$ and $x_j$.

details Optional arguments passed to density.ppp to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.

Details

This computes a generalisation of the $K$ function for inhomogeneous point patterns, proposed by Baddeley, Møller and Waagepetersen (2000).

The “ordinary” $K$ function (variously known as the reduced second order moment function and Ripley’s $K$ function), is described under kest. It is defined only for stationary point processes.

The inhomogeneous $K$ function $K_{inhom}(r)$ is a direct generalisation to nonstationary point processes. Suppose $x$ is a point process with non-constant intensity $\lambda(u)$ at each location $u$. Define $K_{inhom}(r)$ to be the expected value, given that $u$ is a point of $x$, of the sum of all terms $1/\lambda(x_j)$ over all points $x_j$ in the process separated from $u$ by a distance less than $r$. This reduces to the ordinary $K$ function if $\lambda()$ is constant. If $x$ is an inhomogeneous Poisson process with intensity function $\lambda(u)$, then $K_{inhom}(r) = \pi r^2$.

Given a point pattern dataset, the inhomogeneous $K$ function can be estimated essentially by summing the values $1/(\lambda(x_i)\lambda(x_j))$ for all pairs of points $x_i, x_j$ separated by a distance less than $r$.

This allows us to inspect a point pattern for evidence of interpoint interactions after allowing for spatial inhomogeneity of the pattern. Values $K_{inhom}(r) > \pi r^2$ are suggestive of clustering.
The argument \texttt{lambda} should supply the (estimated) values of the intensity function \( \lambda \). It may be either

- **a numeric vector** containing the values of the intensity function at the points of the pattern \( X \).
- **a pixel image** (object of class "im") assumed to contain the values of the intensity function at all locations in the window.
- **a fitted point process model** (object of class "ppm" or "kppm") whose fitted trend can be used as the fitted intensity. (If \texttt{update=TRUE} the model will first be refitted to the data \( X \) before the trend is computed.)
- **a function** which can be evaluated to give values of the intensity at any locations.

**omitted:** if \texttt{lambda} is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If \texttt{lambda} is a numeric vector, then its length should be equal to the number of points in the pattern \( X \). The value \texttt{lambda[i]} is assumed to be the the (estimated) value of the intensity \( \lambda(x_i) \) for the point \( x_i \) of the pattern \( X \). Each value must be a positive number; NA’s are not allowed.

If \texttt{lambda} is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \texttt{lambda} using \texttt{blur}, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \texttt{lambda} is a function, then it will be evaluated in the form \texttt{lambda(x, y)} where \( x \) and \( y \) are vectors of coordinates of the points of \( X \). It should return a numeric vector with length equal to the number of points in \( X \).

If \texttt{lambda} is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate \texttt{lambda[i]} for the point \( X[i] \) is computed by removing \( X[i] \) from the point pattern, applying kernel smoothing to the remaining points using \texttt{density.ppp}, and evaluating the smoothed intensity at the point \( X[i] \). The smoothing kernel bandwidth is controlled by the arguments \texttt{sigma} and \texttt{varcov}, which are passed to \texttt{density.ppp} along with any extra arguments.

Edge corrections are used to correct bias in the estimation of \( \hat{K}_{inhom} \). Each edge-corrected estimate of \( \hat{K}_{inhom}(r) \) is of the form

\[
    \hat{K}_{inhom}(r) = \sum_i \sum_j \frac{1\{d_{ij} \leq r\}e(x_i, x_j, r)}{\lambda(x_i)\lambda(x_j)}
\]

where \( d_{ij} \) is the distance between points \( x_i \) and \( x_j \), and \( e(x_i, x_j, r) \) is an edge correction factor. For the ‘border’ correction,

\[
    e(x_i, x_j, r) = \frac{1(b_i > r)}{\sum_j 1(b_j > r)/\lambda(x_j)}
\]

where \( b_i \) is the distance from \( x_i \) to the boundary of the window. For the ‘modified border’ correction,

\[
    e(x_i, x_j, r) = \frac{1(b_i > r)}{area(W \ominus r)}
\]

where \( W \ominus r \) is the eroded window obtained by trimming a margin of width \( r \) from the border of the original window. For the ‘translation’ correction,

\[
    e(x_i, x_j, r) = \frac{1}{area(W \cap (W + (x_j - x_i)))}
\]
and for the ‘isotropic’ correction,
\[ c(x_i, x_j, r) = \frac{1}{\text{area}(W)g(x_i, x_j)} \]

where \( g(x_i, x_j) \) is the fraction of the circumference of the circle with centre \( x_i \) and radius \( ||x_i - x_j|| \) which lies inside the window.

If \( \text{renormalise} = \text{TRUE} \) (the default), then the estimates are multiplied by \( c^{\text{normpower}} \), where \( c = \frac{\text{area}(W)}{\sum(1/\lambda(x_i))} \). This rescaling reduces the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity. The default value of \( \text{normpower} \) is 1 (for consistency with previous versions of \text{spatstat} \) but the most sensible value is 2, which would correspond to rescaling the \( \lambda \) values so that \( \sum(1/\lambda(x_i)) = \text{area}(W) \).

If the point pattern \( X \) contains more than about 1000 points, the isotropic and translation edge corrections can be computationally prohibitive. The computations for the border method are much faster, and are statistically efficient when there are large numbers of points. Accordingly, if the number of points in \( X \) exceeds the threshold \( n_{\text{large}} \), then only the border correction will be computed. Setting \( n_{\text{large}} = \text{Inf} \) or \( \text{correction} = \text{"best"} \) will prevent this from happening. Setting \( n_{\text{large}} = P \) is equivalent to selecting only the border correction with \( \text{correction} = \text{"border"} \).

The pair correlation function can also be applied to the result of \text{Kinhom}; see \text{pcf}.

**Value**

An object of class "fv" (see \text{fv.object}).

Essentially a data frame containing at least the following columns,

- \( r \) the vector of values of the argument \( r \) at which \( K_{\text{inhom}}(r) \) has been estimated
- \( \text{theo} \) vector of values of \( \pi r^2 \), the theoretical value of \( K_{\text{inhom}}(r) \) for an inhomogeneous Poisson process

and containing additional columns according to the choice specified in the \text{correction} argument. The additional columns are named border, trans and iso and give the estimated values of \( K_{\text{inhom}}(r) \) using the border correction, translation correction, and Ripley isotropic correction, respectively.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \text{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

\text{Kest}, \text{pcf}
Examples

```r
data(lansing)
inhomogeneous pattern of maples
X <- unmark(split(lansing)$maple)

(1) intensity function estimated by model-fitting
Fit spatial trend: polynomial in x and y coordinates
fit <- ppm(X, ~ polym(x,y,2), Poisson())
(a) predict intensity values at points themselves,
obtaining a vector of lambda values
lambda <- predict(fit, locations=X, type="trend")
inhomogeneous K function
Ki <- Kinhom(X, lambda)
plot(Ki)
(b) predict intensity at all locations,
obtaining a pixel image
lambda <- predict(fit, type="trend")
Ki <- Kinhom(X, lambda)
plot(Ki)

(2) intensity function estimated by heavy smoothing
Ki <- Kinhom(X, sigma=0.1)
plot(Ki)

(3) simulated data: known intensity function
lamfun <- function(x,y) (50 + 100 * x)
inhomogeneous Poisson process
Y <- rpoispp(lamfun, 150, owin())
inhomogeneous K function
Ki <- Kinhom(Y, lamfun)
plot(Ki)

How to make simulation envelopes:
Example shows method (2)
Not run:
smo <- density.ppp(X, sigma=0.1)
Ken <- envelope(X, Kinhom, nsim=99,
 simulate=expression(rpoispp(smo)),
 sigma=0.1, correction="trans")
plot(Ken)
End(Not run)
```

Description

Compute the Kaplan-Meier and Reduced Sample estimators of a survival time distribution function, using histogram techniques
Usage

km.rs(o, cc, d, breaks)

Arguments

- **o**: vector of observed survival times
- **cc**: vector of censoring times
- **d**: vector of non-censoring indicators
- **breaks**: Vector of breakpoints to be used to form histograms.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose $T_i$ are the survival times of individuals $i = 1, \ldots, M$ with unknown distribution function $F(t)$ which we wish to estimate. Suppose these times are right-censored by random censoring times $C_i$. Thus the observations consist of right-censored survival times $\tilde{T}_i = \min(T_i, C_i)$ and non-censoring indicators $D_i = 1\{T_i \leq C_i\}$ for each $i$.

The arguments to this function are vectors $o$, $cc$, $d$ of observed values of $\tilde{T}_i, C_i$ and $D_i$ respectively. The function computes histograms and forms the reduced-sample and Kaplan-Meier estimates of $F(t)$ by invoking the functions kaplan.meier and reduced.sample. This is efficient if the lengths of $o$, $cc$, $d$ (i.e. the number of observations) is large.

The vectors $km$ and hazard returned by kaplan.meier are (histogram approximations to) the Kaplan-Meier estimator of $F(t)$ and its hazard rate $\lambda(t)$. Specifically, $km[k]$ is an estimate of $F(breaks[k+1])$, and $lambda[k]$ is an estimate of the average of $\lambda(t)$ over the interval $(breaks[k], breaks[k+1])$. This approximation is exact only if the survival times are discrete and the histogram breaks are fine enough to ensure that each interval $(breaks[k], breaks[k+1])$ contains only one possible value of the survival time.

The vector $rs$ is the reduced-sample estimator, $rs[k]$ being the reduced sample estimate of $F(breaks[k+1])$. This value is exact, i.e. the use of histograms does not introduce any approximation error in the reduced-sample estimator.

Value

A list with five elements

- **rs**: Reduced-sample estimate of the survival time c.d.f. $F(t)$
- **km**: Kaplan-Meier estimate of the survival time c.d.f. $F(t)$
- **hazard**: corresponding Nelson-Aalen estimate of the hazard rate $\lambda(t)$
- **r**: values of $t$ for which $F(t)$ is estimated
- **breaks**: the breakpoints vector

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
**Kmark**

Mark-Weighted K Function

### Description

Estimates the mark-weighted $K$ function of a marked point pattern.

### Usage

```r
Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)
```

```r
markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)
```

### Arguments

- **X**  
  The observed point pattern. An object of class "ppp" or something acceptable to `as.ppp`.

- **f**  
  Optional. Test function $f$ used in the definition of the mark correlation function. An R function with at least two arguments. There is a sensible default.

- **r**  
  Optional. Numeric vector. The values of the argument $r$ at which the mark correlation function $k_f(r)$ should be evaluated. There is a sensible default.

- **correction**  
  A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

- **f1**  
  An alternative to $f$. If this argument is given, then $f$ is assumed to take the form $f(u,v) = f_1(u)f_1(v)$.

- **normalise**  
  If `normalise=FALSE`, compute only the numerator of the expression for the mark correlation.

- **returnL**  
  Compute the analogue of the K-function if `returnL=FALSE` or the analogue of the L-function if `returnL=TRUE`.

- **fargs**  
  Optional. A list of extra arguments to be passed to the function $f$ or $f1$. 
Details

The functions kmark and markcorrint are identical. (Eventually markcorrint will be deprecated.)

The mark-weighted K function $K_f(r)$ of a marked point process (Penttinen et al, 1992) is a generalisation of Ripley's $K$ function, in which the contribution from each pair of points is weighted by a function of their marks. If the marks of the two points are $m_1, m_2$ then the weight is proportional to $f(m_1, m_2)$ where $f$ is a specified test function.

The mark-weighted $K$ function is defined so that

$$
\lambda K_f(r) = \frac{C_f(r)}{E[f(M_1, M_2)]}
$$

where

$$
C_f(r) = E \left[ \sum_{x \in X} f(m(u), m(x)) \mathbb{1}_{10 < ||u - x|| \leq r} \mid u \in X \right]
$$

for any spatial location $u$ taken to be a typical point of the point process $X$. Here $||u - x||$ is the euclidean distance between $u$ and $x$, so that the sum is taken over all random points $x$ that lie within a distance $r$ of the point $u$. The function $C_f(r)$ is the unnormalised mark-weighted $K$ function. To obtain $K_f(r)$ we standardise $C_f(r)$ by dividing by $E[f(M_1, M_2)]$, the expected value of $f(M_1, M_2)$ when $M_1$ and $M_2$ are independent random marks with the same distribution as the marks in the point process.

Under the hypothesis of random labelling, the mark-weighted $K$ function is equal to Ripley’s $K$ function, $K_f(r) = K(r)$.

The mark-weighted $K$ function is sometimes called the mark correlation integral because it is related to the mark correlation function $k_f(r)$ and the pair correlation function $g(r)$ by

$$
K_f(r) = 2\pi \int_0^r sk_f(s) g(s) \, ds
$$

See markcorr for a definition of the mark correlation function.

Given a marked point pattern $X$, this command computes edge-corrected estimates of the mark-weighted $K$ function. If returnL=FALSE then the estimated function $K_f(r)$ is returned; otherwise the function

$$
L_f(r) = \sqrt{K_f(r)/\pi}
$$

is returned.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

- $r$ the values of the argument $r$ at which the mark correlation integral $K_f(r)$ has been estimated
- theo the theoretical value of $K_f(r)$ when the marks attached to different points are independent, namely $\pi r^2$

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the mark-weighted $K$ function $K_f(r)$ obtained by the edge corrections named (if returnL=FALSE).
**kmeasure**

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

`markcorr` to estimate the mark correlation function.

**Examples**

```r
CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- Kmark(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoisson(100)
X <- X %mark% runif(X$n)
Xc <- Kmark(X)
plot(Xc)

MULTTYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/ 'off'
M <- Kmark(amacrine, function(m1,m2) {m1==m2},
 correction="translate")
plot(M)
```

---

**Kmeasure**

*Reduced Second Moment Measure*

**Description**

Estimates the reduced second moment measure $\kappa$ from a point pattern in a window of arbitrary shape.

**Usage**

```r
Kmeasure(X, sigma, edge=TRUE, ..., varcov=NULL)
```
Arguments

**X**  
The observed point pattern, from which an estimate of \( \kappa \) will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.

**sigma**  
Standard deviation \( \sigma \) of the Gaussian smoothing kernel. Incompatible with `varcov`.

**edge**  
Logical value indicating whether an edge correction should be applied.

**...**  
Arguments passed to `as.mask` controlling the pixel resolution.

**varcov**  
Variance-covariance matrix of the Gaussian smoothing kernel. Incompatible with `sigma`.

Details

Given a point pattern dataset, this command computes an estimate of the reduced second moment measure \( \kappa \) of the point process. The result is a pixel image whose pixel values are estimates of the density of the reduced second moment measure.

The reduced second moment measure \( \kappa \) can be regarded as a generalisation of the more familiar \( K \)-function. An estimate of \( \kappa \) derived from a spatial point pattern dataset can be useful in exploratory data analysis. Its advantage over the \( K \)-function is that it is also sensitive to anisotropy and directional effects.

In a nutshell, the command `kmeasure` computes a smoothed version of the Fry plot. As explained under `fryplot`, the Fry plot is a scatterplot of the vectors joining all pairs of points in the pattern. The reduced second moment measure is (essentially) defined as the average of the Fry plot over different realisations of the point process. The command `kmeasure` effectively smooths the Fry plot of a dataset to obtain an estimate of the reduced second moment measure.

In formal terms, the reduced second moment measure \( \kappa \) of a stationary point process \( X \) is a measure defined on the two-dimensional plane such that, for a 'typical' point \( x \) of the process, the expected number of other points \( y \) of the process such that the vector \( y - x \) lies in a region \( A \), equals \( \lambda \kappa(A) \).

Here \( \lambda \) is the intensity of the process, i.e. the expected number of points of \( X \) per unit area.

The \( K \)-function is a special case. The function value \( K(t) \) is the value of the reduced second moment measure for the disc of radius \( t \) centred at the origin; that is, \( K(t) = \kappa(b(0,t)) \).

The command `kmeasure` computes an estimate of \( \kappa \) from a point pattern dataset \( X \), which is assumed to be a realisation of a stationary point process, observed inside a known, bounded window. Marks are ignored.

The algorithm approximates the point pattern and its window by binary pixel images, introduces a Gaussian smoothing kernel and uses the Fast Fourier Transform `fft` to form a density estimate of \( \kappa \). The calculation corresponds to the edge correction known as the "translation correction".

The Gaussian smoothing kernel may be specified by either of the arguments `sigma` or `varcov`. If `sigma` is a single number, this specifies an isotropic Gaussian kernel with standard deviation `sigma` on each coordinate axis. If `sigma` is a vector of two numbers, this specifies a Gaussian kernel with standard deviation `sigma[1]` on the \( x \) axis, standard deviation `sigma[2]` on the \( y \) axis, and zero correlation between the \( x \) and \( y \) axes. If `varcov` is given, this specifies the variance-covariance matrix of the Gaussian kernel. There do not seem to be any well-established rules for selecting the smoothing kernel in this context.

The density estimate of \( \kappa \) is returned in the form of a real-valued pixel image. Pixel values are estimates of the normalised second moment density at the centre of the pixel. (The uniform Poisson
process would have values identically equal to 1.) The image \(x\) and \(y\) coordinates are on the same scale as vector displacements in the original point pattern window. The point \(x=\theta, y=\theta\) corresponds to the 'typical point'. A peak in the image near \((\theta, \theta)\) suggests clustering; a dip in the image near \((0, 0)\) suggests inhibition; peaks or dips at other positions suggest possible periodicity.

If desired, the value of \(\kappa(A)\) for a region \(A\) can be estimated by computing the integral of the pixel image over the domain \(A\), i.e., by summing the pixel values and multiplying by pixel area, using \texttt{integral.im}. One possible application is to compute anisotropic counterparts of the \(K\)-function (in which the disc of radius \(t\) is replaced by another shape). See Examples.

**Value**

A real-valued pixel image (an object of class "im", see \texttt{im.object}) whose pixel values are estimates of the density of the reduced second moment measure at each location.

**Warning**

Some writers use the term reduced second moment measure when they mean the \(K\)-function. This has caused confusion.

As originally defined, the reduced second moment measure is a measure, obtained by modifying the second moment measure, while the \(K\)-function is a function obtained by evaluating this measure for discs of increasing radius. In \texttt{spatstat}, the \(K\)-function is computed by \texttt{kest} and the reduced second moment measure is computed by \texttt{kmeasure}.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

\texttt{kest, fryplot, spatstat.options, integral.im, im.object}

**Examples**

```r
data(cells)
plot(Kmeasure(cells, 0.05))
shows pronounced dip around origin consistent with strong inhibition
data(redwood)
plot(Kmeasure(redwood, 0.03), col=grey(seq(1,0,length=32)))
shows peaks at several places, reflecting clustering and ?periodicity
M <- Kmeasure(cells, 0.05)
evaluate measure on a sector
W <- Window(M)
```
ang <- as.im(atan2, W)
rad <- as.im(function(x,y)(sqrt(x^2+y^2)), W)
sector <- solutionset(ang > 0 & ang < 1 & rad < 0.6)
integral.im(M[sector, drop=FALSE])

---

**Kmodel**  
*K Function or Pair Correlation Function of a Point Process Model*

**Description**

Returns the theoretical $K$ function or the pair correlation function of a point process model.

**Usage**

```r
Kmodel(model, ...)
```

```r
pcfmodel(model, ...)
```

**Arguments**

- `model`  
  A fitted point process model of some kind.

- `...`  
  Ignored.

**Details**

For certain types of point process models, it is possible to write down a mathematical expression for the $K$ function or the pair correlation function of the model.

The functions `Kmodel` and `pcfmodel` give the theoretical $K$-function and the theoretical pair correlation function for a point process model that has been fitted to data.

The functions `Kmodel` and `pcfmodel` are generic, with methods for the classes "kppm" (cluster processes and Cox processes) and "ppm" (Gibbs processes).

The return value is a function in the R language, which takes one argument `r`. Evaluation of this function, on a numeric vector `r`, yields values of the desired $K$ function or pair correlation function at these distance values.

**Value**

A function in the R language, which takes one argument `r`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>  
http://www.maths.uwa.edu.au/~adrian/  
and Rolf Turner <r.turner@auckland.ac.nz>
See Also

Kest or pcf to estimate the $K$ function or pair correlation function nonparametrically from data.
Kmodel.kppm for the method for cluster processes and Cox processes.
Kmodel.ppm for the method for Gibbs processes.

---

**Description**

Returns the theoretical $K$ function or the pair correlation function of a cluster point process model or Cox point process model.

**Usage**

```r
S3 method for class 'kppm'
Kmodel(model, ...)
```

```r
S3 method for class 'kppm'
pcfmodel(model, ...)
```

**Arguments**

- `model` A fitted cluster point process model (object of class "kppm") typically obtained from the model-fitting algorithm `kppm`.
- `...` Ignored.

**Details**

For certain types of point process models, it is possible to write down a mathematical expression for the $K$ function or the pair correlation function of the model. In particular this is possible for a fitted cluster point process model (object of class "kppm" obtained from `kppm`).

The functions `Kmodel` and `pcfmodel` are generic. The functions documented here are the methods for the class "kppm".

The return value is a function in the R language, which takes one argument `r`. Evaluation of this function, on a numeric vector `r`, yields values of the desired $K$ function or pair correlation function at these distance values.

**Value**

A function in the R language, which takes one argument `r`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
See Also

Kest or pcf to estimate the \( K \) function or pair correlation function nonparametrically from data.

kppm to fit cluster models.

Kmodel for the generic functions.

Kmodel.ppm for the method for Gibbs processes.

Examples

```r
data(redwood)
fit <- kppm(redwood, ~x, "MatClust")
K <- Kmodel(fit)
K(c(0.1, 0.2))
curve(K(x), from=0, to=0.25)
```

Kmodel.ppm

| K Function or Pair Correlation Function of Gibbs Point Process model |

Description

Returns the theoretical \( K \) function or the pair correlation function of a fitted Gibbs point process model.

Usage

```r
S3 method for class 'ppm'
Kmodel(model, ...)

S3 method for class 'ppm'
pcfmodel(model, ...)
```

Arguments

- **model**: A fitted Poisson or Gibbs point process model (object of class "ppm") typically obtained from the model-fitting algorithm ppm.
- **...**: Ignored.

Details

This function computes an approximation to the \( K \) function or the pair correlation function of a Gibbs point process.

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods for the class "ppm".

The approximation is only available for stationary pairwise-interaction models. It uses the second order Poisson-saddlepoint approximation (Baddeley and Nair, 2012b) which is a combination of the Poisson-Boltzmann-Emden and Percus-Yevick approximations.
The return value is a function in the R language, which takes one argument \( r \). Evaluation of this function, on a numeric vector \( r \), yields values of the desired \( K \) function or pair correlation function at these distance values.

**Value**

A function in the R language, which takes one argument \( r \).

**Author(s)**


**References**


**See Also**

- `Kest` or `pcf` to estimate the \( K \) function or pair correlation function nonparametrically from data.
- `ppm` to fit Gibbs models.
- `Kmodel` for the generic functions.
- `Kmodel.kppm` for the method for cluster/Cox processes.

**Examples**

```r
fit <- ppm(swedishpines, ~1, Strauss(8))
p <- pcfmodel(fit)
K <- Kmodel(fit)
p(6)
K(8)
curve(K(x), from=0, to=15)
```

**Kmulti**

*Marked K-Function*

**Description**

For a marked point pattern, estimate the multitype \( K \) function which counts the expected number of points of subset \( J \) within a given distance from a typical point in subset \( I \).

**Usage**

```r
Kmulti(X, I, J, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)
```
Arguments

- **X**: The observed point pattern, from which an estimate of the multitype $K$ function $K_{IJ}(r)$ will be computed. It must be a marked point pattern. See under Details.
- **I**: Subset index specifying the points of $X$ from which distances are measured. See Details.
- **J**: Subset index specifying the points in $X$ to which distances are measured. See Details.
- **r**: numeric vector. The values of the argument $r$ at which the multitype $K$ function $K_{IJ}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **breaks**: This argument is for internal use only.
- **correction**: A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.
- **...**: Ignored.
- **ratio**: Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

Details

The function `kmulti` generalises `kest` (for unmarked point patterns) and `kdot` and `kcross` (for multitype point patterns) to arbitrary marked point patterns.

Suppose $X_I, X_J$ are subsets, possibly overlapping, of a marked point process. The multitype $K$ function is defined so that $\lambda_J K_{IJ}(r)$ equals the expected number of additional random points of $X_J$ within a distance $r$ of a typical point of $X_I$. Here $\lambda_J$ is the intensity of $X_J$ i.e. the expected number of points of $X_J$ per unit area. The function $K_{IJ}$ is determined by the second order moment properties of $X$.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to `as.ppp`.

The arguments $I$ and $J$ specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to `npoints(X)`, or integer vectors with entries in the range $1$ to `npoints(X)`, or negative integer vectors.

Alternatively, $I$ and $J$ may be functions that will be applied to the point pattern $X$ to obtain index vectors. If $I$ is a function, then evaluating $I(X)$ should yield a valid subset index. This option is useful when generating simulation envelopes using `envelope`.

The argument $r$ is the vector of values for the distance $r$ at which $K_{IJ}(r)$ should be evaluated. It is also used to determine the breakpoints (in the sense of `hist`) for the computation of histograms of distances.

First-time users would be strongly advised not to specify $r$. However, if it is specified, $r$ must satisfy $r[1] = 0$, and $\max(r)$ must be larger than the radius of the largest disc contained in the window.

This algorithm assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as $X$\$window) may have arbitrary shape.
Biases due to edge effects are treated in the same manner as in \texttt{Kest}. The edge corrections implemented here are

- \texttt{border} the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.
- \texttt{isotropic/Ripley} Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently implemented only for rectangular and polygonal windows.
- \texttt{translate} Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function \texttt{pcf} can also be applied to the result of \texttt{Kmulti}.

**Value**

An object of class "\texttt{fv}" (see \texttt{fv.object}). Essentially a data frame containing numeric columns

- \texttt{r} the values of the argument \( r \) at which the function \( K_{IJ}(r) \) has been estimated
- \texttt{theo} the theoretical value of \( K_{IJ}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

Together with a column or columns named "\texttt{border}”, "\texttt{bord.modif}"”, "\texttt{iso}" and/or "\texttt{trans}", according to the selected edge corrections. These columns contain estimates of the function \( K_{IJ}(r) \) obtained by the edge corrections named.

If \texttt{ratio=\texttt{TRUE}} then the return value also has two attributes called "\texttt{numerator}" and "\texttt{denominator}" which are "\texttt{fv}" objects containing the numerators and denominators of each estimate of \( K(r) \).

**Warnings**

The function \( K_{IJ} \) is not necessarily differentiable.

The border correction (reduced sample) estimator of \( K_{IJ} \) used here is pointwise approximately unbiased, but need not be a nondecreasing function of \( r \), while the true \( K_{IJ} \) must be nondecreasing.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

**References**


See Also

`kcross, Kdot, Kest, pcf`

Examples

```r
Longleaf Pine data: marks represent diameter
K <- kmulti(longleaf, longleaf$marks <= 15, longleaf$marks >= 25)
plot(K)
functions determining subsets
f1 <- function(x) { marks(x) <= 15 }
f2 <- function(x) { marks(x) >= 15 }
K <- kmulti(longleaf, f1, f2)
```

---

**kmulti.inhom**  
*Inhomogeneous Marked K-Function*

**Description**

For a marked point pattern, estimate the inhomogeneous version of the multitype $K$ function which counts the expected number of points of subset $J$ within a given distance from a typical point in subset $I$, adjusted for spatially varying intensity.

**Usage**

```r
KMmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL,
 ...,
 r=NULL, breaks=NULL,
 correction=c("border", "isotropic", "Ripley", "translate"),
 lambdaIJ=NULL,
 sigma=NULL, varcov=NULL)
```

**Arguments**

- `X`  
The observed point pattern, from which an estimate of the inhomogeneous multitype $K$ function $K_{IJ}(r)$ will be computed. It must be a marked point pattern. See under Details.

- `I`  
Subset index specifying the points of $X$ from which distances are measured. See Details.
Details

The function \texttt{K.multi.inhom} is the counterpart, for spatially-inhomogeneous marked point patterns, of the multitype \texttt{K} function \texttt{K.multi}.

Suppose \( X \) is a marked point process, with marks of any kind. Suppose \( X_I, X_J \) are two sub-processes, possibly overlapping. Typically \( X_I \) would consist of those points of \( X \) whose marks lie in a specified range of mark values, and similarly for \( X_J \). Suppose that \( \lambda_I(u), \lambda_J(u) \) are the spatially-varying intensity functions of \( X_I \) and \( X_J \) respectively. Consider all the pairs of points \((u,v)\) in the point process \( X \) such that the first point \( u \) belongs to \( X_I \), the second point \( v \) belongs to \( X_J \), and the distance between \( u \) and \( v \) is less than a specified distance \( r \). Give this pair \((u,v)\) the numerical weight \( 1/(\lambda_I(u)\lambda_J(u)) \). Calculate the sum of these weights over all pairs of points as described. This sum (after appropriate edge-correction and normalisation) is the estimated inhomogeneous multitype \( K \) function.

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}.

The arguments \( I \) and \( J \) specify two subsets of the point pattern. They may be any type of subset indices, for example, logical vectors of length equal to \texttt{npoints(X)}, or integer vectors with entries in the range \( 1 \) to \texttt{npoints(X)}, or negative integer vectors. Alternatively, \( I \) and \( J \) may be \texttt{functions} that will be applied to the point pattern \( X \) to obtain index vectors. If \( I \) is a function, then evaluating \( I(X) \) should yield a valid subset index. This option is useful when generating simulation envelopes using \texttt{envelope}. 

\begin{verbatim}
 J Subset index specifying the points in X to which distances are measured. See Details.

 lambdaI Optional. Values of the estimated intensity of the sub-process X[I]. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in X[I], or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

 lambdaJ Optional. Values of the estimated intensity of the sub-process X[J]. Either a pixel image (object of class "im"), a numeric vector containing the intensity values at each of the points in X[J], or a function \((x,y)\) which can be evaluated to give the intensity value at any location.

 NNN Ignored.

 r Optional. Numeric vector. The values of the argument \( r \) at which the multitype \( K \) function \( K_{IJ}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

 breaks This argument is for internal use only.

 correction A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "none" or "best". It specifies the edge correction(s) to be applied.

 lambdaIJ Optional. A matrix containing estimates of the product of the intensities \( \lambda_I \) and \( \lambda_J \) for each pair of points, the first point

 sigma, varcov Optional arguments passed to \texttt{density.ppp} to control the smoothing bandwidth, when \( \lambda \) is estimated by kernel smoothing.
\end{verbatim}
The argument \( \lambda_i \) supplies the values of the intensity of the sub-process identified by index \( i \). It may be either

- **a pixel image** (object of class "im") which gives the values of the intensity of \( X[i] \) at all locations in the window containing \( X \);
- **a numeric vector** containing the values of the intensity of \( X[i] \) evaluated only at the data points of \( X[i] \). The length of this vector must equal the number of points in \( X[i] \);
- **a function** of the form \( \text{function}(x, y) \) which can be evaluated to give values of the intensity at any locations.

**omitted:** if \( \lambda_i \) is omitted then it will be estimated using a leave-one-out kernel smoother.

If \( \lambda_i \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate of \( \lambda_i \) for a given point is computed by removing the point from the point pattern, applying kernel smoothing to the remaining points using \( \text{density.ppp} \), and evaluating the smoothed intensity at the point in question. The smoothing kernel bandwidth is controlled by the arguments \( \sigma \) and \( \text{varcov} \), which are passed to \( \text{density.ppp} \) along with any extra arguments.

Similarly \( \lambda_j \) supplies the values of the intensity of the sub-process identified by index \( j \).

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{IJ}(r) \) should be evaluated. It is also used to determine the breakpoints (in the sense of \text{hist}) for the computation of histograms of distances.

First-time users would be strongly advised not to specify \( r \). However, if it is specified, \( r \) must satisfy \( r[1] = 0 \), and \( \text{max}(r) \) must be larger than the radius of the largest disc contained in the window.

Biases due to edge effects are treated in the same manner as in \text{Kinhom}. The edge corrections implemented here are

- **border** the border method or “reduced sample” estimator (see Ripley, 1988). This is the least efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary shape.
- **isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently implemented only for rectangular windows.
- **translate** Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function \( \text{pcf} \) can also be applied to the result of \text{Kmulti.inhom}.

**Value**

An object of class "fv" (see \text{fv.object}).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( K_{IJ}(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( K_{IJ}(r) \) for a marked Poisson process, namely \( \pi r^2 \)

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( K_{IJ}(r) \) obtained by the edge corrections named.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

Kmulti, Kdot.inhom, Kcross.inhom, pcf

Examples

# Finnish Pines data: marked by diameter and height
plot(finpines, which.marks="height")
I <- (marks(finpines)$height <= 2)
J <- (marks(finpines)$height > 3)
K <- Kmulti.inhom(finpines, I, J)
plot(K)

# functions determining subsets
f1 <- function(X) { marks(X)$height <= 2 }
f2 <- function(X) { marks(X)$height > 3 }
K <- Kmulti.inhom(finpines, f1, f2)

Kovesi  Colour Sequences with Uniform Perceptual Contrast

Description

A collection of 41 different sequences of colours, each sequence having a uniform perceptual con-
trast over its whole range. These sequences make very good colour maps which avoid introducing
artefacts when displaying image data.

Usage

data(Kovesi)

Format

A hyperframe with the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>Logical: whether the sequence is linear.</td>
</tr>
<tr>
<td>diverging</td>
<td>Logical: whether the sequence is diverging.</td>
</tr>
<tr>
<td>rainbow</td>
<td>Logical: whether the sequence is a rainbow.</td>
</tr>
<tr>
<td>cyclic</td>
<td>Logical: whether the sequence is cyclic.</td>
</tr>
<tr>
<td>isoluminant</td>
<td>Logical: whether the sequence is isoluminant.</td>
</tr>
</tbody>
</table>
ternary  Logical: whether the sequence is ternary.
colsig  Character: colour signature (see Details)
11, 12  Numeric: lightness parameters
chro  Numeric: average chroma (percent)
n  Numeric: length of colour sequence
cycsh  Numeric: cyclic shift (percent)
values  : Character: the colour values.

Details

Kovesi (2014, 2015) presented a collection of colour sequences that have uniform perceptual contrast over their whole range.

The dataset Kovesi provides these data. It is a hyperframe with 41 rows, in which each row provides information about one colour sequence.

Additional information in each row specifies whether the colour sequence is ‘linear’, ‘diverging’, ‘rainbow’, ‘cyclic’, ‘isoluminant’ and/or ‘ternary’ as defined by Kovesi (2014, 2015).

The ‘colour signature’ is a string composed of letters representing the successive hues, using the following code:

r  red
g  green
b  blue
c  cyan
m  magenta
y  yellow
o  orange
v  violet
k  black
w  white
j  grey (j rhymes with grey)

For example kryw is the sequence from black to red to yellow to white.

The column values contains the colour data themselves. The i\textsuperscript{th} colour sequence is Kovesi$values\{[i]\}$, a character vector of length 256.

Source

Dr Peter Kovesi, Centre for Exploration Targeting, University of Western Australia.

References


Examples

Kovesi
LinearBMW <- Kovesi$values[[28]]
plot(colourmap(LinearBMW, range=c(0,1)))

## The following would be suitable for spatstat.options(image.colfun)
BMWfun <- function(n) { interp.colours(LinearBMW, n) }

kppm

Fit Cluster or Cox Point Process Model

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern.

Usage

kppm(X, ...)

## S3 method for class 'formula'
kppm(X,
   clusters = c("Thomas", "MatClust", "Cauchy", "VarGamma", "LGCP"),
   ...,
   data=NULL)

## S3 method for class 'ppp'
kppm(X,
   trend = ~1,
   clusters = c("Thomas", "MatClust", "Cauchy", "VarGamma", "LGCP"),
   data = NULL,
   ...,
   covariates=data,
   method = c("mincon", "clik2", "palm"),
   improve.type = c("none", "clik1", "wclik1", "quasi"),
   improve.args = list(),
   weightfun=NULL,
   control=list(),
   statistic="K",
   statargs=list(),
   rmax = NULL,
   covfunargs=NULL,
   use.gam=FALSE,
   nd=NULL, eps=NULL)

## S3 method for class 'quad'
kppm(X,
   trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
..., covariates=data,
method = c("mincon", "clik2", "palm"),
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
statistic="K",
statargs=list(),
rmax = NULL,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

Arguments

X A point pattern dataset (object of class "ppp" or "quad") to which the model
should be fitted, or a formula in the R language defining the model. See Details.
trend An R formula, with no left hand side, specifying the form of the log intensity.
clusters Character string determining the cluster model. Partially matched. Options are
"Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".
data,covariates The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.
... Additional arguments. See Details.
method The fitting method. Either "mincon" for minimum contrast, "clik2" for second
order composite likelihood, or "palm" for Palm likelihood. Partially matched.
improve.type Method for updating the initial estimate of the trend. Initially the trend is es-
timated as if the process is an inhomogeneous Poisson process. The default,
improve.type = "none", is to use this initial estimate. Otherwise, the trend estimate is updated by improve.kppm, using information about the pair corre-
lation function. Options are "clik1" (first order composite likelihood, essentially
equivalent to "none"), "wclik1" (weighted first order composite likelihood)
and "quasi" (quasi likelihood).
improve.args Additional arguments passed to improve.kppm when improve.type != "none". See Details.
weightfun Optional weighting function w in the composite likelihood or Palm likelihood.
A function in the R language. See Details.
control List of control parameters passed to the optimization algorithm optim.
statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".
statargs Optional list of arguments to be used when calculating the statistic. See Details.
\texttt{kppm}

- \texttt{rmax} \quad Maximum value of interpoint distance to use in the composite likelihood.
- \texttt{covfunargs, use.gam, nd, eps}
  Arguments passed to \texttt{ppm} when fitting the intensity.

**Details**

This function fits a clustered point process model to the point pattern dataset $X$.

The model may be either a \textit{Neyman-Scott cluster process} or another \textit{Cox process}. The type of model is determined by the argument \texttt{clusters}. Currently the options are \texttt{clusters="Thomas"} for the Thomas process, \texttt{clusters="MatClust"} for the Matern cluster process, \texttt{clusters="Cauchy"} for the Neyman-Scott cluster process with Cauchy kernel, \texttt{clusters="VarGamma"} for the Neyman-Scott cluster process with Variance Gamma kernel (requires an additional argument \texttt{nu} to be passed through the dots; see \texttt{rVarGamma} for details), and \texttt{clusters="LGCP"} for the log-Gaussian Cox process (may require additional arguments passed through . . . ; see \texttt{rLGCP} for details on argument names). The first four models are Neyman-Scott cluster processes.

The algorithm first estimates the intensity function of the point process using \texttt{ppm}. The argument $X$ may be a point pattern (object of class \texttt{ppp}) or a quadrature scheme (object of class \texttt{quad}). The intensity is specified by the \texttt{trend} argument. If the trend formula is \~1 (the default) then the model is \textit{homogeneous}. The algorithm begins by estimating the intensity as the number of points divided by the area of the window. Otherwise, the model is \textit{inhomogeneous}. The algorithm begins by fitting a Poisson process with log intensity of the form specified by the formula \texttt{trend}. (See \texttt{ppm} for further explanation).

The argument $X$ may also be a \texttt{formula} in the \texttt{R} language. The right hand side of the formula gives the \texttt{trend} as described above. The left hand side of the formula gives the point pattern dataset to which the model should be fitted.

If \texttt{improve.type="none"} this is the final estimate of the intensity. Otherwise, the intensity estimate is updated, as explained in \texttt{improve.kppm}. Additional arguments to \texttt{improve.kppm} are passed as a named list in \texttt{improve.args}.

The clustering parameters of the model are then fitted either by minimum contrast estimation, or by maximum composite likelihood.

**Minimum contrast:** If \texttt{method = "mincon"} (the default) clustering parameters of the model will be fitted by minimum contrast estimation, that is, by matching the theoretical $K$-function of the model to the empirical $K$-function of the data, as explained in \texttt{mincontrast}.

For a homogeneous model ( \texttt{trend = ~1} ) the empirical $K$-function of the data is computed using \texttt{Kest}, and the parameters of the cluster model are estimated by the method of minimum contrast.

For an inhomogeneous model, the inhomogeneous $K$ function is estimated by \texttt{Kinhom} using the fitted intensity. Then the parameters of the cluster model are estimated by the method of minimum contrast using the inhomogeneous $K$ function. This two-step estimation procedure is due to Waagepetersen (2007).

If \texttt{statistic="pcf"} then instead of using the $K$-function, the algorithm will use the pair correlation function \texttt{pcf} for homogeneous models and the inhomogeneous pair correlation function \texttt{pcfinhom} for inhomogeneous models. In this case, the smoothing parameters of the pair correlation can be controlled using the argument \texttt{statargs}, as shown in the Examples. Additional arguments \ldots will be passed to \texttt{mincontrast} to control the minimum contrast fitting algorithm.
Composite likelihood: If method = "clik2" the clustering parameters of the model will be fitted by maximising the second-order composite likelihood (Guan, 2006). The log composite likelihood is

$$\sum_{i,j} w(d_{ij}) \log \rho(d_{ij}; \theta) - \left( \sum_{i,j} w(d_{ij}) \right) \log \int_D \int_D w(\|u - v\|) \rho(\|u - v\|; \theta) \, du \, dv$$

where the sums are taken over all pairs of data points \(x_i, x_j\) separated by a distance \(d_{ij} = \|x_i - x_j\|\) less than \(r_{\text{max}}\), and the double integral is taken over all pairs of locations \(u, v\) in the spatial window of the data. Here \(\rho(d; \theta)\) is the pair correlation function of the model with cluster parameters \(\theta\).

The function \(w\) in the composite likelihood is a weighting function and may be chosen arbitrarily. It is specified by the argument weightfun. If this is missing or NULL then \(w\) is taken to equal 1.

Palm likelihood: If method = "palm" the clustering parameters of the model will be fitted by maximising the Palm loglikelihood (Tanaka et al, 2008)

$$\sum_{i,j} w(x_i, x_j) \log \lambda_P(x_j | x_i; \theta) - \int_D w(x_i, u) \lambda_P(u | x_i; \theta) \, du$$

with the same notation as above. Here \(\lambda_P(u | v; \theta)\) is the Palm intensity of the model at location \(u\) given there is a point at \(v\).

In all three methods, the optimisation is performed by the generic optimisation algorithm \texttt{optim}. The behaviour of this algorithm can be modified using the argument control. Useful control arguments include \texttt{trace}, \texttt{maxit} and \texttt{abstol} (documented in the help for \texttt{optim}).

Value

An object of class "kppm" representing the fitted model. There are methods for printing, plotting, predicting, simulating and updating objects of this class.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/}, Rolf Turner \texttt{<r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>} with contributions from Abdollah Jalilian and Rasmus Waagepetersen.

References


See Also


Minimum contrast fitting algorithm: mincontrast.


Summary statistics: Kest, Kinhom, pcf, pcfinhom.

See also ppm

Examples

# method for point patterns
kppm(redwood, ~1, "Thomas")

# method for formulas
kppm(redwood ~ 1, "Thomas")

kppm(redwood ~ 1, "Thomas", method="c")
kppm(redwood ~ 1, "Thomas", method="p")

kppm(redwood ~ x, "MatClust")
kppm(redwood ~ x, "MatClust", statistic="pcf", statargs=list(stoyan=0.2))
kppm(redwood ~ 1, "LGCP", statistic="pcf")
kppm(redwood ~ x, cluster="Cauchy", statistic="K")
kppm(redwood, cluster="VarGamma", nu = 0.5, statistic="pcf")
if(require(RandomFields)) {
    kppm(redwood ~ x, "LGCP", statistic="pcf",
         model="matern", nu=0.3,
         control=list(maxit=10))
}

# fit intensity with quasi-likelihood method
kppm(redwood ~ x, "Thomas", improve.type = "quasi")

<table>
<thead>
<tr>
<th>Kres</th>
<th>Residual K Function</th>
</tr>
</thead>
</table>

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual $K$ function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Kres(object, ...)
Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object of class "quad"), or the value returned by a previous call to Kcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a point pattern dataset. It computes a residual version of the $K$ function of the dataset, which should be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Kres first calls Kcom to compute both the nonparametric estimate of the $K$ function and its model compensator. Then Kres computes the difference between them, which is the residual $K$-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a previous call to Kcom. Then Kres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Ege Rubak and Jesper Møller.

References


See Also

Related functions: Kcom, Kest.
Point process models: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson

K0 <- Kres(fit0)
K0
plot(K0)
# isotropic-correction estimate
plot(K0, ires ~ r)
Kscaled

```
uniform Poisson is clearly not correct
fit1 <- ppm(cells, ~1, Strauss(0.08))
K1 <- Kres(fit1)
if(interactive()) {
 plot(K1, ires ~ r)
 # fit looks approximately OK; try adjusting interaction distance
 plot(Kres(cells, interaction=Strauss(0.12)))
}

How to make envelopes
Not run:
E <- envelope(fit1, Kres, model=fit1, nsim=19)
plot(E)
End(Not run)

For computational efficiency
Kc <- Kcom(fit1)
K1 <- Kres(Kc)
```

**Kscaled**

**Locally Scaled K-function**

**Description**

Estimates the locally-rescaled $K$-function of a point process.

**Usage**

Kscaled(X, lambda=NULL, ..., r = NULL, breaks = NULL, rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,
sigma=NULL, varcov=NULL)

Lscaled(...)

**Arguments**

- **X**
  - The observed data point pattern, from which an estimate of the locally scaled $K$ function will be computed. An object of class "ppp" or in a format recognised by as.ppp().
- **lambda**
  - Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern $X$, a pixel image (object of class "im") giving the intensity values at all locations, a function $x \mapsto y$ which can be evaluated to give the intensity value at any location, or a fitted point process model (object of class "ppm").
Arguments passed from \texttt{Lscaled} to \texttt{Kscaled} and from \texttt{Kscaled} to \texttt{density.ppp} if \texttt{lambda} is omitted.

\texttt{r}

vector of values for the argument \texttt{r} at which the locally scaled \texttt{K} function should be evaluated. (These are rescaled distances.) Not normally given by the user; there is a sensible default.

\texttt{breaks}

This argument is for internal use only.

\texttt{rmax}

maximum value of the argument \texttt{r} that should be used. (This is the rescaled distance).

\texttt{correction}

A character vector containing any selection of the options "border", "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.

\texttt{renormalise}

Logical. Whether to renormalise the estimate. See Details.

\texttt{normpower}

Integer (usually either 1 or 2). Normalisation power. See Details.

\texttt{sigma, varcov}

Optional arguments passed to \texttt{density.ppp} to control the smoothing bandwidth, when \texttt{lambda} is estimated by kernel smoothing.

\textbf{Details}

\texttt{Kscaled} computes an estimate of the \texttt{K} function for a locally scaled point process. \texttt{Lscaled} computes the corresponding \texttt{L} function \( L(r) = \sqrt{K(r)/\pi} \).

Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.

The template \texttt{K} function of a locally-scaled process is a counterpart of the “ordinary” Ripley \texttt{K} function, in which the distances between points of the process are measured on a spatially-varying scale (such that the locally rescaled process has unit intensity).

The template \texttt{K} function is an indicator of interaction between the points. For an inhomogeneous Poisson process, the theoretical template \texttt{K} function is approximately equal to \( K(r) = \pi r^2 \). Values \( K_{scaled}(r) > \pi r^2 \) are suggestive of clustering.

\texttt{Kscaled} computes an estimate of the template \texttt{K} function and \texttt{Lscaled} computes the corresponding \texttt{L} function \( L(r) = \sqrt{K(r)/\pi} \).

The locally scaled interpoint distances are computed using an approximation proposed by Hahn (2007). The Euclidean distance between two points is multiplied by the average of the square roots of the intensity values at the two points.

The argument \texttt{lambda} should supply the (estimated) values of the intensity function \( \lambda \). It may be either

\textbf{a numeric vector} containing the values of the intensity function at the points of the pattern \texttt{X}.

\textbf{a pixel image} (object of class "im") assumed to contain the values of the intensity function at all locations in the window.

\textbf{a function} which can be evaluated to give values of the intensity at any locations.

\textbf{omitted:} if \texttt{lambda} is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If \texttt{lambda} is a numeric vector, then its length should be equal to the number of points in the pattern \texttt{X}. The value \texttt{lambda[i]} is assumed to be the (estimated) value of the intensity \( \lambda(x_i) \) for the point \texttt{x_i} of the pattern \texttt{X}. Each value must be a positive number; NA's are not allowed.
If \( \lambda \) is a pixel image, the domain of the image should cover the entire window of the point pattern. If it does not (which may occur near the boundary because of discretisation error), then the missing pixel values will be obtained by applying a Gaussian blur to \( \lambda \) using `blur`, then looking up the values of this blurred image for the missing locations. (A warning will be issued in this case.)

If \( \lambda \) is a function, then it will be evaluated in the form \( \lambda(x,y) \) where \( x \) and \( y \) are vectors of coordinates of the points of \( X \). It should return a numeric vector with length equal to the number of points in \( X \).

If \( \lambda \) is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described in Baddeley, Møller and Waagepetersen (2000). The estimate \( \lambda[i] \) for the point \( X[i] \) is computed by removing \( X[i] \) from the point pattern, applying kernel smoothing to the remaining points using `density.ppp`, and evaluating the smoothed intensity at the point \( X[i] \). The smoothing kernel bandwidth is controlled by the arguments \( \sigma \) and \( \text{varcov} \), which are passed to `density.ppp` along with any extra arguments.

If `renormalise=TRUE`, the estimated intensity \( \lambda \) is multiplied by \( e^{\text{normpower}/2} \) before performing other calculations, where \( e = \text{area}(W)/\sum[i](1/\lambda(x[i])) \). This renormalisation has about the same effect as in `Kinhom`, reducing the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity.

Edge corrections are used to correct bias in the estimation of \( K_{\text{scaled}} \). First the interpoint distances are rescaled, and then edge corrections are applied as in `Kest`. See `Kest` for details of the edge corrections and the options for the argument `correction`.

The pair correlation function can also be applied to the result of `Kscaled`; see `pcf` and `pcf.fv`.

### Value

An object of class "fv" (see `fv.object`). Essentially a data frame containing at least the following columns,

- \( r \) the vector of values of the argument \( r \) at which the pair correlation function \( g(r) \) has been estimated
- `theo` vector of values of \( \pi r^2 \), the theoretical value of \( K_{\text{scaled}}(r) \) for an inhomogeneous Poisson process

and containing additional columns according to the choice specified in the `correction` argument. The additional columns are named `border`, `trans` and `iso` and give the estimated values of \( K_{\text{scaled}}(r) \) using the border correction, translation correction, and Ripley isotropic correction, respectively.

### Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

### References


See Also

*kest, pcf*

Examples

```r
data(bronzefilter)
X <- unmark(bronzefilter)
K <- Kscaled(X)
fit <- ppm(X, ~x)
lam <- predict(fit)
K <- Kscaled(X, lam)
```

## Ksector

*Sector K-function*

Description

A directional counterpart of Ripley's $K$ function, in which pairs of points are counted only when the vector joining the pair happens to lie in a particular range of angles.

Usage

```r
Ksector(X, begin = 0, end = 360, ...,
units = c("degrees", "radians"),
r = NULL, breaks = NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
domain=NULL, ratio = FALSE, verbose=TRUE)
```

Arguments

- **X** The observed point pattern, from which an estimate of $K(r)$ will be computed. An object of class "ppp", or data in any format acceptable to `as.ppp()`.
- **begin, end** Numeric values giving the range of angles inside which points will be counted. Angles are measured in degrees (if `units="degrees"`, the default) or radians (if `units="radians"`) anti-clockwise from the positive $x$-axis.
- **...** Ignored.
- **units** Units in which the angles `begin` and `end` are expressed.
`r` Optional. Vector of values for the argument `r` at which \( K(r) \) should be evaluated. Users are advised not to specify this argument; there is a sensible default.

`breaks` This argument is for internal use only.

`correction` Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "isotropic", "Ripley", "translate", "translation", "none", "good" or "best". It specifies the edge correction(s) to be applied.

`domain` Optional window. The first point \( x_i \) of each pair of points will be constrained to lie in domain.

`ratio` Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

`verbose` Logical value indicating whether to print progress reports and warnings.

**Details**

This is a directional counterpart of Ripley's \( K \) function (see \texttt{Kest}) in which, instead of counting all pairs of points within a specified distance \( r \), we count only the pairs \((x_i, x_j)\) for which the vector \( x_j - x_i \) falls in a particular range of angles.

This can be used to evaluate evidence for anisotropy in the point pattern \( X \).

**Value**

An object of class "fv" containing the estimated function.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**See Also**

\texttt{Kest}

**Examples**

\begin{verbatim}
K <- Ksector(swedishpines, 0, 90)
plot(K)
\end{verbatim}
Arguments

x Vector of nonnegative numbers.

Details

Lambert’s W-function is the inverse function of \( f(y) = ye^y \). That is, \( W \) is the function such that

\[
W(x)e^{W(x)} = x
\]

This command \texttt{lambertW} computes \( W(x) \) for each entry in the argument \( x \). If the library \texttt{gsl} has been installed, then the function \texttt{lambertW0} in that library is invoked. Otherwise, values of the W-function are computed by root-finding, using the function \texttt{uniroot}.

Computation using \texttt{gsl} is about 100 times faster.

If any entries of \( x \) are infinite or \texttt{NA}, the corresponding results are \texttt{NA}.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

References


Examples

```r
lambertW(exp(1))
```

---

lansing Lansing Woods Point Pattern

Description

Locations and botanical classification of trees in Lansing Woods.

The data come from an investigation of a 924 ft x 924 ft (19.6 acre) plot in Lansing Woods, Clinton County, Michigan USA by D.J. Gerrard. The data give the locations of 2251 trees and their botanical classification (into hickories, maples, red oaks, white oaks, black oaks and miscellaneous trees). The original plot size (924 x 924 feet) has been rescaled to the unit square.

Note that the data contain duplicated points (two points at the same location). To determine which points are duplicates, use \texttt{duplicated.ppp}. To remove the duplication, use \texttt{unique.ppp}. 
Usage
data(lansing)

Format
An object of class "ppp" representing the point pattern of tree locations. Entries include

- **x**: Cartesian $x$-coordinate of tree
- **y**: Cartesian $y$-coordinate of tree
- **marks**: factor with levels indicating species of each tree

The levels of marks are blackoak, hickory, maple, misc, redoak and whiteoak. See `ppp.object` for details of the format of a point pattern object.

References


Examples
data(lansing)
plot(lansing)
summary(lansing)
plot(split(lansing))
plot(split(lansing)$maple)
description

prints the news documentation for the current version of spatstat or another specified package.

usage

latest.news(package = "spatstat")

arguments

package Name of package for which the latest news should be printed.

details

by default, this function prints the news documentation about changes in the current installed version of the spatstat package. the function can be called simply by typing its name without parentheses (see the examples).

if package is given, then the function reads the news for the specified package from its NEWS file (if it has one) and prints only the entries that refer to the current version of the package.

to see the news for all previous versions as well as the current version, use the R utility news. see the examples.

value

null.

author(s)

adrian baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and rolf turner <r.turner@auckland.ac.nz>

see also

news

examples

if(interactive()) {

    # current news
    latest.news

    # all news
    news(package="spatstat")

}
layered

Create List of Plotting Layers

Description

Given several objects which are capable of being plotted, create a list containing these objects as if they were successive layers of a plot. The list can then be plotted in different ways.

Usage

layered(..., plotargs = NULL, LayerList=NULL)

Arguments

...  Objects which can be plotted by plot.
plotargs  Default values of the plotting arguments for each of the objects. A list of lists of arguments of the form name=value.
LayerList  A list of objects. Incompatible with ....

Details

Layering is a simple mechanism for controlling a high-level plot that is composed of several successive plots, for example, a background and a foreground plot. The layering mechanism makes it easier to issue the plot command, to switch on or off the plotting of each individual layer, to control the plotting arguments that are passed to each layer, and to zoom in.

Each individual layer in the plot should be saved as an object that can be plotted using plot. It will typically belong to some class, which has a method for the generic function plot.

The command layered simply saves the objects ... as a list of class "layered". This list can then be plotted by the method plot.layered. Thus, you only need to type a single plot command to produce the multi-layered plot. Individual layers of the plot can be switched on or off, or manipulated, using arguments to plot.layered.

The argument plotargs contains default values of the plotting arguments for each layer. It should be a list, with one entry for each object in .... Each entry of plotargs should be a list of arguments in the form name=value, which are recognised by the plot method for the relevant layer.

The plotargs can also include an argument named .plot specifying (the name of) a function to perform the plotting instead of the generic plot.

The length of plotargs should either be equal to the number of layers, or equal to 1. In the latter case it will be replicated to the appropriate length.

Value

A list, belonging to the class "layered". There are methods for plot, "]", "shift", "affine", "rotate" and "rescale".
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
plot.layered, methods.layered, as.layered, [.layered, layerplotargs.

Examples
D <- distmap(cells)
L <- layered(D, cells)
L <- layered(D, cells,
  plotargs=list(list(ribbon=FALSE), list(pch=16)))
plot(L)

layerplotargs(L)[[1]] <- list(.plot="contour")
plot(L)

layerplotargs  Extract or Replace the Plot Arguments of a Layered Object

Description
Extracts or replaces the plot arguments of a layered object.

Usage
layerplotargs(L)
layerplotargs(L) <- value

Arguments
L An object of class "layered" created by the function layered.
value Replacement value. A list, with the same length as L, whose elements are lists of plot arguments.

Details
These commands extract or replace the plotargs in a layered object. See layered.
The replacement value should normally have the same length as the current value. However, it can also be a list with one element which is a list of parameters. This will be replicated to the required length.
For the assignment function layerplotargs<-, the argument L can be any spatial object; it will be converted to a layered object with a single layer.
layout.boxes

Value

layerplotargs returns a list of lists of plot arguments.
"layerplotargs<" returns the updated object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

layered, methods.layered, [.layered.

Examples

W <- square(2)
L <- layered(W=W, X=cells)
## The following are equivalent
layerplotargs(L) <- list(list(), list(pch=16))
layerplotargs(L)[[2]] <- list(pch=16)
layerplotargs(L)$X <- list(pch=16)

## The following are equivalent
layerplotargs(L) <- list(list(cex=2), list(cex=2))
layerplotargs(L) <- list(list(cex=2))

layout.boxes Generate a Row or Column Arrangement of Rectangles.

Description

A simple utility to generate a row or column of boxes (rectangles) for use in point-and-click panels.

Usage

layout.boxes(B, n, horizontal = FALSE, aspect = 0.5, usefrac = 0.9)

Arguments

B
Bounding rectangle for the boxes. An object of class "owin".

n
Integer. The number of boxes.

horizontal
Logical. If TRUE, arrange the boxes in a horizontal row. If FALSE (the default), arrange them in a vertical column.

aspect
Aspect ratio (height/width) of each box.

usefrac
Number between 0 and 1. The fraction of height or width of B that should be occupied by boxes.
Details

This simple utility generates a list of boxes (rectangles) inside the bounding box B arranged in a regular row or column. It is useful for generating the positions of the panel buttons in the function `simplepanel`.

Value

A list of rectangles.

Author(s)


and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`simplepanel`

Examples

```r
B <- owin(c(0,1),c(0,1))
boxes <- layout.boxes(B, 5, horizontal=TRUE)
plot(B, main="", col="blue")
nets <- lapply(boxes, plot, add=TRUE, col="grey")
```

---

Lcross  

Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

```r
Lcross(X, i, j, ...)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the cross-type L function $L_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

- **i**: The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.

- **j**: The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.

- **...**: Arguments passed to `Kcross`.
Details

The cross-type L-function is a transformation of the cross-type K-function,

\[ L_{ij}(r) = \sqrt{\frac{K_{ij}(r)}{\pi}} \]

where \( K_{ij}(r) \) is the cross-type K-function from type \( i \) to type \( j \). See \texttt{Kcross} for information about the cross-type K-function.

The command \texttt{Lcross} first calls \texttt{Kcross} to compute the estimate of the cross-type K-function, and then applies the square root transformation.

For a marked point pattern in which the points of type \( i \) are independent of the points of type \( j \), the theoretical value of the L-function is \( L_{ij}(r) = r \). The square root also has the effect of stabilising the variance of the estimator, so that \( L_{ij} \) is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class \"fv\", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- \( r \) the vector of values of the argument \( r \) at which the function \( L_{ij} \) has been estimated
- \( \text{theo} \) the theoretical value \( L_{ij}(r) = r \) for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{ij} \) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{Kcross, Ldot, Lest}

Examples

```r
data(amacrine)
L <- Lcross(amacrine, "off", "on")
plot(L)
```
Inhomogeneous Cross Type L Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross-type $L$ function.

Usage

\texttt{Lcross.inhom(X, i, j, \ldots)}

Arguments

- \texttt{X} \hspace{2cm} The observed point pattern, from which an estimate of the inhomogeneous cross type $L$ function $L_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
- \texttt{i} \hspace{2cm} The type (mark value) of the points in \texttt{X} from which distances are measured.
  A character string (or something that will be converted to a character string). Defaults to the first level of \texttt{marks(X)}.
- \texttt{j} \hspace{2cm} The type (mark value) of the points in \texttt{X} to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of \texttt{marks(X)}.
- \ldots \hspace{2cm} Other arguments passed to \texttt{Kcross.inhom}.

Details

This is a generalisation of the function \texttt{Lcross} to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \texttt{Linhom}.

All the arguments are passed to \texttt{Kcross.inhom}, which estimates the inhomogeneous multitype K function $K_{ij}(r)$ for the point pattern. The resulting values are then transformed by taking $L(r) = \sqrt{K(r)/\pi}$.

Value

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

- \texttt{r} \hspace{2cm} the values of the argument $r$ at which the function $L_{ij}(r)$ has been estimated
- \texttt{theo} \hspace{2cm} the theoretical value of $L_{ij}(r)$ for a marked Poisson process, identically equal to $r$

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $L_{ij}(r)$ obtained by the edge corrections named.
**Warnings**

The arguments `i` and `j` are always interpreted as levels of the factor `marks`. They are converted to character strings if they are not already character strings. The value `i=1` does **not** refer to the first level of the factor.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

`lcross, linhom, kcross.inhom`

**Examples**

```r
Lansing Woods data
data(lansing)
lansing <- lansing[seq(1,lansing$n, by=10)]
ma <- split(lansing)$maple
wh <- split(lansing)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
L <- lcross.inhom(lansing, "whiteoak", "maple", lambdaW, lambdaM)

method (2): fit parametric intensity model
fit <- ppm(lansing, ~marks * polynom(x,y,2))
evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, lansing$marks)
L <- lcross.inhom(lansing, "whiteoak", "maple",
 lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- lcross.inhom(X, "A", "B",
 lambda1=as.im(50, X$window), lambda2=lamB)
```
Ldot

*Multitype L-function (i-to-any)*

Description

Calculates an estimate of the multitype L-function (from type \( i \) to any type) for a multitype point pattern.

Usage

\[
\text{Ldot}(X, i, \ldots)
\]

Arguments

- **X**
  - The observed point pattern, from which an estimate of the dot-type \( L \) function \( L_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
- **i**
  - The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \( \text{marks}(X) \).
- **\ldots**
  - Arguments passed to \( \text{Kdot} \).

Details

This command computes

\[
L_{i*}(r) = \sqrt{\frac{K_{i*}(r)}{\pi}}
\]

where \( K_{i*}(r) \) is the multitype \( K \)-function from points of type \( i \) to points of any type. See \( \text{Kdot} \) for information about \( K_{i*}(r) \).

The command \( \text{Ldot} \) first calls \( \text{Kdot} \) to compute the estimate of the \( i \)-to-any \( K \)-function, and then applies the square root transformation.

For a marked Poisson point process, the theoretical value of the L-function is \( L_{i*}(r) = r \). The square root also has the effect of stabilising the variance of the estimator, so that \( L_{i*} \) is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see \( \text{fv.object} \), which can be plotted directly using \( \text{plot.fv} \).

Essentially a data frame containing columns

- **r**
  - the vector of values of the argument \( r \) at which the function \( L_{i*} \) has been estimated
- **theo**
  - the theoretical value \( L_{i*}(r) = r \) for a stationary Poisson process

Together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{i*} \) obtained by the edge corrections named.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
Kdot, Lcross, Lest

Examples
data(amacrine)
L <- Ldot(amacrine, "off")
plot(L)

Ldot.inhom

Inhomogeneous Multitype L Dot Function

Description
For a multitype point pattern, estimate the inhomogeneous version of the dot \( L \) function.

Usage
Ldot.inhom(X, i, ...)

Arguments

\( X \)  
The observed point pattern, from which an estimate of the inhomogeneous cross type \( L \) function \( L_{i\bullet}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.

\( i \)  
The type (mark value) of the points in \( X \) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \( \text{marks}(X) \).

...  
Other arguments passed to \text{Kdot.inhom}.

Details
This a generalisation of the function \text{Ldot} to include an adjustment for spatially inhomogeneous intensity, in a manner similar to the function \text{Linhom}.

All the arguments are passed to \text{Kdot.inhom}, which estimates the inhomogeneous multitype \( K \) function \( K_{i\bullet}(r) \) for the point pattern. The resulting values are then transformed by taking \( L(r) = \sqrt{K(r)/\pi} \).
Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the function \( L_{i*}(r) \) has been estimated
- \( \text{theo} \) the theoretical value of \( L_{i*}(r) \) for a marked Poisson process, identical to \( r \).

Together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \( L_{i*}(r) \) obtained by the edge corrections named.

Warnings

The argument \( i \) is interpreted as a level of the factor \( X \)$marks$. It is converted to a character string if it is not already a character string. The value \( i=1 \) does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\( \text{Ldot}, \text{Linhom}, \text{Kdot.inhom}, \text{Lcross.inhom} \).

Examples

\begin{verbatim}
# Lansing Woods data
data(lansing)
lansing <- lansing[seq(1,lansing$n, by=10)]
ma <- split(lansing)$maple
lg <- unmark(lansing)

# Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
L <- Ldot.inhom(lansing, "maple", lambdaI=lambdaM,
                lambdadot=lambdadot)

# synthetic example: type A points have intensity 50,
# type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=poispp(lamB))
L <- Ldot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)
\end{verbatim}
Description

Computes the length of each line segment in a line segment pattern.

Usage

lengths.psp(x)

Arguments

x A line segment pattern (object of class "psp").

Details

The length of each line segment is computed and the lengths are returned as a numeric vector.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary.psp, midpoints.psp, angles.psp

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- lengths.psp(a)
The Lennard-Jones Potential

Description

Creates the Lennard-Jones pairwise interaction structure which can then be fitted to point pattern data.

Usage

LennardJones(sigma0=NA)

Arguments

sigma0 Optional. Initial estimate of the parameter $\sigma$. A positive number.

Details

In a pairwise interaction point process with the Lennard-Jones pair potential (Lennard-Jones, 1924) each pair of points in the point pattern, a distance $d$ apart, contributes a factor

$$v(d) = \exp \left\{-4\epsilon \left( \left( \frac{\sigma}{d} \right)^{12} - \left( \frac{\sigma}{d} \right)^6 \right) \right\}$$

to the probability density, where $\sigma$ and $\epsilon$ are positive parameters to be estimated.

See Examples for a plot of this expression.

This potential causes very strong inhibition between points at short range, and attraction between points at medium range. The parameter $\sigma$ is called the characteristic diameter and controls the scale of interaction. The parameter $\epsilon$ is called the well depth and determines the strength of attraction. The potential switches from inhibition to attraction at $d = \sigma$. The maximum value of the pair potential is $\exp(\epsilon)$ occurring at distance $d = 2^{1/6}\sigma$. Interaction is usually considered to be negligible for distances $d > 2.5\sigma \max\{1,\epsilon^{1/6}\}$.

This potential is used to model interactions between uncharged molecules in statistical physics.

The function ppm(), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Lennard-Jones pairwise interaction is yielded by the function LennardJones(). See the examples below.

Value

An object of class "interact" describing the Lennard-Jones interpoint interaction structure.
Rescaling

To avoid numerical instability, the interpoint distances \( d \) are rescaled when fitting the model. Distances are rescaled by dividing by \( \sigma \). In the formula for \( v(d) \) above, the interpoint distance \( d \) will be replaced by \( d/\sigma \).

The rescaling happens automatically by default. If the argument \( \sigma \) is missing or \( \text{NA} \) (the default), then \( \sigma \) is taken to be the minimum nearest-neighbour distance in the data point pattern (in the call to \texttt{ppm}).

If the argument \( \sigma \) is given, it should be a positive number, and it should be a rough estimate of the parameter \( \sigma \).

The “canonical regular parameters” estimated by \texttt{ppm} are \( \theta_1 = 4\epsilon(\sigma/\sigma_0)^{12} \) and \( \theta_2 = 4\epsilon(\sigma/\sigma_0)^6 \).

Warnings and Errors

Fitting the Lennard-Jones model is extremely unstable, because of the strong dependence between the functions \( d^{-12} \) and \( d^{-6} \). The fitting algorithm often fails to converge. Try increasing the number of iterations of the GLM fitting algorithm, by setting \texttt{gcontrol=list(maxit=1e3)} in the call to \texttt{ppm}.

Errors are likely to occur if this model is fitted to a point pattern dataset which does not exhibit both short-range inhibition and medium-range attraction between points. The values of the parameters \( \sigma \) and \( \epsilon \) may be \text{NA} (because the fitted canonical parameters have opposite sign, which usually occurs when the pattern is completely random).

An absence of warnings does not mean that the fitted model is sensible. A negative value of \( \epsilon \) may be obtained (usually when the pattern is strongly clustered); this does not correspond to a valid point process model, but the software does not issue a warning.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{ppm}, \texttt{pairwise.family}, \texttt{ppm.object}

Examples

```r
fit <- ppm(cells ~1, LennardJones(), rbord=0.1)
fit
plot(fitin(fit))
```
Lest

$L$-function

Description

Calculates an estimate of the $L$-function (Besag’s transformation of Ripley’s $K$-function) for a spatial point pattern.

Usage

Lest(x, ...)

Arguments

x

The observed point pattern, from which an estimate of $L(r)$ will be computed. An object of class "ppp", or data in any format acceptable to as.ppp().

...

Other arguments passed to Kest to control the estimation procedure.

Details

This command computes an estimate of the $L$-function for the spatial point pattern x. The $L$-function is a transformation of Ripley’s $K$-function,

$$L(r) = \sqrt{\frac{K(r)}{\pi}}$$

where $K(r)$ is the $K$-function.

See Kest for information about Ripley’s $K$-function. The transformation to $L$ was proposed by Besag (1977).

The command Lest first calls Kest to compute the estimate of the $K$-function, and then applies the square root transformation.

For a completely random (uniform Poisson) point pattern, the theoretical value of the $L$-function is $L(r) = r$. The square root also has the effect of stabilising the variance of the estimator, so that $K$ is more appropriate for use in simulation envelopes and hypothesis tests.

See Kest for the list of arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r

the vector of values of the argument $r$ at which the function $L$ has been estimated

theo

the theoretical value $L(r) = r$ for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $L(r)$ obtained by the edge corrections named.
Variance approximations

If the argument var.approx=TRUE is given, the return value includes columns \( rIp \) and \( lIs \) containing approximations to the variance of \( \hat{L}(r) \) under CSR. These are obtained by the delta method from the variance approximations described in \texttt{Kest}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{Kest,pcf}

Examples

```r
data(cells)
L <- Kest(cells)
plot(L, main="L function for cells")
```

Description

A window in the shape of the capital letter R, for use in demonstrations.

Usage

```r
data(letterR)
```

Format

An object of class "owin" representing the capital letter R, in the same font as the R package logo. See \texttt{owin.object} for details of the format.

Source

Adrian Baddeley
**levelset**

*Level Set of a Pixel Image*

**Description**

Given a pixel image, find all pixels which have values less than a specified threshold value (or greater than a threshold, etc), and assemble these pixels into a window.

**Usage**

```r
levelset(X, thresh, compare="<=")
```

**Arguments**

- **X**: A pixel image (object of class "im").
- **thresh**: Threshold value. A single number or value compatible with the pixel values in X.
- **compare**: Character string specifying one of the comparison operators "<", ",", "==", ",", ">=", ",", "!".

**Details**

If X is a pixel image with numeric values, then `levelset(X, thresh)` finds the region of space where the pixel values are less than or equal to the threshold value `thresh`. This region is returned as a spatial window.

The argument `compare` specifies how the pixel values should be compared with the threshold value. Instead of requiring pixel values to be less than or equal to `thresh`, you can specify that they must be less than (\(<\)\)), greater than (\(>\)), equal to (\(==\)), greater than or equal to (\(>=\)), or not equal to (\(!=\)) the threshold value `thresh`.

If X has non-numeric pixel values (for example, logical or factor values) it is advisable to use only the comparisons \(==\) and \(!=\), unless you really know what you are doing.

For more complicated logical comparisons, see `solutionset`.

**Value**

A spatial window (object of class "owin", see `owin.object`) containing the pixels satisfying the constraint.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`im.object`, `as.owin`, `solutionset`. 
**Examples**

```r
test image
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())

W <- levelset(X, 0.2)
W <- levelset(X, -0.3, ")")

compute area of level set
area(levelset(X, 0.1))
```

---

**Description**

Computes the leverage measure for a fitted spatial point process model.

**Usage**

```r
leverage(model, ...) # S3 method for class 'ppm'
leverage(model, ..., drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
```

**Arguments**

- `model`: Fitted point process model (object of class "ppm").
- `...`: Ignored.
- `drop`: Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contributions from quadrature points that were not used to fit the model.
- `iScore, iHessian`: Components of the score vector and Hessian matrix for the irregular parameters, if required. See Details.
- `iArgs`: List of extra arguments for the functions `iScore`, `iHessian` if required.

**Details**

The function `leverage` is generic, and `leverage.ppm` is the method for objects of class "ppm". Given a fitted spatial point process model `model`, the function `leverage.ppm` computes the leverage of the model, described in Baddeley, Chang and Song (2013).

The leverage of a spatial point process model is a function of spatial location, and is typically displayed as a colour pixel image. The leverage value \( h(u) \) at a spatial location \( u \) represents the change in the fitted trend of the fitted point process model that would have occurred if a data point were to have occurred at the location \( u \). A relatively large value of \( h() \) indicates a part of the space where the data have a potentially strong effect on the fitted model (specifically, a strong effect on the intensity or trend of the fitted model) due to the values of the covariates.
If the point process model trend has irregular parameters that were fitted (using\ippm) then the leverage calculation requires the first and second derivatives of the log trend with respect to the irregular parameters. The argument iscore should be a list, with one entry for each irregular parameter, of\R functions that compute the partial derivatives of the log trend (i.e. log intensity or log conditional intensity) with respect to each irregular parameter. The argument ihessian should be a list, with $p^2$ entries where $p$ is the number of irregular parameters, of\R functions that compute the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of leverage.ppm is an object of class "leverage.ppm". It can be plotted (by\plot.leverage.ppm) or converted to a pixel image by as.im (see\as.im.leverage.ppm).

**Value**

An object of class "leverage.ppm" that can be plotted (by\plot.leverage.ppm). There are also methods for print,[, as.im and as.owin.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

**References**


**See Also**

influence.ppm, dfbetas.ppm, plot.leverage.ppm

**Examples**

```r
X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(leverage(fit))
```

---

**lgcp.estK**

*Fit a Log-Gaussian Cox Point Process by Minimum Contrast*

**Description**

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum Contrast.

**Usage**

```r
lgcp.estK(X, startpar=c(var=1, scale=1),
 covmodel=list(model="exponential"),
 lambda=NULL,
 q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)
```
Arguments

\textbf{x} \hspace{0.5cm} \text{Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.}

\textbf{startpar} \hspace{0.5cm} \text{Vector of starting values for the parameters of the log-Gaussian Cox process model.}

\textbf{covmodel} \hspace{0.5cm} \text{Specification of the covariance model for the log-Gaussian field. See Details.}

\textbf{lambda} \hspace{0.5cm} \text{Optional. An estimate of the intensity of the point process.}

\textbf{q,p} \hspace{0.5cm} \text{Optional. Exponents for the contrast criterion.}

\textbf{rmin, rmax} \hspace{0.5cm} \text{Optional. The interval of } r \text{ values for the contrast criterion.}

\textbf{...} \hspace{0.5cm} \text{Optional arguments passed to \texttt{optim} to control the optimisation algorithm. See Details.}

Details

This algorithm fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum Contrast, using the K function.

The argument \texttt{x} can be either

\textbf{a point pattern:} An object of class "ppp" representing a point pattern dataset. The \( K \) function of the point pattern will be computed using \texttt{Kest}, and the method of minimum contrast will be applied to this.

\textbf{a summary statistic:} An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the \( K \) function, and this object should have been obtained by a call to \texttt{Kest} or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to \( x \), by finding the parameters of the LGCP model which give the closest match between the theoretical \( K \) function of the LGCP model and the observed \( K \) function. For a more detailed explanation of the Method of Minimum Contrast, see \texttt{mincontrast}.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen, 2003, pp. 72-76). To define this process we start with a stationary Gaussian random field \( Z \) in the two-dimensional plane, with constant mean \( \mu \) and covariance function \( C(r) \). Given \( Z \), we generate a Poisson point process \( Y \) with intensity function \( \lambda(u) = \exp(Z(u)) \) at location \( u \). Then \( Y \) is a log-Gaussian Cox process.

The \( K \)-function of the LGCP is

\[
K(r) = \int_0^r 2\pi s \exp(C(s)) \, ds.
\]

The intensity of the LGCP is

\[
\lambda = \exp(\mu + \frac{C(0)}{2}).
\]

The covariance function \( C(r) \) is parametrised in the form

\[
C(r) = \sigma^2 c(r/\alpha)
\]
where $\sigma^2$ and $\alpha$ are parameters controlling the strength and the scale of autocorrelation, respectively, and $c(r)$ is a known covariance function determining the shape of the covariance. The strength and scale parameters $\sigma^2$ and $\alpha$ will be estimated by the algorithm as the values `var` and `scale` respectively. The template covariance function $c(r)$ must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters $\sigma^2$ and $\alpha$. Then the remaining parameter $\mu$ is inferred from the estimated intensity $\lambda$.

The template covariance function $c(r)$ is specified using the argument `covmodel`. This should be of the form `list(model="modelname", ...)` where `modelname` is a string identifying the template model as explained below, and `...` are optional arguments of the form `tag=value` giving the values of parameters controlling the shape of the template model. The default is the exponential covariance $c(r) = e^{-r}$ so that the scaled covariance is

$$C(r) = \sigma^2 e^{-r/\alpha}.$$ 

To determine the template model, the string "modelname" will be prefixed by "RM" and the code will search for a function of this name in the `RandomFields` package. For a list of available models see `RMmodel` in the `RandomFields` package. For example the Matern covariance with exponent $\nu = 0.3$ is specified by `covmodel=list(model="matern", nu=0.3)` corresponding to the function `rmmatern` in the `RandomFields` package.

If the argument `lambda` is provided, then this is used as the value of $\lambda$. Otherwise, if $X$ is a point pattern, then $\lambda$ will be estimated from $X$. If $X$ is a summary statistic and `lambda` is missing, then the intensity $\lambda$ cannot be estimated, and the parameter $\mu$ will be returned as NA.

The remaining arguments `rmin`, `rmax`, `q`, `p` control the method of minimum contrast; see `mincontrast`.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function `optim`. For example, to constrain the parameter values to a certain range, use the argument `method="L-BFGS-B"` to select an optimisation algorithm that respects box constraints, and use the arguments `lower` and `upper` to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- `par` Vector of fitted parameter values.
- `fit` Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Note

This function is considerably slower than `lgcp.estpcf` because of the computation time required for the integral in the $K$-function.

Computation can be accelerated, at the cost of less accurate results, by setting `spatstat.options(fastK=TRUE)`.
Author(s)

Rasmus Waagepetersen <rw@math.au.dk>. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ Further modifications by Rasmus Waagepetersen and Shen Guochun, and by Ege Rubak.

References


See Also

lgcp.estpcf for alternative method of fitting LGCP.
matclust.estK, thomas.estK for other models.
mincontrast for the generic minimum contrast fitting algorithm, including important parameters that affect the accuracy of the fit.
RMmodel in the RandomFields package, for covariance function models.
Kest for the \( K \) function.

Examples

```r
u <- lgcp.estK(redwood)

u <- lgcp.estK(redwood, c(var=1, scale=0.1))
u
if(interactive()) plot(u)

if(require(RandomFields)) {
 lgcp.estK(redwood, covmodel=list(model="matern", nu=0.3))
}
```

---

### lgcp.estpcf

**Fit a Log-Gaussian Cox Point Process by Minimum Contrast**

**Description**

Fits a log-Gaussian Cox point process model (with exponential covariance function) to a point pattern dataset by the Method of Minimum Contrast using the pair correlation function.
Usage

```
lgcp.estpcf(x,
 startpar=c(var=1, scale=1),
 covmodel=list(model="exponential"),
 lambda=NULL,
 q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
 pcfargs=list())
```

Arguments

- `x` Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.
- `startpar` Vector of starting values for the parameters of the log-Gaussian Cox process model.
- `covmodel` Specification of the covariance model for the log-Gaussian field. See Details.
- `lambda` Optional. An estimate of the intensity of the point process.
- `q, p` Optional. Exponents for the contrast criterion.
- `rmin, rmax` Optional. The interval of \( r \) values for the contrast criterion.
- `...` Optional arguments passed to `optim` to control the optimisation algorithm. See Details.
- `pcfargs` Optional list containing arguments passed to `pcf.ppp` to control the smoothing in the estimation of the pair correlation function.

Details

This algorithm fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument `x` can be either

**a point pattern**: An object of class "ppp" representing a point pattern dataset. The pair correlation function of the point pattern will be computed using `pcf`, and the method of minimum contrast will be applied to this.

**a summary statistic**: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the pair correlation function, and this object should have been obtained by a call to `pcf` or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to `x`, by finding the parameters of the LGCP model which give the closest match between the theoretical pair correlation function of the LGCP model and the observed pair correlation function. For a more detailed explanation of the Method of Minimum Contrast, see `mincontrast`.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen, 2003, pp. 72-76). To define this process we start with a stationary Gaussian random field \( Z \) in the two-dimensional plane, with constant mean \( \mu \) and covariance function \( C(r) \). Given \( Z \), we generate a Poisson point process \( Y \) with intensity function \( \lambda(u) = \exp(Z(u)) \) at location \( u \). Then \( Y \) is a log-Gaussian Cox process.

The theoretical pair correlation function of the LGCP is

\[
g(r) = \exp(C(s))
\]
The intensity of the LGCP is
\[ \lambda = \exp(\mu + \frac{C(0)}{2}). \]

The covariance function \( C(r) \) takes the form
\[ C(r) = \sigma^2 c(r/\alpha) \]
where \( \sigma^2 \) and \( \alpha \) are parameters controlling the strength and the scale of autocorrelation, respectively, and \( c(r) \) is a known covariance function determining the shape of the covariance. The strength and scale parameters \( \sigma^2 \) and \( \alpha \) will be estimated by the algorithm. The template covariance function \( c(r) \) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters \( \sigma^2 \) and \( \alpha \). Then the remaining parameter \( \mu \) is inferred from the estimated intensity \( \lambda \).

The template covariance function \( c(r) \) is specified using the argument `covmodel`. This should be of the form `list(model="modelname", ...) where modelname is a string identifying the template model as explained below, and ... are optional arguments of the form tag=value giving the values of parameters controlling the shape of the template model. The default is the exponential covariance \( c(r) = e^{-r} \) so that the scaled covariance is
\[ C(r) = \sigma^2 e^{-r/\alpha}. \]

To determine the template model, the string "modelname" will be prefixed by "RM" and the code will search for a function of this name in the `RandomFields` package. For a list of available models see `RMmodel` in the `RandomFields` package. For example the Matern covariance with exponent \( \nu = 0.3 \) is specified by `covmodel=list(model="matern", nu=0.3)` corresponding to the function `rmmatern` in the `RandomFields` package.

If the argument `lambda` is provided, then this is used as the value of \( \lambda \). Otherwise, if \( X \) is a point pattern, then \( \lambda \) will be estimated from \( X \). If \( X \) is a summary statistic and `lambda` is missing, then the intensity \( \lambda \) cannot be estimated, and the parameter \( \mu \) will be returned as `NA`.

The remaining arguments `rmin`, `rmax`, `q`, `p` control the method of minimum contrast; see `mincontrast`. The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function `optim`. For example, to constrain the parameter values to a certain range, use the argument `method="L-BFGS-B"` to select an optimisation algorithm that respects box constraints, and use the arguments `lower` and `upper` to specify (vectors of) minimum and maximum values for each parameter.

**Value**

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- `par` Vector of fitted parameter values.
- `fit` Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.
lineardisc

Description

Computes the ‘disc’ of given radius and centre in a linear network.

Usage

lineardisc(L, x = locator(1), r, plotit = TRUE, cols=c("blue", "red", "green"))
countends(L, x = locator(1), r)
Arguments

- **L**: Linear network (object of class "linnet").
- **x**: Location of centre of disc. Either a point pattern (object of class "ppp") containing exactly 1 point, or a numeric vector of length 2.
- **r**: Radius of disc.
- **plotit**: Logical. Whether to plot the disc.
- **cols**: Colours for plotting the disc. A numeric or character vector of length 3 specifying the colours of the disc centre, disc lines and disc endpoints respectively.

Details

The ‘disc’ \( B(u, r) \) of centre \( x \) and radius \( r \) in a linear network \( L \) is the set of all points \( u \) in \( L \) such that the shortest path distance from \( x \) to \( u \) is less than or equal to \( r \). This is a union of line segments contained in \( L \).

The relative boundary of the disc \( B(u, r) \) is the set of points \( v \) such that the shortest path distance from \( x \) to \( u \) is equal to \( r \).

The function \texttt{lineardisc} computes the disc of radius \( r \) and its relative boundary, optionally plots them, and returns them. The faster function \texttt{countends} simply counts the number of points in the relative boundary.

Value

The value of \texttt{lineardisc} is a list with two entries:

- **lines**: Line segment pattern (object of class "psp") representing the interior disc
- **endpoints**: Point pattern (object of class "ppp") representing the relative boundary of the disc.

The value of \texttt{countends} is an integer giving the number of points in the relative boundary.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

- \texttt{linnet}
Examples

```r
element(linnet)
lineardisc(letterA, c(0,3), 1.6)
 # count the endpoints
countends(letterA, c(0,3), 1.6)
 # cross-check (slower)
lineardisc(letterA, c(0,3), 1.6, plotit=FALSE)$endpoints$
```

---

**linearK**  
*Linear K Function*

**Description**

Computes an estimate of the linear $K$ function for a point pattern on a linear network.

**Usage**

```r
linearK(X, r=NULL, ..., correction="Ang")
```

**Arguments**

- `X`  
  Point pattern on linear network (object of class "lpp").

- `r`  
  Optional. Numeric vector of values of the function argument $r$. There is a sensible default.

- `...`  
  Ignored.

- `correction`  
  Geometry correction. Either "none" or "Ang". See Details.

**Details**

This command computes the linear $K$ function from point pattern data on a linear network.

If `correction="none"`, the calculations do not include any correction for the geometry of the linear network. The result is the network $K$ function as defined by Okabe and Yamada (2001).

If `correction="Ang"`, the pair counts are weighted using Ang’s correction (Ang, 2010; Ang et al, 2012).

**Value**

Function value table (object of class "fv").

**Author(s)**

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>  
References


See Also

compileK, lpp

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
linearK(X)
linearK(X, correction="none")

linearKcross  Multitype K Function (Cross-type) for Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the multitype K function which counts the expected number of points of type j within a given distance of a point of type i.

Usage

linearKcross(X, i, j, r=NULL, ..., correction="Ang")

Arguments

X  The observed point pattern, from which an estimate of the cross type K function \( K_{ij}(r) \) will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).

i  Number or character string identifying the type (mark value) of the points in X from which distances are measured. Defaults to the first level of marks(X).

j  Number or character string identifying the type (mark value) of the points in X to which distances are measured. Defaults to the second level of marks(X).

r  numeric vector. The values of the argument r at which the K-function \( K_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on r.

correction  Geometry correction. Either "none" or "Ang". See Details.

...  Ignored.
Details

This is a counterpart of the function \texttt{Kcross} for a point pattern on a linear network (object of class
"1pp").

The arguments \texttt{i} and \texttt{j} will be interpreted as levels of the factor \texttt{marks(X)}. If \texttt{i} and \texttt{j} are missing, they default to the first and second level of the marks factor, respectively.

The argument \texttt{r} is the vector of values for the distance \texttt{r} at which \texttt{Kij(r)} should be evaluated. The values of \texttt{r} must be increasing nonnegative numbers and the maximum \texttt{r} value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see \texttt{fv.object}).

Warnings

The arguments \texttt{i} and \texttt{j} are interpreted as levels of the factor \texttt{marks(X)}. Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

References


See Also

\texttt{linearKdot}, \texttt{linearK}.

Examples

```r
data(chicago)
K <- linearKcross(chicago, "assault", "robbery")
```

\begin{verbatim}
linearKcross.inhom    Inhomogeneous multitype \textit{K} Function (Cross-type) for Linear Point Pattern
\end{verbatim}

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype \textit{K} function which counts the expected number of points of type \texttt{j} within a given distance of a point of type \texttt{i}. 
Usage

linearKcross.inhom(X, i, j, lambdaI, lambdaJ, r=NULL, ..., correction="Bang", normalise=TRUE)

Arguments

X  The observed point pattern, from which an estimate of the cross type $K$ function $K_{ij}(r)$ will be computed. An object of class "ppp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).

i  Number or character string identifying the type (mark value) of the points in X from which distances are measured. Defaults to the first level of marks(X).

j  Number or character string identifying the type (mark value) of the points in X to which distances are measured. Defaults to the second level of marks(X).

lambdaI  Intensity values for the points of type i. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").

lambdaJ  Intensity values for the points of type j. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").

r  numeric vector. The values of the argument r at which the $K$-function $K_{ij}(r)$ should be evaluated. The values of r must be increasing nonnegative numbers and the maximum r value must not exceed the radius of the largest disc contained in the window.

correction  Geometry correction. Either "none" or "Bang". See Details.

...  Arguments passed to lambdaI and lambdaJ if they are functions.

normalise  Logical. If TRUE (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the points of type i), which reduces the sampling variability. If FALSE, the denominator is the length of the network.

Details

This is a counterpart of the function Kcross.inhom for a point pattern on a linear network (object of class "ppn").

The arguments i and j will be interpreted as levels of the factor marks(X). If i and j are missing, they default to the first and second level of the marks factor, respectively.

The argument r is the vector of values for the distance r at which $K_{ij}(r)$ should be evaluated. The values of r must be increasing nonnegative numbers and the maximum r value must not exceed the radius of the largest disc contained in the window.

If lambdaI or lambdaJ is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.

Value

An object of class "fv" (see fv.object).
Warnings

The arguments i and j are interpreted as levels of the factor marks(X). Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

linearKdot, linearK.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam["assault"]) { rep(const, length(x)) }
lamJ <- function(x,y,const=lam["robbery"]) { rep(const, length(x)) }

K <- linearKcross.inhom(chicago, "assault", "robbery", lamI, lamJ)

## Not run:
  fit <- lppm(chicago, ~marks + x)
  linearKcross.inhom(chicago, "assault", "robbery", fit, fit)

## End(Not run)
Arguments

x The observed point pattern, from which an estimate of the dot type \( K \) function \( K_{i^\bullet}(r) \) will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in \( x \) from which distances are measured. Defaults to the first level of \( \text{marks}(x) \).

r numeric vector. The values of the argument \( r \) at which the \( K \)-function \( K_{i^\bullet}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

correction Geometry correction. Either "none" or "Ang". See Details.

Details

This is a counterpart of the function \( \text{Kdot} \) for a point pattern on a linear network (object of class "lpp").

The argument \( i \) will be interpreted as levels of the factor \( \text{marks}(x) \). If \( i \) is missing, it defaults to the first level of the marks factor.

The argument \( r \) is the vector of values for the distance \( r \) at which \( K_{i^\bullet}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see \( \text{fv.object} \)).

Warnings

The argument \( i \) is interpreted as a level of the factor \( \text{marks}(x) \). Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

Kdot, linearKcross, linearK.
**Examples**

```r
data(chicago)
K <- linearKdot(chicago, "assault")
```

---

**linearKdot.inhom**  
*Inhomogeneous multitype K Function (Dot-type) for Linear Point Pattern*

---

**Description**

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype $K$ function which counts the expected number of points (of any type) within a given distance of a point of type $i$.

**Usage**

```r
linearKdot.inhom(X, i, lambdaI, lambdadot, r=NULL, ..., correction="Ang", normalise=TRUE)
```

**Arguments**

- **X**: The observed point pattern, from which an estimate of the dot type $K$ function $K_{i\bullet}(r)$ will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **i**: Number or character string identifying the type (mark value) of the points in $X$ from which distances are measured. Defaults to the first level of `marks(X)`.
- **lambdaI**: Intensity values for the points of type $i$. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").
- **lambdadot**: Intensity values for all points of $X$. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").
- **r**: numeric vector. The values of the argument $r$ at which the $K$-function $K_{i\bullet}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **correction**: Geometry correction. Either "none" or "Ang". See Details.
- **...**: Arguments passed to `lambdaI` and `lambdadot` if they are functions.
- **normalise**: Logical. If TRUE (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the points of type $i$), which reduces the sampling variability. If FALSE, the denominator is the length of the network.
Details

This is a counterpart of the function `Kdot.inhom` for a point pattern on a linear network (object of class “lpp”).

The argument `i` will be interpreted as levels of the factor `marks(X)`. If `i` is missing, it defaults to the first level of the marks factor.

The argument `r` is the vector of values for the distance `r` at which $K_{i•}(r)$ should be evaluated. The values of `r` must be increasing nonnegative numbers and the maximum `r` value must not exceed the radius of the largest disc contained in the window.

If `lambdaI` or `lambdaI*` is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting `update=FALSE`.

Value

An object of class "fv" (see `fv.object`).

Warnings

The argument `i` is interpreted as a level of the factor `marks(X)`. Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

`linearKdot`, `linearK`.

Examples

```r
lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){
 rep(const, length(x))
}
lam. <- function(x,y,const=sum(lam)){
 rep(const, length(x))
}

K <- linearKdot.inhom(chicago, "assault", lamI, lam.)
```

```r
Not run:
fit <- lppm(chicago, ~marks + x)
linearKdot.inhom(chicago, "assault", fit, fit)
```

## End(Not run)
linearKinhom  

Inhomogeneous Linear K Function

Description

Computes an estimate of the inhomogeneous linear $K$ function for a point pattern on a linear network.

Usage

linearKinhom(X, lambda=NULL, r=NULL, ..., correction="Ang", normalise=TRUE)

Arguments

X  
Point pattern on linear network (object of class "lpp").

lambda  
Intensity values for the point pattern. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").

r  
Optional. Numeric vector of values of the function argument $r$. There is a sensible default.

...  
Ignored.

correction  
Geometry correction. Either "none" or "Ang". See Details.

normalise  
Logical. If TRUE (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the data points), which reduces the sampling variability. If FALSE, the denominator is the length of the network.

Details

This command computes the inhomogeneous version of the linear $K$ function from point pattern data on a linear network.

If lambda = NULL the result is equivalent to the homogeneous $K$ function linearK. If lambda is given, then it is expected to provide estimated values of the intensity of the point process at each point of X. The argument lambda may be a numeric vector (of length equal to the number of points in X), or a function(x,y) that will be evaluated at the points of X to yield numeric values, or a pixel image (object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE. If correction="none", the calculations do not include any correction for the geometry of the linear network. If correction="Ang", the pair counts are weighted using Ang's correction (Ang, 2010).

Value

Function value table (object of class "fv").
linearmarkconnect

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References


See Also

lpp

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
fit <- lppm(X, ~x)
K <- linearkinhom(X, lambda=fit)
plot(K)

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points of type \( i \) to points of type \( j \).

Usage

linearmarkconnect(X, i, j, r=NULL, ...)

Arguments

- \( X \)
  - The observed point pattern, from which an estimate of the mark connection function \( p_{ij}(r) \) will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).

- \( i \)
  - Number or character string identifying the type (mark value) of the points in \( X \) from which distances are measured. Defaults to the first level of \( \text{marks}(X) \).

- \( j \)
  - Number or character string identifying the type (mark value) of the points in \( X \) to which distances are measured. Defaults to the second level of \( \text{marks}(X) \).
numeric vector. The values of the argument \( r \) at which the function \( p_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

Arguments passed to `linearpcfcross` and `linearpcf`.

Details

This is a counterpart of the function `markconnect` for a point pattern on a linear network (object of class "lpp").

The argument \( i \) will be interpreted as levels of the factor marks(\( X \)). If \( i \) is missing, it defaults to the first level of the marks factor.

The argument \( r \) is the vector of values for the distance \( r \) at which \( p_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see `fv.object`).

Warnings

The argument \( i \) is interpreted as a level of the factor marks(\( X \)). Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

`linearpcfcross`, `linearpcf`, `linearmarkequal`, `markconnect`.

Examples

```r
pab <- linearmarkconnect(chicago, "assault", "burglary")
Not run:
plot(alltypes(chicago, linearmarkconnect))
End(Not run)
```
Mark Connection Function for Multitype Point Pattern on Linear Network

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points of type \( i \) to points of type \( j \).

Usage

```r
linearmarkequal(X, r=NULL, ...)
```

Arguments

- \( X \) The observed point pattern, from which an estimate of the mark connection function \( p_{ij}(r) \) will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).
- \( r \) numeric vector. The values of the argument \( r \) at which the function \( p_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).
- \( ... \) Arguments passed to `linearpcfcross` and `linearpcf`.

Details

This is the mark equality function for a point pattern on a linear network (object of class "lpp").

The argument \( r \) is the vector of values for the distance \( r \) at which \( p_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see `fv.object`).

Author(s)


References


See Also

`linearpcfcross`, `linearpcf`, `linearmarkconnect`, `markconnect.`
Examples

```r
if(interactive()) {
 X <- chicago
} else {
 X <- runiflpp(20, simplenet) %mark% sample(c("A","B"), 20,
 replace=TRUE)
}
p <- linearmarkequal(X)
```

---

### linearpcf

**Linear Pair Correlation Function**

#### Description

Computes an estimate of the linear pair correlation function for a point pattern on a linear network.

#### Usage

```r
linearpcf(X, r=NULL, ..., correction="Ang")
```

#### Arguments

- `X` Point pattern on linear network (object of class "lpp").
- `r` Optional. Numeric vector of values of the function argument `r`. There is a sensible default.
- `...` Arguments passed to `density.default` to control the smoothing.
- `correction` Geometry correction. Either "none" or "Ang". See Details.

#### Details

This command computes the linear pair correlation function from point pattern data on a linear network.

The pair correlation function is estimated from the shortest-path distances between each pair of data points, using the fixed-bandwidth kernel smoother `density.default`, with a bias correction at each end of the interval of `r` values. To switch off the bias correction, set `endcorrection=FALSE`.

If `correction="none"`, the calculations do not include any correction for the geometry of the linear network. The result is an estimate of the first derivative of the network $K$ function defined by Okabe and Yamada (2001).

If `correction="Ang"`, the pair counts are weighted using Ang's correction (Ang, 2010). The result is an estimate of the pair correlation function in the linear network.

#### Value

Function value table (object of class "fv").
Author(s)
Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References

See Also
linearK, linearpcfinhom, lpp

Examples
data(simplenet)
X <- rpoislpp(5, simplenet)
linearpcf(X)
linearpcf(X, correction="none")

linearpcfcross Multitype Pair Correlation Function (Cross-type) for Linear Point Pattern

Description
For a multitype point pattern on a linear network, estimate the multitype pair correlation function from points of type \(i\) to points of type \(j\).

Usage
linearpcfcross(X, i, j, r=NULL, ..., correction="Ang")

Arguments
X The observed point pattern, from which an estimate of the \(i\)-to-any pair correlation function \(g_{ij}(r)\) will be computed. An object of class ”lpp” which must be a multitype point pattern (a marked point pattern whose marks are a factor).
i Number or character string identifying the type (mark value) of the points in \(X\) from which distances are measured. Defaults to the first level of marks(X).
j Number or character string identifying the type (mark value) of the points in \(X\) to which distances are measured. Defaults to the second level of marks(X).
linearpcfcross

\( r \) numeric vector. The values of the argument \( r \) at which the function \( g_{ij}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to \texttt{density.default} to control the kernel smoothing.

Details

This is a counterpart of the function \texttt{pcf} for a point pattern on a linear network (object of class "lpp").

The argument \( i \) will be interpreted as levels of the factor \texttt{marks(X)}. If \( i \) is missing, it defaults to the first level of the marks factor.

The argument \( r \) is the vector of values for the distance \( r \) at which \( g_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see \texttt{fv.object}).

Warnings

The argument \( i \) is interpreted as a level of the factor \texttt{marks(X)}. Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

linearpcfdot, linearpcf, pcf.

Examples

data(chicago)
g <- linearpcfchicago(chicago, "assault")
Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair correlation function from points of type $i$ to points of type $j$.

Usage

```r
linearpcfcross.inhom(X, i, j, lambdaI, lambdaJ, r=NULL, ..., correction="Ang", normalise=TRUE)
```

Arguments

- **X**: The observed point pattern, from which an estimate of the $i$-to-any pair correlation function $g_{ij}(r)$ will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **i**: Number or character string identifying the type (mark value) of the points in $X$ from which distances are measured. Defaults to the first level of `marks(X)`.
- **j**: Number or character string identifying the type (mark value) of the points in $X$ to which distances are measured. Defaults to the second level of `marks(X)`.
- **lambdaI**: Intensity values for the points of type $i$. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").
- **lambdaJ**: Intensity values for the points of type $j$. Either a numeric vector, a function, a pixel image (object of class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").
- **r**: numeric vector. The values of the argument $r$ at which the function $g_{ij}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on $r$.
- **correction**: Geometry correction. Either "none" or "Ang". See Details.
- **normalise**: Logical. If TRUE (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the points of type $i$), which reduces the sampling variability. If FALSE, the denominator is the length of the network.

Details

This is a counterpart of the function `pcfcross.inhom` for a point pattern on a linear network (object of class "lpp").

The argument $i$ will be interpreted as levels of the factor `marks(X)`. If $i$ is missing, it defaults to the first level of the marks factor.
The argument \( r \) is the vector of values for the distance \( r \) at which \( g_{ij}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

If \( \lambda_1 \) or \( \lambda_2 \) is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting \( update=FALSE \).

**Value**

An object of class "fv" (see \code{fv.object}).

**Warnings**

The argument \( i \) is interpreted as a level of the factor \( \text{marks}(X) \). Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

**Author(s)**


**References**


**See Also**

\code{linearpcfdot, linearpcf, pcfcross.inhom}.

**Examples**

```r
lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam["assault"]){ rep(const, length(x)) }
lamJ <- function(x,y,const=lam["robbery"]){ rep(const, length(x)) }

g <- linearpcfcross.inhom(chicago, "assault", "robbery", lamI, lamJ)
```

\# Not run:
```
fit <- lppm(chicago, ~marks + x)
linearpcfcross.inhom(chicago, "assault", "robbery", fit, fit)
```

\# End(Not run)
Multitype Pair Correlation Function (Dot-type) for Linear Point Pattern

Description
For a multitype point pattern on a linear network, estimate the multitype pair correlation function from points of type \(i\) to points of any type.

Usage

linearpcfdot(X, i, r=NULL, ..., correction="Ang")

Arguments

X
The observed point pattern, from which an estimate of the \(i\)-to-any pair correlation function \(g_{i\bullet}(r)\) will be computed. An object of class "lpp" which must be a multitype point pattern (a marked point pattern whose marks are a factor).

i
Number or character string identifying the type (mark value) of the points in \(X\) from which distances are measured. Defaults to the first level of marks(X).

r
numeric vector. The values of the argument \(r\) at which the function \(g_{i\bullet}(r)\) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \(r\).

correction
Geometry correction. Either "none" or "Ang". See Details.

...
Arguments passed to \texttt{density.default} to control the kernel smoothing.

Details

This is a counterpart of the function \texttt{pcfdot} for a point pattern on a linear network (object of class "lpp").

The argument \(i\) will be interpreted as levels of the factor \texttt{marks(X)}. If \(i\) is missing, it defaults to the first level of the marks factor.

The argument \(r\) is the vector of values for the distance \(r\) at which \(g_{i\bullet}(r)\) should be evaluated. The values of \(r\) must be increasing nonnegative numbers and the maximum \(r\) value must not exceed the radius of the largest disc contained in the window.

Value

An object of class "fv" (see \texttt{fv.object}).

Warnings

The argument \(i\) is interpreted as a level of the factor \texttt{marks(X)}. Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References
Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), In press.

See Also
linearpcf, linearpcf.cross, linearpcf.pcf.cross.

Examples

data(chicago)
g <- linearpcf(chicago, "assault")

---

**linearpcf.inhom**

Inhomogeneous Multitype Pair Correlation Function (Dot-type) for
Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair cor-
relation function from points of type \( i \) to points of any type.

Usage

linearpcf.inhom(X, i, lambdaI, lambdaI, r=NULL, ..., correction="Ang", normalise=TRUE)

Arguments

- **X**
  - The observed point pattern, from which an estimate of the \( i \)-to-any pair corre-
  lation function \( g_{i\bullet}(r) \) will be computed. An object of class "lpp" which must be
  a multitype point pattern (a marked point pattern whose marks are a factor).

- **i**
  - Number or character string identifying the type (mark value) of the points in \( X \)
  from which distances are measured. Defaults to the first level of marks(\( X \)).

- **lambdaI**
  - Intensity values for the points of type \( i \). Either a numeric vector, a function,
  a pixel image (object of class "im" or "linim") or a fitted point process model
  (object of class "ppm" or "lppm").

- **lambdaI**
  - Intensity values for all points of \( X \). Either a numeric vector, a function, a pixel
  image (object of class "im" or "linim") or a fitted point process model (object
  of class "ppm" or "lppm").
linearpcfdot.inhom

The values of the argument \( r \) at which the function \( g_{i\bullet}(r) \) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \( r \).

**correction**
Geometry correction. Either "none" or "Ang". See Details.

**...**
Arguments passed to \texttt{density.default} to control the kernel smoothing.

**normalise**
Logical. If \texttt{TRUE} (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the points of type \( i \)), which reduces the sampling variability. If \texttt{FALSE}, the denominator is the length of the network.

**Details**
This is a counterpart of the function \texttt{pcfdot.inhom} for a point pattern on a linear network (object of class "lpp").

The argument \( i \) will be interpreted as levels of the factor \texttt{marks(X)}. If \( i \) is missing, it defaults to the first level of the marks factor.

The argument \( r \) is the vector of values for the distance \( r \) at which \( g_{i\bullet}(r) \) should be evaluated. The values of \( r \) must be increasing nonnegative numbers and the maximum \( r \) value must not exceed the radius of the largest disc contained in the window.

If \texttt{lambdaI} or \texttt{lambdaI} is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting \texttt{update=FALSE}.

**Value**
An object of class "fv" (see \texttt{fv.object}).

**Warnings**
The argument \( i \) is interpreted as a level of the factor \texttt{marks(X)}. Beware of the usual trap with factors: numerical values are not interpreted in the same way as character values.

**Author(s)**
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}

**References**

**See Also**
\texttt{linearpcfcross.inhom, linearpcfcross.pcfcross.inhom}. 

Examples

```r
lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x))
lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

g <- linearpcfdot.inhom(chicago, "assault", lamI, lam.)

Not run:
 fit <- lppm(chicago, ~marks + x)
 linearpcfdot.inhom(chicago, "assault", fit, fit)

End(Not run)
```

linearpcfinhom  

_Inhomogeneous Linear Pair Correlation Function_

Description

Computes an estimate of the inhomogeneous linear pair correlation function for a point pattern on a linear network.

Usage

```r
linearpcfinhom(X, lambda=NULL, r=NULL, ..., correction="Ang", normalise=TRUE)
```

Arguments

- **X**: Point pattern on linear network (object of class "lpp").
- **lambda**: Intensity values for the point pattern. Either a numeric vector, a function, a pixel image (object of class "im") or a fitted point process model (object of class "ppm" or "lppm").
- **r**: Optional. Numeric vector of values of the function argument `r`. There is a sensible default.
- **...**: Arguments passed to `density.default` to control the smoothing.
- **correction**: Geometry correction. Either "none" or "Ang". See Details.
- **normalise**: Logical. If TRUE (the default), the denominator of the estimator is data-dependent (equal to the sum of the reciprocal intensities at the data points), which reduces the sampling variability. If FALSE, the denominator is the length of the network.

Details

This command computes the inhomogeneous version of the linear pair correlation function from point pattern data on a linear network.

If lambda = NULL the result is equivalent to the homogeneous pair correlation function `linearpcf`

If lambda is given, then it is expected to provide estimated values of the intensity of the point process at each point of X. The argument lambda may be a numeric vector (of length equal to the...
number of points in \( X \), or a function \((x, y)\) that will be evaluated at the points of \( X \) to yield numeric values, or a pixel image (object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

If \( \lambda \) is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting \( \text{update}=\text{FALSE} \).

If \( \text{correction} = \text{"none"} \), the calculations do not include any correction for the geometry of the linear network. If \( \text{correction} = \text{"Ang"} \), the pair counts are weighted using Ang's correction (Ang, 2010).

Value

Function value table (object of class "fv").

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

References


See Also

linearpcf, linearKinhom, lpp

Examples

data(simplenet)
\( X \) <- rpoislpp(5, simplenet)
\( \text{fit} \) <- lppm(\( X, \sim x \))
\( K \) <- linearpcfinhom(\( X, \lambda=\text{fit} \))
\( \text{plot(K)} \)

linfun

Function on a Linear Network

Description

Create a function on a linear network.
linfun

Usage

linfun(f, L)

Arguments

f
A function in the \texttt{R} language.

L
A linear network (object of class "linnet") on which \(f\) is defined.

Details

This creates an object of class "linfun". This is a simple mechanism for handling a function defined on a linear network, to make it easier to display and manipulate.

\(f\) should be a function in the \texttt{R} language, with formal arguments \(f(x, y, \text{seg}, \text{tp})\) or \(f(x, y, \text{seg}, \text{tp}, \ldots)\) where \(x, y\) are Cartesian coordinates of locations on the linear network, \text{seg}, \text{tp}\ are the local coordinates, and \(\ldots\) are optional additional arguments.

The function \(f\) should be vectorised: that is, if \(x, y, \text{seg}, \text{tp}\) are numeric vectors of the same length \(n\), then \(v < - f(x, y, \text{seg}, \text{tp})\) should be a vector of length \(n\).

\(L\) should be a linear network (object of class "linnet") inside which the function \(f\) is well-defined.

The result is a function \(g\) in the \texttt{R} language which belongs to the special class "linfun". This function can be called as \(g(X)\) where \(X\) is an "lpp" object, or called as \(g(x, y)\) or \(g(x, y, \text{seg}, \text{tp})\) where \(x, y, \text{seg}, \text{tp}\) are coordinates. There are several methods for this class including \texttt{print}, \texttt{plot}\ and \texttt{as.linin}.

Value

A function in the \texttt{R} language. It also belongs to the class "linfun" which has methods for \texttt{plot}, \texttt{print} etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{methods.linfun} for methods applicable to "linfun" objects.
\texttt{distfun.lpp, nnfun.lpp}.

Examples

\[
\begin{align*}
f &< - \text{linfun(function}(x, y, \text{seg}, \text{tp}) \{ x+y \}, \text{simplenet}) \\
\text{plot}(f) \\
X &< - \text{runiflpp}(3, \text{simplenet}) \\
\text{plot}(X, \text{add=TRUE, cex=2}) \\
f(X)
\end{align*}
\]
Description

Calculates an estimate of the inhomogeneous version of the $L$-function (Besag’s transformation of Ripley’s $K$-function) for a spatial point pattern.

Usage

```
Linhom(...)
```

Arguments

...     Arguments passed to `kinhom` to estimate the inhomogeneous K-function.

Details

This command computes an estimate of the inhomogeneous version of the $L$-function for a spatial point pattern.

The original $L$-function is a transformation (proposed by Besag) of Ripley’s $K$-function,

\[
L(r) = \sqrt{\frac{K(r)}{\pi}}
\]

where $K(r)$ is the Ripley $K$-function of a spatially homogeneous point pattern, estimated by `Kest`. The inhomogeneous $L$-function is the corresponding transformation of the inhomogeneous $K$-function, estimated by `kinhom`. It is appropriate when the point pattern clearly does not have a homogeneous intensity of points. It was proposed by Baddeley, Møller and Waagepetersen (2000).

The command `Linhom` first calls `kinhom` to compute the estimate of the inhomogeneous K-function, and then applies the square root transformation.

For a Poisson point pattern (homogeneous or inhomogeneous), the theoretical value of the inhomogeneous $L$-function is $L(r) = r$. The square root also has the effect of stabilising the variance of the estimator, so that $L$ is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see `fv.object`, which can be plotted directly using `plot.fv`.

Essentially a data frame containing columns

- $r$     the vector of values of the argument $r$ at which the function $L$ has been estimated
- `theo`  the theoretical value $L(r) = r$ for a stationary Poisson process

...  together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $L(r)$ obtained by the edge corrections named.
linim

Create Pixel Image on Linear Network

Description

Creates an object of class "linim" that represents a pixel image on a linear network.

Usage

linim(L, Z, ..., df=NULL)

Arguments

L

Linear network (object of class "linnet").

Z

Pixel image (object of class "im").

...

Ignored.

df

Advanced use only. Data frame giving full details of the mapping between the pixels of Z and the lines of L. See Details.

References


See Also

Kest, Lest, Kinhom, pcf

Examples

data(japanesepines)
X <- japanesepines
L <- Linhom(X, sigma=0.1)
plot(L, main="Inhomogeneous L function for Japanese Pines")
Details

This command creates an object of class "linim" that represents a pixel image defined on a linear network. Typically such objects are used to represent the result of smoothing or model-fitting on the network. Most users will not need to call linim directly.

The argument L is a linear network (object of class "linnet"). It gives the exact spatial locations of the line segments of the network, and their connectivity.

The argument Z is a pixel image object of class "im" that gives a pixellated approximation of the function values.

For increased efficiency, advanced users may specify the optional argument df. This is a data frame giving the precomputed mapping between the pixels of Z and the line segments of L. It should have columns named xc, yc containing the coordinates of the pixel centres, x,y containing the projections of these pixel centres onto the linear network, mapXY identifying the line segment on which each projected point lies, and tp giving the parametric position of (x,y) along the segment.

Value

Object of class "linim" that also inherits the class "im". There is a special method for plotting this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

plot.linim, linnet, eval.linim, Math.linim, im.

Examples

eexample(linnet)
M <- as.mask.psp(as.psp(letterA))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(letterA, Z)
X
linnet **Create a Linear Network**

**Description**

Creates an object of class "linnet" representing a network of line segments.

**Usage**

linnet(vertices, m, edges, sparse=FALSE)

**Arguments**

- **vertices** Point pattern (object of class "ppp") specifying the vertices of the network.
- **m** Adjacency matrix. A matrix or sparse matrix of logical values equal to TRUE when the corresponding vertices are joined by a line. (Specify either m or edges.)
- **edges** Edge list. A two-column matrix of integers, specifying all pairs of vertices that should be joined by an edge. (Specify either m or edges.)
- **sparse** Optional. Logical value indicating whether to use a sparse matrix representation of the network. See Details.

**Details**

An object of class "linnet" represents a network of straight line segments in two dimensions. The function linnet creates such an object from the minimal information: the spatial location of each vertex (endpoint, crossing point or meeting point of lines) and information about which vertices are joined by an edge.

If sparse=FALSE (the default), the algorithm will compute and store various properties of the network, including the adjacency matrix m and a matrix giving the shortest-path distances between each pair of vertices in the network. This is more efficient for small datasets. However it can require large amounts of memory and can take a long time to execute.

If sparse=TRUE, then the shortest-path distances will not be computed, and the network adjacency matrix m will be stored as a sparse matrix. This saves a lot of time and memory when creating the linear network.

**Value**

Object of class "linnet" representing the linear network.

**Author(s)**

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>  
http://www.maths.uwa.edu.au/~adrian/
localk

Description

Computes the neighbourhood density function, a local version of the $K$-function or $L$-function, defined by Getis and Franklin (1987).

Usage

```r
localk(X, ..., correction = "Ripley", verbose = TRUE, rvalue=NULL)
```

Arguments

- **X**: A point pattern (object of class "ppp").
- **...**: Ignored.
- **correction**: String specifying the edge correction to be applied. Options are "none", "translate", "translation", "Ripley", "isotropic" or "best". Only one correction may be specified.
- **verbose**: Logical flag indicating whether to print progress reports during the calculation.
- **rvalue**: Optional. A single value of the distance argument $r$ at which the function $L$ or $K$ should be computed.

Examples

```r
letter 'A' specified by adjacency matrix
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
m <- matrix(FALSE, 5,5)
for(i in 1:4) m[i,i+1] <- TRUE
m[2,4] <- TRUE
m <- m | t(m)
letterA <- linnet(v, m)
plot(letterA)

letter 'A' specified by edge list
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)
```
Details

The command \texttt{localK} computes the \textit{neighbourhood density function}, a local version of the \textit{L-function} (Besag’s transformation of Ripley’s \textit{K}-function) that was proposed by Getis and Franklin (1987). The command \texttt{localK} computes the corresponding local analogue of the \textit{K}-function.

Given a spatial point pattern \(X\), the neighbourhood density function \(L_i(r)\) associated with the \(i\)th point in \(X\) is computed by

\[
L_i(r) = \sqrt{\frac{a}{(n - 1)\pi} \sum_{j \neq i} e_{ij}}
\]

where the sum is over all points \(j \neq i\) that lie within a distance \(r\) of the \(i\)th point, \(a\) is the area of the observation window, \(n\) is the number of points in \(X\), and \(e_{ij}\) is an edge correction term (as described in \texttt{Kest}). The value of \(L_i(r)\) can also be interpreted as one of the summands that contributes to the global estimate of the \(L\) function.

By default, the function \(L_i(r)\) or \(K_i(r)\) is computed for a range of \(r\) values for each point \(i\). The results are stored as a function value table (object of class \"fv\") with a column of the table containing the function estimates for each point of the pattern \(X\).

Alternatively, if the argument \texttt{rvalue} is given, and it is a single number, then the function will only be computed for this value of \(r\), and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern \(X\).

Inhomogeneous counterparts of \texttt{localK} and \texttt{localL} are computed by \texttt{localKinhom} and \texttt{localLinhom}.

Value

If \texttt{rvalue} is given, the result is a numeric vector of length equal to the number of points in the point pattern.

If \texttt{rvalue} is absent, the result is an object of class \"fv\", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing columns

- \(r\) the vector of values of the argument \(r\) at which the function \(K\) has been estimated
- \texttt{theo} the theoretical value \(K(r) = \pi r^2\) or \(L(r) = r\) for a stationary Poisson process together with columns containing the values of the neighbourhood density function for each point in the pattern. Column \(i\) corresponds to the \(i\)th point. The last two columns contain the \(r\) and \texttt{theo} values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

References

localKinhom

Inhomogeneous Neighbourhood Density Function

Description

Computes spatially-weighted versions of the local $K$-function or $L$-function.

Usage

```r
localKinhom(X, lambda, ...,
 correction = "Ripley", verbose = TRUE, rvalue=NULL,
 sigma = NULL, varcov = NULL)
localLinhom(X, lambda, ...,
 correction = "Ripley", verbose = TRUE, rvalue=NULL,
 sigma = NULL, varcov = NULL)
```

See Also

Kest, Lest, localKinhom, localLinhom.

Examples

```r
data(ponderosa)
X <- ponderosa

compute all the local L functions
L <- locall(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- locall(X, rvalue=12)

Spatially interpolate the values of L12
Compare Figure 5(b) of Getis and Franklin (1987)
X12 <- X %mark% L12
Z <- Smooth(X12, sigma=5, dimyx=128)

plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
contour(Z, add=TRUE)
points(X, pch=16, cex=0.5)
```
Arguments

X  A point pattern (object of class "ppp").
lambda  Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.

...  Extra arguments. Ignored if lambda is present. Passed to density.ppp if lambda is omitted.
correction  String specifying the edge correction to be applied. Options are "none", "translate", "Ripley", "translation", "isotropic" or "best". Only one correction may be specified.
verbose  Logical flag indicating whether to print progress reports during the calculation.
rvalue  Optional. A single value of the distance argument r at which the function L or K should be computed.
sigma, varcov  Optional arguments passed to density.ppp to control the kernel smoothing procedure for estimating lambda, if lambda is missing.

Details

The functions localKinhom and localLinhom are inhomogeneous or weighted versions of the neighbourhood density function implemented in localK and localL.

Given a spatial point pattern X, the inhomogeneous neighbourhood density function $L_i(r)$ associated with the $i$th point in X is computed by

$$L_i(r) = \sqrt{\frac{1}{\pi} \sum_j e_{ij} \lambda_j}$$

where the sum is over all points $j \neq i$ that lie within a distance $r$ of the $i$th point, $\lambda_j$ is the estimated intensity of the point pattern at the point $j$, and $e_{ij}$ is an edge correction term (as described in Kest). The value of $L_i(r)$ can also be interpreted as one of the summands that contributes to the global estimate of the inhomogeneous L function (see Linhom).

By default, the function $L_i(r)$ or $K_i(r)$ is computed for a range of $r$ values for each point $i$. The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only be computed for this value of $r$, and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern X.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially a data frame containing columns
localpcf

$r$ the vector of values of the argument $r$ at which the function $K$ has been estimated

theo the theoretical value $K(r) = \pi r^2$ or $L(r) = r$ for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point in the pattern. Column i corresponds to the ith point. The last two columns contain the $r$ and theo values.

Author(s)

Mike Kuhn, Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kinhom, Linhom, localK, localL.

Examples

data(ponderosa)
X <- ponderosa

# compute all the local L functions
L <- locallinhom(X)

# plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

# plot only the local L function for point number 7
plot(L, iso007 - r)

# compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

---

localpcf

**Local pair correlation function**

Description

Computes individual contributions to the pair correlation function from each data point.

Usage

localpcf(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15)
localpcfinhom(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15,
lambda=NULL, sigma=NULL, varcov=NULL)
Arguments

X A point pattern (object of class "ppp").
delta Smoothing bandwidth for pair correlation. The halfwidth of the Epanechnikov kernel.
rmax Optional. Maximum value of distance r for which pair correlation values g(r) should be computed.
nr Optional. Number of values of distance r for which pair correlation g(r) should be computed.

stoyan Optional. The value of the constant c in Stoyan’s rule of thumb for selecting the smoothing bandwidth delta.

lambda Optional. Values of the estimated intensity function, for the inhomogeneous pair correlation. Either a vector giving the intensity values at the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function \( H(x, y) \) which can be evaluated to give the intensity value at any location.

sigma, varcov, ... These arguments are ignored by localpcf but are passed by localpcfinhom (when lambda= NULL) to the function density.ppp to control the kernel smoothing estimation of lambda.

Details

localpcf computes the contribution, from each individual data point in a point pattern X, to the empirical pair correlation function of X. These contributions are sometimes known as LISA (local indicator of spatial association) functions based on pair correlation.

localpcfinhom computes the corresponding contribution to the inhomogeneous empirical pair correlation function of X.

Given a spatial point pattern X, the local pcf \( g_i(r) \) associated with the ith point in X is computed by

\[
g_i(r) = \frac{a}{2\pi n} \sum_j k(d_{ij} - r)
\]

where the sum is over all points \( j \neq i \), \( a \) is the area of the observation window, \( n \) is the number of points in X, and \( d_{ij} \) is the distance between points i and j. Here k is the Epanechnikov kernel,

\[
k(t) = \frac{3}{4\delta^2} \max(0, 1 - \frac{t^2}{\delta^2}).
\]

Edge correction is performed using the border method (for the sake of computational efficiency): the estimate \( g_i(r) \) is set to NA if \( r > b_i \), where \( b_i \) is the distance from point i to the boundary of the observation window.

The smoothing bandwidth \( \delta \) may be specified. If not, it is chosen by Stoyan’s rule of thumb \( \delta = c/\hat{\lambda} \) where \( \hat{\lambda} = n/a \) is the estimated intensity and \( c \) is a constant, usually taken to be 0.15. The value of \( c \) is controlled by the argument stoyan.

For localpcfinhom, the optional argument lambda specifies the values of the estimated intensity function. If lambda is given, it should be either a numeric vector giving the intensity values at...
the points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function \(x,y\) which can be evaluated to give the intensity value at any location. If lambda is not given, then it will be estimated using a leave-one-out kernel density smoother as described in \texttt{pcfinhom}.

\textbf{Value}

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}. Essentially a data frame containing columns

- \(r\): the vector of values of the argument \(r\) at which the function \(K\) has been estimated
- \(\text{theo}\): the theoretical value \(K(r) = \pi r^2\) or \(L(r) = r\) for a stationary Poisson process

together with columns containing the values of the local pair correlation function for each point in the pattern. Column \(i\) corresponds to the \(i\)th point. The last two columns contain the \(r\) and \(\text{theo}\) values.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{See Also}

\texttt{localK, localKinhom, pcf, pcfinhom}

\textbf{Examples}

```r
data(ponderosa)
X <- ponderosa

g <- localpcf(X, stoyan=0.5)
colo <- c(rep("grey", npoints(X)), "blue")
a <- plot(g, main=c("local pair correlation functions", "Ponderosa pines"),
 legend=FALSE, col=colo, lty=1)

plot only the local pair correlation function for point number 7
plot(g, est@07 - r)

gi <- localpcfinhom(X, stoyan=0.5)
a <- plot(gi, main=c("inhomogeneous local pair correlation functions",
 "Ponderosa pines"),
 legend=FALSE, col=colo, lty=1)
```
logLik.mppm  

*Log Likelihood for Poisson Point Process Model*

**Description**

Extracts the log likelihood of a Poisson point process model that has been fitted to multiple point patterns.

**Usage**

```r
S3 method for class 'mppm'
logLik(object, ...)
```

**Arguments**

- `object`: Fitted point process model (fitted to multiple point patterns). An object of class "mppm".
- `...`: Ignored.

**Details**

The maximised value of the log likelihood for the fitted model (as approximated by quadrature using the Berman-Turner approximation) is extracted.

If `object` is not a Poisson process, the maximised log *pseudolikelihood* is returned, with a warning.

**Value**

A numerical value.

**Author(s)**

and Rolf Turner <rolf@math.unb.ca> [http://www.math.unb.ca/~rolf](http://www.math.unb.ca/~rolf)

**See Also**

- `mppm`

**Examples**

```r
fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
logLik(fit)
AIC(fit)
```
Description

Extracts the log likelihood, deviance, and AIC of a fitted Poisson point process model, or analogous quantities based on the pseudolikelihood or logistic likelihood for a fitted Gibbs point process model.

Usage

```r
S3 method for class 'ppm'
logLik(object, ..., new.coef=NULL, warn=TRUE)
S3 method for class 'ppm'
AIC(object, ..., k=2, takeuchi=TRUE)
S3 method for class 'ppm'
extractAIC(fit, scale=0, k=2, ..., takeuchi=TRUE)
S3 method for class 'ppm'
nobs(object, ...)
```

Arguments

- `object`: Fitted point process model. An object of class "ppm".
- `fit`: Ignored.
- `warn`: If TRUE, a warning is given when the pseudolikelihood or logistic likelihood is returned instead of the likelihood.
- `scale`: Ignored.
- `k`: Numeric value specifying the weight of the equivalent degrees of freedom in the AIC. See Details.
- `new.coef`: New values for the canonical parameters of the model. A numeric vector of the same length as coef(object).
- `takeuchi`: Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE) or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

Details

These functions are methods for the generic commands `logLik`, `extractAIC` and `nobs` for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained from the model-fitting function `ppm`.

The method `logLik.ppm` computes the maximised value of the log likelihood for the fitted model `object` (as approximated by quadrature using the Berman-Turner approximation) is extracted. If `object` is not a Poisson process, the maximised log pseudolikelihood is returned, with a warning (if `warn=TRUE`).
The Akaike Information Criterion AIC for a fitted model is defined as

\[ AIC = -2 \log(L) + k \times \text{penalty} \]

where \( L \) is the maximised likelihood of the fitted model, and \( edf \) is the effective degrees of freedom of the model. The method `extractAIC.ppm` returns the analogous quantity \( AIC^* \) in which \( L \) is replaced by \( L^* \), the quadrature approximation to the likelihood (if `fit` is a Poisson model) or the pseudolikelihood or logistic likelihood (if `fit` is a Gibbs model).

The penalty term is calculated as follows. If `takeuchi FALSE` then penalty is the number of fitted parameters. If `takeuchi TRUE` then penalty = \( \text{trace}(JH^{-1}) \) where \( J \) and \( H \) are the estimated variance and hessian, respectively, of the composite score. These two choices are equivalent for a Poisson process.

The method `nobs.ppm` returns the number of points in the original data point pattern to which the model was fitted.

The \texttt{R} function `step` uses these methods.

Value

- `logLik` returns a numerical value, belonging to the class "logLik", with an attribute "df" giving the degrees of freedom.
- `AIC` returns a numerical value.
- `extractAIC` returns a numeric vector of length 2 containing the degrees of freedom and the AIC value.
- `nobs` returns an integer value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References


See Also

- `ppm`, `as.owin`, `coef.ppm`, `fitted.ppm`, `formula.ppm`, `model.frame.ppm`, `model.matrix.ppm`, `plot.ppm`, `predict.ppm`, `residuals.ppm`, `simulate.ppm`, `summary.ppm`, `terms.ppm`, `update.ppm`, `vcov.ppm`.

Examples

```r
data(cells)
fit <- ppm(cells, ~x)
nobs(fit)
logLik(fit)
exttractAIC(fit)
AIC(fit)
step(fit)
```
logLik.slrmand Loglikelihood of Spatial Logistic Regression

Description

Computes the (maximised) loglikelihood of a fitted Spatial Logistic Regression model.

Usage

```r
S3 method for class 'slrm'
logLik(object, ..., adjust = TRUE)
```

Arguments

- `object`: a fitted spatial logistic regression model. An object of class "slrm".
- `...`: Ignored.
- `adjust`: Logical value indicating whether to adjust the loglikelihood of the model to make it comparable with a point process likelihood. See Details.

Details

This is a method for `logLik` for fitted spatial logistic regression models (objects of class "slrm", usually obtained from the function `slrm`). It computes the log-likelihood of a fitted spatial logistic regression model.

If `adjust=FALSE`, the loglikelihood is computed using the standard formula for the loglikelihood of a logistic regression model for a finite set of (pixel) observations.

If `adjust=TRUE` then the loglikelihood is adjusted so that it is approximately comparable with the likelihood of a point process in continuous space, by subtracting the value \(n \log(a)\) where \(n\) is the number of points in the original point pattern dataset, and \(a\) is the area of one pixel.

Value

A numerical value.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`slrm`
lohboot

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
logLik(fit)
logLik(fit, adjust=FALSE)

Description

Computes a bootstrap confidence band for a summary function of a point process.

Usage

lohboot(X,
fun=c("pcf", "Kest", "Lest", "pcfinhom", "Kinhom", "Linhom"),
..., nsim=200, confidence=0.95, global=FALSE, type=7)

Arguments

X  A point pattern (object of class "ppp").
fun  Name of the summary function for which confidence intervals are desired: one of the strings "pcf", "Kest", "Lest", "pcfinhom", "Kinhom" or "Linhom". Alternatively, the function itself; it must be one of the functions listed here.
...  Arguments passed to the corresponding local version of the summary function (see Details).
nsim  Number of bootstrap simulations.
confidence  Confidence level, as a fraction between 0 and 1.
global  Logical. If FALSE (the default), pointwise confidence intervals are constructed. If TRUE, a global (simultaneous) confidence band is constructed.
type  Integer. Argument passed to quantile controlling the way the quantiles are calculated.

Details

This algorithm computes confidence bands for the true value of the summary function fun using the bootstrap method of Loh (2008).

If fun="pcf", for example, the algorithm computes a pointwise (100 * confidence)% confidence interval for the true value of the pair correlation function for the point process, normally estimated by pcf. It starts by computing the array of local pair correlation functions, localpcf, of the data pattern X. This array consists of the contributions to the estimate of the pair correlation function from each data point. Then these contributions are resampled nsim times with replacement; from each resampled dataset the total contribution is computed, yielding nsim random pair correlation functions. The pointwise alpha/2 and 1 - alpha/2 quantiles of these functions are computed,
where \( \alpha = 1 - \) confidence. The average of the local functions is also computed as an estimate of the pair correlation function.

To control the estimation algorithm, use the arguments ..., which are passed to the local version of the summary function, as shown below:

<table>
<thead>
<tr>
<th>fun</th>
<th>local version</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcf</td>
<td>localpcf</td>
</tr>
<tr>
<td>Kest</td>
<td>localK</td>
</tr>
<tr>
<td>Lest</td>
<td>localK</td>
</tr>
<tr>
<td>pcfinhom</td>
<td>localpcfinhom</td>
</tr>
<tr>
<td>Kinhom</td>
<td>localKinhom</td>
</tr>
<tr>
<td>Linhom</td>
<td>localKinhom</td>
</tr>
</tbody>
</table>

For `fun="Lest"`, the calculations are first performed as if `fun="Kest"`, and then the square-root transformation is applied to obtain the \( L \)-function.

Note that the confidence bands computed by `lohboot(fun="pcf")` may not contain the estimate of the pair correlation function computed by `pcf`, because of differences between the algorithm parameters (such as the choice of edge correction) in `localpcf` and `pcf`. If you are using `lohboot`, the appropriate point estimate of the pair correlation itself is the pointwise mean of the local estimates, which is provided in the result of `lohboot` and is shown in the default plot.

If the confidence bands seem unbelievably narrow, this may occur because the point pattern has a hard core (the true pair correlation function is zero for certain values of distance) or because of an optical illusion when the function is steeply sloping (remember the width of the confidence bands should be measured vertically).

An alternative to `lohboot` is `varblock`.

**Value**

A function value table (object of class "fv") containing columns giving the estimate of the summary function, the upper and lower limits of the bootstrap confidence interval, and the theoretical value of the summary function for a Poisson process.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

Summary functions `Kest, pcf, Kinhom, pcfinhom, localK, localpcf, localKinhom, localpcfinhom`.

See `varblock` for an alternative bootstrap technique.
longleaf

Description
Locations and sizes of Longleaf pine trees. A marked point pattern.
The data record the locations and diameters of 584 Longleaf pine (*Pinus palustris*) trees in a 200 x 200 metre region in southern Georgia (USA). They were collected and analysed by Platt, Evans and Rathbun (1988).
This is a marked point pattern; the mark associated with a tree is its diameter at breast height (dbh), a convenient measure of its size. Several analyses have considered only the “adult” trees which are conventionally defined as those trees with dbh greater than or equal to 30 cm.
The pattern is regarded as spatially inhomogeneous.

Usage
data(longleaf)

Format
An object of class "ppp" representing the point pattern of tree locations. Entries include

- x: Cartesian x-coordinate of tree
- y: Cartesian y-coordinate of tree
- marks: diameter at breast height, in centimetres.

See `ppp.object` for details of the format of a point pattern object.

Source
Platt, Evans and Rathbun (1988)

References

Examples
data(longleaf)
Create Point Pattern on Linear Network

Description

Creates an object of class "lpp" that represents a point pattern on a linear network.

Usage

lpp(x, L)

Arguments

x Locations of the points. A matrix or data frame of coordinates, or a point pattern object (of class "ppp") or other data acceptable to as.ppp.
L Linear network (object of class "linnet").

Details

This command creates an object of class "lpp" that represents a point pattern on a linear network. Normally x is a point pattern. The points of x should lie on the lines of L. Alternatively x may be a matrix or data frame containing at least two columns.

- Usually the first two columns of x will be interpreted as spatial coordinates, and any remaining columns as marks.
- The exception occurs if x is a data frame with columns named x, y, seg and tp. Then x and y will be interpreted as spatial coordinates, and seg and tp as local coordinates, with seg indicating which line segment of L the point lies on, and tp indicating how far along the segment the point lies (normalised to 1). Any remaining columns will be interpreted as marks.

Value

An object of class "lpp". Also inherits the class "ppx".

Note on changed format

The internal format of "lpp" objects was changed in spatstat version 1.28-0. Objects in the old format are still handled correctly, but computations are faster in the new format. To convert an object x from the old format to the new format, use x <- lpp(as.ppp(x), as.linnet(x)).

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/
See Also

Installed datasets which are "lpp" objects: chicago, dendrite, spiders.

See as.lpp for converting data to an lpp object.

See methods.lpp and methods.ppx for other methods applicable to lpp objects.

Calculations on an lpp object: intensity.lpp, distfun.lpp, nndist.lpp, nnwhich.lpp, nncross.lpp, nnfun.lpp.

Summary functions: linearK, linearKinhom, linearpcf, linearKdot, linearKcross, linearmarkconnect, etc.

Random point patterns on a linear network can be generated by rpoislpp or runiflpp.

See linnet for linear networks.

Examples

e.example(linnet)
xx <- list(x=c(-1.5,0,0.5,1.5), y=c(1.5,3,4.5,1.5))
X <- lpp(xx, letterA)
plot(X)
X
summary(X)

lppm

Fit Point Process Model to Point Pattern on Linear Network

Description

Fit a point process model to a point pattern dataset on a linear network

Usage

lppm(X, ...)

## S3 method for class 'formula'
lppm(X, interaction=NULL, ..., data=NULL)

## S3 method for class 'lpp'
lppm(X, ..., eps=NULL, nd=1000)

Arguments

X
Either an object of class "lpp" specifying a point pattern on a linear network, or a formula specifying the point process model.

... Arguments passed to ppm.

interaction An object of class "interact" describing the point process interaction structure, or NULL indicating that a Poisson process (stationary or nonstationary) should be fitted.
Optional. The values of spatial covariates (other than the Cartesian coordinates) required by the model. A list whose entries are images, functions, windows, tessellations or single numbers.

Optional. Spacing between dummy points along each segment of the network.

Optional. Number of dummy points equally spaced along each segment of the network. Ignored if eps is given.

Details

This function fits a point process model to data that specify a point pattern on a linear network. It is a counterpart of the model-fitting function \texttt{ppm} designed to work with objects of class "lpp" instead of "ppp".

The function \texttt{lppm} is generic, with methods for the classes \texttt{formula} and \texttt{lppp}.

In \texttt{lppm}, the first argument \texttt{X} should be an object of class "lpp" (created by the command \texttt{lpp}) specifying a point pattern on a linear network.

In \texttt{lppm}, the first argument is a \texttt{formula} in the \texttt{R} language describing the spatial trend model to be fitted. It has the general form \texttt{pattern} ~ \texttt{trend} where the left hand side \texttt{pattern} is usually the name of a point pattern on a linear network (object of class "lpp") to which the model should be fitted, or an expression which evaluates to such a point pattern; and the right hand side \texttt{trend} is an expression specifying the spatial trend of the model.

Other arguments . . . are passed from \texttt{lppm} to \texttt{lpp} and from \texttt{lpp} to \texttt{ppm}.

Value

An object of class "lppm" representing the fitted model. There are methods for \texttt{print}, \texttt{predict}, \texttt{coef} and similar functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

References


See Also

\texttt{methods.lppm}, \texttt{predict.lppm}, \texttt{ppm}, \texttt{lpp}. 
**Examples**

```r
example(lpp)
lpp(X ~ 1)
lpp(X ~ x)
```

---

**Description**

Plot spatial point process residuals against a covariate.

**Usage**

```r
lurking(object, covariate, type="eem",
cumulative=TRUE,
clipwindow=default.clipwindow(object),
rv,
plot.sd,
envelope=FALSE, nsim=39, nrank=1,
plot.it=TRUE,
typename,
covname,
oldstyle=FALSE, check=TRUE,
...

splineargs=list(spar=0.5),
verbose=TRUE)
```

**Arguments**

- `object`: The fitted point process model (an object of class "ppm") for which diagnostics should be produced. This object is usually obtained from `ppm`. Alternatively, `object` may be a point pattern (object of class "ppp").
- `covariate`: The covariate against which residuals should be plotted. Either a numeric vector, a pixel image, or an expression. See `Details` below.
- `type`: String indicating the type of residuals or weights to be computed. Choices include "eem", "raw", "inverse" and "pearson". See `diagnose.ppm` for all possible choices.
- `cumulative`: Logical flag indicating whether to plot a cumulative sum of marks (cumulative=TRUE) or the derivative of this sum, a marginal density of the smoothed residual field (cumulative=FALSE).
- `clipwindow`: If not NULL this argument indicates that residuals shall only be computed inside a subregion of the window containing the original point pattern data. Then `clipwindow` should be a window object of class "owin".
lurking

rv

Usually absent. If this argument is present, the point process residuals will not be calculated from the fitted model object, but will instead be taken directly from rv.

plot.sd

Logical value indicating whether error bounds should be added to plot. The default is TRUE for Poisson models and FALSE for non-Poisson models. See Details.

evelope

Logical value indicating whether to compute simulation envelopes for the plot. Alternatively envelope may be a list of point patterns to use for computing the simulation envelopes, or an object of class "envelope" containing simulated point patterns.

nsim

Number of simulated point patterns to be generated to produce the simulation envelope, if envelope=TRUE.

nrank

Integer. Rank of the envelope value amongst the nsim simulated values. A rank of 1 means that the minimum and maximum simulated values will be used.

plot.it

Logical value indicating whether plots should be shown. If plot.it=FALSE, only the computed coordinates for the plots are returned. See Value.

typename

Usually absent. If this argument is present, it should be a string, and will be used (in the axis labels of plots) to describe the type of residuals.

covname

A string name for the covariate, to be used in axis labels of plots.

oldstyle

Logical flag indicating whether error bounds should be plotted using the approximation given in the original paper (oldstyle=TRUE), or using the correct asymptotic formula (oldstyle=FALSE).

check

Logical flag indicating whether the integrity of the data structure in object should be checked.

Arguments passed to plot.default and lines to control the plot behaviour.

splineargs

A list of arguments passed to smooth.spline for the estimation of the derivatives in the case cumulative=FALSE.

verbose

Logical value indicating whether to print progress reports during Monte Carlo simulation.

Details

This function generates a ‘lurking variable’ plot for a fitted point process model. Residuals from the model represented by object are plotted against the covariate specified by covariate. This plot can be used to reveal departures from the fitted model, in particular, to reveal that the point pattern depends on the covariate.

First the residuals from the fitted model (Baddeley et al, 2004) are computed at each quadrature point, or alternatively the 'exponential energy marks' (Stoyan and Grabarnik, 1991) are computed at each data point. The argument type selects the type of residual or weight. See diagnose.ppm for options and explanation.

A lurking variable plot for point processes (Baddeley et al, 2004) displays either the cumulative sum of residuals/weights (if cumulative = TRUE) or a kernel-weighted average of the residuals/weights (if cumulative = FALSE) plotted against the covariate. The empirical plot (solid lines) is shown together with its expected value assuming the model is true (dashed lines) and optionally also the pointwise two-standard-deviation limits (dotted lines).
To be more precise, let $\{Z(u)\}$ denote the value of the covariate at a spatial location $u$.

- If cumulative=TRUE then we plot $H(z)$ against $z$, where $H(z)$ is the sum of the residuals over all quadrature points where the covariate takes a value less than or equal to $z$, or the sum of the exponential energy weights over all data points where the covariate takes a value less than or equal to $z$.

- If cumulative=FALSE then we plot $h(z)$ against $z$, where $h(z)$ is the derivative of $H(z)$, computed approximately by spline smoothing.

For the point process residuals $E(R(z)) = 0$, while for the exponential energy weights $E(H(z)) = \text{area of the subset of the window satisfying } Z(u) \leq z$.

If the empirical and theoretical curves deviate substantially from one another, the interpretation is that the fitted model does not correctly account for dependence on the covariate. The correct form (of the spatial trend part of the model) may be suggested by the shape of the plot.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-deviation error limits for $H(x)$ calculated for the inhomogeneous Poisson process. The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymptotic variance of the residuals under the asymptotic normal approximation, equation (37) of Baddeley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an over-estimate of the true variance of the residuals.

The argument object must be a fitted point process model (object of class "ppm") typically produced by the maximum pseudolikelihood fitting algorithm ppm).

The argument covariate is either a numeric vector, a pixel image, or an R language expression. If it is a numeric vector, it is assumed to contain the values of the covariate for each of the quadrature points in the fitted model. The quadrature points can be extracted by quad.ppm(object).

If covariate is a pixel image, it is assumed to contain the values of the covariate at each location in the window. The values of this image at the quadrature points will be extracted.

Alternatively, if covariate is an expression, it will be evaluated in the same environment as the model formula used in fitting the model object. It must yield a vector of the same length as the number of quadrature points. The expression may contain the terms $x$ and $y$ representing the cartesian coordinates, and may also contain other variables that were available when the model was fitted. Certain variable names are reserved words; see ppm.

Note that lurking variable plots for the $x$ and $y$ coordinates are also generated by diagnose.ppm, amongst other types of diagnostic plots. This function is more general in that it enables the user to plot the residuals against any chosen covariate that may have been present.

For advanced use, even the values of the residuals/weights can be altered. If the argument rv is present, the residuals will not be calculated from the fitted model object but will instead be taken directly from the object rv. If type = "eem" then rv should be similar to the return value of eem, namely, a numeric vector with length equal to the number of data points in the original point pattern. Otherwise, rv should be similar to the return value of residuals.ppm, that is, rv should be an object of class "msr" (see msr) representing a signed measure.
Value

A list containing two dataframes empirical and theoretical. The first dataframe empirical contains columns covariate and value giving the coordinates of the lurking variable plot. The second dataframe theoretical contains columns covariate, mean and sd giving the coordinates of the plot of the theoretical mean and standard deviation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

residuals.ppm, diagnose.ppm, residuals.ppm, qqplot.ppm, eem.ppm

Examples

```r
data(nztrees)
lurking(nztrees, expression(x))
fit <- ppm(nztrees, ~x, Poisson())
lurking(fit, expression(x))
lurking(fit, expression(x), cumulative=FALSE)
```

---

**lut**  
*Lookup Tables*

Description

Create a lookup table.

Usage

```r
lut(outputs, ..., range=NULL, breaks=NULL, inputs=NULL)
```
Arguments

- **outputs**: Vector of output values
- **range**: Interval of numbers to be mapped. A numeric vector of length 2, specifying the ends of the range of values to be mapped. Incompatible with `breaks` or `inputs`.
- **inputs**: Input values to which the output values are associated. A factor or vector of the same length as `outputs`. Incompatible with `breaks` or `range`.
- **breaks**: Breakpoints for the lookup table. A numeric vector of length equal to `length(outputs)+1`. Incompatible with `range` or `inputs`.

Details

A lookup table is a function, mapping input values to output values.

The command `lut` creates an object representing a lookup table, which can then be used to control various behaviour in the `spatstat` package. It can also be used to compute the output value assigned to any input value.

The argument `outputs` specifies the output values to which input data values will be mapped. It should be a vector of any atomic type (e.g. numeric, logical, character, complex) or factor values.

Exactly one of the arguments `range`, `inputs` or `breaks` must be specified by name.

If `inputs` is given, then it should be a vector or factor, of the same length as `outputs`. The entries of `inputs` can be any atomic type (e.g. numeric, logical, character, complex) or factor values. The resulting lookup table associates the value `inputs[i]` with the value `outputs[i]`.

If `range` is given, then it determines the interval of the real number line that will be mapped. It should be a numeric vector of length 2.

If `breaks` is given, then it determines intervals of the real number line which are mapped to each output value. It should be a numeric vector, of length at least 2, with entries that are in increasing order. Infinite values are allowed. Any number in the range between `breaks[i]` and `breaks[i+1]` will be mapped to the value `outputs[i]`.

The result is an object of class "lut". There is a print method for this class. Some plot commands in the `spatstat` package accept an object of this class as a specification of a lookup table.

The result is also a function `f` which can be used to compute the output value assigned to any input data value. That is, `f(x)` returns the output value assigned to `x`. This also works for vectors of input data values.

Value

A function, which is also an object of class "lut".

Author(s)

Adrian Baddeley &lt;Adrian.Baddeley@uwa.edu.au&gt; [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner &lt;r.turner@auckland.ac.nz&gt;

See Also

- `colourmap`
Examples

# lookup table for real numbers, using breakpoints
cr <- lut(factor(c("low", "medium", "high")), breaks=c(0,5,10,15))
cr
  cr(3.2)
  cr(c(3,5,7))
# lookup table for discrete set of values
t <- lut(c(0,1), inputs=c(FALSE, TRUE))
t(TRUE)

markconnect

Mark Connection Function

Description

Estimate the marked connection function of a multitype point pattern.

Usage

markconnect(X, i, j, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X
  The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

i
  Number or character string identifying the type (mark value) of the points in X
  from which distances are measured.

j
  Number or character string identifying the type (mark value) of the points in X
  to which distances are measured.

r
  numeric vector. The values of the argument r at which the mark connection
  function \( p_{ij}(r) \) should be evaluated. There is a sensible default.

correction
  A character vector containing any selection of the options "isotropic", "Ripley"
  or "translate". It specifies the edge correction(s) to be applied.

method
  A character vector indicating the user’s choice of density estimation technique
  to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
  selected by method.

normalise
  If TRUE, normalise the pair connection function by dividing it by \( p_i p_j \), the esti-
mated probability that randomly-selected points will have marks \( i \) and \( j \).
Details

The mark connection function $p_{ij}(r)$ of a multitype point process $X$ is a measure of the dependence between the types of two points of the process a distance $r$ apart.

Informally $p_{ij}(r)$ is defined as the conditional probability, given that there is a point of the process at a location $u$ and another point of the process at a location $v$ separated by a distance $||u - v|| = r$, that the first point is of type $i$ and the second point is of type $j$. See Stoyan and Stoyan (1994).

If the marks attached to the points of $X$ are independent and identically distributed, then $p_{ij}(r) \equiv p_i p_j$ where $p_i$ denotes the probability that a point is of type $i$. Values larger than this, $p_{ij}(r) > p_i p_j$, indicate positive association between the two types, while smaller values indicate negative association.

The argument $X$ must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

The argument $r$ is the vector of values for the distance $r$ at which $p_{ij}(r)$ is estimated. There is a sensible default.

This algorithm assumes that $X$ can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in $X$ as X$\$window) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections implemented here are

**isotropic/Ripley** Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).

**translate** Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for evenly-spaced $r$ values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may require manual control of the smoothing parameter hmult.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

*r* the values of the argument $r$ at which the mark connection function $p_{ij}(r)$ has been estimated

*theo* the theoretical value of $p_{ij}(r)$ when the marks attached to different points are independent
together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $p_{ij}(r)$ obtained by the edge corrections named.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

Multitype pair correlation `pcfcross` and multitype K-functions `Kcross, Kdot`.

Use `alltypes` to compute the mark connection functions between all pairs of types.

Mark correlation `markcorr` and mark variogram `markvario` for numeric-valued marks.

**Examples**

```r
Hughes' amacrine data
Cells marked as 'on'/"off"
data(amacrine)
M <- markconnect(amacrine, "on", "off")
plot(M)

Compute for all pairs of types at once
plot(alltypes(amacrine, markconnect))
```

---

**markcorr**

*Mark Correlation Function*

**Description**

Estimate the marked correlation function of a marked point pattern.

**Usage**

```r
markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ...,
f1=NULL, normalise=TRUE, fargs=NULL)
```
Arguments

- **X**: The observed point pattern. An object of class "ppp" or something acceptable to `as.ppp`.
- **f**: Optional. Test function $f$ used in the definition of the mark correlation function. An R function with at least two arguments. There is a sensible default.
- **r**: Optional. Numeric vector. The values of the argument $r$ at which the mark correlation function $k_f(r)$ should be evaluated. There is a sensible default.
- **correction**: A character vector containing any selection of the options "isotropic", "Ripley", "translate", "translation", "none" or "best". It specifies the edge correction(s) to be applied.
- **method**: A character vector indicating the user’s choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".
- **normalise**: If `normalise` is `FALSE`, compute only the numerator of the expression for the mark correlation.
- **fargs**: Optional. A list of extra arguments to be passed to the function $f$ or $f_1$.

Details

By default, this command calculates an estimate of Stoyan’s mark correlation $k_{mm}(r)$ for the point pattern.

Alternatively if the argument $f$ or $f_1$ is given, then it calculates Stoyan’s generalised mark correlation $k_f(r)$ with test function $f$.

Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):

- For a point process $X$ with numeric marks, Stoyan’s mark correlation function $k_{mm}(r)$, is
  \[ k_{mm}(r) = \frac{E_0[u][M(0)M(u)]}{E[M,M']} \]
  where $E_0[u]$ denotes the conditional expectation given that there are points of the process at the locations $0$ and $u$ separated by a distance $r$, and where $M(0)$, $M(u)$ denote the marks attached to these two points. On the denominator, $M, M'$ are random marks drawn independently from the marginal distribution of marks, and $E$ is the usual expectation.

- For a multitype point process $X$, the mark correlation is
  \[ k_{mm}(r) = \frac{P_0[u][M(0)M(u)]}{P[M = M']} \]
  where $P$ and $P_0[u]$ denote the probability and conditional probability.

- The generalised mark correlation function $k_f(r)$ of a marked point process $X$, with test function $f$, is
  \[ k_f(r) = \frac{E_0[u][f(M(0), M(u))]}{E[f(M, M')]} \]
The test function \( f \) is any function \( f(m_1, m_2) \) with two arguments which are possible marks of the pattern, and which returns a nonnegative real value. Common choices of \( f \) are: for continuous nonnegative real-valued marks,

\[
f(m_1, m_2) = m_1 m_2
\]

for discrete marks (multitype point patterns),

\[
f(m_1, m_2) = 1(m_1 = m_2)
\]

and for marks taking values in \([0, 2\pi)\),

\[
f(m_1, m_2) = \sin(m_1 - m_2)
\]

Note that \( k_f(r) \) is not a “correlation” in the usual statistical sense. It can take any nonnegative real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of \( X \) are independent and identically distributed, then \( k_f(r) \equiv 1 \). The interpretation of values larger or smaller than 1 depends on the choice of function \( f \).

The argument \( X \) must be a point pattern (object of class "ppp") or any data that are acceptable to \texttt{as.ppp}. It must be a marked point pattern.

The argument \( f \) determines the function to be applied to pairs of marks. It has a sensible default, which depends on the kind of marks in \( X \). If the marks are numeric values, then \( f \leftarrow \text{function}(m_1, m_2) \{ m_1 \ast m_2 \} \) computes the product of two marks. If the marks are a factor (i.e. if \( X \) is a multitype point pattern) then \( f \leftarrow \text{function}(m_1, m_2) \{ m_1 == m_2 \} \) yields the value 1 when the two marks are equal, and 0 when they are unequal. These are the conventional definitions for numerical marks and multitype points respectively.

The argument \( f \) may be specified by the user. It must be an \texttt{R} function, accepting two arguments \( m_1 \) and \( m_2 \) which are vectors of equal length containing mark values (of the same type as the marks of \( X \)). (It may also take additional arguments, passed through \texttt{fargs}). It must return a vector of numeric values of the same length as \( m_1 \) and \( m_2 \). The values must be non-negative, and \texttt{NA} values are not permitted.

Alternatively the user may specify the argument \( f1 \) instead of \( f \). This indicates that the test function \( f \) should take the form \( f(u, v) = f_1(u) f_1(v) \) where \( f_1(u) \) is given by the argument \( f1 \). The argument \( f1 \) should be an \texttt{R} function with at least one argument. (It may also take additional arguments, passed through \texttt{fargs}).

The argument \( r \) is the vector of values for the distance \( r \) at which \( k_f(r) \) is estimated.

This algorithm assumes that \( X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \( X \) as \( X \$\text{window} \)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in \texttt{Kest}. The edge corrections implemented here are

\textbf{isotropic/Ripley} Ripley's isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).

\textbf{translate} Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.
Note that the estimator assumes the process is stationary (spatially homogeneous). The numerator and denominator of the mark correlation function (in the expression above) are estimated using density estimation techniques. The user can choose between "density" which uses the standard kernel density estimation routine \texttt{density}, and works only for evenly-spaced \( r \) values; "loess" which uses the function \texttt{loess} in the package \texttt{modreg}; "sm" which uses the function \texttt{sm.density} in the package \texttt{sm} and is extremely slow; "smrep" which uses the function \texttt{sm.density} in the package \texttt{sm} and is relatively fast, but may require manual control of the smoothing parameter \( h_{mult} \).

If \texttt{normalise=FALSE} then the algorithm will compute only the numerator

\[
c_f(r) = E_{0u}f(M(0), M(u))
\]

of the expression for the mark correlation function.

**Value**

A function value table (object of class "fv") or a list of function value tables, one for each column of marks.

An object of class "fv" (see \texttt{fv.object}) is essentially a data frame containing numeric columns

- \( r \) the values of the argument \( r \) at which the mark correlation function \( k_f(r) \) has been estimated
- \texttt{theo} the theoretical value of \( k_f(r) \) when the marks attached to different points are independent, namely 1

together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the mark correlation function \( k_f(r) \) obtained by the edge corrections named.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**References**


**See Also**

Mark variogram \texttt{markvario} for numeric marks.

Mark connection function \texttt{markconnect} and multitype K-functions \texttt{Kcross, Kdot} for factor-valued marks.

\texttt{kmark} to estimate a cumulative function related to the mark correlation function.
marks

Marks of a Point Pattern

Description

Extract or change the marks attached to a point pattern dataset.

Usage

marks(x, ...)

Examples

# CONTINUOUS-VALUED MARKS:
# (1) Spruces
# marks represent tree diameter
# mark correlation function
ms <- markcorr(spruces)
plot(ms)

# (2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(X$n)
## Not run:
Xc <- markcorr(X)
plot(Xc)

## End(Not run)

# MULTITYPE DATA:
# Hughes’ amacrine data
# Cells marked as ‘on’/’off’
# (3) Kernel density estimate with Epanechnikov kernel
# (as proposed by Stoyan & Stoyan)
M <- markcorr(amacrine, function(m1,m2) (m1==m2),
            correction="translate", method="density",
            kernel="epanechnikov")
plot(M)
## Note: kernel="epanechnikov" comes from help(density)

# (4) Same again with explicit control over bandwidth
## Not run:
M <- markcorr(amacrine,
            correction="translate", method="density",
            kernel="epanechnikov", bw=0.02)
## see help(density) for correct interpretation of ‘bw’

## End(Not run)
## S3 method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE)

## S3 method for class 'ppx'
marks(x, ..., drop=TRUE)

marks(x, ...) <- value

## S3 replacement method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE) <- value

## S3 replacement method for class 'ppx'
marks(x, ...) <- value

setmarks(x, value)

x %mark% value

### Arguments

- **x**: Point pattern dataset (object of class "ppp" or "ppx").
- **...**: Ignored.
- **dfok**: Logical. If FALSE, data frames of marks are not permitted and will generate an error.
- **drop**: Logical. If TRUE, a data frame consisting of a single column of marks will be converted to a vector or factor.
- **value**: Replacement value. A vector, data frame or hyperframe of mark values, or NULL.

### Details

These functions extract or change the marks attached to the points of the point pattern x.

The expression marks(x) extracts the marks of x. The assignment marks(x) <- value assigns new marks to the dataset x, and updates the dataset x in the current environment. The expression setmarks(x, value) or equivalently x %mark% value returns a point pattern obtained by replacing the marks of x by value, but does not change the dataset x itself.

For point patterns in two-dimensional space (objects of class "ppp") the marks can be a vector, a factor, or a data frame.

For general point patterns (objects of class "ppx") the marks can be a vector, a factor, a data frame or a hyperframe.

For the assignment marks(x) <- value, the value should be a vector or factor of length equal to the number of points in x, or a data frame or hyperframe with as many rows as there are points in x. If value is a single value, or a data frame or hyperframe with one row, then it will be replicated so that the same marks will be attached to each point.

To remove marks, use marks(x) <- NULL or unmark(x).

Use ppp or ppx to create point patterns in more general situations.
marks.psp

Value

For `marks(x)`, the result is a vector, factor, data frame or hyperframe, containing the mark values attached to the points of `x`.

For `marks(x) <- value`, the result is the updated point pattern `x` (with the side-effect that the dataset `x` is updated in the current environment).

For `setmarks(x, value)` and `x %mark% value`, the return value is the point pattern obtained by replacing the marks of `x` by `value`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppp.object`, `ppx`, `unmark`, `hyperframe`

Examples

data(amacrine)

# extract marks
m <- marks(amacrine)

# recode the mark values "off", "on" as 0, 1
marks(amacrine) <- as.integer(m == "on")

Description

Extract or change the marks attached to a line segment pattern.

Usage

```r
S3 method for class 'psp'
marks(x, ..., dfok=TRUE)
S3 replacement method for class 'psp'
marks(x, ...) <- value
```

Arguments

- `x` Line segment pattern dataset (object of class "psp").
- `...` Ignored.
- `dfok` Logical. If FALSE, data frames of marks are not permitted and will generate an error.
- `value` Vector or data frame of mark values, or NULL.
These functions extract or change the marks attached to each of the line segments in the pattern \( x \). They are methods for the generic functions `marks` and `marks<-` for the class "psp" of line segment patterns.

The expression `marks(x)` extracts the marks of \( x \). The assignment `marks(x) <- value` assigns new marks to the dataset \( x \), and updates the dataset \( x \) in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment `marks(x) <- value`, the value should be a vector or factor of length equal to the number of segments in \( x \), or a data frame with as many rows as there are segments in \( x \). If `value` is a single value, or a data frame with one row, then it will be replicated so that the same marks will be attached to each segment.

To remove marks, use `marks(x) <- NULL` or `unmark(x)`.

For `marks(x)`, the result is a vector, factor or data frame, containing the mark values attached to the line segments of \( x \). If there are no marks, the result is `NULL`.

For `marks(x) <- value`, the result is the updated line segment pattern \( x \) (with the side-effect that the dataset \( x \) is updated in the current environment).

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`psp.object`, `marks`, `marks<-`

**Examples**

```r
example(psp)
marks(X)
marks(X)[,2]
marks(X) <- 42
marks(X) <- NULL
```

**Marks of a Tessellation**

Extract or change the marks attached to the tiles of a tessellation.
Usage

```r
S3 method for class 'tess'
marks(x, ...)

S3 replacement method for class 'tess'
marks(x, ...) <- value

S3 method for class 'tess'
unmark(X)
```

Arguments

- `x`: Tessellation (object of class "tess").
- `...`: Ignored.
- `value`: Vector or data frame of mark values, or NULL.

Details

These functions extract or change the marks attached to each of the tiles in the tessellation `x`. They are methods for the generic functions `marks` and `marks<-` for the class "tess" of tessellations.

The expression `marks(x)` extracts the marks of `x`. The assignment `marks(x) <- value` assigns new marks to the dataset `x`, and updates the dataset `x` in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment `marks(x) <- value`, the value should be a vector or factor of length equal to the number of tiles in `x`, or a data frame with as many rows as there are tiles in `x`. If `value` is a single value, or a data frame with one row, then it will be replicated so that the same marks will be attached to each tile.

To remove marks, use `marks(x) <- NULL` or `unmark(x)`.

Value

For `marks(x)`, the result is a vector, factor or data frame, containing the mark values attached to the tiles of `x`. If there are no marks, the result is NULL.

For `unmark(x)`, the result is the tessellation without marks.

For `marks(x) <- value`, the result is the updated tessellation `x` (with the side-effect that the dataset `x` is updated in the current environment).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

- `marks`, `marks<-`
markstat

Summarise Marks in Every Neighbourhood in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and summarise their marks

Usage

markstat(x, fun, N=NULL, R=NULL, ...)

Arguments

X A marked point pattern. An object of class "ppp".
fun Function to be applied to the vector of marks.
N Integer. If this argument is present, the neighbourhood of a point of X is defined to consist of the N points of X which are closest to it.
R Nonnegative numeric value. If this argument is present, the neighbourhood of a point of X is defined to consist of all points of X which lie within a distance R of it.
... extra arguments passed to the function fun. They must be given in the form name=value.

Details

This algorithm visits each point in the point pattern X, determines which points of X are “neighbours” of the current point, extracts the marks of these neighbouring points, applies the function fun to the marks, and collects the value or values returned by fun.

The definition of “neighbours” depends on the arguments N and R, exactly one of which must be given.

If N is given, then the neighbours of the current point are the N points of X which are closest to the current point (including the current point itself). If R is given, then the neighbourhood of the current point consists of all points of X which lie closer than a distance R from the current point.

Each point of X is visited; the neighbourhood of the current point is determined; the marks of these points are extracted as a vector v; then the function fun is called as:

fun(v, ...)

where ... are the arguments passed from the call to markstat.

The results of each call to fun are collected and returned according to the usual rules for apply and its relatives. See Value above.

This function is just a convenient wrapper for a common use of the function applynbd. For more complex tasks, use applynbd. To simply tabulate the marks in every R-neighbourhood, use marktable.

Examples

D <- dirichlet(cells)
marks(D) <- tile_areas(D)
marktable

Value

Similar to the result of apply, if each call to fun returns a single numeric value, the result is a vector of dimension X$\times n$, the number of points in X. If each call to fun returns a vector of the same length m, then the result is a matrix of dimensions c(m,n); note the transposition of the indices, as usual for the family of apply functions. If the calls to fun return vectors of different lengths, the result is a list of length X$\times n$.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

applynb, marktable, ppp.object, apply

Examples

data(longleaf)

# average diameter of 5 closest neighbours of each tree
md <- markstat(longleaf, mean, N=5)

# range of diameters of trees within 10 metre radius
rd <- markstat(longleaf, range, R=10)

marktable

Tabulate Marks in Neighbourhood of Every Point in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and compile a frequency table of the marks of these neighbour points.

Usage

marktable(X, R, exclude=TRUE)

Arguments

X A marked point pattern. An object of class "ppp".
R Neighbourhood radius.
exclude Logical. If exclude=TRUE, the neighbours of a point do not include the point itself. If exclude=FALSE, a point belongs to its own neighbourhood.
Details

This algorithm visits each point in the point pattern \( X \), inspects all the neighbouring points within a radius \( R \) of the current point, and compiles a frequency table of the marks attached to the neighbours.

The dataset \( X \) must be a multitype point pattern, that is, \( \text{marks}(X) \) must be a factor.

The result is a two-dimensional contingency table with one row for each point in the pattern, and one column for each possible mark value. The \([i, j]\) entry in the table gives the number of neighbours of point \( i \) that have mark \( j \).

To perform more complicated calculations on the neighbours of every point, use \texttt{markstat} or \texttt{applynbd}.

Value

A contingency table (object of class "table") with one row for each point in \( X \), and one column for each possible mark value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{markstat}, \texttt{applynbd}, \texttt{Kcross}, \texttt{ppp.object}, \texttt{table}

Examples

```r
data(amacrine)
head(marktable(amacrine, 0.1))
head(marktable(amacrine, 0.1, exclude=FALSE))
```

Description

Estimate the mark variogram of a marked point pattern.

Usage

```r
markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)
```
Arguments

\(X\) The observed point pattern. An object of class "ppp" or something acceptable to \texttt{as.ppp}. It must have marks which are numeric.

\textbf{correction} A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

\(r\) numeric vector. The values of the argument \(r\) at which the mark variogram \(\gamma(r)\) should be evaluated. There is a sensible default.

\textbf{method} A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

\ldots\ Arguments passed to the density estimation routine (\texttt{density}, \texttt{loess} or \texttt{smDensity}) selected by \texttt{method}.

\textbf{normalise} If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram \(\gamma(r)\) of a marked point process \(X\) is a measure of the dependence between the marks of two points of the process a distance \(r\) apart. It is informally defined as

\[
\gamma(r) = E\left[\frac{1}{2}(M_1 - M_2)^2\right]
\]

where \(E[\] denotes expectation and \(M_1, M_2\) are the marks attached to two points of the process a distance \(r\) apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see \texttt{fv.object}).

Essentially a data frame containing numeric columns

\(r\) the values of the argument \(r\) at which the mark variogram \(\gamma(r)\) has been estimated

\texttt{theo} the theoretical value of \(\gamma(r)\) when the marks attached to different points are independent; equal to the sample variance of the marks

Together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(\gamma(r)\) obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also
Mark correlation function markcorr for numeric marks.
Mark connection function markconnect and multitype K-functions kcross, Kdot for factor-valued marks.

Examples
# Longleaf Pine data
# marks represent tree diameter
data(longleaf)
# Subset of this large pattern
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[ , swcorner]
# mark correlation function
mv <- markvario(sub)
plot(mv)

matchingdist

Distance for a Point Pattern Matching

Description
Computes the distance associated with a matching between two point patterns.

Usage
matchingdist(matching, type = NULL, cutoff = NULL, q = NULL)

Arguments
matching A point pattern matching (an object of class "pppmatching").
type A character string giving the type of distance to be computed. One of "spa", "ace" or "mat". See details below.
cutoff The value > 0 at which interpoint distances are cut off.
q The order of the average that is applied to the interpoint distances. May be Inf, in which case the maximum of the interpoint distances is taken.
Details

Computes the distance specified by type, cutoff, and order for a point matching. If any of these arguments are not provided, the function uses the corresponding elements of matching (if available).

For the type "spa" (subpattern assignment) it is assumed that the points of the point pattern with the smaller cardinality \( m \) are matched to a \( m \)-point subpattern of the point pattern with the larger cardinality \( n \) in a 1-1 way. The distance is then given as the \( q \)-th order average of the \( m \) distances between matched points (minimum of Euclidean distance and cutoff) and \( n - m \) "penalty distances" of value cutoff.

For the type "ace" (assignment only if cardinalities equal) the matching is assumed to be 1-1 if the cardinalities of the point patterns are the same, in which case the \( q \)-th order average of the matching distances (minimum of Euclidean distance and cutoff) is taken. If the cardinalities are different, the matching may be arbitrary and the distance returned is always equal to cutoff.

For the type mat (mass transfer) it is assumed that each point of the point pattern with the smaller cardinality \( m \) has mass 1, each point of the point pattern with the larger cardinality \( n \) has mass \( m/n \), and fractions of these masses are matched in such a way that each point contributes exactly its mass. The distance is then given as the \( q \)-th order weighted average of all distances (minimum of Euclidean distance and cutoff) of (partially) matched points with weights equal to the fractional masses divided by \( m \).

If the cardinalities of the two point patterns are equal, matchingdist(m, type, cutoff, q) yields the same result no matter if type is "spa", "ace" or "mat".

Value

Numeric value of the distance associated with the matching.

Author(s)

Dominic Schuhmacher<dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.name

See Also

pppdist pppmatching.object

Examples

# an optimal matching
X <- runifpoint(20)
Y <- runifpoint(20)
m.opt <- pppdist(X, Y)
summary(m.opt)
matchingdist(m.opt)
# is the same as the distance given by summary(m.opt)

# sequential nearest neighbour matching
# (go through all points of point pattern X in sequence
# and match each point with the closest point of Y that is
matclust.estK

Fit the Matern Cluster Point Process by Minimum Contrast

Description

Fits the Matern Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Usage

matclust.estK(X, startpar=c(kappa=1, scale=1), lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X

Data to which the Matern Cluster model will be fitted. Either a point pattern or a summary statistic. See Details.

startpar

Vector of starting values for the parameters of the Matern Cluster process.

lambda

Optional. An estimate of the intensity of the point process.

q, p

Optional. Exponents for the contrast criterion.

rmin, rmax

Optional. The interval of \( r \) values for the contrast criterion.

... Optional arguments passed to \texttt{optim} to control the optimisation algorithm. See Details.

# still unmatched)
# C still unmatched
am <- matrix(0, 20, 20)
h <- matrix(c(1:20, rep(0, 20)), 20, 2)
h[1, 2] = nncross(X[1], Y)[1, 2]
for (i in 2:20) {
    nn <- nncross(X[, Y[-h[1:(i-1), 2]][1, 2]]
    h[1, 2] <- ((1:20)[-h[1:(i-1), 2]][nn]
}
# Not run:
par(mfrow=c(1, 2))
plot(m.opt)
plot(m.nn)
text(X$x, X$y, 1:20, pos=1, offset=0.3, cex=0.8)

## End(Not run)
Details

This algorithm fits the Matern Cluster point process model to a point pattern dataset by the Method of Minimum Contrast, using the $K$ function.

The argument $x$ can be either

**a point pattern:** An object of class "ppp" representing a point pattern dataset. The $K$ function of the point pattern will be computed using `Kest`, and the method of minimum contrast will be applied to this.

**a summary statistic:** An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the $K$ function, and this object should have been obtained by a call to `Kest` or one of its relatives.

The algorithm fits the Matern Cluster point process to $x$, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical $K$ function of the Matern Cluster process and the observed $K$ function. For a more detailed explanation of the Method of Minimum Contrast, see `mincontrast`.

The Matern Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity $\kappa$, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean $\mu$, and the locations of the offspring points of one parent are independent and uniformly distributed inside a circle of radius $R$ centred on the parent point, where $R$ is equal to the parameter `scale`.

The named vector of stating values can use either `r` or `scale` as the name of the second component, but the latter is recommended for consistency with other cluster models.

The theoretical $K$-function of the Matern Cluster process is

$$K(r) = \pi r^2 + \frac{1}{\kappa} h\left(\frac{r}{2R}\right)$$

where the radius $R$ is the parameter `scale` and

$$h(z) = 2 + \frac{1}{\pi} [(8z^2 - 4)\arccos(z) - 2\arcsin(z) + 4z\sqrt{(1 - z^2)^3} - 6z\sqrt{1 - z^2}]$$

for $z \leq 1$, and $h(z) = 1$ for $z > 1$. The theoretical intensity of the Matern Cluster process is $\lambda = \kappa \mu$.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters $\kappa$ and $R$. Then the remaining parameter $\mu$ is inferred from the estimated intensity $\lambda$.

If the argument `lambda` is provided, then this is used as the value of $\lambda$. Otherwise, if $x$ is a point pattern, then $\lambda$ will be estimated from $x$. If $x$ is a summary statistic and `lambda` is missing, then the intensity $\lambda$ cannot be estimated, and the parameter $\mu$ will be returned as `NA`.

The remaining arguments `rmin`, `rmax`, `q`, `p` control the method of minimum contrast; see `mincontrast`.

The Matern Cluster process can be simulated, using `rMatClust`.

Homogeneous or inhomogeneous Matern Cluster models can also be fitted using the function `kppm`. The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function `optim`. For example, to constrain the parameter values to a certain range, use the argument `method="L-BFGS-B"` to select an optimisation algorithm that respects box constraints, and use the arguments `lower` and `upper` to specify (vectors of) minimum and maximum values for each parameter.
Value
An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- **par**: Vector of fitted parameter values.
- **fit**: Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)
Rasmus Waagepetersen <rw@math.au.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References

See Also
kppm, lgcp.estK, thomas.estK, mincontrast, Kest, rMatClust to simulate the fitted model.

Examples
```r
data(redwood)
u <- matclust.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)
```

Description
Fits the Matern Cluster point process to a point pattern dataset by the Method of Minimum Contrast using the pair correlation function.

Usage
```r
matclust.estpcf(X, startpar=c(kappa=1, scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs=list())
```
Arguments

- **x**: Data to which the Matern Cluster model will be fitted. Either a point pattern or a summary statistic. See Details.
- **startpar**: Vector of starting values for the parameters of the Matern Cluster process.
- **lambda**: Optional. An estimate of the intensity of the point process.
- **q, p**: Optional. Exponents for the contrast criterion.
- **rmin, rmax**: Optional. The interval of r values for the contrast criterion.
- **...**: Optional arguments passed to `optim` to control the optimisation algorithm. See Details.
- **pcfargs**: Optional list containing arguments passed to `pcf.ppp` to control the smoothing in the estimation of the pair correlation function.

Details

This algorithm fits the Matern Cluster point process model to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument `x` can be either

- **a point pattern**: An object of class "ppp" representing a point pattern dataset. The pair correlation function of the point pattern will be computed using `pcf`, and the method of minimum contrast will be applied to this.

- **a summary statistic**: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the pair correlation function, and this object should have been obtained by a call to `pcf` or one of its relatives.

The algorithm fits the Matern Cluster point process to `x`, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical pair correlation function of the Matern Cluster process and the observed pair correlation function. For a more detailed explanation of the Method of Minimum Contrast, see `mincontrast`.

The Matern Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity \( \kappa \), and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean \( \mu \), and the locations of the offspring points of one parent are independent and uniformly distributed inside a circle of radius \( R \) centred on the parent point, where \( R \) is equal to the parameter `scale`.

The named vector of starting values can use either `r` or `scale` as the name of the second component, but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Matern Cluster process is

\[
g(r) = 1 + \frac{1}{4\pi R \kappa R} h\left(\frac{r}{2R}\right)
\]

where the radius R is the parameter `scale` and

\[
h(z) = \frac{16}{\pi} \left[ \arccos(z) - z^2 \sqrt{1 - z^2} \right]
\]
for \( z \leq 1 \), and \( h(z) = 0 \) for \( z > 1 \). The theoretical intensity of the Matern Cluster process is \( \lambda = \kappa \mu \).

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters \( \kappa \) and \( R \). Then the remaining parameter \( \mu \) is inferred from the estimated intensity \( \lambda \).

If the argument \( \lambda \text{lambda} \) is provided, then this is used as the value of \( \lambda \). Otherwise, if \( X \) is a point pattern, then \( \lambda \) will be estimated from \( X \). If \( X \) is a summary statistic and \( \lambda \text{lambda} \) is missing, then the intensity \( \lambda \) cannot be estimated, and the parameter \( \mu \) will be returned as \( \text{NA} \).

The remaining arguments \( r_{\text{min}}, r_{\text{max}}, q, p \) control the method of minimum contrast; see \texttt{mincontrast}.

The Matern Cluster process can be simulated, using \texttt{rMatClust}.

Homogeneous or inhomogeneous Matern Cluster models can also be fitted using the function \texttt{kppm}.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function \texttt{optim}. For example, to constrain the parameter values to a certain range, use the argument \texttt{method="L-BFGS-B"} to select an optimisation algorithm that respects box constraints, and use the arguments \texttt{lower} and \texttt{upper} to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- \texttt{par} Vector of fitted parameter values.
- \texttt{fit} Function value table (object of class "fv") containing the observed values of the summary statistic ("observed") and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

\texttt{kppm, matclust.estK, thomas.estpcf, thomas.estK, lgcp.estK, mincontrast, pcf, rMatClust} to simulate the fitted model.

Examples

\begin{verbatim}
data(redwood)
u <- matclust.estpcf(redwood, c(kappa=10, R=0.1))
plot(u, legendpos="topright")
\end{verbatim}
Description

These are group generic methods for images of class "im", which allows for usual mathematical functions and operators to be applied directly to images. See Details for a list of implemented functions.

Usage

## S3 methods for group generics have prototypes:

```r
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)
```

Arguments

- `x, z, e1, e2` objects of class "im".
- `...` further arguments passed to methods.
- `na.rm` logical: should missing values be removed?

Details

Below is a list of mathematical functions and operators which are defined for images. Not all functions will make sense for all types of images. For example, none of the functions in the "Math" group make sense for character-valued images. Note that the "Ops" group methods are implemented using `eval.im`, which tries to harmonise images via `harmonise.im` if they aren’t compatible to begin with.

1. Group "Math":
   - abs, sign, sqrt,
   - floor, ceiling, trunc,
   - round, signif
   - exp, log, expm1, log1p,
   - cos, sin, tan,
   - cospi, sinpi, tanpi,
   - acos, asin, atan
   - cosh, sinh, tanh,
   - acosh, asinh, atanh
   - lgamma, gamma, digamma, trigamma
math.linim

Description

These are group generic methods for images of class "linim", which allows for usual mathematical functions and operators to be applied directly to pixel images on a linear network. See Details for a list of implemented functions.

Examples

```r
Convert gradient values to angle of inclination:
inc <- atan(bei.extra$grad) * 180/pi
Make logical image which is TRUE when heat equals 'Moderate':
A <- gorillas.extra$heat == "Moderate"
```
Usage

```r
S3 methods for group generics have prototypes:
Math(x, ...) # Math operations
Ops(e1, e2) # Binary operators
Complex(z) # Complex numbers
Summary(...) # Summary statistics
```

Arguments

- `x, z, e1, e2` objects of class "linim".
- `...` further arguments passed to methods.
- `na.rm` logical: should missing values be removed?

Details

An object of class "linim" represents a pixel image on a linear network. See `linim`.

Below is a list of mathematical functions and operators which are defined for these images. Not all functions will make sense for all types of images. For example, none of the functions in the "Math" group make sense for character-valued images. Note that the "Ops" group methods are implemented using `eval.linim`.

1. Group "Math":
   - abs, sign, sqrt, floor, ceiling, trunc, round, signif
   - exp, log, expm1, log1p, cos, sin, tan, cospi, sinpi, tanpi, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, atanh
   - lgamma, gamma, digamma, trigamma
   - cumsum, cumprod, cummax, cummin

2. Group "Ops":
   - `"+", "+", "-", "-", "/", "/", "/", "/", "/", "/`
   - `"&", "&", "&`, "&`, "&`, "&`, "&`, "&`, "&`, "&`
   - `"==", "<<", ">", ">", ">`, ">`, ">`, ">`, ">`, ">`

3. Group "Summary":
   - all, any
   - sum, prod
   - min, max
maxnndist

Compute Minimum or Maximum Nearest-Neighbour Distance

Description

A faster way to compute the minimum or maximum nearest-neighbour distance in a point pattern.

Usage

minnndist(X, positive=FALSE)
maxnndist(X, positive=FALSE)

Arguments

X A point pattern (object of class "ppp").
positive Logical. If FALSE (the default), compute the usual nearest-neighbour distance. If TRUE, ignore coincident points, so that the nearest neighbour distance for each point is greater than zero.

Details

These functions find the minimum and maximum values of nearest-neighbour distances in the point pattern X. minnndist(X) and maxnndist(X) are equivalent to, but faster than, min(nndist(X)) and max(nndist(X)) respectively.
The value is NA if npoints(X) < 2.
**Value**

A single numeric value (possibly NA).

**Author(s)**


**See Also**

minnndist

**Examples**

```r
min(nndist(swedishpines))
minnndist(swedishpines)

max(nndist(swedishpines))
maxnndist(swedishpines)

minnndist(lansing, positive=TRUE)

if(interactive()) {
 X <- rpoispp(1e6)
 system.time(min(nndist(X)))
 system.time(minnndist(X))
}
```

---

**mean.im**

Maximum, Minimum, Mean, Median, Range or Sum of Pixel Values in an Image

**Description**

Calculates the mean, median, range, sum, maximum or minimum of the pixel values in a pixel image.

**Usage**

```r
S3 method for class 'im'
max(x, ...)
S3 method for class 'im'
min(x, ...)
S3 method for class 'im'
mean(x, ...)
S3 method for class 'im'
median(x, ...)
S3 method for class 'im'
```
Arguments

x A pixel image (object of class "im").
...
Arguments passed to mean.default.

Details

These functions calculate the mean, median, range, sum, maximum or minimum of the pixel values in the image x.

An object of class "im" describes a pixel image. See im.object for details of this class.

The function mean.im is a method for the generic function mean for the class "im". Similarly median.im is a method for the generic median and range.im is a method for range.

If the image x is logical-valued, the mean value of x is the fraction of pixels that have the value TRUE. The median is not defined.

If the image x is factor-valued, then the mean of x is the mean of the integer codes of the pixel values. The median and range are not defined.

Any arguments in ... are passed to the default method, for example mean.default. In particular, using the argument trim will compute the trimmed mean, as explained in the help for mean.default.

Other information about an image can be obtained using summary.im or quantile.im.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

mean, median, range, sum, mean.default, median.default, range.default, quantile.im, im.object, summary.im.

Examples

X <- as.im(function(x,y) {x^2}, unit.square())
mean(X)
median(X)
range(X)

mean(X, trim=0.05)
Methods for Three-Dimensional Box

Description

Methods for class "box3".

Usage

```r
S3 method for class 'box3'
print(x, ...)
S3 method for class 'box3'
unitname(x)
S3 replacement method for class 'box3'
unitname(x) <- value
```

Arguments

- **x**
  - Object of class "box3" representing a three-dimensional box.
- **...**
  - Other arguments passed to print.default.
- **value**
  - Name of the unit of length. See `unitname`.

Details

These are methods for the generic functions `print` and `unitname` for the class "box3" of three-dimensional boxes.

The `print` method prints a description of the box, while the `unitname` method extracts the name of the unit of length in which the box coordinates are expressed.

Value

For `print.box3` the value is NULL. For `unitname.box3` an object of class "units".

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`box3`, `print`, `unitname`
Examples

```r
X <- box3(c(0,10), c(0,10), c(0,5), unitname=c("metre", "metres"))
X
unitname(X)
Northern European usage
unitname(X) <- "meter"
```

Description

Methods for class "boxx".

Usage

```r
S3 method for class 'boxx'
print(x, ...) # S3 method for class 'boxx'
unitname(x) # S3 replacement method for class 'boxx'
unitname(x) <- value
```

Arguments

- `x`: Object of class "boxx" representing a multi-dimensional box.
- `...`: Other arguments passed to `print.default`.
- `value`: Name of the unit of length. See `unitname`.

Details

These are methods for the generic functions `print` and `unitname` for the class "boxx" of multi-dimensional boxes.

The `print` method prints a description of the box, while the `unitname` method extracts the name of the unit of length in which the box coordinates are expressed.

Value

For `print.boxx` the value is NULL. For `unitname.boxx` an object of class "units".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.t.turner@auckland.ac.nz>

See Also

`boxx, print, unitname`
Examples

```r
X <- boxx(c(0,10),c(0,10),c(0,5),c(0,1)), unitname=c("metre", "metres")
X
unitname(X)
Northern European usage
unitname(X) <- "meter"
```

Description

These are methods specifically for the class "fii" of fitted interpoint interactions.

Usage

```r
S3 method for class 'fii'
print(x, ...)

S3 method for class 'fii'
coef(object, ...)

S3 method for class 'fii'
plot(x, ...)

S3 method for class 'fii'
summary(object,...)

S3 method for class 'summary.fii'
print(x, ...)

S3 method for class 'summary.fii'
coef(object, ...)
```

Arguments

- `x, object` An object of class "fii" representing a fitted interpoint interaction.
- `...` Arguments passed to other methods.

Details

These are methods for the class "fii". An object of class "fii" represents a fitted interpoint interaction. It is usually obtained by using the command `fitin` to extract the fitted interaction part of a fitted point process model. See `fitin` for further explanation of this class.

The commands listed here are methods for the generic functions `print`, `summary`, `plot` and `coef` for objects of the class "fii".
Following the usual convention, `summary.fii` returns an object of class `summary.fii`, for which there is a print method. The effect is that, when the user types `summary(x)`, the summary is printed, but when the user types `y <- summary(x)`, the summary information is saved.

The method `coef.fii` extracts the canonical coefficients of the fitted interaction, and returns them as a numeric vector. The method `coef.summary.fii` transforms these values into quantities that are more easily interpretable, in a format that depends on the particular model.

There are also methods for the generic commands `reach` and `as.interact`, described elsewhere.

**Value**

The print and plot methods return `NULL`. The `summary` method returns an object of class `summary.fii`. `coef.fii` returns a numeric vector. `coef.summary.fii` returns data whose structure depends on the model.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

**See Also**

`fitin`, `reach.fii`, `as.interact.fii`

**Examples**

```r
mod <- ppm(cells, ~1, Strauss(0.1))
f <- fitin(mod)
f
summary(f)
plot(f)
coef(f)
coef(summary(f))
```

---

**Description**

Methods for objects of the class "funxy".

**Usage**

```r
S3 method for class 'funxy'
contour(x, ...)
S3 method for class 'funxy'
persp(x, ...)
S3 method for class 'funxy'
plot(x, ...)
```
Arguments

- **x**
  - Object of class "funxy" representing a function of \( x,y \) coordinates.

- **...**
  - Named arguments controlling the plot. See Details.

Details

These are methods for the generic functions `plot`, `contour` and `persp` for the class "funxy" of spatial functions.

Objects of class "funxy" are created, for example, by the commands `distfun` and `funxy`.

The `plot`, `contour` and `persp` methods first convert \( x \) to a pixel image object using `as.im`, then display it using `plot.im`, `contour.im` or `persp.im`.

Additional arguments ... are either passed to `as.im.function` to control the spatial resolution of the pixel image, or passed to `contour.im`, `persp.im` or `plot.im` to control the appearance of the plot.

Value

`NULL`.

Author(s)


and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`funxy`, `distfun`, `as.im`, `plot.im`, `persp.im`, `contour.im`, `spatstat.options`
Usage

## S3 method for class 'kppm'
coef(object, ...)
## S3 method for class 'kppm'
formula(x, ...)
## S3 method for class 'kppm'
print(x, ...)
## S3 method for class 'kppm'
terms(x, ...)
## S3 method for class 'kppm'
labels(object, ...)

Arguments

x, object An object of class "kppm", representing a fitted cluster point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands `coef`, `formula`, `print`, `terms` and `labels` for the class "kppm".

An object of class "kppm" represents a fitted cluster point process model. It is obtained from `kppm`.

The method `coef.kppm` returns the vector of *regression coefficients* of the fitted model. It does not return the clustering parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

`kppm, plot.kppm, predict.kppm, simulate.kppm, update.kppm, vcov.kppm, as.ppm.kppm`

Examples

data(redwood)
fit <- kppm(redwood, ~x, "MatClust")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)
Methods for Layered Objects

Description

Methods for geometrical transformations of layered objects (class "layered").

Usage

```r
S3 method for class 'layered'
shift(X, vec=c(0,0), ...)

S3 method for class 'layered'
rotate(X, ..., centre=NULL)

S3 method for class 'layered'
affine(X, ...)

S3 method for class 'layered'
reflect(X)

S3 method for class 'layered'
flipxy(X)

S3 method for class 'layered'
rescale(X, s, unitname)

S3 method for class 'layered'
scalardilate(X, ...)
```

Arguments

- **X**
  - Object of class "layered".
- **...**
  - Arguments passed to the relevant methods when applying the operation to each layer of X.
- **s**
  - Rescaling factor passed to the relevant method for rescale. May be missing.
- **vec**
  - Shift vector (numeric vector of length 2).
- **centre**
  - Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0,0).
- **unitname**
  - Optional. New name for the unit of length. A value acceptable to the function `unitname<-`
Methods for the generic functions `shift`, `rotate`, `reflect`, `affine`, `rescale`, `scalardilate` and `flipxy` for the class of layered objects.

A layered object represents data that should be plotted in successive layers, for example, a background and a foreground. See `layered`.

Value

Another object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`layered`

Examples

```r
L <- layered(letterR, runifpoint(20, letterR))
plot(L)
plot(rotate(L, pi/4))
```

Description

Methods for the class "linfun" of functions on a linear network.

Usage

```r
S3 method for class 'linfun'
print(x, ...)

S3 method for class 'linfun'
plot(x, ..., L=NULL,
 eps = NULL, dimyx = NULL, xy = NULL,
 main)

S3 method for class 'linfun'
as.linim(X, L, ..., eps = NULL, dimyx = NULL, xy = NULL)

S3 method for class 'linfun'
as.owin(W, ...)
```
## S3 method for class 'linfun'

```r
as.function(x, ...)
```

### Arguments

- `x`, `W`
  - A function on a linear network (object of class "linfun").
- `L`
  - A linear network
- `eps, dimyx, xy`
  - Arguments passed to `as.mask` to control the pixel resolution.
- `...`
  - Extra arguments passed to `plot.im` or `print.default`.
- `main`
  - Main title for plot.

### Details

These are methods for the generic functions `plot`, `print` and the `spatstat` generic functions `as.owin`, `as.linim`.

An object of class "linfun" represents a mathematical function that could be evaluated at any location on a linear network. It is essentially an R function with some extra attributes.

The method `as.linnet.linfun` extracts the linear network on which the function is defined. The method `as.owin.linfun` extracts the two-dimensional spatial window containing the linear network. The method `as.linim.linfun` converts the function to a pixel image on the linear network (an object of class "linim").

### Value

- For `print.linfun` the result is `NULL`.
- For `plot.linfun` the result is the same as for `plot.im`.
- For the conversion methods, the result is an object of the required type: `as.linim.linfun` returns an object of class "linim", and so on.

### Author(s)


and Rolf Turner <r.turner@auckland.ac.nz>

### Examples

```r
data(letterR)
X <- runiflpp(3, simplenet)
f <- nnfun(X)
f
plot(f)
as.function(f)
as.owin(f)
as.linim(f)
```
Description

These are methods for the class "linnet" of linear networks.

Usage

as.linnet(X, ...)

## S3 method for class 'linnet'
as.linnet(X, ..., sparse)

## S3 method for class 'linnet'
as.owin(W, ...)

## S3 method for class 'linnet'
as.psp(x, ..., fatal=TRUE)

## S3 method for class 'linnet'
print(x, ...)

## S3 method for class 'linnet'
pixellate(x, ...)

## S3 method for class 'linnet'
summary(object, ...)

## S3 method for class 'linnet'
unitname(x)

## S3 replacement method for class 'linnet'
unitname(x) <- value

vertexdegree(x)

## S3 method for class 'linnet'
vertices(w)

## S3 method for class 'linnet'
volume(x)

## S3 method for class 'linnet'
Window(X, ...)
Arguments

x, X, object, w, W  An object of class "linnet" representing a linear network.

...  Arguments passed to other methods.

value  A valid name for the unit of length for x. See unitname.

fatal  Logical value indicating whether data in the wrong format should lead to an error (fatal=TRUE) or a warning (fatal=FALSE).

sparse  Logical value indicating whether to use a sparse matrix representation, as explained in linnet. Default is to keep the same representation as in X.

Details

The function as.linnet is generic. It converts data from some other format into an object of class "linnet". The method as.linnet.lpp extracts the linear network information from an lpp object.

The other functions are methods for the generic commands as.owin, as.psp, pixellate, print, summary, unitname, unitname<-, vertices, volume and Window for the class "linnet".

The methods as.owin.linnet and Window.linnet extract the window containing the linear network, and return it as an object of class "owin".

The method as.psp.linnet extracts the lines of the linear network as a line segment pattern (object of class "psp").

The method vertices.linnet extracts the vertices (nodes) of the linear network. The function vertexdegree calculates the topological degree of each vertex (the number of lines emanating from that vertex) and returns these values as an integer vector.

The method pixellate.linnet applies as.psp.linnet to convert the network to a collection of line segments, then invokes pixellate.psp.

Value

For as.linnet the value is an object of class "linnet". For other functions, see the help file for the corresponding generic function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

linnet

Examples

  simplenet
  summary(simplenet)
  volume(simplenet)
  unitname(simplenet) <- c("cubit", "cubits")
  Window(simplenet)
Description

These are methods specifically for the class "lpp" of point patterns on linear networks.

Usage

```r
S3 method for class 'lpp'
as.ppp(X, ..., fatal=TRUE)
S3 method for class 'lpp'
as.psp(x, ..., fatal=TRUE)
S3 replacement method for class 'lpp'
marks(x, ...) <- value
S3 method for class 'lpp'
print(x, ...)
S3 method for class 'summary.lpp'
print(x, ...)
S3 method for class 'lpp'
summary(object, ...)
S3 method for class 'lpp'
unitname(x)
S3 replacement method for class 'lpp'
unitname(x) <- value
S3 method for class 'lpp'
unmark(X)
```

Arguments

- `x` An object of class "lpp" representing a point pattern on a linear network.
- `...` Arguments passed to other methods.
- `value` Replacement value for the marks or unitname of `x`. See Details.
- `fatal` Logical value indicating whether data in the wrong format should lead to an error (`fatal=TRUE`) or a warning (`fatal=FALSE`).

Details

These are methods for the generic functions `as.ppp, as.psp, marks<-, print, summary, unitname, unitname<-` and `unmark` for objects of the class "lpp".

For "marks<-.lpp" the replacement value should be either `NULL`, or a vector of length equal to the number of points in `x`, or a data frame with one row for each point in `x`.

For "unitname<-.lpp" the replacement value should be a valid name for the unit of length, as described in `unitname`. 
Value

See the documentation on the corresponding generic function.

Other methods

An object of class "lppm" also inherits the class "ppx" for which many other methods are available. See methods.ppx.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

lpp, intensity.lpp, methods.ppx

Examples

eexample(lpp)
X
as.ppp(X)
salary(X)
summary(X)
unitname(X) <- c("furlong", "furlongs")
### S3 method for class 'lppm'

```r
print(x, ...)
```

### S3 method for class 'lppm'

```r
summary(object, ...)
```

### S3 method for class 'lppm'

```r
terms(x, ...)
```

### S3 method for class 'lppm'

```r
update(object, ...)
```

### S3 method for class 'lppm'

```r
vcov(object, ...)
```

### S3 method for class 'lppm'

```r
as.linnet(X, ...)
```

#### Arguments

- `object`: An object of class "lppm" representing a fitted point process model on a linear network.
- `...`: Arguments passed to other methods, usually the method for the class "ppm".

#### Details

These are methods for the generic commands `coef`, `extractAIC`, `formula`, `logLik`, `nobs`, `print`, `summary`, `terms`, `update` and `vcov` for the class "lppm".

#### Value

See the default methods.

#### Author(s)


#### See Also

- `lppm`, `plot.lppm`

#### Examples

```r
example(lppm)
fit <- lppm(X, ~x)
print(fit)
coef(fit)
formula(fit)
terms(fit)
logLik(fit)
```
Description

Methods for printing and plotting an objective function surface.

Usage

```r
S3 method for class 'objsurf'
print(x, ...)
S3 method for class 'objsurf'
plot(x, ...)
S3 method for class 'objsurf'
image(x, ...)
S3 method for class 'objsurf'
contour(x, ...)
S3 method for class 'objsurf'
persp(x, ...)
```

Arguments

- `x` Object of class "objsurf" representing an objective function surface.
- `...` Additional arguments passed to plot methods.

Details

These are methods for the generic functions `print`, `plot`, `image`, `contour` and `persp` for the class "objsurf".

Value

For `print.objsurf`, `plot.objsurf` and `image.objsurf` the value is NULL.

For `contour.objsurf` and `persp.objsurf` the value is described in the help for `contour.default` and `persp.default` respectively.

Author(s)

Methods for three-dimensional point patterns

Description

Methods for class "pp3".

Usage

```r
S3 method for class 'pp3'
print(x, ...)
S3 method for class 'summary.pp3'
print(x, ...)
S3 method for class 'pp3'
summary(object, ...)
S3 method for class 'pp3'
unitname(x)
S3 replacement method for class 'pp3'
unitname(x) <- value
```

Arguments

- `x`, `object` Object of class "pp3".
- `...` Ignored.
- `value` Name of the unit of length. See `unitname`.

Details

These are methods for the generic functions `print`, `summary`, `unitname` and `unitname<-` for the class "pp3" of three-dimensional point patterns.

The `print` and `summary` methods print a description of the point pattern.

The `unitname` method extracts the name of the unit of length in which the point coordinates are expressed. The `unitname<-` method assigns the name of the unit of length.
Value

For print.ppx the value is NULL. For unitname.ppx an object of class "units".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pp3, print, unitname

Examples

x <- pp3(runif(42),runif(42),runif(42), box3(c(0,1), unitname="mm"))
x
unitname(x)
unitname(x) <- c("foot", "feet")
summary(x)
Details

These are methods for the generic functions `print`, `plot`, `unitname` and `unitname<-` for the class "ppx" of multidimensional point patterns.

The print method prints a description of the point pattern and its spatial domain.

The unitname method extracts the name of the unit of length in which the point coordinates are expressed. The unitname<- method assigns the name of the unit of length.

Value

For `print.ppx` the value is NULL. For `unitname.ppx` an object of class "units".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppx`, `unitname`

---

**methods.rho2hat  Methods for Intensity Functions of Two Spatial Covariates**

**Description**

These are methods for the class "rho2hat".

**Usage**

```r
S3 method for class 'rho2hat'
plot(x, ..., do.points=FALSE)
S3 method for class 'rho2hat'
print(x, ...)
```

**Arguments**

- `x` An object of class "rho2hat".
- `...` Arguments passed to other methods.
- `do.points` Logical value indicating whether to plot the observed values of the covariates at the data points.
Details

These functions are methods for the generic commands \texttt{print} and \texttt{plot} for the class "\texttt{rho2hat}". An object of class "\texttt{rho2hat}" is an estimate of the intensity of a point process, as a function of two given spatial covariates. See \texttt{rho2hat}.

The method \texttt{plot.rho2hat} displays the estimated function $\rho$ using \texttt{plot.fv}, and optionally adds a \texttt{rug} plot of the observed values of the covariate.

Value

\texttt{NULL}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

See Also

\texttt{rho2hat}

Examples

\begin{verbatim}
  data(bei)
  attach(bei.extra)
  r2 <- rho2hat(bei, elev, grad)
  r2
  plot(r2)
\end{verbatim}

Usage

\begin{verbatim}
  # S3 method for class 'rhohat'
  print(x, ...)
  # S3 method for class 'rhohat'
  plot(x, ..., do.rug=TRUE)
  # S3 method for class 'rhohat'
  predict(object, ..., relative=FALSE)
\end{verbatim}
Arguments

- **x, object**: An object of class "rhohat" representing a smoothed estimate of the intensity function of a point process.
- **...**: Arguments passed to other methods.
- **do.rug**: Logical value indicating whether to plot the observed values of the covariate as a rug plot along the horizontal axis.
- **relative**: Logical value indicating whether to compute the estimated point process intensity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a relative risk estimate.

Details

These functions are methods for the generic commands `print`, `plot` and `predict` for the class "rhohat".

An object of class "rhohat" is an estimate of the intensity of a point process, as a function of a given spatial covariate. See `rhohat`.

The method `plot.rhohat` displays the estimated function \( \rho \) using `plot.fv`, and optionally adds a rug plot of the observed values of the covariate.

The method `predict.rhohat` computes a pixel image of the intensity \( \rho(Z(u)) \) at each spatial location \( u \), where \( Z \) is the spatial covariate.

Value

For `predict.rhohat` the value is a pixel image (object of class "im"). For other functions, the value is NULL.

Author(s)


See Also

- `rhohat`

Examples

```r
X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, function(x,y){x})
rho
plot(rho)
Y <- predict(rho)
plot(Y)
#
fit <- ppm(X, ~x)
rho <- rhohat(fit, "y")
opa <- par(mfrow=c(1,2))
plot(predict(rho))
plot(predict(rho, relative=TRUE))
par(opa)
```
Methods for Spatial Logistic Regression Models

Description

These are methods for the class "slrm".

Usage

```r
S3 method for class 'slrm'
formula(x, ...)
S3 method for class 'slrm'
print(x, ...)
S3 method for class 'slrm'
terms(x, ...)
S3 method for class 'slrm'
labels(object, ...)
S3 method for class 'slrm'
update(object, ..., evaluate = TRUE, env = parent.frame())
```

Arguments

- `x, object`: An object of class "slrm", representing a fitted spatial logistic regression model.
- `...`: Arguments passed to other methods.
- `evaluate`: Logical value. If `TRUE`, evaluate the updated call to `slrm`, so that the model is refitted; if `FALSE`, simply return the updated call.
- `env`: Optional environment in which the model should be updated.

Details

These functions are methods for the generic commands `formula, update, print, terms` and `labels` for the class "slrm".

An object of class "slrm" represents a fitted spatial logistic regression model. It is obtained from `slrm`.

Value

See the help files for the corresponding generic functions.

Author(s)


See Also

- `slrm, plot.slrm, predict.slrm, simulate.slrm, vcov.slrm, coef.slrm`
Examples

```r
data(redwood)
fit <- slrm(redwood ~ x)
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)
```

Methods for Units

Description

Methods for class "units".

Usage

```r
S3 method for class 'units'
print(x, ...)
S3 method for class 'units'
summary(object, ...)
S3 method for class 'units'
rescale(X, s, unitname)
S3 method for class 'units'
compatible(A,B, ...; coerce=TRUE)
```

Arguments

- `x, X, A, B, object` Objects of class "units" representing units of length.
- `s` Conversion factor: the new units are `s` times the old units.
- `...` Other arguments. For `print.units` these arguments are passed to `print.default`. For `summary.units` they are ignored. For `compatible.units` these arguments are other objects of class "units".
- `coerce` Logical. If `TRUE`, a null unit of length is compatible with any non-null unit.
- `unitname` Optional new name for the unit. If present, this overrides the rescaling operation and simply substitutes the new name for the old one.

Details

These are methods for the generic functions `print`, `summary`, `rescale` and `compatible` for the class "units".

An object of class "units" represents a unit of length.

The `print` method prints a description of the unit of length, and the `summary` method gives a more detailed description.

The `rescale` method changes the unit of length by rescaling it.

The `compatible` method tests whether two or more units of length are compatible.
Value
For print.units the value is NULL. For summary.units the value is an object of class summary.units (with its own print method). For rescale.units the value is another object of class "units". For compatible.units the result is logical.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
box3.print, unitname

midpoints.psp       Midpoints of Line Segment Pattern

Description
Computes the midpoints of each line segment in a line segment pattern.

Usage
midpoints.psp(x)

Arguments
x
A line segment pattern (object of class "psp").

Details
The midpoint of each line segment is computed.

Value
Point pattern (object of class "ppp").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
summary.psp, lengths.psp, angles.psp

Examples
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- midpoints.psp(a)
**Description**

A general low-level algorithm for fitting theoretical point process models to point pattern data by the Method of Minimum Contrast.

**Usage**

```r
mincontrast(observed, theoretical, startpar, ...,
ctrl=list(q = 1/4, p = 2, rmin=NULL, rmax=NULL),
fvlab=list(label=NULL, desc="minimum contrast fit"),
explain=list(dataname=NULL, modelname=NULL, fname=NULL))
```

**Arguments**

- `observed`: Summary statistic, computed for the data. An object of class "fv".
- `theoretical`: An R language function that calculates the theoretical expected value of the summary statistic, given the model parameters. See Details.
- `startpar`: Vector of initial values of the parameters of the point process model (passed to `theoretical`).
- `...`: Additional arguments passed to the function `theoretical` and to the optimisation algorithm `optim`.
- `ctrl`: Optional. List of arguments controlling the optimisation. See Details.
- `fvlab`: Optional. List containing some labels for the return value. See Details.
- `explain`: Optional. List containing strings that give a human-readable description of the model, the data and the summary statistic.

**Details**

This function is a general algorithm for fitting point process models by the Method of Minimum Contrast. If you want to fit the Thomas process, see `thomas.estK`. If you want to fit a log-Gaussian Cox process, see `lgcp.estK`. If you want to fit the Matern cluster process, see `matclust.estK`.

The Method of Minimum Contrast (Diggle and Gratton, 1984) is a general technique for fitting a point process model to point pattern data. First a summary function (typically the $K$ function) is computed from the data point pattern. Second, the theoretical expected value of this summary statistic under the point process model is derived (if possible, as an algebraic expression involving the parameters of the model) or estimated from simulations of the model. Then the model is fitted by finding the optimal parameter values for the model to give the closest match between the theoretical and empirical curves.

The argument `observed` should be an object of class "fv" (see `fv.object`) containing the values of a summary statistic computed from the data point pattern. Usually this is the function $\hat{K}(r)$ computed by `Kest` or one of its relatives.
The argument `theoretical` should be a user-supplied function that computes the theoretical expected value of the summary statistic. It must have an argument named par that will be the vector of parameter values for the model (the length and format of this vector are determined by the starting values in startpar). The function `theoretical` should also expect a second argument (the first argument other than par) containing values of the distance \( r \) for which the theoretical value of the summary statistic \( K(r) \) should be computed. The value returned by `theoretical` should be a vector of the same length as the given vector of \( r \) values.

The argument `ctrl` determines the contrast criterion (the objective function that will be minimised). The algorithm minimises the criterion

\[
D(\theta) = \int_{r_{\text{min}}}^{r_{\text{max}}} |\hat{F}(r)^q - F_\theta(r)^q|^p \, dr
\]

where \( \theta \) is the vector of parameters of the model, \( \hat{F}(r) \) is the observed value of the summary statistic computed from the data, \( F_\theta(r) \) is the theoretical expected value of the summary statistic, and \( p, q \) are two exponents. The default is \( q = 1/4, p=2 \) so that the contrast criterion is the integrated squared difference between the fourth roots of the two functions (Waagepetersen, 2006).

The other arguments just make things print nicely. The argument `fvlab` contains labels for the component `fit` of the return value. The argument `explain` contains human-readable strings describing the data, the model and the summary statistic.

The "..." argument of `mincontrast` can be used to pass extra arguments to the function `theoretical` and/or to the optimisation function `optim`. In this case, the function `theoretical` should also have a "..." argument and should ignore it (so that it ignores arguments intended for `optim`).

### Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following components:

- `par` Vector of fitted parameter values.
- `fit` Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.
- `opt` The return value from the optimizer `optim`.
- `crtl` The control parameters of the algorithm.
- `info` List of explanatory strings.

### Author(s)

Rasmus Waagepetersen <rw@math.auc.dk>, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

### References


**See Also**

`kppm, lgcp.estK, matclust.estK, thomas.estK`

---

### miplot

#### Morisita Index Plot

**Description**

Displays the Morisita Index Plot of a spatial point pattern.

**Usage**

```
miplot(X, ...)```

Arguments

- `X`
 A point pattern (object of class "ppp") or something acceptable to `as.ppp`.
- `...`
 Optional arguments to control the appearance of the plot.

Details

Morisita (1959) defined an index of spatial aggregation for a spatial point pattern based on quadrat counts. The spatial domain of the point pattern is first divided into Q subsets (quadrats) of equal size and shape. The numbers of points falling in each quadrat are counted. Then the Morisita Index is computed as

$$MI = Q \frac{\sum_{i=1}^{Q} n_i(n_i - 1)}{N(N - 1)}$$

where n_i is the number of points falling in the i-th quadrat, and N is the total number of points. If the pattern is completely random, MI should be approximately equal to 1. Values of MI greater than 1 suggest clustering.

The *Morisita Index plot* is a plot of the Morisita Index MI against the linear dimension of the quadrats. The point pattern dataset is divided into 2×2 quadrats, then 3×3 quadrats, etc, and the Morisita Index is computed each time. This plot is an attempt to discern different scales of dependence in the point pattern data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also

quadratcount

Examples

data(longleaf)
miplot(longleaf)
opa <- par(mfrow=c(2,3))
data(cells)
data(japanesepines)
data(redwood)
plot(cells)
plot(japanesepines)
plot(redwood)
miplot(cells)
miplot(japanesepines)
miplot(redwood)
par(opa)

model.depends

Identify Covariates Involved in each Model Term

Description

Given a fitted model (of any kind), identify which of the covariates is involved in each term of the model.

Usage

model.depends(object)
model.is.additive(object)
model.covariates(object, fitted=TRUE, offset=TRUE)
has.offset.term(object)
has.offset(object)

Arguments

object A fitted model of any kind.
fitted,offset Logical values determining which type of covariates to include.
Details

The object can be a fitted model of any kind, including models of the classes \texttt{lm}, \texttt{glm} and \texttt{ppm}.

To be precise, \texttt{object} must belong to a class for which there are methods for \texttt{formula}, \texttt{terms} and \texttt{model.matrix}.

The command \texttt{model.depends} determines the relationship between the original covariates (the data supplied when object was fitted) and the canonical covariates (the columns of the design matrix). It returns a logical matrix, with one row for each canonical covariate, and one column for each of the original covariates, with the i,j entry equal to \texttt{TRUE} if the ith canonical covariate depends on the jth original covariate.

If the model formula of \texttt{object} includes offset terms (see \texttt{offset}), then the return value of \texttt{model.depends} also has an attribute "offset". This is a logical value or matrix with one row for each offset term and one column for each of the original covariates, with the i,j entry equal to \texttt{TRUE} if the ith offset term depends on the jth original covariate.

The command \texttt{model.covariates} returns a character vector containing the names of all (original) covariates that were actually used to fit the model. By default, this includes all covariates that appear in the model formula, including offset terms as well as canonical covariate terms. To omit the offset terms, set \texttt{offset=FALSE}. To omit the canonical covariate terms, set \texttt{fitted=FALSE}.

The command \texttt{model.is.additive} determines whether the model is additive, in the sense that there is no canonical covariate that depends on two or more original covariates. It returns a logical value.

The command \texttt{has.offset.term} is a faster way to determine whether the model \texttt{formula} includes an offset term.

The functions \texttt{model.depends} and \texttt{has.offset.term} only detect offset terms which are present in the model formula. They do not detect numerical offsets in the model object, that were inserted using the \texttt{offset} argument in \texttt{lm}, \texttt{glm} etc. To detect the presence of offsets of both kinds, use \texttt{has.offset}.

Value

A logical value or matrix.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{ppm}, \texttt{model.matrix}

Examples

\begin{verbatim}
x <- 1:10 y <- 3*x + 2 z <- rep(c(-1,1), 5) fit <- lm(y ~ poly(x,2) + sin(z)) model.depends(fit)
\end{verbatim}
model.frame.ppm

model.covariates(fit)
model.is.additive(fit)

fitoff1 <- lm(y ~ x + offset(z))
fitoff2 <- lm(y ~ x, offset=z)
has.offset.term(fitoff1)
has.offset(fitoff1)
has.offset.term(fitoff2)
has.offset(fitoff2)

model.frame.ppm Extract the Variables in a Point Process Model

Description

Given a fitted point process model, this function returns a data frame containing all the variables needed to fit the model using the Berman-Turner device.

Usage

```r
## S3 method for class 'ppm'
model.frame(formula, ...)

## S3 method for class 'kppm'
model.frame(formula, ...)

## S3 method for class 'lppm'
model.frame(formula, ...)
```

Arguments

- `formula` A fitted point process model. An object of class "ppm" or "kppm" or "lppm".
- `...` Additional arguments passed to `model.frame.glm`.

Details

The function `model.frame` is generic. These functions are method for `model.frame` for fitted point process models (objects of class "ppm" or "kppm" or "lppm").

The first argument should be a fitted point process model; it has to be named `formula` for consistency with the generic function.

The result is a data frame containing all the variables used in fitting the model. The data frame has one row for each quadrature point used in fitting the model. The quadrature scheme can be extracted using `quad.ppm`.

Value

A `data.frame` containing all the variables used in the fitted model, plus additional variables specified in `. `. It has an additional attribute "terms" containing information about the model formula. For details see `model.frame.glm`.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm, kppm, lppm, model.frame, model.matrix.ppm

Examples

```r
fit <- ppm(cells, ~x)
mf <- model.frame(fit)
kin <- kppm(redwood, ~x, "Thomas")
kmf <- model.frame(kfit)
```
Arguments

- **object**: The fitted point process model. An object of class "ppm" or "kppm" or "lppm" or "slrm".
- **W**: A window (object of class "owin") in which the images should be computed. Defaults to the window in which the model was fitted.
- **L**: A linear network (object of class "linnet") in which the images should be computed. Defaults to the network in which the model was fitted.
- **...**: Other arguments (such as na.action) passed to `model.matrix.lm`.

Details

This command is similar to `model.matrix.ppm` except that it computes pixel images of the covariates, instead of computing the covariate values at certain points only.

The object must be a fitted spatial point process model object of class "ppm" (produced by the model-fitting function `ppm`) or class "kppm" (produced by the fitting function `kppm`) or class "lppm" (produced by `lppm`) or class "slrm" (produced by `slrm`).

The spatial covariates required by the model-fitting procedure are computed at every pixel location in the window W. For `lppm` objects, the covariates are computed at every location on the network L. For `slrm` objects, the covariates are computed on the pixels that were used to fit the model.

Note that the spatial covariates computed here are not the original covariates that were supplied when fitting the model. Rather, they are the covariates that actually appear in the loglinear representation of the (conditional) intensity and in the columns of the design matrix. For example, they might include dummy or indicator variables for different levels of a factor, depending on the contrasts that are in force.

The pixel resolution is determined by W if W is a mask (that is W$type = "mask"). Otherwise, the pixel resolution is determined by `spatstat.options`.

The format of the result depends on whether the original point pattern data were marked or unmarked:

- If the original dataset was unmarked, the result is a named list of pixel images (objects of class "im") containing the values of the spatial covariates. The names of the list elements are the names of the covariates determined by `model.matrix.lm`. The result is also of class "listof" so that it can be plotted immediately.
- If the original dataset was a multitype point pattern, the result is a hyperframe with one column for each possible type of points. Each column is a named list of pixel images (objects of class "im") containing the values of the spatial covariates. The row names of the hyperframe are the names of the covariates determined by `model.matrix.lm`.

Value

A list (of class "listof") or array (of class "hyperframe") containing pixel images (objects of class "im"). For `model.images.lppm`, the images are also of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
model.matrix.ppm

Model Design Matrix from Point Process Model

Description

Given a point process model that has been fitted to spatial point pattern data, this function extracts the design matrix of the model.

Usage

S3 method for class 'ppm'
model.matrix(object, data=model.frame(object), ...,
 Q=NULL, keepNA=TRUE)

S3 method for class 'kppm'
model.matrix(object, data=model.frame(object), ...,
 Q=NULL, keepNA=TRUE)

S3 method for class 'lppm'
model.matrix(object, data=model.frame(object), ...,
 keepNA=TRUE)

Arguments

- `object`
 - The fitted point process model. An object of class "ppm" or "kppm" or "lppm".
- `data`
 - A model frame, containing the data required for the Berman-Turner device.
- `Q`
 - A point pattern (class "ppp") or quadrature scheme (class "quad") specifying new locations where the covariates should be computed.
- `keepNA`
 - Logical. Determines whether rows containing NA values will be deleted or retained.
- `...`
 - Other arguments (such as `na.action`) passed to `model.matrix.lm`.

Examples

```r
fit <- ppm(cells ~ x)
model.images(fit)
B <- owin(c(0.2, 0.4), c(0.3, 0.8))
model.images(fit, B)
fit2 <- ppm(cells ~ cut(x,3))
model.images(fit2)
fit3 <- slrm(japanesepines ~ x)
model.images(fit3)
fit4 <- ppm(amacrine ~ marks + x)
model.images(fit4)
```
These commands are methods for the generic function `model.matrix`. They extracts the design matrix of a spatial point process model (class "ppm" or "kppm" or "lppm").

More precisely, this command extracts the design matrix of the generalised linear model associated with a spatial point process model.

The object must be a fitted point process model (object of class "ppm" or "kppm" or "lppm") fitted to spatial point pattern data. Such objects are produced by the model-fitting functions `ppm`, `kppm` and `lppm`.

The methods `model.matrix.ppm`, `model.matrix.kppm` and `model.matrix.lppm` extract the model matrix for the GLM.

The result is a matrix, with one row for every quadrature point in the fitting procedure, and one column for every constructed covariate in the design matrix.

If there are NA values in the covariates, the argument `keepNA` determines whether to retain or delete the corresponding rows of the model matrix. The default `keepNA=TRUE` is to retain them. Note that this differs from the default behaviour of many other methods for `model.matrix`, which typically delete rows containing NA.

The quadrature points themselves can be extracted using `quad.ppm`.

Value

A matrix. Columns of the matrix are covariates in the model. Rows of the matrix correspond to quadrature points in the fitting procedure (provided `keepNA=TRUE`).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`model.matrix`, `model.images`, `ppm`, `kppm`, `lppm`, `ppm.object`, `quad.ppm`, `residuals.ppm`

Examples

```r
fit <- ppm(cells ~ x)
head(model.matrix(fit))
model.matrix(fit, Q=runifpoint(5))
kfit <- kppm(redwood ~ x, "Thomas")
m <- model.matrix(kfit)
```
model.matrix.slrm Extract Design Matrix from Spatial Logistic Regression Model

Description

This function extracts the design matrix of a spatial logistic regression model.

Usage

S3 method for class 'slrm'
model.matrix(object, ..., keepNA=TRUE)

Arguments

- **object**: A fitted spatial logistic regression model. An object of class "slrm".
- **...**: Other arguments (such as na.action) passed to model.matrix.lm.
- **keepNA**: Logical. Determines whether rows containing NA values will be deleted or retained.

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of a spatial logistic regression.

The object must be a fitted spatial logistic regression (object of class "slrm"). Such objects are produced by the model-fitting function slrm.

Usually the result is a matrix with one column for every constructed covariate in the model, and one row for every pixel in the grid used to fit the model.

If object was fitted using split pixels (by calling slrm using the argument splitby) then the matrix has one row for every pixel or half-pixel.

Value

A matrix. Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

model.matrix, model.images, slrm.

Examples

```r
fit <- slrm(japanesepines ~x)
head(model.matrix(fit))
# matrix with two columns: '(Intercept)' and 'x'
```
Outdated Functions

Description

These outdated functions are retained only for compatibility; they will soon be marked as Deprecated.

Usage

```r
kstest(...)  
kstest.ppp(...)  
kstest.ppm(...)  
kstest.lpp(...)  
kstest.lppm(...)  
kstest.slrn(...)  
## S3 method for class 'ktest'
plot(x, ...)
```

```r
bermantest(...)  
bermantest.ppp(...)  
bermantest.ppm(...)  
bermantest.lpp(...)  
bermantest.lppm(...)  
```

Arguments

- `x` An object of class "ktest" or "cdftest".
- `...` Arguments passed to other functions.

Details

These functions will be Deprecated in future releases of spatstat.

The kstest functions have been superseded by cdf.test.

The bermantest functions have been superseded by berman.test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/],
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

See Also

cdf.test, berman.test, plot.cdf

Fit Point Process Model to Several Point Patterns

Description
Fits a Gibbs point process model to several point patterns simultaneously.

Usage
mppm(formula, data, interaction=Poisson(), ..., iformula=NULL, use.gam = FALSE)

Arguments
- formula: A formula describing the systematic part of the model. Variables in the formula are names of columns in data.
- data: A hyperframe (object of class "hyperframe", see hyperframe) containing the point pattern responses and the explanatory variables.
- interaction: Interpoint interaction(s) appearing in the model. Either an object of class "interact" describing the point process interaction structure, or a hyperframe (with the same number of rows as data) whose entries are objects of class "interact".
- ...: Arguments passed to ppm controlling the fitting procedure.
- iformula: Optional. A formula (with no left hand side) describing the interaction to be applied to each case. Each variable name in the formula should either be the name of a column in the hyperframe interaction, or the name of a column in the hyperframe data that is a vector or factor.
- use.gam: Logical flag indicating whether to fit the model using gam or glm.

Details
This function fits a common point process model to a dataset containing several different point patterns.

It extends the capabilities of the function ppm to deal with data such as

- replicated observations of spatial point patterns
- two groups of spatial point patterns
- a designed experiment in which the response from each unit is a point pattern.

The syntax of this function is similar to that of standard R model-fitting functions like lm and glm. The first argument formula is an R formula describing the systematic part of the model. The second argument data contains the responses and the explanatory variables. Other arguments determine the stochastic structure of the model.

Schematically, the data are regarded as the results of a designed experiment involving \(n \) experimental units. Each unit has a ‘response’, and optionally some ‘explanatory variables’ (covariates)
describing the experimental conditions for that unit. In this context, the response from each unit is a point pattern. The value of a particular covariate for each unit can be either a single value (numerical, logical or factor), or a spatial covariate. A ‘spatial’ covariate is a quantity that depends on spatial location, for example, the soil acidity or altitude at each location. For the purposes of mppm, a spatial covariate must be stored as a pixel image (object of class "im") which gives the values of the covariate at a fine grid of locations.

The argument data is a hyperframe (a generalisation of a data frame, see hyperframe). This is like a data frame except that the entries can be objects of any class. The hyperframe has one row for each experimental unit, and one column for each variable (response or explanatory variable).

The formula should be an R formula. The left hand side of formula determines the ‘response’ variable. This should be a single name, which should correspond to a column in data.

The right hand side of formula determines the spatial trend of the model. It specifies the linear predictor, and effectively represents the logarithm of the spatial trend. Variables in the formula must be the names of columns of data, or one of the reserved names

\textbf{x,y} Cartesian coordinates of location

\textbf{marks} Mark attached to point

\textbf{id} which is a factor representing the serial number (1 to n) of the point pattern, i.e. the row number in the data hyperframe.

The column of responses in data must consist of point patterns (objects of class "ppp"). The individual point pattern responses can be defined in different spatial windows. If some of the point patterns are marked, then they must all be marked, and must have the same type of marks.

The scope of models that can be fitted to each pattern is the same as the scope of \texttt{ppm}, that is, Gibbs point processes with interaction terms that belong to a specified list, including for example the Poisson process, Strauss process, Geyer’s saturation model, and piecewise constant pairwise interaction models.

The stochastic part of the model is determined by the arguments interaction and (optionally) iformula.

- In the simplest case, interaction is an object of class "interact", determining the interpoint interaction structure of the point process model, for all experimental units.
- Alternatively, interaction may be a hyperframe, whose entries are objects of class "interact". It should have the same number of rows as data.
 - If interaction consists of only one column, then the entry in row i is taken to be the interpoint interaction for the ith experimental unit (corresponding to the ith row of data).
 - If interaction has more than one column, then the argument iformula is also required. Each row of interaction determines several interpoint interaction structures that might be applied to the corresponding row of data. The choice of interaction is determined by iformula; this should be an R formula, without a left hand side. For example if interaction has two columns called A and B then iformula = \texttt{~B} indicates that the interpoint interactions are taken from the second column.

Variables in iformula typically refer to column names of interaction. They can also be names of columns in data, but only for columns of numeric, logical or factor values. For example iformula = \texttt{~B * group} (where group is a column of data that contains a factor) causes the model with interpoint interaction B to be fitted with different interaction parameters for each level of group.
An object of class "mppm" representing the fitted model.

There are methods for print, summary and coef for this class.

Adrian Baddeley \(<\text{adrian.baddeley@uwa.edu.au}>\) \(\text{http://www.maths.uwa.edu.au/~adrian/}\)
and Rolf Turner \(<\text{rolf@math.unb.ca}>\) \(\text{http://www.math.unb.ca/~rolf}\)

See Also

\texttt{ppm}, \texttt{print.mppm}, \texttt{summary.mppm}, \texttt{coef.mppm}.

Examples

\begin{verbatim}
Waterstriders data
H <- hyperframe(Y = waterstriders)
mppm(Y ~ 1, data=H)
mppm(Y ~ 1, data=H, Strauss(7))
mppm(Y ~ id, data=H)
mppm(Y ~ x, data=H)

Synthetic data from known model
n <- 10
H <- hyperframe(V=1:n,
 U=runif(n, min=-1, max=1),
 M=factor(letters[1 + (1:n) %% 3]))
H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z)), win=as.rectangle(Z)))
fit <- mppm(Y ~Z + U + V, data=H)
\end{verbatim}

\begin{verbatim}
msr
\end{verbatim}

\textit{Signed or Vector-Valued Measure}

\textbf{Description}

Defines an object representing a signed measure or vector-valued measure on a spatial domain.
Usage

```r
msr(qscheme, discrete, density, check=TRUE)
```

Arguments

- `qscheme`: A quadrature scheme (object of class "quad" usually extracted from a fitted point process model).
- `discrete`: Vector or matrix containing the values (masses) of the discrete component of the measure, for each of the data points in `qscheme`.
- `density`: Vector or matrix containing values of the density of the diffuse component of the measure, for each of the quadrature points in `qscheme`.
- `check`: Logical. Whether to check validity of the arguments.

Details

This function creates an object that represents a signed or vector valued measure on the two-dimensional plane. It is not normally called directly by the user.

A signed measure is a classical mathematical object (Diestel and Uhl, 1977) which can be visualised as a collection of electric charges, positive and/or negative, spread over the plane. Electric charges may be concentrated at specific points (atoms), or spread diffusely over a region.

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the spatstat package.

Spatial residuals for point process models (Baddeley et al, 2005, 2008) take the form of a real-valued or vector-valued measure. The function `residuals.ppm` returns an object of class "msr" representing the residual measure.

The function `msr` would not normally be called directly by the user. It is the low-level creator function that makes an object of class "msr" from raw data.

The first argument `qscheme` is a quadrature scheme (object of class "quad"). It is typically created by `quadscheme` or extracted from a fitted point process model using `quad.ppm`. A quadrature scheme contains both data points and dummy points. The data points of `qscheme` are used as the locations of the atoms of the measure. All quadrature points (i.e. both data points and dummy points) of `qscheme` are used as sampling points for the density of the continuous component of the measure.

The argument `discrete` gives the values of the atomic component of the measure for each data point in `qscheme`. It should be either a numeric vector with one entry for each data point, or a numeric matrix with one row for each data point.

The argument `density` gives the values of the density of the diffuse component of the measure, at each quadrature point in `qscheme`. It should be either a numeric vector with one entry for each quadrature point, or a numeric matrix with one row for each quadrature point.

If both `discrete` and `density` are vectors (or one-column matrices) then the result is a signed (real-valued) measure. Otherwise, the result is a vector-valued measure, with the dimension of the vector space being determined by the number of columns in the matrices `discrete` and/or `density`. (If one of these is a k-column matrix and the other is a 1-column matrix, then the latter is replicated to k columns).
The class "msr" has methods for print, plot and [. There is also a function Smooth.msr for smoothing a measure.

Value

An object of class "msr" that can be plotted by plot.msr.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

plot.msr, Smooth.msr, [,msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)

rp <- residuals(fit, type="pearson")
rp

rs <- residuals(fit, type="score")
rs
colnames(rs)

An equivalent way to construct the Pearson residual measure by hand
Q <- quad.ppm(fit)
lambda <- fitted(fit)
slam <- sqrt(lambda)
Z <- is.data(Q)
m <- msr(Q, discrete=1/slam[Z], density = -slam)
m
Description

A bivariate inhomogeneous point pattern, giving the locations of the centres of two types of cells in a cross-section of the gastric mucosa of a rat.

Usage

data(mucosa)

Format

An object of class "ppp", see ppp.object. This is a multitype point pattern with two types of points, ECL and other.

Details

This point pattern dataset gives the locations of cell centres in a cross-section of the gastric mucosa (mucous membrane of the stomach) of a rat. The rectangular observation window has been scaled to unit width. The lower edge of the window is closest to the outside of the stomach.

The cells are classified into two types: ECL cells (enterochromaffin-like cells) and other cells. There are 86 ECL cells and 807 other cells in the dataset. ECL cells are a type of neuroendocrine cell which synthesize and secrete histamine. One hypothesis of interest is whether the spatially-varying intensities of ECL cells and other cells are proportional.

The data were originally collected by Dr Thomas Berntsen. The data were discussed and analysed in Møller and Waagepetersen (2004, pp. 2, 169).

The associated object mucosa.subwin is the smaller window to which the data were restricted for analysis by Møller and Waagepetersen.

Source

Dr Thomas Berntsen and Prof Rasmus Waagepetersen.

References

Examples

```r
plot(mucosa, chars=c(1,3), cols=c("red", "green"))
plot(mucosa.subwin, add=TRUE, lty=3)
```
MultiHard

The Multitype Hard Core Point Process Model

Description

Creates an instance of the multitype hard core point process model which can then be fitted to point pattern data.

Usage

MultiHard(hradii, types=NULL)

Arguments

hradii Matrix of hard core radii
types Optional; vector of all possible types (i.e. the possible levels of the marks variable in the data)

Details

This is a multitype version of the hard core process. A pair of points of types i and j must not lie closer than h_{ij} units apart.

The argument types need not be specified in normal use. It will be determined automatically from the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm. However, the user should be confident that the ordering of types in the dataset corresponds to the ordering of rows and columns in the matrix hradii.

The matrix hradii must be symmetric, with entries which are either positive numbers or NA. A value of NA indicates that no distance constraint should be applied for this combination of types.

Note that only the hardcore radii are specified in MultiHard. The canonical parameters $\log(\beta_j)$ are estimated by ppm(), not fixed in MultiHard().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype hard core process with hard core radii $hradii[i,j]$.

Warnings

In order that ppm can fit the multitype hard core model correctly to a point pattern X, this pattern must be marked, with markformat equal to vector and the mark vector marks(X) must be a factor.

If the argument types is specified it is interpreted as a set of factor levels and this set must equal levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiHard(types=NULL, hradii). The new code attempts to handle the old syntax as well.
multiplicity.ppp

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/.
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also
ppm, pairwise.family, ppm.object, MultiStrauss, MultiStraussHard, Strauss

Examples

h <- matrix(c(1,2,2,1), nrow=2,ncol=2)

prints a sensible description of itself
MultiHard(h)

Fit the stationary multitype hardcore process to `amacrine'
with hard core operating only between cells of the same type.
h <- 0.02 * matrix(c(1, NA, NA, 1), nrow=2,ncol=2)
ppm(amacrine ~1, MultiHard(h))

multiplicity.ppp Count Multiplicity of Duplicate Points

Description
Counts the number of duplicates for each point in a spatial point pattern.

Usage

c = multiplicity(x)

S3 method for class 'ppp'
c = multiplicity(x)

S3 method for class 'ppx'
c = multiplicity(x)

S3 method for class 'data.frame'
c = multiplicity(x)

Default S3 method:
c = multiplicity(x)

Arguments

x A spatial point pattern (object of class "ppp" or "ppx") or a vector, matrix or data frame.
Details

Two points in a point pattern are deemed to be identical if their x, y coordinates are the same, and their marks are also the same (if they carry marks). The Examples section illustrates how it is possible for a point pattern to contain a pair of identical points.

For each point in x, the function `multiplicity` counts how many points are identical to it, and returns the vector of counts.

The argument x can also be a vector, a matrix or a data frame. When x is a vector, $m \leftarrow \text{multiplicity}(x)$ is a vector of the same length as x, and $m[i]$ is the number of elements of x that are identical to $x[i]$. When x is a matrix or data frame, $m \leftarrow \text{multiplicity}(x)$ is a vector of length equal to the number of rows of x, and $m[i]$ is the number of rows of x that are identical to the ith row.

Value

A vector of integers (multiplicities) of length equal to the number of points in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Sebastian Meyer.

See Also

`ppp.object`, `duplicated.ppp`, `unique.ppp`

Examples

```r
X <- ppp(c(1,1,0.5,1), c(2,2,1,2), window=square(3), check=FALSE)
m <- multiplicity(X)

# unique points in X, marked by their multiplicity
first <- !duplicated(X)
Y <- X[first] %mark% m[first]
```

MultiStrauss

The Multitype Strauss Point Process Model

Description

Creates an instance of the multitype Strauss point process model which can then be fitted to point pattern data.

Usage

```r
MultiStrauss(radius, types=NULL)
```
Arguments

- **radii**: Matrix of interaction radii
- **types**: Optional; vector of all possible types (i.e. the possible levels of the marks variable in the data)

Details

The (stationary) multitype Strauss process with \(m \) types, with interaction radii \(r_{ij} \) and parameters \(\beta_j \) and \(\gamma_{ij} \) is the pairwise interaction point process in which each point of type \(j \) contributes a factor \(\beta_j \) to the probability density of the point pattern, and a pair of points of types \(i \) and \(j \) closer than \(r_{ij} \) units apart contributes a factor \(\gamma_{ij} \) to the density.

The nonstationary multitype Strauss process is similar except that the contribution of each individual point \(x_i \) is a function \(\beta(x_i) \) of location and type, rather than a constant beta.

The function \(\text{ppm()} \), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the multitype Strauss process pairwise interaction is yielded by the function \(\text{MultiStrauss()} \). See the examples below.

The argument \(\text{types} \) need not be specified in normal use. It will be determined automatically from the point pattern data set to which the MultiStrauss interaction is applied, when the user calls \(\text{ppm} \). However, the user should be confident that the ordering of types in the dataset corresponds to the ordering of rows and columns in the matrix \(\text{radii} \).

The matrix \(\text{radii} \) must be symmetric, with entries which are either positive numbers or \(\text{NA} \). A value of \(\text{NA} \) indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in \(\text{MultiStrauss} \). The canonical parameters \(\log(\beta_j) \) and \(\log(\gamma_{ij}) \) are estimated by \(\text{ppm()} \), not fixed in \(\text{MultiStrauss()} \).

Value

An object of class "interact" describing the interpoint interaction structure of the multitype Strauss process with interaction radii \(\text{radii}[i,j] \).

Warnings

In order that \(\text{ppm} \) can fit the multitype Strauss model correctly to a point pattern \(X \), this pattern must be marked, with \(\text{markformat} \) equal to \(\text{vector} \) and the mark vector \(\text{marks}(X) \) must be a factor. If the argument \(\text{types} \) is specified it is interpreted as a set of factor levels and this set must equal \(\text{levels(marks(X))} \).

Changed Syntax

Before \(\text{spatstat} \) version 1.37-0, the syntax of this function was different: \(\text{MultiStrauss(types=NULL, radii)} \). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak
See Also

ppm, pairwise.family, ppm.object, Strauss, MultiHard

Examples

r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStrauss(r)
prints a sensible description of itself
r <- 0.03 * matrix(c(1,2,2,1), nrow=2,ncol=2)
X <- amacrine

ppm(X ~1, MultiStrauss(r))
fit the stationary multitype Strauss process to `amacrine`

Not run:
ppm(X ~polynom(x,y,3), MultiStrauss(r, c("off","on")))
fit a nonstationary multitype Strauss process with log-cubic trend

End(Not run)

MultiStraussHard

The Multitype/Hard Core Strauss Point Process Model

Description

Creates an instance of the multitype/hard core Strauss point process model which can then be fitted to point pattern data.

Usage

MultiStraussHard(iradii, hradii, types=NULL)

Arguments

iradii Matrix of interaction radii
hradii Matrix of hard core radii
types Optional; vector of all possible types (i.e. the possible levels of the marks variable in the data)

Details

This is a hybrid of the multitype Strauss process (see MultiStrauss) and the hard core process (case $\gamma = 0$ of the Strauss process). A pair of points of types i and j must not lie closer than h_{ij} units apart; if the pair lies more than h_{ij} and less than r_{ij} units apart, it contributes a factor γ_{ij} to the probability density.

The argument types need not be specified in normal use. It will be determined automatically from the point pattern data set to which the MultiStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to the ordering of rows and columns in the matrices \(\text{iradii} \) and \(\text{hradii} \).

The matrices \(\text{iradii} \) and \(\text{hradii} \) must be symmetric, with entries which are either positive numbers or NA. A value of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii and hardcore radii are specified in \text{MultiStraussHard}. The canonical parameters \(\log(\beta_j) \) and \(\log(\gamma_{ij}) \) are estimated by \text{ppm}, not fixed in \text{MultiStraussHard}.

Value

An object of class "interact" describing the interpoint interaction structure of the multitype/hard core Strauss process with interaction radii \(\text{iradii}[i,j] \) and hard core radii \(\text{hradii}[i,j] \).

Warnings

In order that \text{ppm} can fit the multitype/hard core Strauss model correctly to a point pattern \(X \), this pattern must be marked, with \text{markformat} equal to \text{vector} and the mark vector \(\text{marks}(X) \) must be a factor. If the argument \text{types} is specified it is interpreted as a set of factor levels and this set must equal \(\text{levels}(\text{marks}(X)) \).

Changed Syntax

Before \text{spatstat} version 1.37-0, the syntax of this function was different: \text{MultiStraussHard(types=NULL, iradii, hradii)}. The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/},
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

\text{ppm}, \text{pairwise.family}, \text{ppm.object}, \text{MultiStrauss}, \text{MultiHard}, \text{Strauss}

Examples

\begin{verbatim}
r <- matrix(3, nrow=2,ncol=2)
h <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStraussHard(r,h)
prints a sensible description of itself
r <- 0.04 * matrix(c(1,2,2,1), nrow=2,ncol=2)
h <- 0.02 * matrix(c(1,NA,NA,1), nrow=2,ncol=2)
X <- amacrine
fit <- ppm(X ~1, MultiStraussHard(r,h))
fit stationary multitype hardcore Strauss process to `amacrine`
\end{verbatim}
Description

Data recording the spatial locations of gold deposits and associated geological features in the Murchison area of Western Australia. Extracted from a large scale (1:500,000) study of the Murchison area by the Geological Survey of Western Australia (Watkins and Hickman, 1990). The features recorded are

- the locations of gold deposits;
- the locations of geological faults;
- the region that contains greenstone bedrock.

The study region is contained in a 330 × 400 kilometre rectangle. At this scale, gold deposits are points, i.e. their spatial extent is negligible. Gold deposits in this region occur only in greenstone bedrock. Geological faults can be observed reliably only within the same region. However, some faults have been extrapolated (by geological “interpretation”) outside the greenstone boundary from information observed in the greenstone region.

These data were analysed by Foxall and Baddeley (2002) and Brown et al (2002); see also Groves et al (2000), Knox-Robinson and Groves (1997). The main aim is to predict the intensity of the point pattern of gold deposits from the more easily observable fault pattern.

Usage

data(murchison)

Format

murchison is a list with the following entries:

- **gold** a point pattern (object of class "ppp") representing the point pattern of gold deposits. See **ppp.object** for details of the format.
- **faults** a line segment pattern (object of class "psp") representing the geological faults. See **psp.object** for details of the format.
- **greenstone** the greenstone bedrock region. An object of class "owin". Consists of multiple irregular polygons with holes.

All coordinates are given in **metres**.

Source

Data were kindly provided by Dr Carl Knox-Robinson of the Department of Geology and Geophysics, University of Western Australia. Permission to use the data is granted by Dr Tim Griffin, Geological Survey of Western Australia and by Dr Knox-Robinson. Please make appropriate acknowledgement to Watkins and Hickman (1990) and the Geological Survey of Western Australia.
References

Examples

```r
if(interactive()) {
  data(murchison)
  plot(murchison$greenstone, main="Murchison data", col="lightgreen")
  plot(murchison$gold, add=TRUE, pch="+",col="blue")
  plot(murchison$faults, add=TRUE, col="red")
}
```

nbfires

Point Patterns of New Brunswick Forest Fires

Description

Point patterns created from yearly records, provided by the New Brunswick Department of Natural Resources, of all fires falling under their jurisdiction for the years 1987 to 2003 inclusive (with the year 1988 omitted until further notice).

Usage

```r
data(nbfires)
```
Executing `data(nbfires)` gives access to three objects: `nbfires`, `nbfires.extra` and `nbw.rect`.

The object `nbfires` is a marked point pattern (an object of class "ppp") consisting of all of the fires in the years 1987 to 2003 inclusive, with the omission of 1988. The marks consist of a data frame of auxiliary information about the fires; see Details. Patterns for individual years can be extracted using the function `split.ppp()`. (See Examples.)

The object `nbw.rect` is a rectangular window which covers central New Brunswick. It is provided for use in illustrative and 'practice' calculations inasmuch as the use of a rectangular window simplifies some computations considerably.

For conformity with other datasets, `nbfires.extra` is also provided. It is a list containing just the window `nbw.rect`.

Details

The coordinates of the fire locations were provided in terms of latitude and longitude, to the nearest minute of arc. These were converted to New Brunswick stereographic projection coordinates (Thomson, Mephan and Steeves, 1977) which was the coordinate system in which the map of New Brunswick — which constitutes the observation window for the pattern — was obtained. The conversion was done using a C program kindly provided by Jonathan Beaudoin of the Department of Geodesy and Geomatics, University of New Brunswick.

Finally the data and window were rescaled since the use of the New Brunswick stereographic projection coordinate system resulted in having to deal with coordinates which are expressed as very large integers with a bewildering number of digits. Amongst other things, these huge numbers tended to create very untidy axis labels on graphs. The width of the bounding box of the window was made equal to 1000 (nameless) units. In addition the lower left hand corner of this bounding box was shifted to the origin. The height of the bounding box was changed proportionately, resulting in a value of approximately 959.

The window for the fire patterns comprises 6 polygonal components, consisting of mainland New Brunswick and the 5 largest islands. Some lakes which should form holes in the mainland component are currently missing; this problem may be remedied in future releases. The window was formed by 'simplifying' the map that was originally obtained. The simplification consisted in reducing (using an interactive visual technique) the number of polygon edges in each component. For instance the number of edges in the mainland component was reduced from over 138,000 to 500.

For some purposes it is probably better to use a discretized (mask type) window. See Examples.

Because of the coarseness of the coordinates of the original data (1 minute of longitude is approximately 1 kilometer at the latitude of New Brunswick), data entry errors, and the simplification of the observation window, many of the original fire locations appeared to be outside of the window. This problem was addressed by shifting the location of the 'outsider' points slightly, or deleting them, as seemed appropriate.

Note that the data contain duplicated points (two points at the same location). To determine which points are duplicates, use `duplicated.ppp`. To remove the duplication, use `unique.ppp`.

The columns of the data frame comprising the marks of `nbfires` are:

- **year** This a factor with levels 1987, 1989, ..., 2002, 2003. Note that 1988 is not present in the levels.
fire.type A factor with levels forest, grass, dump, and other.

dis.date The discovery date of the fire, which is the nearest possible surrogate for the starting time of the fire. This is an object of class POSIXct and gives the starting discovery time of the fire to the nearest minute.

dis.julian The discovery date and time of the fire, expressed in 'Julian days', i.e. as a decimal fraction representing the number of days since the beginning of the year (midnight 31 December).

out.date The date on which the fire was judged to be 'out'. This is an object of class POSIXct and gives the 'out' time of the fire to the nearest minute.

out.julian The date and time at which the fire was judged to be 'out', expressed in Julian days.

cause General cause of the fire. This is a factor with levels unknown, rrs (railroads), misc (miscellaneous), ltn (lightning), for.ind (forest industry), incend (inciency), rec (recreation), resid (resident), and oth.ind (other industry). Causes unknown, ltn, and incend are supposedly designated as 'final' by the New Brunswick Department of Natural Resources, meaning (it seems) "that's all there is to it". Other causes are apparently intended to be refined by being combined with "source of ignition". However cross-tabulating cause with ign.src — see below — reveals that very often these three 'causes' are associated with an "ignition source" as well.

ign.src Source of ignition, a factor with levels cigs (cigarette/match/pipe/ashes), burn.no.perm (burning without a permit), burn.w.perm (burning with a permit), presc.burn (prescribed burn), wood.spark (wood spark), mach.spark (machine spark), campfire, chainsaw, machinery, veh.acc (vehicle accident), rail.acc (railroad accident), wheelbox (wheelbox on railcars), hot.flakes (hot flakes off railcar wheels), dump.fire (fire escaping from a dump), ashes (ashes, briquettes, burning garbage, etc.)

fnl.size The final size of the fire (area burned) in hectares, to the nearest 10th hectare.

Note that due to data entry errors some of the "out dates" and "out times" in the original data sets were actually earlier than the corresponding "discovery dates" and "discover times". In such cases all corresponding entries of the marks data frame (i.e. dis.date, dis.julian, out.date, and out.julian) were set equal to NA. Also, some of the dates and times were missing (equal to NA) in the original data sets.

The 'ignition source' data were given as integer codes in the original data sets. The code book that I obtained gave interpretations for codes 1, 2, ..., 15. However the actually also contained codes of 0, 16, 17, 18, and in one instance 44. These may simply be data entry errors. These uninterpretable values were assigned the level unknown. Many of the years had most, or sometimes all, of the ignition source codes equal to 0 (hence turning out as unknown, and many of the years had many missing values as well. These were also assigned the level unknown. Of the 7108 fires in nbfires, 4354 had an unknown ignition source. This variable is hence unlikely to be very useful.

There are also anomalies between cause and ign.src, e.g. cause being unknown but ign.src being cigs, burn.no.perm, mach.spark, hot.flakes, dump.fire or ashes. Particularly worrisome is the fact that the cause ltn (!!!) is associate with sources of ignition cigs, burn.w.perm, presc.burn, and wood.spark.

Source

The data were kindly provided by the New Brunswick Department of Natural Resources. Special thanks are due to Jefferey Betts for a great deal of assistance.
References

Examples

```r
## Not run:
data(nbfires)
X <- split(nbfires,"year")
Y.00 <- X["2000"]
# Plot all of the year 2000 data, marked by fire type.
plot(Y.00,which.marks="fire.type")
# Cut back to forest and grass fires.
Y.00 <- Y.00[marks(Y.00)$fire.type %in% c("forest","grass")]
# Plot the year 2000 forest and grass fires marked by fire duration time.
stt <- marks(Y.00)$dis.julian
fin <- marks(Y.00)$out.julian
marks(Y.00) <- cbind(marks(Y.00),dur=fin-stt)
plot(Y.00,which.marks="dur")
# Look at just the rectangular subwindow (superimposed on the entire window).
nbw.mask <- as.mask(nbfires$window, dimyx=500)
plot(nbw.mask, col=c("green", "white"))
plot(nbfires$window, border="red", add=TRUE)
plot(Y.00[nbw.rect],use.marks=FALSE,add=TRUE)
plot(nbw.rect,add=TRUE,border="blue")
# Look at the K function for the year 2000 forest and grass fires.
K.00 <- Kest(Y.00)
plot(K.00)
## End(Not run)
```

nearest.raster.point

Find Pixel Nearest to a Given Point

Description

Given cartesian coordinates, find the nearest pixel.

Usage

```r
nearest.raster.point(x,y,w, indices=TRUE)
```
Arguments

- **x**: Numeric vector of \(x \) coordinates of any points.
- **y**: Numeric vector of \(y \) coordinates of any points.
- **w**: An image (object of class "im") or a binary mask window (an object of class "owin" of type "mask").
- **indices**: Logical flag indicating whether to return the row and column indices, or the actual \(x, y \) coordinates.

Details

The argument \(w \) should be either a pixel image (object of class "im") or a window (an object of class "owin", see \code{owin.object} for details) of type "mask".

The arguments \(x \) and \(y \) should be numeric vectors of equal length. They are interpreted as the coordinates of points in space. For each point \((x[i], y[i])\), the function finds the nearest pixel in the grid of pixels for \(w \).

If \code{indices=TRUE}, this function returns a list containing two vectors \(rr \) and \(cc \) giving row and column positions (in the image matrix). For the location \((x[i],y[i])\) the nearest pixel is at row \(rr[i] \) and column \(cc[i] \) of the image.

If \code{indices=FALSE}, the function returns a list containing two vectors \(x \) and \(y \) giving the actual coordinates of the pixels.

Value

If \code{indices=TRUE}, a list containing two vectors \(rr \) and \(cc \) giving row and column positions (in the image matrix). If \code{indices=FALSE}, a list containing vectors \(x \) and \(y \) giving actual coordinates of the pixels.

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\) \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \(<r.turner@auckland.ac.nz>\)

See Also

\code{owin.object}, \code{as.mask}

Examples

```r
w <- owin(c(0,1), c(0,1), mask=matrix(TRUE, 100,100))  # 100 x 100 grid
nearest.raster.point(0.5, 0.3, w)
nearest.raster.point(0.5, 0.3, w, indices=FALSE)
```
Find Line Segment Nearest to Each Point

Description

Given a point pattern and a line segment pattern, this function finds the nearest line segment for each point.

Usage

nearestsegment(X, Y)

Arguments

X A point pattern (object of class "ppp").
Y A line segment pattern (object of class "psp").

Details

The distance between a point \(x \) and a straight line segment \(y \) is defined to be the shortest Euclidean distance between \(x \) and any location on \(y \). This algorithm first calculates the distance from each point of \(X \) to each segment of \(Y \). Then it determines, for each point \(x \) in \(X \), which segment of \(Y \) is closest. The index of this segment is returned.

Value

Integer vector \(v \) (of length equal to the number of points in \(X \)) identifying the nearest segment to each point. If \(v[i] = j \), then \(Y[j] \) is the line segment lying closest to \(X[i] \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

project2segment to project each point of \(X \) to a point lying on one of the line segments. Use distmap.psp to identify the nearest line segment for each pixel in a grid.

Examples

```r
X <- runifpoint(3)
Y <- as.psp(matrix(runif(20), 5, 4), window=owin())
v <- nearestsegment(X,Y)
plot(Y)
plot(X, add=TRUE)
plot(X[v[1]], add=TRUE, col="red")
plot(Y[v[1]], add=TRUE, lwd=2, col="red")
```
nestsplit

Nested Split

Description
Applies two splitting operations to a point pattern, producing a list of lists of patterns.

Usage

nestsplit(X, ...)

Arguments

- **X** Point pattern to be split. Object of class "ppp".
- **...** Data determining the splitting factors or splitting regions. See Details.

Details
This function splits the point pattern X into several sub-patterns using split.ppp, then splits each of the sub-patterns into sub-sub-patterns using split.ppp again. The result is a hyperframe containing the sub-sub-patterns and two factors indicating the grouping.

The arguments ... determine the two splitting factors or splitting regions. Each argument may be:

- a factor (of length equal to the number of points in X)
- the name of a column of marks of X (provided this column contains factor values)
- a tessellation (class "tess")
- a pixel image (class "im") with factor values
- a window (class "owin")
- identified by name (in the form name=value) as one of the formal arguments of quadrats or tess

The arguments will be processed to yield a list of two splitting factors/tessellations. The splits will be applied to X consecutively to produce the sub-sub-patterns.

Value
A hyperframe with three columns. The first column contains the sub-sub-patterns. The second and third columns are factors which identify the grouping according to the two splitting factors.

Author(s)

Original idea by Ute Hahn. Code by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
nnnclean

Nearest Neighbour Clutter Removal

Description

Detect features in a 2D or 3D spatial point pattern using nearest neighbour clutter removal.

Usage

nnnclean(X, k, ...) # S3 method for class 'ppp'
nnclean(X, k, ..., edge.correct = FALSE, wrap = 0.1,
 convergence = 0.001, plot.hist = FALSE,
 verbose = TRUE, maxit = 50)

Arguments

X A two-dimensional spatial point pattern (object of class "ppp") or a three-dimensional point pattern (object of class "pp3").

k Degree of neighbour: k=1 means nearest neighbour, k=2 means second nearest, etc.

See Also

split.ppp, quantess

Examples

factor and tessellation
Nft <- nestsplit(amacrine, marks(amacrine), quadrats(amacrine, 3, 1))
Ntf <- nestsplit(amacrine, quadrats(amacrine, 3, 1), marks(amacrine))
Ntf

two factors
big <- with(marks(betacells), area > 300)
Nff <- nestsplit(betacells, "type", factor(big))

two tessellations
Tx <- quantess(redwood, "x", 4)
Td <- dirichlet(runifpoint(5, Window(redwood)))
Ntt <- nestsplit(redwood, Td, Tx)
Ntt2 <- nestsplit(redwood, Td, ny=3)
Arguments passed to `hist.default` to control the appearance of the histogram, if `plothist=TRUE`.

Logical flag specifying whether periodic edge correction should be performed (only implemented in 2 dimensions).

Numeric value specifying the relative size of the margin in which data will be replicated for the periodic edge correction (if `edge.correct=TRUE`). A fraction of window width and window height.

Relative tolerance threshold for testing convergence of EM algorithm.

Maximum number of iterations for EM algorithm.

Logical flag specifying whether to plot a diagnostic histogram of the nearest neighbour distances and the fitted distribution.

Logical flag specifying whether to print progress reports.

Details

Byers and Raftery (1998) developed a technique for recognising features in a spatial point pattern in the presence of random clutter.

For each point in the pattern, the distance to the kth nearest neighbour is computed. Then the E-M algorithm is used to fit a mixture distribution to the kth nearest neighbour distances. The mixture components represent the feature and the clutter. The mixture model can be used to classify each point as belong to one or other component.

The function `nnclean` is generic, with methods for two-dimensional point patterns (class "ppp") and three-dimensional point patterns (class "pp3") currently implemented.

The result is a point pattern (2D or 3D) with two additional columns of marks:

- **class**: A factor, with levels "noise" and "feature", indicating the maximum likelihood classification of each point.
- **prob**: Numeric vector giving the estimated probabilities that each point belongs to a feature.

The object also has extra information stored in attributes: "theta" contains the fitted parameters of the mixture model, "info" contains information about the fitting procedure, and "hist" contains the histogram structure returned from `hist.default` if `plothist = TRUE`.

Value

An object of the same kind as `X`, obtained by attaching marks to the points of `X`.

The object also has attributes, as described under Details.

Author(s)

Original by Simon Byers and Adrian Raftery. Adapted for `spatstat` by Adrian Baddeley.

References

nncorr

Nearest-Neighbour Correlation Indices of Marked Point Pattern

Description

Computes nearest-neighbour correlation indices of a marked point pattern, including the nearest-neighbour mark product index (default case of nncorr), the nearest-neighbour mark index (nnmean), and the nearest-neighbour variogram index (nnvario).

Usage

nncorr(X,
 f = function(m1, m2) { m1 * m2 },
 ...,
 use = "all.obs", method = c("pearson", "kendall", "spearman"),
 denominator=NULL)
nnmean(X)
nnvario(X)

Arguments

X The observed point pattern. An object of class "ppp".
f Function f used in the definition of the nearest neighbour correlation. There is a sensible default that depends on the type of marks of X.
... Extra arguments passed to f.
use,method Arguments passed to the standard correlation function cor.
denominator Internal use only.

See Also

ndist, split.ppp, cut.ppp

Examples

data(shapley)
X <- nnclean(shapley, k=17)
plot(X, which.marks=1, chars=c(".", "+"), cols=1:2)
plot(X, which.marks=2, cols=function(x)hsv(0.2+0.8*(1-x),1,1))
Y <- split(X, un=TRUE)
plot(Y, chars="+", cex=0.5)
marks(X) <- marks(X)$prob
plot(cut(X, breaks=3), chars=c(".", "+", "+"), cols=1:3)
Details

The nearest neighbour correlation index $\bar{\eta}_f$ of a marked point process X is a number measuring the dependence between the mark of a typical point and the mark of its nearest neighbour.

The command `nncorr` computes the nearest neighbour correlation index based on any test function f provided by the user. The default behaviour of `nncorr` is to compute the nearest neighbour mark product index. The commands `nnmean` and `nnvario` are convenient abbreviations for other special choices of f.

In the default case, `nncorr(X)` computes three different versions of the nearest-neighbour correlation index: the unnormalised, normalised, and classical correlations.

unnormalised: The unnormalised nearest neighbour correlation (Stoyan and Stoyan, 1994, section 14.7) is defined as

$$\bar{\eta}_f = E[f(M, M^*)]$$

where $E[]$ denotes mean value, M is the mark attached to a typical point of the point process, and M^* is the mark attached to its nearest neighbour (i.e. the nearest other point of the point process). Here f is any function $f(m_1, m_2)$ with two arguments which are possible marks of the pattern, and which returns a nonnegative real value. Common choices of f are: for continuous real-valued marks,

$$f(m_1, m_2) = m_1 m_2$$

for discrete marks (multitype point patterns),

$$f(m_1, m_2) = 1(m_1 = m_2)$$

and for marks taking values in $[0, 2\pi)$,

$$f(m_1, m_2) = \sin(m_1 - m_2)$$

For example, in the second case, the unnormalised nearest neighbour correlation $\bar{\eta}_f$ equals the proportion of points in the pattern which have the same mark as their nearest neighbour.

Note that $\bar{\eta}_f$ is not a “correlation” in the usual statistical sense. It can take values greater than 1.

normalised: We can define a normalised nearest neighbour correlation by

$$\bar{m}_f = \frac{E[f(M, M^*)]}{E[f(M, M^\prime)]}$$

where again M is the mark attached to a typical point, M^* is the mark attached to its nearest neighbour, and M^\prime is an independent copy of M with the same distribution. This normalisation is also not a “correlation” in the usual statistical sense, but is normalised so that the value 1 suggests “lack of correlation”: if the marks attached to the points of X are independent and identically distributed, then $\bar{m}_f = 1$. The interpretation of values larger or smaller than 1 depends on the choice of function f.

classical: Finally if the marks of X are real numbers, we can also compute the classical correlation, that is, the correlation coefficient of the two random variables M and M^*. The classical correlation has a value between -1 and 1. Values close to -1 or 1 indicate strong dependence between the marks.
In the default case where \(f \) is not given, \(\text{nncorr}(X) \) computes

- If the marks of \(X \) are real numbers, the unnormalised and normalised versions of the nearest-neighbour product index \(E[M \cdot M^*] \), and the classical correlation between \(M \) and \(M^* \).
- If the marks of \(X \) are factor valued, the unnormalised and normalised versions of the nearest-neighbour equality index \(P[M = M^*] \).

The wrapper functions \text{nnmean} and \text{nnvario} compute the correlation indices for two special choices of the function \(f(m_1, m_2) \).

- \text{nnmean} computes the correlation indices for \(f(m_1, m_2) = m_1 \). The unnormalised index is simply the mean value of the mark of the neighbour of a typical point, \(E[M^*] \), while the normalised index is \(E[M^*/E[M]] \), the ratio of the mean mark of the neighbour of a typical point to the mean mark of a typical point.
- \text{nnvario} computes the correlation indices for \(f(m_1, m_2) = (1/2)(m_1 - m_2)^2 \).

The argument \(X \) must be a point pattern (object of class "ppp") and must be a marked point pattern. (The marks may be a data frame, containing several columns of mark variables; each column is treated separately.)

If the argument \(f \) is given, it must be a function, accepting two arguments \(m_1 \) and \(m_2 \) which are vectors of equal length containing mark values (of the same type as the marks of \(X \)). It must return a vector of numeric values of the same length as \(m_1 \) and \(m_2 \). The values must be non-negative.

The arguments \text{use} and \text{method} control the calculation of the classical correlation using \text{cor}, as explained in the help file for \text{cor}.

Other arguments may be passed to \(f \) through the \text{...} argument.

This algorithm assumes that \(X \) can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in \(X \) as \text{Xwindow}) may have arbitrary shape. Biases due to edge effects are treated using the 'border method' edge correction.

Value

Labelled vector of length 2 or 3 containing the unnormalised and normalised nearest neighbour correlations, and the classical correlation if appropriate. Alternatively a matrix with 2 or 3 rows, containing this information for each mark variable.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

Examples

```r
data(finpines)
nncorr(finpines)
# heights of neighbouring trees are slightly negatively correlated

data(amacrine)
nncorr(amacrine)
# neighbouring cells are usually of different type
```

nnccros

Nearest Neighbours Between Two Patterns

Description

Given two point patterns \(X\) and \(Y\), finds the nearest neighbour in \(Y\) of each point of \(X\). Alternatively \(Y\) may be a line segment pattern.

Usage

```r
nnccross(X, Y, ...)
```

```r
## S3 method for class 'ppp'
nnccross(X, Y,
iX=NULL, iY=NULL,
what = c("dist", "which"),
...,  
k = 1,
sortby=c("range", "var", "x", "y"),
is.sorted.X = FALSE,
is.sorted.Y = FALSE)
```

```r
## Default S3 method:
nnccross(X, Y, ...)
```

Arguments

- **X**: Point pattern (object of class "ppp").
- **Y**: Either a point pattern (object of class "ppp") or a line segment pattern (object of class "psp").
- **iX**, **iY**: Optional identifiers, applicable only in the case where \(Y\) is a point pattern, used to determine whether a point in \(X\) is identical to a point in \(Y\). See Details.
- **what**: Character string specifying what information should be returned. Either the nearest neighbour distance ("dist"), the identifier of the nearest neighbour ("which"), or both.
- **k**: Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.
sortby

Determines which coordinate to use to sort the point patterns. See Details.

is.sorted.X, is.sorted.Y

Logical values attesting whether the point patterns X and Y have been sorted. See Details.

... Ignored.

Details

Given two point patterns X and Y this function finds, for each point of X, the nearest point of Y. The distance between these points is also computed. If the argument k is specified, then the k-th nearest neighbours will be found.

Alternatively if X is a point pattern and Y is a line segment pattern, the function finds the nearest line segment to each point of X, and computes the distance.

The return value is a data frame, with rows corresponding to the points of X. The first column gives the nearest neighbour distances (i.e. the i-th entry is the distance from the i-th point of X to the nearest element of Y). The second column gives the indices of the nearest neighbours (i.e. the i-th entry is the index of the nearest element in Y). If what="dist" then only the vector of distances is returned. If what="which" then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point in Y, where Y is a point pattern, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common. In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique integer identifier to each point, such that two points are identical if their identifying numbers are equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers for points in Y. Then the code will only compare two points if they have different values of the identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist", "which") and k=1) a data frame with two columns:

<table>
<thead>
<tr>
<th>dist</th>
<th>Nearest neighbour distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>which</td>
<td>Nearest neighbour index in Y</td>
</tr>
</tbody>
</table>

If what="dist" and k=1, a vector of nearest neighbour distances.

If what="which" and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour distances and/or nearest neighbour indices.
Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point patterns X and Y into increasing order of the x coordinate or increasing order of the the y coordinate. Sorting is only an intermediate step; it does not affect the output, which is always given in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of values (according to the frame of the enclosing window of Y). If sortby = "var"), sorting will occur on the coordinate that has the greater variance (in the pattern Y). Setting sortby="x" or sortby = "y" will specify that sorting should occur on the x or y coordinate, respectively.

If the point pattern X is already sorted, then the corresponding argument is.sorted.X should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Similarly if Y is already sorted, then is.sorted.Y should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

If both X and Y are sorted on the same coordinate axis then both is.sorted.X and is.sorted.Y should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz>, and Jens Oehlschlaegel

See Also
nndist for nearest neighbour distances in a single point pattern.

Examples

```r
# two different point patterns
X <- runifpoint(15)
Y <- runifpoint(20)
N <- nncross(X, Y)$which
# note that length(N) = 15
plot(superimpose(X=X, Y=Y), main="nncross", cols=c("red","blue"))
arrows(X$x, X$y, Y[N]$x, Y[N]$y, length=0.15)

# third-nearest neighbour
NXY <- nncross(X, Y, k=3)
NXY[1:3,]
# second and third nearest neighbours
NXY <- nncross(X, Y, k=2:3)
NXY[1:3,]

# two patterns with some points in common
Z <- runifpoint(50)
X <- Z[1:30]
Y <- Z[20:50]
iX <- 1:30
iY <- 20:50
```
Given two point patterns \(X\) and \(Y\) on a linear network, finds the nearest neighbour in \(Y\) of each point of \(X\) using the shortest path in the network.

Usage

```r
## S3 method for class 'lpp'
nncross(X, Y,
       ix=NULL, iy=NULL,
       what=c("dist", "which"),
       ...,
       method="C")
```

Arguments

- \(X, Y\) Point patterns on a linear network (objects of class "lpp"). They must lie on the same linear network.
- \(ix, iy\) Optional identifiers, used to determine whether a point in \(X\) is identical to a point in \(Y\). See Details.
- \(what\) Character string specifying what information should be returned. Either the nearest neighbour distance ("dist"), the identifier of the nearest neighbour ("which"), or both.
-
- \(\ldots\) Ignored.
- \(method\) Internal use only.

Details

Given two point patterns \(X\) and \(Y\) on the same linear network, this function finds, for each point of \(X\), the nearest point of \(Y\), measuring distance by the shortest path in the network. The distance between these points is also computed.

The return value is a data frame, with rows corresponding to the points of \(X\). The first column gives the nearest neighbour distances (i.e. the \(i\)th entry is the distance from the \(i\)th point of \(X\) to the
The second column gives the indices of the nearest neighbours (i.e., the i-th entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is returned. If what="which" then only the vector of indices is returned.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common. In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique integer identifier to each point, such that two points are identical if their identifying numbers are equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers for points in Y. Then the code will only compare two points if they have different values of the identifier. See the Examples.

Value

By default (if what=c("dist", "which")) a data frame with two columns:

<table>
<thead>
<tr>
<th>dist</th>
<th>Nearest neighbour distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>which</td>
<td>Nearest neighbour index in Y</td>
</tr>
</tbody>
</table>

If what="dist", a vector of nearest neighbour distances.

If what="which", a vector of nearest neighbour indices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>,

See Also

nndist.lpp for nearest neighbour distances in a single point pattern.

Examples

```r
# two different point patterns
X <- runiflpp(3, simplenet)
Y <- runiflpp(5, simplenet)
nn <- nncross(X,Y)
nn
plot(simplenet, main="nncross")
plot(X, add=TRUE, col="red")
plot(Y, add=TRUE, col="blue")
XX <- as.ppp(X)
YY <- as.ppp(Y)
i <- nn$which
arrows(XX$x, XX$y, YY[i]$x, YY[i]$y, length=0.15)
```

```r
# two patterns with some points in common
X <- Y[1:2]
iX <- 1:2
iY <- 1:5
nncross(X,Y, iX, iY)
```
Nearest Neighbours Between Two Patterns in 3D

Description
Given two point patterns X and Y in three dimensions, finds the nearest neighbour in Y of each point of X.

Usage
```r
## S3 method for class 'pp3'
nncross(X, Y, 
  ix=NULL, iy=NULL, 
  what=c("dist", "which"), 
  ...,
  k = 1,
  sortby=c("range", "var", "x", "y", "z"),
  is.sorted.X = FALSE,
  is.sorted.Y = FALSE)
```

Arguments
- **X, Y**: Point patterns in three dimensions (objects of class "pp3").
- **ix, iy**: Optional identifiers, used to determine whether a point in X is identical to a point in Y. See Details.
- **what**: Character string specifying what information should be returned. Either the nearest neighbour distance ("dist"), the identifier of the nearest neighbour ("which"), or both.
- **k**: Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.
- **sortby**: Determines which coordinate to use to sort the point patterns. See Details.
- **is.sorted.X, is.sorted.Y**: Logical values attesting whether the point patterns X and Y have been sorted. See Details.
- **...**: Ignored.

Details
Given two point patterns X and Y in three dimensions, this function finds, for each point of X, the nearest point of Y. The distance between these points is also computed. If the argument k is specified, then the k-th nearest neighbours will be found.

The return value is a data frame, with rows corresponding to the points of X. The first column gives the nearest neighbour distances (i.e. the 1th entry is the distance from the 1th point of X to the nearest element of Y). The second column gives the indices of the nearest neighbours (i.e. the 1th
entry is the index of the nearest element in \(Y \). If \(\text{what} = \text{"dist"} \) then only the vector of distances is returned. If \(\text{what} = \text{"which"} \) then only the vector of indices is returned.

The argument \(k \) may be an integer or an integer vector. If it is a single integer, then the \(k \)-th nearest neighbours are computed. If it is a vector, then the \(k[i] \)-th nearest neighbours are computed for each entry \(k[i] \). For example, setting \(k=1:3 \) will compute the nearest, second-nearest and third-nearest neighbours. The result is a data frame.

Note that this function is not symmetric in \(X \) and \(Y \). To find the nearest neighbour in \(X \) of each point in \(Y \), use \(\text{nncross}(Y, X) \).

The arguments \(ix \) and \(iy \) are used when the two point patterns \(X \) and \(Y \) have some points in common. In this situation \(\text{nncross}(X, Y) \) would return some zero distances. To avoid this, attach a unique integer identifier to each point, such that two points are identical if their identifying numbers are equal. Let \(ix \) be the vector of identifier values for the points in \(X \), and \(iy \) the vector of identifiers for points in \(Y \). Then the code will only compare two points if they have different values of the identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if \(\text{what} = \text{c("dist", "which")} \) and \(k=1 \)) a data frame with two columns:

<table>
<thead>
<tr>
<th>dist</th>
<th>Nearest neighbour distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>which</td>
<td>Nearest neighbour index in (Y)</td>
</tr>
</tbody>
</table>

If \(\text{what} = \text{"dist"} \) and \(k=1 \), a vector of nearest neighbour distances.

If \(\text{what} = \text{"which"} \) and \(k=1 \), a vector of nearest neighbour indices.

If \(k \) is specified, the result is a data frame with columns containing the \(k \)-th nearest neighbour distances and/or nearest neighbour indices.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts both the point patterns \(X \) and \(Y \) into increasing order of the \(x \) coordinate, or both into increasing order of the \(y \) coordinate, or both into increasing order of the \(z \) coordinate. Sorting is only an intermediate step; it does not affect the output, which is always given in the same order as the original data.

By default (if \(\text{sortby} = \text{"range"} \)), the sorting will occur on the coordinate that has the largest range of values (according to the frame of the enclosing window of \(Y \)). If \(\text{sortby} = \text{"var"} \), sorting will occur on the coordinate that has the greater variance (in the pattern \(Y \)). Setting \(\text{sortby} = \text{"x"} \) or \(\text{sortby} = \text{"y"} \) or \(\text{sortby} = \text{"z"} \) will specify that sorting should occur on the \(x \), \(y \) or \(z \) coordinate, respectively.

If the point pattern \(X \) is already sorted, then the corresponding argument \(\text{is.sorted.X} \) should be set to \(\text{TRUE} \), and \(\text{sortby} \) should be set equal to \(\text{"x"}, \text{"y"} \) or \(\text{"z"} \) to indicate which coordinate is sorted.

Similarly if \(Y \) is already sorted, then \(\text{is.sorted.Y} \) should be set to \(\text{TRUE} \), and \(\text{sortby} \) should be set equal to \(\text{"x"}, \text{"y"} \) or \(\text{"z"} \) to indicate which coordinate is sorted.

If both \(X \) and \(Y \) are sorted on the same coordinate axis then both \(\text{is.sorted.X} \) and \(\text{is.sorted.Y} \) should be set to \(\text{TRUE} \), and \(\text{sortby} \) should be set equal to \(\text{"x"}, \text{"y"} \) or \(\text{"z"} \) to indicate which coordinate is sorted.
Estimate Intensity of Point Pattern Using Nearest Neighbour Distances

Description

Estimates the intensity of a point pattern using the distance from each spatial location to the kth nearest data point.

Usage

nndensity(x, ...)
Arguments

x A point pattern (object of class "ppp") or some other spatial object.

k Integer. The distance to the kth nearest data point will be computed. There is a sensible default.

... Arguments passed to nnmap and as.mask controlling the pixel resolution.

verbose Logical. If TRUE, print the value of k when it is automatically selected. If FALSE, remain silent.

Details

This function computes a quick estimate of the intensity of the point process that generated the point pattern x.

For each spatial location s, let d(s) be the distance from s to the k-th nearest point in the dataset x. If the data came from a homogeneous Poisson process with intensity \(\lambda \), then \(\pi d(s)^2 \) would follow a negative exponential distribution with mean \(1/\lambda \), and the maximum likelihood estimate of \(\lambda \) would be \(1/(\pi d(s)^2) \). This is the estimate computed by nndensity, apart from an edge effect correction.

This estimator of intensity is relatively fast to compute, and is spatially adaptive (so that it can handle wide variation in the intensity function). However, it implicitly assumes the points are independent, so it does not perform well if the pattern is strongly clustered or strongly inhibited.

The value of k should be greater than 1 in order to avoid infinite peaks in the intensity estimate around each data point. The default value of k is the square root of the number of points in x, which seems to work well in many cases.

The window of x is digitised using as.mask and the values d(s) are computed using nnmap. To control the pixel resolution, see as.mask.

Value

A pixel image (object of class "im") giving the estimated intensity of the point process at each spatial location. Pixel values are intensities (number of points per unit area).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References

NEED REFERENCES. TRY CRESSIE

See Also

density.ppp, intensity for alternative estimates of point process intensity.

Examples

plot(nndensity(swedishpines))
nndist

Nearest neighbour distances

Description

Computes the distance from each point to its nearest neighbour in a point pattern. Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

nndist(X, ...)
S3 method for class 'ppp'
nndist(X, ..., k=1, by=NULL, method="C")
Default S3 method:
nndist(X, Y=NULL, ..., k=1, by=NULL, method="C")

Arguments

X,Y
Arguments specifying the locations of a set of points. For nndist.ppp, the argument X should be a point pattern (object of class "ppp"). For nndist.default, typically X and Y would be numeric vectors of equal length. Alternatively Y may be omitted and X may be a list with two components x and y, or a matrix with two columns.

...
Ignored by nndist.ppp and nndist.default.

k
Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

by
Optional. A factor, which separates X into groups. The algorithm will compute the distance to the nearest point in each group.

method
String specifying which method of calculation to use. Values are "C" and "interpreted".

Details

This function computes the Euclidean distance from each point in a point pattern to its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the distance to the kth nearest neighbour.

The function nndist is generic, with a method for point patterns (objects of class "ppp"), and a default method for coordinate vectors. There is also a method for line segment patterns, nndist.psp.

The method for point patterns expects a single point pattern argument X and returns the vector of its nearest neighbour distances.

The default method expects that X and Y will determine the coordinates of a set of points. Typically X and Y would be numeric vectors of equal length. Alternatively Y may be omitted and X may be a list with two components named x and y, or a matrix or data frame with two columns.

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest neighbour distances are computed for each value of k specified in the vector.
If the argument by is given, it should be a factor, of length equal to the number of points in X. This factor effectively partitions X into subsets, each subset associated with one of the levels of X. The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each subset.

The argument method is not normally used. It is retained only for checking the validity of the software. If method = "interpreted" then the distances are computed using interpreted R code only. If method="C" (the default) then C code is used. The C code is faster by two to three orders of magnitude and uses much less memory.

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If there are no points (if x has length zero) a numeric vector of length zero is returned.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-corrected empirical distribution, computed by Gest.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour distance for the i\text{th} data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the k\text{th} nearest neighbour distance for the i\text{th} data point.

If k is a vector, then the return value is a matrix m such that m[i, j] is the k[j]\text{th} nearest neighbour distance for the i\text{th} data point.

If the argument by is given, then the result is a data frame containing the distances described above, from each point of X, to the nearest point in each subset of X defined by the factor by.

Nearest neighbours of each type

If X is a multitype point pattern and by=marks(X), then the algorithm will compute, for each point of X, the distance to the nearest neighbour of each type. See the Examples.

To find the minimum distance from any point of type i to the nearest point of type j, for all combinations of i and j, use the R function aggregate as suggested in the Examples.

Warnings

An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the point pattern).

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

See Also

nndist.psp, pairdist, Gest, nnwhich, nncross.
Examples

data(cells)
nearest neighbours
d <- nndist(cells)

second nearest neighbours
d2 <- nndist(cells, k=2)

first, second and third nearest
d1to3 <- nndist(cells, k=1:3)

x <- runif(100)
y <- runif(100)
d <- nndist(x, y)

Stienen diagram
plot(cells %mark% (nndist(cells)/2), marks=1)

distance to nearest neighbour of each type
nnda <- nndist(ants, by=marks(ants))
head(nnda)
For nest number 1, the nearest Cataglyphis nest is 87.32125 units away

Use of 'aggregate':
minimum distance between each pair of types
aggregate(nnda, by=list(from=marks(ants)), min)
Always a symmetric matrix

mean nearest neighbour distances
aggregate(nnda, by=list(from=marks(ants)), mean)
The mean distance from a Messor nest to
the nearest other Messor nest is 59.02549 units

nndist.lpp

Nearest neighbour distances on a linear network

Description

Given a pattern of points on a linear network, compute the nearest-neighbour distances, measured by the shortest path in the network.

Usage

```r
## S3 method for class 'lpp'
nndist(X, ..., method="C")
```
Arguments

\textbf{X} \\
Point pattern on linear network (object of class "lpp").

\textbf{method} \\
Optional string determining the method of calculation. Either "interpreted" or "C".

\textbf{...} \\
Ignored.

Details

Given a pattern of points on a linear network, this function computes the nearest neighbour distance for each point (i.e. the distance from each point to the nearest other point), measuring distance by the shortest path in the network.

If method="C" the distances are computed using code in the C language. If method="interpreted" then the computation is performed using interpreted R code. The R code is much slower, but is provided for checking purposes.

Value

A numeric vector, of length equal to the number of points in \textbf{X}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

lpp

Examples

\begin{verbatim}
example(lpp)
nndist(X)
\end{verbatim}

\begin{verbatim}
nndist.pp3 Nearest neighbour distances in three dimensions
\end{verbatim}

Description

Computes the distance from each point to its nearest neighbour in a three-dimensional point pattern. Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

\begin{verbatim}
S3 method for class 'pp3'
nndist(X, ...,
k=1)
\end{verbatim}
Arguments

- **X**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **k**: Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

Details

This function computes the Euclidean distance from each point in a three-dimensional point pattern to its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the distance to the kth nearest neighbour.

The function `nndist` is generic; this function `nndist.pp3` is the method for the class "pp3".

The argument `k` may be a single integer, or an integer vector. If it is a vector, then the kth nearest neighbour distances are computed for each value of k specified in the vector.

If there is only one point (if `x` has length 1), then a nearest neighbour distance of `Inf` is returned. If there are no points (if `x` has length zero) a numeric vector of length zero is returned.

To identify which point is the nearest neighbour of a given point, use `nnwhich`.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-corrected empirical distribution, computed by `G3est`.

To find the nearest neighbour distances from one point pattern to another point pattern, use `nncross`.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

- If k = 1 (the default), the return value is a numeric vector `v` such that `v[i]` is the nearest neighbour distance for the i\(\text{th}\) data point.
- If `k` is a single integer, then the return value is a numeric vector `v` such that `v[i]` is the k\(\text{th}\) nearest neighbour distance for the i\(\text{th}\) data point.
- If `k` is a vector, then the return value is a matrix `m` such that `m[i,j]` is the k\(\text{th}\) nearest neighbour distance for the i\(\text{th}\) data point.

Warnings

An infinite or `NA` value is returned if the distance is not defined (e.g. if there is only one point in the point pattern).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ based on code for two dimensions by Pavel Grabarnik

See Also

- `nndist`, `pairdist`, `G3est`, `nnwhich`
Examples

```r
X <- runifpoint3(40)

# nearest neighbours
d <- nndist(X)

# second nearest neighbours
d2 <- nndist(X, k=2)

# first, second and third nearest
d1to3 <- nndist(X, k=1:3)
```

nndist.ppx
Nearest Neighbour Distances in Any Dimensions

Description

Computes the distance from each point to its nearest neighbour in a multi-dimensional point pattern. Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

```r
## S3 method for class 'ppx'
nndist(X, ..., k=1)
```

Arguments

- `X`
 Multi-dimensional point pattern (object of class "ppx").

- `...`
 Arguments passed to `coords.ppx` to determine which coordinates should be used.

- `k`
 Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

Details

This function computes the Euclidean distance from each point in a multi-dimensional point pattern to its nearest neighbour (the nearest other point of the pattern). If `k` is specified, it computes the distance to the kth nearest neighbour.

The function `nndist` is generic; this function `nndist.ppx` is the method for the class "ppx".

The argument `k` may be a single integer, or an integer vector. If it is a vector, then the kth nearest neighbour distances are computed for each value of `k` specified in the vector.

If there is only one point (if `X` has length 1), then a nearest neighbour distance of `Inf` is returned. If there are no points (if `X` has length zero) a numeric vector of length zero is returned.

To identify which point is the nearest neighbour of a given point, use `nnwhich`.

To find the nearest neighbour distances from one point pattern to another point pattern, use `nncross`.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance between points in a space-time point pattern, set `temporal=FALSE`.
Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If \(k = 1 \) (the default), the return value is a numeric vector \(v \) such that \(v[i] \) is the nearest neighbour distance for the \(i \)th data point.

If \(k \) is a single integer, then the return value is a numeric vector \(v \) such that \(v[i] \) is the \(k \)th nearest neighbour distance for the \(i \)th data point.

If \(k \) is a vector, then the return value is a matrix \(m \) such that \(m[i,j] \) is the \(k[j] \)th nearest neighbour distance for the \(i \)th data point.

Warnings

An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the point pattern).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> <http://www.maths.uwa.edu.au/~adrian/>

See Also

\texttt{nndist}, \texttt{pairdist}, \texttt{nnwhich}

Examples

\begin{verbatim}
df <- data.frame(x=runif(5), y=runif(5), z=runif(5), w=runif(5))
X <- ppx(data=df)

nearest neighbours
d <- nndist(X)

second nearest neighbours
d2 <- nndist(X, k=2)

first, second and third nearest
d1to3 <- nndist(X, k=1:3)
\end{verbatim}

\texttt{nndist.psp} \hspace{1cm} \textit{Nearest neighbour distances between line segments}

Description

Computes the distance from each line segment to its nearest neighbour in a line segment pattern. Alternatively finds the distance to the second nearest, third nearest etc.

Usage

\begin{verbatim}
S3 method for class 'psp'
nndist(X, ..., k=1, method="C")
\end{verbatim}
Arguments

\(\text{X} \)
A line segment pattern (object of class "psp").

\(\ldots \)
Ignored.

\(k \)
Integer, or integer vector. The algorithm will compute the distance to the \(k \)th nearest neighbour.

\(\text{method} \)
String specifying which method of calculation to use. Values are "C" and "interpreted". Usually not specified.

Details

This is a method for the generic function \text{nndist} for the class "psp".

If \(k=1 \), this function computes the distance from each line segment to the nearest other line segment in \(X \). In general it computes the distance from each line segment to the \(k \)th nearest other line segment. The argument \(k \) can also be a vector, and this computation will be performed for each value of \(k \).

Distances are calculated using the Hausdorff metric. The Hausdorff distance between two line segments is the maximum distance from any point on one of the segments to the nearest point on the other segment.

If there are fewer than \(\max(k) + 1 \) line segments in the pattern, some of the nearest neighbour distances will be infinite (Inf).

The argument \(\text{method} \) is not normally used. It is retained only for checking the validity of the software. If \(\text{method} = \text{"interpreted"} \) then the distances are computed using interpreted \(R \) code only. If \(\text{method} = \text{"C"} \) (the default) then compiled \(C \) code is used. The \(C \) code is somewhat faster.

Value

Numeric vector or matrix containing the nearest neighbour distances for each line segment.

If \(k = 1 \) (the default), the return value is a numeric vector \(v \) such that \(v[i] \) is the nearest neighbour distance for the \(i \)th segment.

If \(k \) is a single integer, then the return value is a numeric vector \(v \) such that \(v[i] \) is the \(k \)th nearest neighbour distance for the \(i \)th segment.

If \(k \) is a vector, then the return value is a matrix \(m \) such that \(m[i,j] \) is the \(k[j] \)th nearest neighbour distance for the \(i \)th segment.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/˜adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\text{nndist, nndist.ppp}

Examples

\[L \leftarrow \text{psp} \left(\text{runif}(10), \text{runif}(10), \text{runif}(10), \text{runif}(10), \text{owin}() \right) \]
\[D \leftarrow \text{nndist}(L) \]
\[D \leftarrow \text{nndist}(L, k=1:3) \]
nnfun

Nearest Neighbour Index Map as a Function

Description

Compute the nearest neighbour index map of an object, and return it as a function.

Usage

nnfun(x,

S3 method for class 'ppp'
nnfun(x,

S3 method for class 'psp'

Arguments

x

Any suitable dataset representing a two-dimensional collection of objects, such as a point pattern (object of class "ppp") or a line segment pattern (object of class "psp").

k

A single integer. The kth nearest neighbour will be found.

...

Extra arguments are ignored.

Details

For a collection X of two dimensional objects (such as a point pattern or a line segment pattern), the “nearest neighbour index function” of X is the mathematical function f such that, for any two-dimensional spatial location (x, y), the function value f(x, y) is the index i identifying the closest member of X. That is, if i = f(x, y) then X[i] is the closest member of the collection X to the location (x, y).

The command f <- nnfun(X) returns a function in the R language, with arguments x, y, that represents the nearest neighbour index function of X. Evaluating the function f in the form v <- f(x, y), where x and y are any numeric vectors of equal length containing coordinates of spatial locations, yields the indices of the nearest neighbours to these locations.

If the argument k is specified then the k-th nearest neighbour will be found.

The result of f <- nnfun(X) also belongs to the class "funxy" and to the special class "nnfun". It can be printed and plotted immediately as shown in the Examples.

A nnfun object can be converted to a pixel image using as.im.

Value

A function with arguments x, y. The function also belongs to the class "nnfun" which has a method for print. It also belongs to the class "funxy" which has methods for plot, contour and persp.
nnfun.lpp

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
distfun, plot.funxy

Examples
f <- nnfun(cells)
f
plot(f)
f(0.2, 0.3)

g <- nnfun(cells, k=2)
g(0.2, 0.3)

L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
h <- nnfun(L)
h(0.2, 0.3)

nnfun.lpp Nearest Neighbour Map on Linear Network

Description
Compute the nearest neighbour function of a point pattern on a linear network.

Usage
S3 method for class 'lpp'
nfun(X, ...)

Arguments
X A point pattern on a linear network (object of class "lpp").
... Extra arguments are ignored.

Details
The (geodesic) nearest neighbour function of a point pattern X on a linear network L tells us which point of X is closest to any given location.

If X is a point pattern on a linear network L, the nearest neighbour function of X is the mathematical function f defined for any location s on the network by f(s) = i, where X[i] is the closest point of X to the location s measured by the shortest path. In other words the value of f(s) is the identifier or serial number of the closest point of X.
The command `nnfun.lpp` is a method for the generic command `nnfun` for the class "lpp" of point patterns on a linear network.

If X is a point pattern on a linear network, \(f \leftarrow \text{nnfun}(X) \) returns a function in the R language, with arguments \(x, y, \ldots \), that represents the nearest neighbour function of \(X \). Evaluating the function \(f \) in the form \(v \leftarrow f(x, y) \), where \(x \) and \(y \) are any numeric vectors of equal length containing coordinates of spatial locations, yields the values of the distance function at these locations. More efficiently \(f \) can take the arguments \(x, y, \text{seg}, \text{tp} \) where \(\text{seg} \) and \(\text{tp} \) are the local coordinates on the network.

The result of \(f \leftarrow \text{nnfun}(X) \) also belongs to the class "linfun". It can be printed and plotted immediately as shown in the Examples. It can be converted to a pixel image using \texttt{as.linim}.

Value

A function in the R language, with arguments \(x, y \) and optional arguments \(\text{seg}, \text{tp} \). It also belongs to the class "linfun" which has methods for \texttt{plot}, \texttt{print} etc.

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\) \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \(<\text{turner@auckland.ac.nz}>\)

See Also

\texttt{linfun, methods.linfun}.

To compute the distance to the nearest neighbour, see \texttt{distfun.lpp}.

Examples

```r
data(letterR)
X \leftarrow \text{runiflpp}(3, \text{simplenet})
f \leftarrow \text{nnfun}(X)
f
\text{plot}(f)
```

\textbf{nnmap} \hspace{1cm} \textit{K-th Nearest Point Map}

Description

Given a point pattern, this function constructs pixel images giving the distance from each pixel to its \(k \)-th nearest neighbour in the point pattern, and the index of the \(k \)-th nearest neighbour.

Usage

```r
nnmap(X, k = 1, what = c("dist", "which"),
      ..., W = \text{as.owin}(X),
      is.sorted.X = \text{FALSE}, sortby = c("range", "var", "x", "y"))
```
Arguments

- **X**: Point pattern (object of class "ppp").
- **k**: Integer, or integer vector. The algorithm will find the kth nearest neighbour.
- **what**: Character string specifying what information should be returned. Either the nearest neighbour distance ("dist"), the index of the nearest neighbour ("which"), or both.
- **...**: Arguments passed to `as.mask` to determine the pixel resolution of the result.
- **w**: Window (object of class "owin") specifying the spatial domain in which the distances will be computed. Defaults to the window of X.
- **is.sorted.X**: Logical value attesting whether the point pattern X has been sorted. See Details.
- **sortby**: Determines which coordinate to use to sort the point pattern. See Details.

Details

Given a point pattern X, this function constructs two pixel images:

- a distance map giving, for each pixel, the distance to the nearest point of X;
- a nearest neighbour map giving, for each pixel, the identifier of the nearest point of X.

If the argument k is specified, then the k-th nearest neighbours will be found.

If what="dist" then only the distance map is returned. If what="which" then only the nearest neighbour map is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-nearest neighbours.

Value

A pixel image, or a list of pixel images.

By default (if what=c("dist", "which")), the result is a list with two components dist and which containing the distance map and the nearest neighbour map. If what="dist" then the result is a real-valued pixel image containing the distance map. If what="which" then the result is an integer-valued pixel image containing the nearest neighbour map.

If k is a vector of several integers, then the result is similar except that each pixel image is replaced by a list of pixel images, one for each entry of k.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point pattern X into increasing order of the x coordinate or increasing order of the y coordinate. Sorting is only an intermediate step; it does not affect the output, which is always given in the same order as the original data.
By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of values (according to the frame of the enclosing window of X). If sortby = "var"), sorting will occur on the coordinate that has the greater variance (in the pattern X). Setting sortby="x" or sortby = "y" will specify that sorting should occur on the x or y coordinate, respectively.

If the point pattern X is already sorted, then the argument is.sorted.X should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Warning About Ties

Ties are possible: there may be two data points which lie exactly the same distance away from a particular pixel. This affects the results from nnmap(what="which"). The handling of ties is not well-defined: it is not consistent between different computers and different installations of R. If there are ties, then different calls to nnmap(what="which") may give inconsistent results. For example, you may get a different answer from nnmap(what="which", k=1) and nnmap(what="which", k=1:2)[[1]].

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz>, and Jens Oehlschlaegel

See Also

distmap

Examples

plot(nnmap(cells, 2, what="which"))

nnmark

Mark of Nearest Neighbour

Description

Given a marked point pattern dataset X this function computes, for each desired location y, the mark attached to the nearest neighbour of y in X. The desired locations y can be either a pixel grid or the point pattern X itself.

Usage

nnmark(X, ..., k = 1, at=c("pixels", "points"))

Arguments

X A marked point pattern (object of class "ppp").
... Arguments passed to as.mask to determine the pixel resolution.
k Single integer. The kth nearest data point will be used.
at String specifying whether to compute the values at a grid of pixel locations (at="pixels") or only at the points of X (at="points").
Details

Given a marked point pattern dataset X this function computes, for each desired location y, the mark attached to the point of X that is nearest to y. The desired locations y can be either a pixel grid or the point pattern X itself.

The argument X must be a marked point pattern (object of class "ppp", see `ppp.object`). The marks are allowed to be a vector or a data frame.

- If at="points", then for each point in X, the algorithm finds the nearest other point in X, and extracts the mark attached to it. The result is a vector or data frame containing the marks of the neighbours of each point.
- If at="pixels" (the default), then for each pixel in a rectangular grid, the algorithm finds the nearest point in X, and extracts the mark attached to it. The result is an image or a list of images containing the marks of the neighbours of each pixel. The pixel resolution is controlled by the arguments ... passed to `as.mask`.

If the argument k is given, then the k-th nearest neighbour will be used.

Value

If X has a single column of marks:

- If at="pixels" (the default), the result is a pixel image (object of class "im"). The value at each pixel is the mark attached to the nearest point of X.
- If at="points", the result is a vector or factor of length equal to the number of points in X. Entries are the mark values of the nearest neighbours of each point of X.

If X has a data frame of marks:

- If at="pixels" (the default), the result is a named list of pixel images (object of class "im"). There is one image for each column of marks. This list also belongs to the class `listof`, for which there is a plot method.
- If at="points", the result is a data frame with one row for each point of X. Entries are the mark values of the nearest neighbours of each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`Smooth.ppp, marktable, nnwhich`

Examples

```r
plot(nnmark(ants))
v <- nnmark(ants, at="points")
v[1:10]
plot(nnmark(finpines))
vf <- nnmark(finpines, at="points")
vf[1:5]
```
nnorient

Nearest Neighbour Orientation Distribution

Description

Computes the distribution of the orientation of the vectors from each point to its nearest neighbour.

Usage

\[
nnorient(X, ..., cumulative = \text{FALSE}, correction, k = 1, \\
unit = c(\text{"degree"}, \text{"radian"}), \\
domain = \text{NULL}, ratio = \text{FALSE})
\]

Arguments

- **X**
 - Point pattern (object of class "ppp").
- **...**
 - Arguments passed to `circdensity` to control the kernel smoothing, if `cumulative`=FALSE.
- **cumulative**
 - Logical value specifying whether to estimate the probability density (`cumulative`=FALSE, the default) or the cumulative distribution function (`cumulative`=TRUE).
- **correction**
 - Character vector specifying edge correction or corrections. Options are "none", "bord.modif", "good" and "best".
- **k**
 - Integer. The \(k\)th nearest neighbour will be used.
- **ratio**
 - Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
- **unit**
 - Unit in which the angles should be expressed. Either "degree" or "radian".
- **domain**
 - Optional window. The first point \(x_i\) of each pair of points will be constrained to lie in domain.

Details

This algorithm considers each point in the pattern \(X\) and finds its nearest neighbour (or \(k\)th nearest neighbour). The direction of the arrow joining the data point to its neighbour is measured, as an angle in degrees or radians, anticlockwise from the \(x\) axis.

If `cumulative`=FALSE (the default), a kernel estimate of the probability density of the angles is calculated using `circdensity`. This is the function \(\vartheta(\phi)\) defined in Illian et al (2008), equation (4.5.3), page 253.

If `cumulative`=TRUE, then the cumulative distribution function of these angles is calculated.

In either case the result can be plotted as a rose diagram by `rose`, or as a function plot by `plot.fv`.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust for the fact that some interpoint distances are more likely to be observed than others. The choice of edge correction or corrections is determined by the argument `correction`.

It is also possible to calculate an estimate of the probability density from the cumulative distribution function, by numerical differentiation. Use `deriv.fv` with the argument `dperiodic`=TRUE.
Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Spatial Point Patterns. Wiley.

See Also

pairorient

Examples

rose(norient(redwood, adjust=0.6), col="grey")
plot(CDF <- nnorient(redwood, cumulative=TRUE))

nnwhich

Nearest neighbour

Description

Finds the nearest neighbour of each point in a point pattern.

Usage

nnwhich(X, ...)
 ## S3 method for class 'ppp'
 nnwhich(X, ..., k=1, by=NULL, method="C")
 ## Default S3 method:
 nnwhich(X, Y=NULL, ..., k=1, by=NULL, method="C")

Arguments

X, Y Arguments specifying the locations of a set of points. For nnwhich.ppp, the argument X should be a point pattern (object of class "ppp"). For nnwhich.default, typically X and Y would be numeric vectors of equal length. Alternatively Y may be omitted and X may be a list with two components x and y, or a matrix with two columns.

... Ignored by nnwhich.ppp and nnwhich.default.
`k`
Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

`by`
Optional. A factor, which separates X into groups. The algorithm will find the nearest neighbour in each group.

`method`
String specifying which method of calculation to use. Values are "C" and "interpreted".

Details

For each point in the given point pattern, this function finds its nearest neighbour (the nearest other point of the pattern). By default it returns a vector giving, for each point, the index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest neighbour.

The function `nnwhich` is generic, with method for point patterns (objects of class "ppp") and a default method which are described here, as well as a method for three-dimensional point patterns (objects of class "pp3", described in `nnwhich.pp3`.

The method `nnwhich.ppp` expects a single point pattern argument `X`. The default method expects that `X` and `Y` will determine the coordinates of a set of points. Typically `X` and `Y` would be numeric vectors of equal length. Alternatively `Y` may be omitted and `X` may be a list with two components named `x` and `y`, or a matrix or data frame with two columns.

The argument `k` may be a single integer, or an integer vector. If it is a vector, then the kth nearest neighbour distances are computed for each value of `k` specified in the vector.

If the argument `by` is given, it should be a factor, of length equal to the number of points in `X`. This factor effectively partitions `X` into subsets, each subset associated with one of the levels of `X`. The algorithm will then find, for each point of `X`, the nearest neighbour in each subset.

If there are no points (if `X` has length zero) a numeric vector of length zero is returned. If there is only one point (if `X` has length 1), then the nearest neighbour is undefined, and a value of `NA` is returned. In general if the number of points is less than or equal to `k`, then a vector of `NA`’s is returned.

The argument `method` is not normally used. It is retained only for checking the validity of the software. If `method = "interpreted"` then the distances are computed using interpreted R code only. If `method="C"` (the default) then C code is used. The C code is faster by two to three orders of magnitude and uses much less memory.

To evaluate the distance between a point and its nearest neighbour, use `nndist`.

To find the nearest neighbours from one point pattern to another point pattern, use `nncross`.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest neighbour).

If `k = 1` (the default), the return value is a numeric vector `v` giving the indices of the nearest neighbours (the nearest neighbour of the i'th point is the j'th point where `j = v[i]`).

If `k` is a single integer, then the return value is a numeric vector giving the indices of the kth nearest neighbours.

If `k` is a vector, then the return value is a matrix `m` such that `m[i,j]` is the index of the k[j]th nearest neighbour for the i'th data point.
If the argument by is given, then the result is a data frame containing the indices described above, from each point of \(X \), to the nearest point in each subset of \(X \) defined by the factor by.

Nearest neighbours of each type

If \(X \) is a multitype point pattern and by=marks(\(X \)), then the algorithm will find, for each point of \(X \), the nearest neighbour of each type. See the Examples.

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

See Also

nndist, nncross

Examples

```r
data(cells)
plot(cells)
m <- nnwhich(cells)
m2 <- nnwhich(cells, k=2)

# plot nearest neighbour links
b <- cells[m]
arrows(cells$x, cells$y, b$x, b$y, angle=15, length=0.15, col="red")

# find points which are the neighbour of their neighbour
self <- (m[m] == seq(m))
# plot them
A <- cells[self]
B <- cells[m[self]]
plot(cells)
segments(A$x, A$y, B$x, B$y)

# nearest neighbours of each type
head(nnwhich(ants, by=marks(ants)))
```

Description

Given a pattern of points on a linear network, identify the nearest neighbour for each point, measured by the shortest path in the network.
Usage

S3 method for class 'lpp'
nnwhich(X, ..., method="C")

Arguments

- **X**: Point pattern on linear network (object of class "lpp").
- **method**: Optional string determining the method of calculation. Either "interpreted" or "C".
- **...**: Ignored.

Details

Given a pattern of points on a linear network, this function finds the nearest neighbour of each point (i.e. for each point it identifies the nearest other point) measuring distance by the shortest path in the network.

If `method="C"` the task is performed using code in the C language. If `method="interpreted"` then the computation is performed using interpreted R code. The R code is much slower, but is provided for checking purposes.

Value

An integer vector, of length equal to the number of points in `X`, identifying the nearest neighbour of each point. If `nnwhich(X)[2] = 4` then the nearest neighbour of point 2 is point 4.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

lpp

Examples

```r
eexample(lpp)
nnwhich(X)
```
Description

Finds the nearest neighbour of each point in a three-dimensional point pattern.

Usage

S3 method for class 'pp3'

nnwhich(X, ..., k=1)

Arguments

- **X**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **k**: Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

Details

For each point in the given three-dimensional point pattern, this function finds its nearest neighbour (the nearest other point of the pattern). By default it returns a vector giving, for each point, the index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest neighbour.

The function nnwhich is generic. This is the method for the class "pp3".

If there are no points in the pattern, a numeric vector of length zero is returned. If there is only one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the number of points is less than or equal to k, then a vector of NA’s is returned.

To evaluate the distance between a point and its nearest neighbour, use nndist.

To find the nearest neighbours from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest neighbour).

If \(k = 1 \) (the default), the return value is a numeric vector \(v \) giving the indices of the nearest neighbours (the nearest neighbour of the \(i \)th point is the \(j \)th point where \(j = v[i] \)).

If \(k \) is a single integer, then the return value is a numeric vector giving the indices of the \(k \)th nearest neighbours.

If \(k \) is a vector, then the return value is a matrix \(m \) such that \(m[i, j] \) is the index of the \(k[j] \)th nearest neighbour for the \(i \)th data point.
nnwhich.ppx

Near Neighbours in Any Dimensions

Description

Finds the nearest neighbour of each point in a multi-dimensional point pattern.

Usage

```r
## S3 method for class 'ppx'
nnwhich(X, ..., k=1)
```

Arguments

- `X`: Multi-dimensional point pattern (object of class "ppx").
- `...`: Arguments passed to `coords.ppx` to determine which coordinates should be used.
- `k`: Integer, or integer vector. The algorithm will compute the distance to the kth nearest neighbour.

Details

For each point in the given multi-dimensional point pattern, this function finds its nearest neighbour (the nearest other point of the pattern). By default it returns a vector giving, for each point, the index of the point’s nearest neighbour. If `k` is specified, the algorithm finds each point’s `kth` nearest neighbour.

The function `nnwhich` is generic. This is the method for the class "ppx".

Examples

```r
X <- runifpoint3(30)
m <- nnwhich(X)
m2 <- nnwhich(X, k=2)
```
If there are no points in the pattern, a numeric vector of length zero is returned. If there is only one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the number of points is less than or equal to k, then a vector of NA's is returned.

To evaluate the distance between a point and its nearest neighbour, use \texttt{nndist}.

To find the nearest neighbours from one point pattern to another point pattern, use \texttt{nncross}.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance between points in a space-time point pattern, set \texttt{temporal=FALSE}.

\textbf{Value}

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest neighbour).

If \(k = 1 \) (the default), the return value is a numeric vector \(v \) giving the indices of the nearest neighbours (the nearest neighbour of the \(i \)th point is the \(j \)th point where \(j = v[i] \)).

If \(k \) is a single integer, then the return value is a numeric vector giving the indices of the \(k \)th nearest neighbours.

If \(k \) is a vector, then the return value is a matrix \(m \) such that \(m[i,j] \) is the index of the \(k[j] \)th nearest neighbour for the \(i \)th data point.

\textbf{Warnings}

A value of NA is returned if there is only one point in the point pattern.

\textbf{Author(s)}

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}

\textbf{See Also}

\texttt{nnwhich, nndist, nncross}

\textbf{Examples}

\begin{verbatim}
df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
X <- ppx(data=df)
m <- nnwhich(X)
m2 <- nnwhich(X, k=2)
\end{verbatim}

\begin{verbatim}
npfun

\emph{Dummy Function Returns Number of Points}
\end{verbatim}

\textbf{Description}

Returns a summary function which is constant with value equal to the number of points in the point pattern.
Usage

\texttt{npoints(\ldots)}

Arguments

\texttt{x} \hspace{1cm} \text{Point pattern.}
\texttt{\ldots} \hspace{1cm} \text{Ignored.}
\texttt{r} \hspace{1cm} \text{Vector of values of the distance argument} \texttt{r}.

Details

This function is normally not called by the user. Instead it is passed as an argument to the function \texttt{psst}.

Value

Object of class "fv" representing a constant function.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
Ege Rubak and Jesper Møller.

See Also

\texttt{psst}

Examples

\begin{verbatim}
defit <- ppm(cells, ~1, nd=10)
v <- psst(fit, npfun)
\end{verbatim}

\texttt{npoints} \hspace{1cm} \textit{Number of Points in a Point Pattern}

Description

Returns the number of points in a point pattern of any kind.

Usage

\begin{verbatim}
npoints(x)
npoints(x) ## S3 method for class 'ppp'
npoints(x) ## S3 method for class 'ppx'
\end{verbatim}
Arguments

x A point pattern (object of class "ppp", "pp3", "ppx" or some other suitable class).

Details

This function returns the number of points in a point pattern. The function npoints is generic with methods for the classes "ppp", "pp3", "ppx" and possibly other classes.

Value

Integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, print.pp3, print.ppx.

Examples

data(cells)
npoints(cells)

<table>
<thead>
<tr>
<th>nsegments</th>
<th>Number of Line Segments in a Line Segment Pattern</th>
</tr>
</thead>
</table>

Description

Returns the number of line segments in a line segment pattern.

Usage

nsegments(x)

S3 method for class 'psp'

nsegments(x)

Arguments

x A line segment pattern, i.e. an object of class psp.

Details

This function is generic, but there is at present only one method, that for class psp.
Value

Integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

npoints(), psp.object()

Examples

data(copper)
nsegments(copper$Lines)
nsegments(copper$SouthLines)

nztrees

New Zealand Trees Point Pattern

Description

The data give the locations of trees in a forest plot.

They were collected by Mark and Esler (1970) and were extracted and analysed by Ripley (1981, pp. 169-175). They represent the positions of 86 trees in a forest plot approximately 140 by 85 feet.

Ripley discarded from his analysis the eight trees at the right-hand edge of the plot (which appear to be part of a planted border) and trimmed the window by a 5-foot margin accordingly.

Usage

data(nztrees)

Format

An object of class "ppp" representing the point pattern of tree locations. The Cartesian coordinates are in feet.

See ppp.object for details of the format of a point pattern object.

Note

To trim a 5-foot margin off the window, type nzsub <- nztrees[owin(c(0,148),c(0,95))]

Source

References

objsurf
Objective Function Surface

Description

For a model that was fitted by optimisation, compute the values of the objective function in a neighbourhood of the optimal value.

Usage

```r
objsurf(x, ...)
```

S3 method for class 'kppm'
```r
objsurf(x, ..., ngrid = 32, ratio = 1.5, verbose = TRUE)
```

S3 method for class 'minconfit'
```r
objsurf(x, ..., ngrid = 32, ratio = 1.5, verbose = TRUE)
```

Arguments

- `x` Some kind of model that was fitted by finding the optimal value of an objective function. An object of class "kppm" or "minconfit".
- `...` Extra arguments are usually ignored.
- `ngrid` Number of grid points to evaluate along each axis. Either a single integer, or a pair of integers. For example `ngrid=32` would mean a 32 * 32 grid.
- `ratio` Number greater than 1 determining the range of parameter values to be considered. If the optimal parameter value is `opt` then the objective function will be evaluated for values between `opt/ratio` and `opt * ratio`.
- `verbose` Logical value indicating whether to print progress reports.

Details

The object `x` should be some kind of model that was fitted by maximising or minimising the value of an objective function. The objective function will be evaluated on a grid of values of the model parameters.

Currently the following types of objects are accepted:

- an object of class "kppm" representing a cluster point process or Cox point process. See `kppm`.
- an object of class "minconfit" representing a minimum-contrast fit between a summary function and its theoretical counterpart. See `mincontrast`.

The result is an object of class "objsurf" which can be printed and plotted: see `methods.objsurf`.
Value

An object of class "objsurf" which can be printed and plotted. Essentially a list containing entries x, y, z giving the parameter values and objective function values.

Author(s)

Adrian Baddeley and Ege Rubak.

See Also

methods.objsurf, kppm, mincontrast

Examples

```r
fit <- kppm(redwood, ~1, "Thomas")
os <- objsurf(fit)

if(interactive()) {
  plot(os)
  contour(os, add=TRUE)
  persp(os)
}
```

opening

Morphological Opening

Description

Perform morphological opening of a window, a line segment pattern or a point pattern.

Usage

opening(w, r, ...)

S3 method for class 'owin'
opening(w, r, ..., polygonal=NULL)

S3 method for class 'ppp'
opening(w, r, ...)

S3 method for class 'psp'
opening(w, r, ...)
opening

Arguments

- `w`: A window (object of class "owin" or a line segment pattern (object of class "psp") or a point pattern (object of class "ppp").
- `r`: Positive number: the radius of the opening.
- `...`: Extra arguments passed to `as.mask` controlling the pixel resolution, if a pixel approximation is used.
- `polygonal`: Logical flag indicating whether to compute a polygonal approximation to the erosion (`polygonal=TRUE`) or a pixel grid approximation (`polygonal=FALSE`).

Details

The morphological opening (Serra, 1982) of a set W by a distance $r > 0$ is the subset of points in W that can be separated from the boundary of W by a circle of radius r. That is, a point x belongs to the opening if it is possible to draw a circle of radius r (not necessarily centred on x) that has x on the inside and the boundary of W on the outside. The opened set is a subset of W.

For a small radius r, the opening operation has the effect of smoothing out irregularities in the boundary of W. For larger radii, the opening operation removes promontories in the boundary. For very large radii, the opened set is empty.

The algorithm applies erosion followed by dilation.

Value

If $r > 0$, an object of class "owin" representing the opened region. If $r=0$, the result is identical to w.

Author(s)

and Rolfin Turner <r.turner@auckland.ac.nz>

References

See Also

closing for the opposite operation.
dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

```r
v <- opening(letterR, 0.3)
plot(letterR, type="n", main="opening")
plot(v, add=TRUE, col="grey")
plot(letterR, add=TRUE)
```
Description

Creates an instance of an Ord-type interaction point process model which can then be fitted to point pattern data.

Usage

Ord(pot, name)

Arguments

- **pot**: An S language function giving the user-supplied interaction potential.
- **name**: Character string.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point \(x_i \) in the point pattern \(x \) contributes a factor \(g(a_i) \) where \(a_i = a(x_i, x) \) is the area of the tile associated with \(x_i \) in the Dirichlet tessellation of \(x \).

Ord (1977) proposed fitting this model to forestry data when \(g(a) \) has a simple “threshold” form. That model is implemented in our function `ordthresh`. The present function `Ord` implements the case of a completely general Ord potential \(g(a) \) specified as an S language function `pot`.

This is experimental.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

ord.family

See Also

ppm, ppm.object, OrdThresh

ord.family

Ord Interaction Process Family

Description

An object describing the family of all Ord interaction point processes

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the family of point process models introduced by Ord (1977).

If you need to create a specific Ord-type model for use in analysis, use the function OrdThresh or Ord.

Anyway, ord.family is an object of class "isf" containing a function ord.family$eval for evaluating the sufficient statistics of any Ord type point process model taking an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

pairwise.family, pairsat.family, Poisson, Pairwise, PairPiece, Strauss, StraussHard, Softcore, Geyer, SatPiece, Saturated, Ord, OrdThresh
OrdThresh

Ord's Interaction model

Description

Creates an instance of Ord's point process model which can then be fitted to point pattern data.

Usage

OrdThresh(r)

Arguments

r

Positive number giving the threshold value for Ord's model.

Details

Ord's point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point \(x_i \) in the point pattern \(x \) contributes a factor \(g(a_i) \) where \(a_i = a(x_i, x) \) is the area of the tile associated with \(x_i \) in the Dirichlet tessellation of \(x \). The function \(g \) is simply \(g(a) = 1 \) if \(a \geq r \) and \(g(a) = \gamma < 1 \) if \(a < r \), where \(r \) is called the threshold value.

This function creates an instance of Ord's model with a given value of \(r \). It can then be fitted to point process data using ppm.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

ppm, ppm.object
Description

These data give the three-dimensional locations of osteocyte lacunae observed in rectangular volumes of solid bone using a confocal microscope.

There were four samples of bone, and ten regions were mapped in each bone, yielding 40 spatial point patterns. The data can be regarded as replicated observations of a three-dimensional point process, nested within bone samples.

Usage

data(osteo)

Format

A hyperframe with the following columns:

- id: character string identifier of bone sample
- shortid: last numeral in id
- brick: serial number (1 to 10) of sampling volume within this bone sample
- pts: three dimensional point pattern (class pp3)
- depth: the depth of the brick in microns

Details

These data are three-dimensional point patterns representing the positions of osteocyte lacunae, holes in bone which were occupied by osteocytes (bone-building cells) during life.

Observations were made on four different skulls of Macaque monkeys using a three-dimensional microscope. From each skull, observations were collected in 10 separate sampling volumes. In all, there are 40 three-dimensional point patterns in the dataset.

The data were collected in 1984 by A. Baddeley, A. Boyde, C.V. Howard and S. Reid (see references) using the tandem-scanning reflected light microscope (TSRLM) at University College London. This was one of the first optical confocal microscopes available.

Each point pattern dataset gives the \((x, y, z)\) coordinates (in microns) of all points visible in a three-dimensional rectangular box (“brick”) of dimensions \(81 \times 100 \times d\) microns, where \(d\) varies. The \(z\) coordinate is depth into the bone (depth of the focal plane of the confocal microscope); the \((x, y)\) plane is parallel to the exterior surface of the bone; the relative orientation of the \(x\) and \(y\) axes is not important.

The bone samples were three intact skulls and one skull cap, all originally identified as belonging to the macaque monkey *Macaca fascicularis*, from the collection of the Department of Anatomy, University of London. Later analysis (Baddeley et al, 1993) suggested that the skull cap, given here as the first animal, was a different subspecies, and this was confirmed by anatomical inspection.
Sampling Procedure

The following extract from Baddeley et al (1987) describes the sampling procedure. The parietal bones of three fully articulated adult Macaque monkey (*Macaca fascicularis*) skulls from the collection of University College London were used. The right parietal bone was examined, in each case, approximately 1 cm lateral to the sagittal suture and 2 cm posterior to the coronal suture. The skulls were mounted on plasticine on a moving stage placed beneath the TSRLM. Immersion oil was applied and a ×60, NA 1.0 oil immersion objective lens (Lomo) was focussed at 10 microns below the cranial surface. The TV image was produced by a Panasonic WB 1850/B camera on a Sony PVM 90CE TV monitor.

A graduated rectangular counting frame 90 × 110 mm (representing 82 × 100 microns in real units) was marked on a Perspex overlay and fixed to the screen. The area of tissue seen within the frame defined a subfield: a guard area of 10 mm width was visible on all sides of the frame. Ten subfields were examined, arranged approximately in a rectangular grid pattern, with at least one field width separating each pair of fields. The initial field position was determined randomly by applying a randomly-generated coordinate shift to the moving stage. Subsequent fields were attained using the coarse controls of the microscope stage, in accordance with the rectangular grid pattern.

For each subfield, the focal plane was racked down from its initial 10 micron depth until all visible osteocyte lacunae had been examined. This depth d was recorded. The 3-dimensional sampling volume was therefore a rectangular box of dimensions $82 \times 100 \times d$ microns, called a “brick”.

For each visible lacuna, the fine focus racking control was adjusted until maximum brightness was obtained. The depth of the focal plane was then recorded as the z coordinate of the “centre point” of the lacuna. Without moving the focal plane, the x and y coordinates of the centre of the lacunar image were read off the graduated counting frame. This required a subjective judgement of the position of the centre of the 2-dimensional image. Profiles were approximately elliptical and the centre was considered to be well-defined. Accuracy of the recording procedure was tested by independent repetition (by the same operator and by different operators) and found to be reproducible to plus or minus 2 mm on the screen.

A lacuna was counted only if its (x, y) coordinates lay inside the 90 × 110 mm counting frame.

Source

Data were collected by Adrian Baddeley.

References

Examples

data(osteo)

osteo
overlap.owin

Compute Area of Overlap

Description

Computes the area of the overlap (intersection) of two windows.

Usage

```r
overlap.owin(A, B)
```

Arguments

- `A, B`
 Windows (objects of class "owin").

Details

This function computes the area of the overlap between the two windows `A` and `B`.

If one of the windows is a binary mask, then both windows are converted to masks on the same grid, and the area is computed by counting pixels. Otherwise, the area is computed analytically (using the discrete Stokes theorem).

Value

A single numeric value.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `intersect.owin`
- `area.owin`
- `setcov`

Examples

```r
A <- square(1)
B <- shift(A, c(0.3, 0.2))
overlap.owin(A, B)
```
Create a Window

Description

Creates an object of class "owin" representing an observation window in the two-dimensional plane.

Usage

```r
owin(xrange=c(0,1), yrange=c(0,1), ..., poly=NULL, mask=NULL,
     unitname=NULL, xy=NULL)
```

Arguments

- `xrange` \(x \) coordinate limits of enclosing box
- `yrange` \(y \) coordinate limits of enclosing box
- `...` Ignored.
- `mask` Optional. Logical matrix giving binary image of window. Incompatible with `poly`.
- `unitname` Optional. Name of unit of length. Either a single character string, or a vector of two character strings giving the singular and plural forms, respectively.
- `xy` Optional. List with components `x` and `y` specifying the pixel coordinates for `mask`.

Details

In the `spatstat` library, a point pattern dataset must include information about the window of observation. This is represented by an object of class "owin". See `owin.object` for an overview.

To create a window in its own right, users would normally invoke `owin`, although sometimes `as.owin` may be convenient.

A window may be rectangular, polygonal, or a mask (a binary image).

- **rectangular windows**: If only `xrange` and `yrange` are given, then the window will be rectangular, with its \(x \) and \(y \) coordinate dimensions given by these two arguments (which must be vectors of length 2). If no arguments are given at all, the default is the unit square with dimensions `xrange=c(0,1)` and `yrange=c(0,1)`.

- **polygonal windows**: If `poly` is given, then the window will be polygonal.
 - **single polygon**: If `poly` is a matrix or data frame with two columns, or a structure with two component vectors `x` and `y` of equal length, then these values are interpreted as the cartesian coordinates of the vertices of a polygon circumscribing the window. The vertices must be listed *anticlockwise*. No vertex should be repeated (i.e. do not repeat the first vertex).
- **multiple polygons or holes**: If poly is a list, each entry poly[[i]] of which is a matrix or data frame with two columns or a structure with two component vectors x and y of equal length, then the successive list members poly[[i]] are interpreted as separate polygons which together make up the boundary of the window. The vertices of each polygon must be listed **anticlockwise** if the polygon is part of the external boundary, but **clockwise** if the polygon is the boundary of a hole in the window. Again, do not repeat any vertex.

- **binary masks**: If mask is given, then the window will be a binary image. The argument mask should be a logical matrix such that mask[i, j] is TRUE if the point (x[j], y[i]) belongs to the window, and FALSE if it does not. Note carefully that rows of mask correspond to the y coordinate, and columns to the x coordinate. Here x and y are vectors of x and y coordinates equally spaced over xrange and yrange respectively. The pixel coordinate vectors x and y may be specified explicitly using the argument xy, which should be a list containing components x and y. Alternatively there is a sensible default.

To create a window which is mathematically defined by inequalities in the Cartesian coordinates, use `raster.x()` and `raster.y()` as in the examples below.

Functions `square` and `disc` will create square and circular windows, respectively.

Value

An object of class "owin" describing a window in the two-dimensional plane.

Validity of polygon data

Polygon data may contain geometrical inconsistencies such as self-intersections and overlaps. These inconsistencies must be removed to prevent problems in other spatstat functions. By default, polygon data will be repaired automatically using polygon-clipping code. The repair process may change the number of vertices in a polygon and the number of polygon components. To disable the repair process, set `spatstat.options(fixpolygons=FALSE)`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`square, disc, owin.object, as.owin, complement.owin, ppp.object, ppp`

Examples

```r
w <- owin()
w <- owin(c(0,1), c(0,1))  # the unit square
w <- owin(c(10,20), c(10,30), unitname=c("foot","feet"))  # a rectangle of dimensions 10 x 20 feet
# with lower left corner at (10,10)
# polygon (diamond shape)
```
A class `owin` to define the “observation window” of a point pattern

In the `spatstat` library, a point pattern dataset must include information about the window or region in which the pattern was observed. A window is described by an object of class "owin". Windows of arbitrary shape are supported.
An object of class "owin" has one of three types:
"rectangle": a rectangle in the two-dimensional plane with edges parallel to the axes
"polygonal": a region whose boundary is a polygon or several polygons. The region may have holes and may consist of several disconnected pieces.
"mask": a binary image (a logical matrix) set to TRUE for pixels inside the window and FALSE outside the window.

Objects of class "owin" may be created by the function \texttt{owin} and converted from other types of data by the function \texttt{as.owin}.

They may be manipulated by the functions \texttt{as.rectangle}, \texttt{as.mask}, \texttt{complement.owin}, \texttt{rotate}, \texttt{shift}, \texttt{affine}, \texttt{erosion}, \texttt{dilation}, \texttt{opening} and \texttt{closing}.

Geometrical calculations available for windows include \texttt{area.owin}, \texttt{perimeter}, \texttt{diameter.owin}, \texttt{boundingbox}, \texttt{eroded.areas}, \texttt{bdist.points}, \texttt{bdist.pixels}, and \texttt{even.breaks.owin}. The mapping between continuous coordinates and pixel raster indices is facilitated by the functions \texttt{raster.x}, \texttt{raster.y} and \texttt{nearest.raster.point}.

There is a plot method for window objects, \texttt{plot.owin}. This may be useful if you wish to plot a point pattern’s window without the points for graphical purposes.

There are also methods for \texttt{summary} and \texttt{print}.

\textbf{Warnings}

In a window of type "mask", the row index corresponds to increasing \(y\) coordinate, and the column index corresponds to increasing \(x\) coordinate.

\textbf{Author(s)}

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

\textbf{See Also}

\texttt{owin}, \texttt{as.owin}, \texttt{as.rectangle}, \texttt{as.mask}, \texttt{summary.owin}, \texttt{print.owin}, \texttt{complement.owin}, \texttt{erosion}, \texttt{dilation}, \texttt{opening}, \texttt{closing}, \texttt{affine.owin}, \texttt{shift.owin}, \texttt{rotate.owin}, \texttt{raster.x}, \texttt{raster.y}, \texttt{nearest.raster.point}, \texttt{plot.owin}, \texttt{area.owin}, \texttt{boundingbox}, \texttt{diameter}, \texttt{eroded.areas}, \texttt{bdist.points}, \texttt{bdist.pixels}

\textbf{Examples}

```r
w <- owin()
w <- owin(c(0,1), c(0,1))  # the unit square

w <- owin(c(0,1), c(0,2))  ## Not run:
plot(w)
# plots edges of a box 1 unit x 2 units
v <- locator()
# click on points in the plot window
# to be the vertices of a polygon
# traversed in anticlockwise order
u <- owin(c(0,1), c(0,2), poly=v)
plot(u)
```
Description

Fills the border of a pixel image with a given value or values.

Usage

padimage(X, value, n=1)

Arguments

- **X**: Pixel image (object of class "im").
- **value**: Single value to be placed around the border of X.
- **n**: Width of border, in pixels.

Details

The image X will be expanded by a margin of n pixels, with their values set to value.

The argument value should be a single value (a vector of length 1), normally a value of the same type as the pixel values of X. It may be NA. Alternatively if X is a factor-valued image, value can be one of the levels of X.

Value

Another object of class "im", of the same type as X.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.au.dk>

See Also

- `im`

Examples

```r
Z <- setcov(owin())
plot(padimage(Z, 1, 10))
```
pairdist
\textit{Pairwise distances}

\textbf{Description}

Computes the matrix of distances between all pairs of ‘things’ in a dataset.

\textbf{Usage}

pairdist(X, ...)

\textbf{Arguments}

\begin{itemize}
 \item \texttt{X} Object specifying the locations of a set of ‘things’ (such as a set of points or a set of line segments).
 \item \texttt{...} Further arguments depending on the method.
\end{itemize}

\textbf{Details}

Given a dataset \(X \) and \(Y \) (representing either a point pattern or a line segment pattern) \texttt{pairdist} computes the distance between each pair of ‘things’ in the dataset, and returns a matrix containing these distances.

The function \texttt{pairdist} is generic, with methods for point patterns (objects of class "ppp"), line segment patterns (objects of class "psp") and a default method. See the documentation for \texttt{pairdist.ppp}, \texttt{pairdist.psp} or \texttt{pairdist.default} for details.

\textbf{Value}

A square matrix whose \([i,j]\) entry is the distance between the ‘things’ numbered \(i \) and \(j \).

\textbf{Author(s)}

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

\textbf{See Also}

\texttt{pairdist.ppp, pairdist.psp, pairdist.default, crossdist, nndist, Kest}
Pairwise distances

Description

Computes the matrix of distances between all pairs of points in a set of points.

Usage

```r
## Default S3 method:
pairdist(X, Y=NULL, ..., period=NULL, method="C", squared=FALSE)
```

Arguments

- `X, Y` Arguments specifying the coordinates of a set of points. Typically `X` and `Y` would be numeric vectors of equal length. Alternatively `Y` may be omitted and `X` may be a list with two components `x` and `y`, or a matrix with two columns.
- `...` Ignored.
- `period` Optional. Dimensions for periodic edge correction.
- `method` String specifying which method of calculation to use. Values are "C" and "interpreted". Usually not specified.
- `squared` Logical. If `squared=TRUE`, the squared distances are returned instead (this computation is faster).

Details

Given the coordinates of a set of points, this function computes the Euclidean distances between all pairs of points, and returns the matrix of distances. It is a method for the generic function `pairdist`.

The arguments `X` and `Y` must determine the coordinates of a set of points. Typically `X` and `Y` would be numeric vectors of equal length. Alternatively `Y` may be omitted and `X` may be a list with two components named `x` and `y`, or a matrix or data frame with two columns.

Alternatively if `period` is given, then the distances will be computed in the 'periodic' sense (also known as 'torus' distance). The points will be treated as if they are in a rectangle of width `period[1]` and height `period[2]`. Opposite edges of the rectangle are regarded as equivalent.

If `squared=TRUE` then the _squared_ Euclidean distances \(d^2 \) are returned, instead of the Euclidean distances \(d \). The squared distances are faster to calculate, and are sufficient for many purposes (such as finding the nearest neighbour of a point).

The argument `method` is not normally used. It is retained only for checking the validity of the software. If `method = "interpreted"` then the distances are computed using interpreted R code only. If `method="C"` (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose \([i, j]\) entry is the distance between the points numbered \(i\) and \(j\).
Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

See Also

crossdist, nndist, Kest

Examples

x <- runif(100)
y <- runif(100)
d <- pairdist(x, y)
d <- pairdist(cbind(x,y))
d <- pairdist(x, y, period=c(1,1))
d <- pairdist(x, y, squared=TRUE)

Description

Given a pattern of points on a linear network, compute the matrix of distances between all pairs
of points, measuring distance by the shortest path in the network.

Usage

S3 method for class 'lpp'
pairdist(X, ..., method="C")

Arguments

- **X**
 - Point pattern on linear network (object of class "lpp").
- **method**
 - Optional string determining the method of calculation. Either "interpreted" or "C".
- **...**
 - Ignored.

Details

Given a pattern of points on a linear network, this function computes the matrix of distances between
all pairs of points, measuring distance by the shortest path in the network.

If method="C" the distances are computed using code in the C language. If method="interpreted"
then the computation is performed using interpreted R code. The R code is much slower, but is pro-
vided for checking purposes.

Value

A symmetric matrix.
Author(s)
Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

See Also
lpp

Examples
example(lpp)
pairdist(x)

description

Pairwise distances in Three Dimensions

Description
Computes the matrix of distances between all pairs of points in a three-dimensional point pattern.

Usage
S3 method for class 'pp3'
pairdist(X, ..., periodic=FALSE, squared=FALSE)

Arguments
X A point pattern (object of class "pp3").
... Ignored.
periodic Logical. Specifies whether to apply a periodic edge correction.
squared Logical. If squared=TRUE, the squared distances are returned instead (this computation is faster).

Details
This is a method for the generic function pairdist.

Given a three-dimensional point pattern X (an object of class "pp3"), this function computes the Euclidean distances between all pairs of points in X, and returns the matrix of distances.

Alternatively if periodic=TRUE and the window containing X is a box, then the distances will be computed in the 'periodic' sense (also known as 'torus' distance): opposite faces of the box are regarded as equivalent. This is meaningless if the window is not a box.

If squared=TRUE then the squared Euclidean distances \(d^2\) are returned, instead of the Euclidean distances \(d\). The squared distances are faster to calculate, and are sufficient for many purposes (such as finding the nearest neighbour of a point).
Value

A square matrix whose \([i,j]\) entry is the distance between the points numbered \(i\) and \(j\).

Author(s)

See Also

`pairdist`, `crossdist`, `nndist`, `K3est`

Examples

```r
X <- runifpoint3(20)
d <- pairdist(X)
d <- pairdist(X, periodic=TRUE)
d <- pairdist(X, squared=TRUE)
```

Description

Computes the matrix of distances between all pairs of points in a point pattern.

Usage

```r
## S3 method for class 'ppp'
pairdist(X, ..., periodic=FALSE, method="C", squared=FALSE)
```

Arguments

- **X**: A point pattern (object of class "ppp").
- **...**: Ignored.
- **periodic**: Logical. Specifies whether to apply a periodic edge correction.
- **method**: String specifying which method of calculation to use. Values are "C" and "interpreted". Usually not specified.
- **squared**: Logical. If squared=TRUE, the squared distances are returned instead (this computation is faster).
pairdist.ppx

Details

This is a method for the generic function pairdist.

Given a point pattern \(X \) (an object of class "ppp"), this function computes the Euclidean distances between all pairs of points in \(X \), and returns the matrix of distances.

Alternatively if \(\text{periodic} = \text{TRUE} \) and the window containing \(X \) is a rectangle, then the distances will be computed in the 'periodic' sense (also known as 'torus' distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the window is not a rectangle.

If \(\text{squared} = \text{TRUE} \) then the \textit{squared} Euclidean distances \(d^2 \) are returned, instead of the Euclidean distances \(d \). The squared distances are faster to calculate, and are sufficient for many purposes (such as finding the nearest neighbour of a point).

The argument \text{method} is not normally used. It is retained only for checking the validity of the software. If \text{method} = "interpreted" then the distances are computed using interpreted R code only. If \text{method}="C" (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose \([i, j]\) entry is the distance between the points numbered \(i \) and \(j \).

Author(s)

Pavel Grabarnik \(<\text{pavel.grabar@issp.serpukhov.su}>\) and Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\)

http://www.maths.uwa.edu.au/~adrian/

See Also

pairdist, pairdist.default, pairdist.psp, crossdist, nndist, Kest

Examples

```r
data(cells)
d <- pairdist(cells)
d <- pairdist(cells, periodic=TRUE)
d <- pairdist(cells, squared=TRUE)
```

pairdist.ppx

Pairwise Distances in Any Dimensions

Description

Computes the matrix of distances between all pairs of points in a multi-dimensional point pattern.

Usage

```r
# S3 method for class 'ppx'
pairdist(X, ...)
```
Arguments

X
A point pattern (object of class "ppx").

... Arguments passed to coords.ppx to determine which coordinates should be used.

Details

This is a method for the generic function pairdist.

Given a multi-dimensional point pattern \(X \) (an object of class "ppx"), this function computes the Euclidean distances between all pairs of points in \(X \), and returns the matrix of distances.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance between points in a space-time point pattern, set temporal=FALSE.

Value

A square matrix whose \([i,j]\) entry is the distance between the points numbered \(i \) and \(j \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

pairdist, crossdist, nndist

Examples

df <- data.frame(x=runif(4),y=runif(4),z=runif(4),w=runif(4))
X <- ppx(data=df)
pairdist(X)

Description

Computes the matrix of distances between all pairs of line segments in a line segment pattern.

Usage

```r
## S3 method for class 'ppx'
pairdist(X, ..., method="C", type="Hausdorff")
```
Arguments

\(X\)
A line segment pattern (object of class "psp").

\(\ldots\)
Ignored.

\textit{method}
String specifying which method of calculation to use. Values are "C" and "interpreted". Usually not specified.

\textit{type}
Type of distance to be computed. Options are "Hausdorff" and "separation". Partial matching is used.

Details

This function computes the distance between each pair of line segments in \(X\), and returns the matrix of distances.

This is a method for the generic function \texttt{pairdist} for the class "psp".

The distances between line segments are measured in one of two ways:

- if \texttt{type="Hausdorff"}, distances are computed in the Hausdorff metric. The Hausdorff distance between two line segments is the maximum distance from any point on one of the segments to the nearest point on the other segment.

- if \texttt{type="separation"}, distances are computed as the minimum distance from a point on one line segment to a point on the other line segment. For example, line segments which cross over each other have separation zero.

The argument \texttt{method} is not normally used. It is retained only for checking the validity of the software. If \texttt{method = "interpreted"} then the distances are computed using interpreted \texttt{R} code only. If \texttt{method="C"} (the default) then compiled \texttt{C} code is used, which is somewhat faster.

Value

A square matrix whose \([i,j]\) entry is the distance between the line segments numbered \(i\) and \(j\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{crossdist, nndist, pairdist.ppp}

Examples

\begin{verbatim}
L <- psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- pairdist(L)
S <- pairdist(L, type="sep")
\end{verbatim}
Description

Computes the distribution of the orientation of vectors joining pairs of points at a particular range of distances.

Usage

pairorient(X, r1, r2, ..., cumulative=FALSE,
correction, ratio = FALSE,
unit=c("degree", "radian"), domain=NULL)

Arguments

X Point pattern (object of class "ppp").
r1,r2 Minimum and maximum values of distance to be considered.
... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.
cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE, the default) or the cumulative distribution function (cumulative=TRUE).
correction Character vector specifying edge correction or corrections. Options are "none", "isotropic", "translate", "good" and "best".
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
unit Unit in which the angles should be expressed. Either "degree" or "radian".
domain Optional window. The first point \(x_i \) of each pair of points will be constrained to lie in domain.

Details

This algorithm considers all pairs of points in the pattern \(X \) that lie more than \(r1 \) and less than \(r2 \) units apart. The direction of the arrow joining the points is measured, as an angle in degrees or radians, anticlockwise from the \(x \) axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the orientations is calculated using circdensity.

If cumulative=TRUE, then the cumulative distribution function of these directions is calculated. This is the function \(O_{r1,r2}(\phi) \) defined in Stoyan and Stoyan (1994), equation (14.53), page 271.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust for the fact that some interpoint distances are more likely to be observed than others. The choice of edge correction or corrections is determined by the argument correction.

It is also possible to calculate an estimate of the probability density from the cumulative distribution function, by numerical differentiation. Use deriv.fv with the argument dperiodic=TRUE.
Value

A function value table (object of class "fv") containing the estimates of the probability density or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References

See Also

Kest, Ksector, nnorient

Examples

rose(pairorient(redwood, 0.05, 0.15, sigma=8), col="grey")
plot(CDF <- pairorient(redwood, 0.05, 0.15, cumulative=TRUE))
plot(f <- deriv(CDF, spar=0.6, Dperiodic=TRUE))

Description

Creates an instance of a pairwise interaction point process model with piecewise constant potential function. The model can then be fitted to point pattern data.

Usage

PairPiece(r)

Arguments

r vector of jump points for the potential function
Details

A pairwise interaction point process in a bounded region is a stochastic point process with probability density of the form

\[f(x_1, \ldots, x_n) = \alpha \prod_i b(x_i) \prod_{i < j} h(x_i, x_j) \]

where \(x_1, \ldots, x_n \) represent the points of the pattern. The first product on the right hand side is over all points of the pattern; the second product is over all unordered pairs of points of the pattern.

Thus each point \(x_i \) of the pattern contributes a factor \(b(x_i) \) to the probability density, and each pair of points \(x_i, x_j \) contributes a factor \(h(x_i, x_j) \) to the density.

The pairwise interaction term \(h(u, v) \) is called piecewise constant if it depends only on the distance between \(u \) and \(v \), say \(h(u, v) = H(||u - v||) \), and \(H \) is a piecewise constant function (a function which is constant except for jumps at a finite number of places). The use of piecewise constant interaction terms was first suggested by Takacs (1986).

The function \(\text{ppm}() \), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the piecewise constant pairwise interaction is yielded by the function \(\text{PairPiece}() \). See the examples below.

The entries of \(r \) must be strictly increasing, positive numbers. They are interpreted as the points of discontinuity of \(H \). It is assumed that \(H(s) = 1 \) for all \(s > r_{\text{max}} \) where \(r_{\text{max}} \) is the maximum value in \(r \). Thus the model has as many regular parameters (see \(\text{ppm} \)) as there are entries in \(r \). The \(i \)-th regular parameter \(\theta_i \) is the logarithm of the value of the interaction function \(H \) on the interval \([r_{i-1}, r_i)\).

If \(r \) is a single number, this model is similar to the Strauss process, see \(\text{Strauss} \). The difference is that in \(\text{PairPiece} \) the interaction function is continuous on the right, while in \(\text{Strauss} \) it is continuous on the left.

The analogue of this model for multitype point processes has not yet been implemented.

Value

An object of class "interact" describing the interpoint interaction structure of a point process. The process is a pairwise interaction process, whose interaction potential is piecewise constant, with jumps at the distances given in the vector \(r \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

\(\text{ppm}, \text{pairwise.family}, \text{ppm.object}, \text{Strauss}\text{ rmh.ppm} \)
Examples

PairPiece(c(0.1, 0.2))
prints a sensible description of itself
data(cells)

Not run:
ppm(cells, ~1, PairPiece(r = c(0.05, 0.1, 0.2)))
fit a stationary piecewise constant pairwise interaction process

End(Not run)
ppm(cells, ~polynom(x, y, 3), PairPiece(c(0.05, 0.1)))
nonstationary process with log-cubic polynomial trend

pairs.im Scatterplot Matrix for Pixel Images

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images.

Usage

S3 method for class 'im'
pairs(..., plot=TRUE)

Arguments

... Any number of arguments, each of which is either a pixel image (object of class "im") or a named argument to be passed to pairs.default.

plot Logical. If TRUE, the scatterplot matrix is plotted.

Details

This is a method for the generic function pairs for the class of pixel images.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be pixel images (objects of class "im"). Their spatial domains must overlap, but need not have the same pixel dimensions.

First the pixel image domains are intersected, and converted to a common pixel resolution. Then the corresponding pixel values of each image are extracted. Then pairs.default is called to plot the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the plot.
Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

Image or Contour Plots

Since the scatterplots may show very dense concentrations of points, it may be useful to set panel=panel.image
or panel=panel.contour to draw a colour image or contour plot of the kernel-smoothed density
of the scatterplot in each panel. The argument panel is passed to pairs.default. See the help for
panel.image and panel.contour.

Low Level Control of Graphics

To control the appearance of the individual scatterplot panels, see pairs.default, points or par.
To control the plotting symbol for the points in the scatterplot, use the arguments pch, col, bg as
described under points (because the default panel plotter is the function points). To suppress the
tick marks on the plot axes, type par(xaxt="n", yaxt="n") before calling pairs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pairs, pairs.default, panel.contour, panel.image, plot.im, im, par

Examples

X <- density(rpoispp(30))
Y <- density(rpoispp(40))
Z <- density(rpoispp(30))
pairs(X,Y,Z)
Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the "saturated pairwise interaction" family of point process models.

If you need to create a specific interaction model for use in spatial pattern analysis, use the function `Saturated()` or the two existing implementations of models in this family, `Geyer()` and `SatPiece()`.

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process in which the total contribution to the potential from each point (from its pairwise interaction with all other points) is trimmed to a maximum value c. This model is implemented in the function `Geyer()`.

The present class `pairsat.family` is the extension of this saturation idea to all pairwise interactions. Note that the resulting models are no longer pairwise interaction processes - they have interactions of infinite order.

`pairsat.family` is an object of class "isf" containing a function `pairwise$eval` for evaluating the sufficient statistics of any saturated pairwise interaction point process model in which the original pair potentials take an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`Geyer` to create the Geyer saturation process.

`SatPiece` to create a saturated process with piecewise constant pair potential.

`Saturated` to create a more general saturation model.

Other families: `inorder.family`, `ord.family`, `pairwise.family`.

Pairwise

Generic Pairwise Interaction model

Description

Creates an instance of a pairwise interaction point process model which can then be fitted to point pattern data.
Usage

Pairwise(pot, name, par, parnames, printfun)

Arguments

pot An R language function giving the user-supplied pairwise interaction potential.
name Character string.
par List of numerical values for irregular parameters
parnames Vector of names of irregular parameters
printfun Do not specify this argument: for internal use only.

Details

This code constructs a member of the pairwise interaction family pairwise.family with arbitrary pairwise interaction potential given by the user.

Each pair of points in the point pattern contributes a factor $h(d)$ to the probability density, where d is the distance between the two points. The factor term $h(d)$ is

$$h(d) = \exp(-\theta \text{pot}(d))$$

provided $\text{pot}(d)$ is finite, where θ is the coefficient vector in the model.

The function pot must take as its first argument a matrix of interpoint distances, and evaluate the potential for each of these distances. The result must be either a matrix with the same dimensions as its input, or an array with its first two dimensions the same as its input (the latter case corresponds to a vector-valued potential).

If irregular parameters are present, then the second argument to pot should be a vector of the same type as par giving those parameter values.

The values returned by pot may be finite numeric values, or $-\text{Inf}$ indicating a hard core (that is, the corresponding interpoint distance is forbidden). We define $h(d) = 0$ if $\text{pot}(d) = -\infty$. Thus, a potential value of minus infinity is always interpreted as corresponding to $h(d) = 0$, regardless of the sign and magnitude of θ.

Value

An object of class “interact” describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, pairwise.family, ppm.object
Examples

```R
# This is the same as StraussHard(r=0.7,h=0.05)
strpot <- function(d,par) {
  r <- par$r
  h <- par$h
  value <- (d <= r)
  value[d < h] <- -Inf
  value
}
mySH <- Pairwise(strpot, "StraussHard process", list(r=0.7,h=0.05),
                 c("interaction distance r", "hard core distance h"))
data(cells)
ppm(cells, ~ 1, mySH, correction="isotropic")

# Fiksel (1984) double exponential interaction
# see Stoyan, Kendall, Mecke 1987 p 161
fikspot <- function(d, par) {
  r <- par$r
  h <- par$h
  zeta <- par$zeta
  value <- exp(-zeta * d)
  value[d < h] <- -Inf
  value[d > r] <- 0
  value
}
Fiksel <- Pairwise(fikspot, "Fiksel double exponential process",
                   list(r=3.5, h=1, zeta=1),
                   c("interaction distance r", "hard core distance h",
                     "exponential coefficient zeta"))
data(spruces)
fit <- ppm(unmark(spruces), ~ 1, Fiksel, rbord=3.5)
fit
plot(fitin(fit), xlim=c(0,4))
coef(fit)
# corresponding values obtained by Fiksel (1984) were -1.9 and -6.0
```

Description

An object describing the family of all pairwise interaction Gibbs point processes.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the pairwise interaction family of point process models.
If you need to create a specific pairwise interaction model for use in modelling, use the function \texttt{Pairwise} or one of the existing functions listed below.

Anyway, \texttt{pairwise.family} is an object of class "isf" containing a function \texttt{pairwise.family$eval} for evaluating the sufficient statistics of any pairwise interaction point process model taking an exponential family form.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

\textbf{See Also}

Other families: \texttt{pairsat.family, ord.family, inforder.family}.

Pairwise interactions: \texttt{Poisson, Pairwise, PairPiece, Fiksel, Hardcore, LennardJones, MultiHard, MultiStrauss, MultiStraussHard, Strauss, StraussHard, Softcore}.

Other interactions: \texttt{AreaInter, Geyer, Saturated, Ord, OrdThresh}.

\textbf{panel.contour} \quad \textit{Panel Plots using Colour Image or Contour Lines}

\textbf{Description}

These functions can be passed to \texttt{pairs} or \texttt{coplot} to determine what kind of plotting is done in each panel of a multi-panel graphical display.

\textbf{Usage}

\begin{verbatim}
panel.contour(x, y, ..., sigma = NULL)
panel.image(x, y, ..., sigma = NULL)
panel.histogram(x, ...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
\item \texttt{x, y} \quad Coordinates of points in a scatterplot.
\item \texttt{...} \quad Extra graphics arguments, passed to \texttt{contour.im, plot.im} or \texttt{rect}, respectively, to control the appearance of the panel.
\item \texttt{sigma} \quad Bandwidth of kernel smoother, on a scale where \(x \) and \(y \) range between 0 and 1.
\end{itemize}
Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x. It displays a histogram of the data.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

pairs.im, pairs.default, panel.smooth

Examples

with(bei.extra,
 pairs(grad, elev,
 panel = panel.contour,
 diag.panel = panel.histogram))

paracou

Kimboto trees at Paracou, French Guiana

Description

This dataset is a point pattern of adult and juvenile Kimboto trees (Pradosia cochlearia or P. ptychandra) recorded at Paracou in French Guiana. See Flores (2005).

The dataset paracou is a point pattern (object of class "ppp") containing the spatial coordinates of each tree, marked by age (a factor with levels adult and juvenile. The survey region is a rectangle approximately 400 by 525 metres. Coordinates are given in metres.

Note that the data contain duplicated points (two points at the same location). To determine which points are duplicates, use duplicated.ppp. To remove the duplication, use unique.ppp.

Usage

data(paracou)
parres

Partial Residuals for Point Process Model

Description

Computes the smoothed partial residuals, a diagnostic for transformation of a covariate in a Poisson point process model.

Usage

parres(model, covariate, ..., smooth.effect=FALSE, subregion=NULL, bw = "nrd0", adjust=1, from = NULL, to = NULL, n = 512, bw.input = c("points", "quad"), bw.restrict=FALSE, covname)

Arguments

model Fitted point process model (object of class "ppm").
covariate The covariate of interest. Either a character string matching the name of one of the canonical covariates in the model, or one of the names "x" or "y" referring to the Cartesian coordinates, or one of the names of the covariates given when model was fitted, or a pixel image (object of class "im") or function(x,y) supplying the values of a covariate at any location.
smooth.effect Logical. Determines the choice of algorithm. See Details.
subregion Optional. A window (object of class "owin") specifying a subset of the spatial domain of the data. The calculation will be confined to the data in this subregion.
bw Smoothing bandwidth or bandwidth rule (passed to density.default).
adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of values at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selection.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

Details

This command computes the smoothed partial residual diagnostic (Baddeley, Chang, Song and Turner, 2012) for the transformation of a covariate in a Poisson point process model.

The argument model must be a fitted Poisson point process model.

The diagnostic works in two different ways:

Canonical covariate: The argument covariate may be a character string which is the name of one of the canonical covariates in the model. The canonical covariates are the functions Z_j that appear in the expression for the Poisson point process intensity

$$
\lambda(u) = \exp(\beta_1 Z_1(u) + \ldots + \beta_p Z_p(u))
$$

at spatial location u. Type names(coef(model)) to see the names of the canonical covariates in model. If the selected covariate is Z_j, then the diagnostic plot concerns the model term $\beta_j Z_j(u)$. The plot shows a smooth estimate of a function $h(z)$ that should replace this linear term, that is, $\beta_j Z_j(u)$ should be replaced by $h(Z_j(u))$. The linear function is also plotted as a dotted line.

New covariate: If the argument covariate is a pixel image (object of class "im") or a function(x,y), it is assumed to provide the values of a covariate that is not present in the model. Alternatively covariate can be the name of a covariate that was supplied when the model was fitted (i.e. in the call to ppm) but which does not feature in the model formula. In either case we speak of a new covariate $Z(u)$. If the fitted model intensity is $\lambda(u)$ then we consider modifying this to $\lambda(u) \exp(h(Z(u)))$ where $h(z)$ is some function. The diagnostic plot shows an estimate of $h(z)$. **Warning:** in this case the diagnostic is not theoretically justified. This option is provided for research purposes.

Alternatively covariate can be one of the character strings "x" or "y" signifying the Cartesian coordinates. The behaviour here depends on whether the coordinate was one of the canonical covariates in the model.

If there is more than one canonical covariate in the model that depends on the specified covariate, then the covariate effect is computed using all these canonical covariates. For example in a log-quadratic model which includes the terms x and $I(x^2)$, the quadratic effect involving both these terms will be computed.

There are two choices for the algorithm. If smooth.effect=TRUE, the fitted covariate effect (according to model) is added to the point process residuals, then smoothing is applied to these values.
If smooth.effect=FALSE, the point process residuals are smoothed first, and then the fitted covariate effect is added to the result.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict. If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If bw.input="points" (the default) then bandwidth selection is based on the covariate values at the points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then bandwidth selection is based on the covariate values at every quadrature point used to fit the model. If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the subregion.

Value

A function value table (object of class "fv") containing the values of the smoothed partial residual, the estimated variance, and the fitted effect of the covariate. Also belongs to the class "parres" which has methods for print and plot.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smoothing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected bandwidth can be read off the print output for parres.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz>, Ya-Mei Chang and Yong Song.

References

See Also

addvar, rhohat, rho2hat

Examples

```r
X <- rpoispp(function(x,y){exp(3+x+2*x^2)})
model <- ppm(X, ~x+y)
tra <- parres(model, "x")
plot(tr)
plot(parres(model, "x", subregion=square(0.5)))
model2 <- ppm(X, ~x+I(x^2)+y)
plot(parres(model2, "x"))
```
Description

Estimate the pair correlation function.

Usage

```r
pcf(x, ...)```

Arguments

- `x` Either the observed data point pattern, or an estimate of its `K` function, or an array of multitype `K` functions (see Details).
- `...` Other arguments passed to the appropriate method.

Details

The pair correlation function of a stationary point process is

\[
g(r) = \frac{K'(r)}{2\pi r}
\]

where \(K'(r)\) is the derivative of \(K(r)\), the reduced second moment function (aka “Ripley’s \(K\) function”) of the point process. See `kest` for information about \(K(r)\). For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \(g(r) < 1\) suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical \(K\) function, such as the multitype \(K\) functions (see `kcross`, `Kdot`) and the inhomogeneous \(K\) function (see `Kinhom`). For all these variants, the benchmark value of \(K(r) = \pi r^2\) corresponds to \(g(r) = 1\).

This routine computes an estimate of \(g(r)\) either directly from a point pattern, or indirectly from an estimate of \(K(r)\) or one of its variants.

This function is generic, with methods for the classes "ppp", "fv" and "fasp".

If `X` is a point pattern (object of class "ppp") then the pair correlation function is estimated using a traditional kernel smoothing method (Stoyan and Stoyan, 1994). See `pcf.ppp` for details.

If `X` is a function value table (object of class "fv"), then it is assumed to contain estimates of the `K` function or one of its variants (typically obtained from `Kest` or `Kinhom`). This routine computes an estimate of \(g(r)\) using smoothing splines to approximate the derivative. See `pcf.fv` for details.

If `X` is a function value array (object of class "fasp"), then it is assumed to contain estimates of several \(K\) functions (typically obtained from `Kmulti` or `alltypes`). This routine computes an estimate of \(g(r)\) for each cell in the array, using smoothing splines to approximate the derivatives. See `pcf.fasp` for details.
Value

Either a function value table (object of class "fv", see \texttt{fv.object}) representing a pair correlation function, or a function array (object of class "fasp", see \texttt{fasp.object}) representing an array of pair correlation functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

\texttt{pcf.ppp, pcf.fv, pcf.fasp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes}

Examples

\begin{verbatim}
# ppp object
data(simdat)
p <- pcf(simdat)
plot(p)

# fv object
K <- Kest(simdat)
p2 <- pcf(K, spar=0.8, method="b")
plot(p2)

# multitype pattern; fasp object
amaK <- alltypes(amacrine, "K")
amap <- pcf(amaK, spar=1, method="b")
plot(amap)
\end{verbatim}

\section*{Description}

estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) \( K \) functions.

Usage

\begin{verbatim}
## S3 method for class 'fasp'
pcf(X, ..., method="c")
\end{verbatim}
Arguments

- **X**: An array of multitype $K$ functions (object of class "fasp").
- **method**: Letter "a", "b", "c" or "d" indicating the method for deriving the pair correlation function from the $K$ function.

Details

The pair correlation function of a stationary point process is

\[ g(r) = \frac{K'(r)}{2\pi r} \]

where $K'(r)$ is the derivative of $K(r)$, the reduced second moment function (aka “Ripley’s $K$ function”) of the point process. See `Kest` for information about $K(r)$. For a stationary Poisson process, the pair correlation function is identically equal to 1. Values $g(r) < 1$ suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical $K$ function, such as the multitype $K$ functions (see `Kcross`, `Kdot`) and the inhomogeneous $K$ function (see `Kinhom`). For all these variants, the benchmark value of $K(r) = \pi r^2$ corresponds to $g(r) = 1$.

This routine computes an estimate of $g(r)$ from an array of estimates of $K(r)$ or its variants, using smoothing splines to approximate the derivatives. It is a method for the generic function `pcf`.

The argument `X` should be a function array (object of class "fasp", see `fasp.object`) containing several estimates of $K$ functions. This should have been obtained from `alltypes` with the argument `fun="K"`.

The smoothing spline operations are performed by `smooth.spline` and `predict.smooth.spline` from the `modreg` library. Four numerical methods are available:

- "a" apply smoothing to $K(r)$, estimate its derivative, and plug in to the formula above;
- "b" apply smoothing to $Y(r) = \frac{K(r)}{2\pi r}$ constraining $Y(0) = 0$, estimate the derivative of $Y$, and solve;
- "c" apply smoothing to $Z(r) = \frac{K(r)}{\pi r^2}$ constraining $Z(0) = 1$, estimate its derivative, and solve.
- "d" apply smoothing to $V(r) = \sqrt{K(r)}$, estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of $r$. However it effectively constrains $g(0) = 1$. If the point pattern seems to have inhibition at small distances, you may wish to experiment with method "b" which effectively constrains $g(0) = 0$. Method "a" seems comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter `spar` and the degrees of freedom `df`. See `smooth.spline` for details.

Value

A function array (object of class "fasp", see `fasp.object`) representing an array of pair correlation functions. This can be thought of as a matrix $\mathcal{Y}$ each of whose entries $\mathcal{Y}[i,j]$ is a function value table (class "fv") representing the pair correlation function between points of type $i$ and points of type $j$. 


Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`kest`, `kinhom`, `kcross`, `kdot`, `kmulti`, `alltypes`, `smooth.spline`, `predict.smooth.spline`

Examples

```r
multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
strong inhibition between points of the same type
```

pcf.fv

*Pair Correlation Function obtained from K Function*

Description

Estimates the pair correlation function of a point pattern, given an estimate of the K function.

Usage

```r
S3 method for class 'fv'
pcf(X, ..., method="c")
```

Arguments

- **X**: An estimate of the \( \hat{K} \) function or one of its variants. An object of class "fv".
- **...**: Arguments controlling the smoothing spline function `smooth.spline`.
- **method**: Letter "a", "b", "c" or "d" indicating the method for deriving the pair correlation function from the \( K \) function.
The pair correlation function of a stationary point process is

\[ g(r) = \frac{K'(r)}{2\pi r} \]

where \( K'(r) \) is the derivative of \( K(r) \), the reduced second moment function (aka “Ripley’s \( K \) function’) of the point process. See \texttt{Kest} for information about \( K(r) \). For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \( g(r) < 1 \) suggest inhibition between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical \( K \) function, such as the multitype \( K \) functions (see \texttt{Kcross}, \texttt{Kdot}) and the inhomogeneous \( K \) function (see \texttt{Kinhom}). For all these variants, the benchmark value of \( K(r) = \pi r^2 \) corresponds to \( g(r) = 1 \).

This routine computes an estimate of \( g(r) \) from an estimate of \( K(r) \) or its variants, using smoothing splines to approximate the derivative. It is a method for the generic function \texttt{pcf} for the class "fv".

The argument \( X \) should be an estimated \( K \) function, given as a function value table (object of class \texttt{fvNobject}). This object should be the value returned by \texttt{Kest}, \texttt{Kcross}, \texttt{Kmulti} or \texttt{Kinhom}.

The smoothing spline operations are performed by \texttt{smooth.spline} and \texttt{predict.smooth.spline} from the \texttt{modreg} library. Four numerical methods are available:

- "a" apply smoothing to \( K(r) \), estimate its derivative, and plug in to the formula above;
- "b" apply smoothing to \( Y(r) = \frac{K(r)}{2\pi r} \) constraining \( Y(0) = 0 \), estimate the derivative of \( Y \), and solve;
- "c" apply smoothing to \( Z(r) = \frac{K(r)}{\pi r^2} \) constraining \( Z(0) = 1 \), estimate its derivative, and solve.
- "d" apply smoothing to \( V(r) = \sqrt{K(r)} \), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of \( r \). However it effectively constrains \( g(0) = 1 \). If the point pattern seems to have inhibition at small distances, you may wish to experiment with method "b" which effectively constrains \( g(0) = 0 \). Method "a" seems comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter \texttt{spar} and the degrees of freedom \texttt{df}. See \texttt{smooth.spline} for details.

**Value**

A function value table (object of class "fv", see \texttt{fvNobject}) representing a pair correlation function.

Essentially a data frame containing (at least) the variables

- \( r \) the vector of values of the argument \( r \) at which the pair correlation function \( g(r) \) has been estimated
- \( pcf \) vector of values of \( g(r) \)
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also
pcf, pcf.ppp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

```r
univariate point pattern
data(simdat)

K <- Kest(simdat)
p <- pcf.fv(K, spar=0.5, method="b")
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3
```

---

### pcf.ppp

**Pair Correlation Function of Point Pattern**

**Description**
Estimates the pair correlation function of a point pattern using kernel methods.

**Usage**
```
S3 method for class 'ppp'
pcf(X, ..., r = NULL, kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction=c("translate", "Ripley"), divisor = c("r", "d"),
domain=NULL)
```

**Arguments**

- `X` A point pattern (object of class "ppp").
- `r` Vector of values for the argument `r` at which `g(r)` should be evaluated. There is a sensible default.
- `kernel` Choice of smoothing kernel, passed to `density`.
bw

Bandwidth for smoothing kernel, passed to density.

... Other arguments passed to the kernel density estimation function density.

stoyan

Bandwidth coefficient; see Details.

correction

Choice of edge correction.

divisor

Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.

domain

Optional. Calculations will be restricted to this subset of the window. See Details.

Details

The pair correlation function \( g(r) \) is a summary of the dependence between points in a spatial point process. The best intuitive interpretation is the following: the probability \( p(r) \) of finding two points at locations \( x \) and \( y \) separated by a distance \( r \) is equal to

\[
p(r) = \lambda^2 g(r) \, dx \, dy
\]

where \( \lambda \) is the intensity of the point process. For a completely random (uniform Poisson) process, \( p(r) = \lambda^2 \, dx \, dy \) so \( g(r) = 1 \). Formally, the pair correlation function of a stationary point process is defined by

\[
g(r) = \frac{K'(r)}{2\pi r}
\]

where \( K'(r) \) is the derivative of \( K(r) \), the reduced second moment function (aka “Ripley’s \( K \) function”) of the point process. See \texttt{Kest} for information about \( K(r) \).

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \( g(r) < 1 \) suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of \( g(r) \) by kernel smoothing.

- If \texttt{divisor="r"} (the default), then the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
- If \texttt{divisor="d"} then a modified estimator is used: the contribution from an interpoint distance \( d_{ij} \) to the estimate of \( g(r) \) is divided by \( d_{ij} \) instead of dividing by \( r \). This usually improves the bias of the estimator when \( r \) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window):

- If \texttt{correction="translate"} or \texttt{correction="translation"} then the translation correction is used. For \texttt{divisor="r"} the translation-corrected estimate is given in equation (15.15), page 284 of Stoyan and Stoyan (1994).
- If \texttt{correction="Ripley"} then Ripley’s isotropic edge correction is used. For \texttt{divisor="r"} the isotropic-corrected estimate is given in equation (15.18), page 285 of Stoyan and Stoyan (1994).
- If \texttt{correction=c("translate", "Ripley")} then both estimates will be computed.
The choice of smoothing kernel is controlled by the argument `kernel` which is passed to `density`. The default is the Epanechnikov kernel, recommended by Stoyan and Stoyan (1994, page 285).

The bandwidth of the smoothing kernel can be controlled by the argument `bw`. Its precise interpretation is explained in the documentation for `density.default`. For the Epanechnikov kernel, the argument `bw` is equivalent to $h/\sqrt{5}$.

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov kernel with support $[-h, h]$ chosen by the rule of thumb $h = c/\sqrt{\lambda}$, where $\lambda$ is the (estimated) intensity of the point process, and $c$ is a constant in the range from 0.1 to 0.2. See equation (15.16). If $bw$ is missing, then this rule of thumb will be applied. The argument `stoyan` determines the value of $c$.

The argument $r$ is the vector of values for the distance $r$ at which $g(r)$ should be evaluated. There is a sensible default. If it is specified, $r$ must be a vector of increasing numbers starting from $r[1] = 0$, and $\max(r)$ must not exceed half the diameter of the window.

If the argument `domain` is given, estimation will be restricted to this region. That is, the estimate of $g(r)$ will be based on pairs of points in which the first point lies inside `domain` and the second point is unrestricted. The argument `domain` should be a window (object of class "owin") or something acceptable to `as.owin`. It must be a subset of the window of the point pattern $X$.

To compute a confidence band for the true value of the pair correlation function, use `lohboot`.

**Value**

A function value table (object of class "fv"). Essentially a data frame containing the variables

- $r$: the vector of values of the argument $r$ at which the pair correlation function $g(r)$ has been estimated
- `theo`: vector of values equal to 1, the theoretical value of $g(r)$ for the Poisson process
- `trans`: vector of values of $g(r)$ estimated by translation correction
- `iso`: vector of values of $g(r)$ estimated by Ripley isotropic correction

as required.

**Author(s)**


**References**


**See Also**

`Kest`, `pcf`, `density`, `lohboot`. 
Examples

```r
data(simdat)

p <- pcf(simdat)
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3

pd <- pcf(simdat, divisor="d")

compare estimates
plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),
 ylim=c(0, main="", lwd=c(2,1), lty=c(1,3), legend=FALSE)
plot(pd, iso ~ r, col="green", lwd=2, add=TRUE)
legend("center", col=c("blue", "green"), lty=1, lwd=2,
 legend=c("divisor=r", "divisor=d"))
```

---

**pcf3est**

Pair Correlation Function of a Three-Dimensional Point Pattern

Description

Estimates the pair correlation function from a three-dimensional point pattern.

Usage

```r
pcf3est(X, ..., rmax = NULL, nrvl = 128, correction = c("translation",
 "isotropic"), delta==NULL, adjust=1, biascorrect=TRUE)
```

Arguments

- **X**: Three-dimensional point pattern (object of class "pp3").
- **...**: Ignored.
- **rmax**: Optional. Maximum value of argument \( r \) for which \( g_3(r) \) will be estimated.
- **nrvl**: Optional. Number of values of \( r \) for which \( g_3(r) \) will be estimated.
- **correction**: Optional. Character vector specifying the edge correction(s) to be applied. See Details.
- **delta**: Optional. Half-width of the Epanechnikov smoothing kernel.
- **adjust**: Optional. Adjustment factor for the default value of delta.
- **biascorrect**: Logical value. Whether to correct for underestimation due to truncation of the kernel near \( r = 0 \).
Details

For a stationary point process $\Phi$ in three-dimensional space, the pair correlation function is

$$g_3(r) = \frac{K'_3(r)}{4\pi r^2}$$

where $K'_3$ is the derivative of the three-dimensional $K$-function (see K3est).

The three-dimensional point pattern $X$ is assumed to be a partial realisation of a stationary point process $\Phi$. The distance between each pair of distinct points is computed. Kernel smoothing is applied to these distance values (weighted by an edge correction factor) and the result is renormalised to give the estimate of $g_3(r)$.

The available edge corrections are:

“translation”: the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

“isotropic”: the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley, 1977; Baddeley et al, 1993).

Kernel smoothing is performed using the Epanechnikov kernel with half-width $\delta$. If $\delta$ is missing, the default is to use the rule-of-thumb $\delta = 0.26/\lambda^{1/3}$ where $\lambda = n/v$ is the estimated intensity, computed from the number $n$ of data points and the volume $v$ of the enclosing box. This default value of $\delta$ is multiplied by the factor $\text{adjust}$.

The smoothing estimate of the pair correlation $g_3(r)$ is typically an underestimate when $r$ is small, due to truncation of the kernel at $r = 0$. If $\text{biascorrect}=\text{TRUE}$, the smoothed estimate is approximately adjusted for this bias. This is advisable whenever the dataset contains a sufficiently large number of points.

Value

A function value table (object of class “fv”) that can be plotted, printed or coerced to a data frame containing the function values.

Additionally the value of $\delta$ is returned as an attribute of this object.

Author(s)


References


See Also

K3est, pcf
Examples

```r
X <- rpoispp(250)
Z <- pcf3est(X)
Zbias <- pcf3est(X, biascorrect=FALSE)
if(interactive()) {
 opa <- par(mfrow=c(1,2))
 plot(Z, ylim=covers=c(0, 1.2))
 plot(Zbias, ylim=covers=c(0, 1.2))
 par(opa)
}
attr(Z, "delta")
```

**pcfcross**

*Multitype pair correlation function (cross-type)*

**Description**

Calculates an estimate of the cross-type pair correlation function for a multitype point pattern.

**Usage**

```r
pcfcross(X, i, j, ...,
 r = NULL,
 kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
 correction = c("isotropic", "Ripley", "translate"),
 divisor = c("r", "d"))
```

**Arguments**

- **X**: The observed point pattern, from which an estimate of the cross-type pair correlation function \(g_{ij}(r)\) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **i**: The type (mark value) of the points in \(X\) from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of `marks(X)`.
- **j**: The type (mark value) of the points in \(X\) to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of `marks(X)`.
- **...**: Ignored.
- **r**: Vector of values for the argument \(r\) at which \(g(r)\) should be evaluated. There is a sensible default.
- **kernel**: Choice of smoothing kernel, passed to `density.default`.
- **bw**: Bandwidth for smoothing kernel, passed to `density.default`.
- **stoyan**: Coefficient for default bandwidth rule; see Details.
- **correction**: Choice of edge correction.
- **divisor**: Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.
Details

The cross-type pair correlation function is a generalisation of the pair correlation function \texttt{pcf} to multitype point patterns.

For two locations \( x \) and \( y \) separated by a distance \( r \), the probability \( p(r) \) of finding a point of type \( i \) at location \( x \) and a point of type \( j \) at location \( y \) is

\[
p(r) = \lambda_i \lambda_j g_{i,j}(r) \, dx \, dy
\]

where \( \lambda_i \) is the intensity of the points of type \( i \). For a completely random Poisson marked point process, \( p(r) = \lambda_i \lambda_j \) so \( g_{i,j}(r) = 1 \). Indeed for any marked point pattern in which the points of type \( i \) are independent of the points of type \( j \), the theoretical value of the cross-type pair correlation is \( g_{i,j}(r) = 1 \).

For a stationary multitype point process, the cross-type pair correlation function between marks \( i \) and \( j \) is formally defined as

\[
g_{i,j}(r) = \frac{K_{i,j}'(r)}{2 \pi r}
\]

where \( K_{i,j}' \) is the derivative of the cross-type \( K \) function \( K_{i,j}(r) \) of the point process. See \texttt{Kest} for information about \( K(r) \).

The command \texttt{pcfcross} computes a kernel estimate of the cross-type pair correlation function between marks \( i \) and \( j \).

- If \texttt{divisor="r"} (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
- If \texttt{divisor="d"} then a modified estimator is used: the contribution from an interpoint distance \( d_{ij} \) to the estimate of \( g(r) \) is divided by \( d_{ij} \) instead of dividing by \( r \). This usually improves the bias of the estimator when \( r \) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): \texttt{correction="translate"} is the Ohser-Stoyan translation correction, and \texttt{correction="isotropic"} or "Ripley" is Ripley’s isotropic correction.

The choice of smoothing kernel is controlled by the argument \texttt{kernel} which is passed to \texttt{density}. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument \texttt{bw}. Its precise interpretation is explained in the documentation for \texttt{density.default}. For the Epanechnikov kernel with support \([-h, h]\), the argument \texttt{bw} is equivalent to \( h/\sqrt{5} \).

If \texttt{bw} is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and Stoyan, 1994, page 285) applied to the points of type \( j \). That is, \( h = c/\sqrt{\lambda} \), where \( \lambda \) is the (estimated) intensity of the point process of type \( j \), and \( c \) is a constant in the range from 0.1 to 0.2. The argument \texttt{stoyan} determines the value of \( c \).

The companion function \texttt{pcfdot} computes the corresponding analogue of \texttt{Kdot}. 

Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

\begin{itemize}
\item \texttt{r} \quad the vector of values of the argument \texttt{r} at which the function \(g_{i,j}\) has been estimated
\item \texttt{theo} \quad the theoretical value \(g_{i,j}(r) = 1\) for independent marks.
\end{itemize}

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(g_{i,j}\) obtained by the edge corrections named.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

Mark connection function \texttt{markconnect}.

Multitype pair correlation \texttt{pcfdot}, \texttt{pcfmulti}.

Pair correlation \texttt{pcf}, \texttt{pcf.ppp}.

\texttt{Kcross}

Examples

\begin{verbatim}
data(amacrine)
p <- pcfcross(amacrine, "off", "on")
p <- pcfcross(amacrine, "off", "on", stoyan=0.1)
plot(p)
\end{verbatim}

---

\textbf{pcfcross.inhom} \hspace{1cm} \textit{Inhomogeneous Multitype Pair Correlation Function (Cross-Type)}

Description

Estimates the inhomogeneous cross-type pair correlation function for a multitype point pattern.

Usage

\begin{verbatim}
pcfcross.inhom(X, i, j, lambdaI = NULL, lambdaJ = NULL, ..., 
  r = NULL, breaks = NULL, 
  kernel="epanechnikov", bw=NULL, stoyan=0.15, 
  correction = c("isotropic", "Ripley", "translate"), 
  sigma = NULL, varcov = NULL)
\end{verbatim}
Arguments

**X**  
The observed point pattern, from which an estimate of the inhomogeneous cross-type pair correlation function $g_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

**i**  
The type (mark value) of the points in X from which distances are measured.  
A character string (or something that will be converted to a character string).  
Defaults to the first level of marks(X).

**j**  
The type (mark value) of the points in X to which distances are measured.  
A character string (or something that will be converted to a character string).  
Defaults to the second level of marks(X).

**lambdaI**  
Optional. Values of the estimated intensity function of the points of type i. Either a vector giving the intensity values at the points of type i, a pixel image (object of class "im") giving the intensity values at all locations, or a function(x,y) which can be evaluated to give the intensity value at any location.

**lambdaJ**  
Optional. Values of the estimated intensity function of the points of type j. A numeric vector, pixel image or function(x,y).

**r**  
Vector of values for the argument r at which $g_{ij}(r)$ should be evaluated. There is a sensible default.

**breaks**  
This argument is for internal use only.

**kernel**  
Choice of smoothing kernel, passed to density.default.

**bw**  
Bandwidth for smoothing kernel, passed to density.default.

**...**  
Other arguments passed to the kernel density estimation function density.default.

**stoyan**  
Bandwidth coefficient; see Details.

**correction**  
Choice of edge correction.

**sigma, varcov**  
Optional arguments passed to density.hpp to control the smoothing bandwidth, when lambdaI or lambdaJ is estimated by kernel smoothing.

Details

The inhomogeneous cross-type pair correlation function $g_{ij}(r)$ is a summary of the dependence between two types of points in a multitype spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability $p(r)$ of finding two points, of types $i$ and $j$ respectively, at locations $x$ and $y$ separated by a distance $r$ is equal to

$$ p(r) = \lambda_i(x)\lambda_j(y)g(r) \, dx \, dy $$

where $\lambda_i$ is the intensity function of the process of points of type $i$. For a multitype Poisson point process, this probability is $p(r) = \lambda_i(x)\lambda_j(y)$ so $g_{ij}(r) = 1$.

The command pcf.cross.inhom estimates the inhomogeneous pair correlation using a modified version of the algorithm in pcf.hpp.

If the arguments lambdaI and lambdaJ are missing or null, they are estimated from X by kernel smoothing using a leave-one-out estimator.
Value

A function value table (object of class "fv"). Essentially a data frame containing the variables:

- $r$: the vector of values of the argument $r$ at which the inhomogeneous cross-type pair correlation function $g_{ij}(r)$ has been estimated.
- `theo`: vector of values equal to 1, the theoretical value of $g_{ij}(r)$ for the Poisson process.
- `trans`: vector of values of $g_{ij}(r)$ estimated by translation correction.
- `iso`: vector of values of $g_{ij}(r)$ estimated by Ripley isotropic correction.

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pcf.ppp, pcfinhom, pcfcross, pcfdot.inhom

Examples

data(amacrine)
plot(pcfcross.inhom(amacrine, "on", "off", stoyan=0.1),
     legendpos="bottom")

pcfdot  
Multitype pair correlation function (i-to-any)

Description

Calculates an estimate of the multitype pair correlation function (from points of type $i$ to points of any type) for a multitype point pattern.

Usage

pcfdot(X, i, ..., r = NULL, 
       kernel = "epanechnikov", bw = NULL, stoyan = 0.15, 
       correction = c("isotropic", "Ripley", "translate"), 
       divisor = c("r", "d"))
Arguments

- **X**: The observed point pattern, from which an estimate of the dot-type pair correlation function $g_{i \bullet}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **i**: The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).
- **r**: Vector of values for the argument $r$ at which $g(r)$ should be evaluated. There is a sensible default.
- **kernel**: Choice of smoothing kernel, passed to `density.default`.
- **bw**: Bandwidth for smoothing kernel, passed to `density.default`.
- **stoyan**: Coefficient for default bandwidth rule; see Details.
- **correction**: Choice of edge correction.
- **divisor**: Choice of divisor in the estimation formula: either "r" (the default) or "d". See Details.

Details

This is a generalisation of the pair correlation function `pcf` to multitype point patterns.

For two locations $x$ and $y$ separated by a nonzero distance $r$, the probability $p(r)$ of finding a point of type $i$ at location $x$ and a point of any type at location $y$ is

$$ p(r) = \lambda_i \lambda g_{i \bullet}(r) \, dx \, dy $$

where $\lambda$ is the intensity of all points, and $\lambda_i$ is the intensity of the points of type $i$. For a completely random Poisson marked point process, $p(r) = \lambda_i \lambda$ so $g_{i \bullet}(r) = 1$.

For a stationary multitype point process, the type-$i$-to-any-type pair correlation function between marks $i$ and $j$ is formally defined as

$$ g_{i \bullet}(r) = \frac{K_{i \bullet}'(r)}{2\pi r} $$

where $K_{i \bullet}'$ is the derivative of the type-$i$-to-any-type $K$ function $K_{i \bullet}(r)$ of the point process. See `Kdot` for information about $K_{i \bullet}(r)$.

The command `pcfdot` computes a kernel estimate of the multitype pair correlation function from points of type $i$ to points of any type.

- If `divisor="r"` (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
- If `divisor="d"` then a modified estimator is used: the contribution from an interpoint distance $d_{ij}$ to the estimate of $g(r)$ is divided by $d_{ij}$ instead of dividing by $r$. This usually improves the bias of the estimator when $r$ is close to zero.
There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): correction="translate" is the Ohser-Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley's isotropic correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to \texttt{density}. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument \texttt{bw}. Its precise interpretation is explained in the documentation for \texttt{density.default}. For the Epanechnikov kernel with support \([-h,h]\), the argument \texttt{bw} is equivalent to \(h/\sqrt{5}\).

If \texttt{bw} is not specified, the default bandwidth is determined by Stoyan's rule of thumb (Stoyan and Stoyan, 1994, page 285). That is, \(h = c/\sqrt{\lambda}\), where \(\lambda\) is the (estimated) intensity of the unmarked point process, and \(c\) is a constant in the range from 0.1 to 0.2. The argument \texttt{stoyan} determines the value of \(c\).

The companion function \texttt{pcfcross} computes the corresponding analogue of \texttt{Kcross}.

### Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Essentially a data frame containing columns

- \textit{r} \quad \text{the vector of values of the argument \(r\) at which the function \(g_{i\bullet}\) has been estimated}
- \textit{theo} \quad \text{the theoretical value \(g_{i\bullet}(r) = 1\) for independent marks.}

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function \(g_{i,j}\) obtained by the edge corrections named.

### Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

### See Also

Mark connection function \texttt{markconnect}.

Multitype pair correlation \texttt{pcfcross,pcfmulti}.

Pair correlation \texttt{pcf,pcf.ppp}.

\texttt{Kdot}

### Examples

```r
dataamacrine
p <- pcfdot(amacrine, "on")
p <- pcfdot(amacrine, "on", stoyan=0.1)
plot(p)
```
pcfdot.inhom  

Inhomogeneous Multitype Pair Correlation Function (Type-i-To-Any-Type)

Description

Estimates the inhomogeneous multitype pair correlation function (from type \textit{i} to any type) for a multitype point pattern.

Usage

\texttt{pcfdot.inhom(X, i, lambdaI = NULL, lambdadot = NULL, ...,
\hspace{1cm} r = NULL, breaks = NULL,
\hspace{1cm} kernel="epanechnikov", bw=NULL, stoyan=0.15,
\hspace{1cm} correction = c("isotropic", "Ripley", "translate"),
\hspace{1cm} sigma = NULL, varcov = NULL)}

Arguments

\textbf{X}  
The observed point pattern, from which an estimate of the inhomogeneous multitype pair correlation function \( g_{i\bullet}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).

\textbf{i}  
The type (mark value) of the points in \textit{X} from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of \texttt{marks(X)}.

\textbf{lambdaI}  
Optional. Values of the estimated intensity function of the points of type \textit{i}. Either a vector giving the intensity values at the points of type \textit{i}, a pixel image (object of class "im") giving the intensity values at all locations, or a function\texttt{(x,y)} which can be evaluated to give the intensity value at any location.

\textbf{lambdadot}  
Optional. Values of the estimated intensity function of the point pattern \textit{X}. A numeric vector, pixel image or function\texttt{(x,y)}.

\textbf{r}  
Vector of values for the argument \textit{r} at which \( g_{i\bullet}(r) \) should be evaluated. There is a sensible default.

\textbf{breaks}  
This argument is for internal use only.

\textbf{kernel}  
Choice of smoothing kernel, passed to \texttt{density.default}.

\textbf{bw}  
Bandwidth for smoothing kernel, passed to \texttt{density.default}.

\textbf{...}  
Other arguments passed to the kernel density estimation function \texttt{density.default}.

\textbf{stoyan}  
Bandwidth coefficient; see Details.

\textbf{correction}  
Choice of edge correction.

\textbf{sigma, varcov}  
Optional arguments passed to \texttt{density.ppp} to control the smoothing bandwidth, when \texttt{lambdaI} or \texttt{lambdadot} is estimated by kernel smoothing.
Details

The inhomogeneous multitype (type $i$ to any type) pair correlation function $g_{i\bullet}(r)$ is a summary of the dependence between different types of points in a multitype spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability $p(r)$ of finding a point of type $i$ at location $x$ and another point of any type at location $y$, where $x$ and $y$ are separated by a distance $r$, is equal to

$$p(r) = \lambda_i(x)\lambda(y)g(r)\,dx\,dy$$

where $\lambda_i$ is the intensity function of the process of points of type $i$, and where $\lambda$ is the intensity function of the points of all types. For a multitype Poisson point process, this probability is $p(r) = \lambda_i(x)\lambda(y)$ so $g_{i\bullet}(r) = 1$.

The command `pcfdot.inhom` estimates the inhomogeneous multitype pair correlation using a modified version of the algorithm in `pcf.ppp`.

If the arguments 1ambdal and 1ambdadot are missing or null, they are estimated from $X$ by kernel smoothing using a leave-one-out estimator.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

- $r$: the vector of values of the argument $r$ at which the inhomogeneous multitype pair correlation function $g_{i\bullet}(r)$ has been estimated
- theo: vector of values equal to 1, the theoretical value of $g_{i\bullet}(r)$ for the Poisson process
- trans: vector of values of $g_{i\bullet}(r)$ estimated by translation correction
- iso: vector of values of $g_{i\bullet}(r)$ estimated by Ripley isotropic correction

as required.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`pcf.ppp`, `pcfinhom`, `pcfdot`, `pcfcross.inhom`

Examples

data(amacrine)
plot(pcfdot.inhom(amacrine, "on", stoyan=0.1), legendpos="bottom")
Inhomogeneous Pair Correlation Function

Description

Estimates the inhomogeneous pair correlation function of a point pattern using kernel methods.

Usage

pcfinhom(x, lambda = NULL, ..., r = NULL,
    kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
    correction = c("translate", "Ripley"),
    divisor = c("r", "d"),
    renormalise = TRUE, normpower=1,
    reciplambda = NULL,
    sigma = NULL, varcov = NULL)

Arguments

x A point pattern (object of class "ppp").
lambda Optional. Values of the estimated intensity function. Either a vector giving the intensity values at the points of the pattern x, a pixel image (object of class "im") giving the intensity values at all locations, a fitted point process model (object of class "ppm") or a function(x,y) which can be evaluated to give the intensity value at any location.
r Vector of values for the argument r at which g(r) should be evaluated. There is a sensible default.
kernel Choice of smoothing kernel, passed to density.default.
bw Bandwidth for smoothing kernel, passed to density.default.
... Other arguments passed to the kernel density estimation function density.default.
stoyan Bandwidth coefficient; see pcf.ppp.
correction Choice of edge correction.
divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See pcf.ppp.
renormalise Logical. Whether to renormalise the estimate. See Details.
normpower Integer (usually either 1 or 2). Normalisation power. See Details.
reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity function. Either a vector giving the reciprocal intensity values at the points of the pattern x, a pixel image (object of class "im") giving the reciprocal intensity values at all locations, or a function(x,y) which can be evaluated to give the reciprocal intensity value at any location.
sigma, varcov Optional arguments passed to density.ppp to control the smoothing bandwidth, when lambda is estimated by kernel smoothing.
The inhomogeneous pair correlation function \( g_{\text{inhom}}(r) \) is a summary of the dependence between points in a spatial point process that does not have a uniform density of points. The best intuitive interpretation is the following: the probability \( p(r) \) of finding two points at locations \( x \) and \( y \) separated by a distance \( r \) is equal to

\[
p(r) = \lambda(x)\lambda(y)g(r) \, dx \, dy
\]

where \( \lambda \) is the intensity function of the point process. For a Poisson point process with intensity function \( \lambda \), this probability is \( p(r) = \lambda(x)\lambda(y) \) so \( g_{\text{inhom}}(r) = 1 \).

The inhomogeneous pair correlation function is related to the inhomogeneous \( K \) function through

\[
g_{\text{inhom}}(r) = \frac{K'_{\text{inhom}}(r)}{2\pi r}
\]

where \( K'_{\text{inhom}}(r) \) is the derivative of \( K_{\text{inhom}}(r) \), the inhomogeneous \( K \) function. See \texttt{Kinhom} for information about \( K_{\text{inhom}}(r) \).

The command \texttt{pcfinhom} estimates the inhomogeneous pair correlation using a modified version of the algorithm in \texttt{pcf.ppp}.

If \texttt{renormalise=TRUE} (the default), then the estimates are multiplied by \( c^{\text{normpower}} \) where \( c = \text{area}(W)/\sum(1/\lambda(x_i)) \). This rescaling reduces the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity. The default value of \texttt{normpower} is 1 but the most sensible value is 2, which would correspond to rescaling the \( \lambda \) values so that \( \sum(1/\lambda(x_i)) = \text{area}(W) \).

\textbf{Value}

A function value table (object of class "fv"). Essentially a data frame containing the variables

- \( r \): the vector of values of the argument \( r \) at which the inhomogeneous pair correlation function \( g_{\text{inhom}}(r) \) has been estimated
- \( \text{theo} \): vector of values equal to 1, the theoretical value of \( g_{\text{inhom}}(r) \) for the Poisson process
- \( \text{trans} \): vector of values of \( g_{\text{inhom}}(r) \) estimated by translation correction
- \( \text{iso} \): vector of values of \( g_{\text{inhom}}(r) \) estimated by Ripley isotropic correction

as required.

\textbf{Author(s)}

Adrian Baddeley (Adrian.Baddeley@uwa.edu.au) \texttt{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner (r.turner@auckland.ac.nz)

\textbf{See Also}

\texttt{pcf, pcf.ppp, Kinhom}
Examples

```r
data(residualspaper)
X <- residualsepaper$Fig4b
plot(pcfinhom(X, stoyan=0.2, sigma=0.1))
fit <- ppm(X, ~polynom(x,y,2))
plot(pcfinhom(X, lambda=fit, normpower=2))
```

---

**pcfmulti**

*Marked pair correlation function*

**Description**

For a marked point pattern, estimate the multitype pair correlation function using kernel methods.

**Usage**

```r
pcfmulti(X, I, J, ..., r = NULL,
 kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
 correction = c("translate", "Ripley"),
 divisor = c("r", "d"),
 Iname = "points satisfying condition I",
 Jname = "points satisfying condition J")
```

**Arguments**

- **X**
  - The observed point pattern, from which an estimate of the cross-type pair correlation function \( g_{ij}(r) \) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor).
- **I**
  - Subset index specifying the points of \( X \) from which distances are measured.
- **J**
  - Subset index specifying the points in \( X \) to which distances are measured.
- **...**
  - Ignored.
- **r**
  - Vector of values for the argument \( r \) at which \( g(r) \) should be evaluated. There is a sensible default.
- **kernel**
  - Choice of smoothing kernel, passed to `density.default`.
- **bw**
  - Bandwidth for smoothing kernel, passed to `density.default`.
- **stoyan**
  - Coefficient for default bandwidth rule.
- **correction**
  - Choice of edge correction.
- **divisor**
  - Choice of divisor in the estimation formula: either "r" (the default) or "d".
- **Iname, Jname**
  - Optional. Character strings describing the members of the subsets I and J.
Details

This is a generalisation of `pcfcross` to arbitrary collections of points.

The algorithm measures the distance from each data point in subset \( I \) to each data point in subset \( J \), excluding identical pairs of points. The distances are kernel-smoothed and renormalised to form a pair correlation function.

- If `divisor="r"` (the default), then the multitype counterpart of the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly.
- If `divisor="d"` then a modified estimator is used: the contribution from an interpoint distance \( d_{ij} \) to the estimate of \( g(r) \) is divided by \( d_{ij} \) instead of dividing by \( r \). This usually improves the bias of the estimator when \( r \) is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window): `correction="translate"` is the Ohser-Stoyan translation correction, and `correction="isotropic"` or "Ripley" is Ripley's isotropic correction.

The arguments \( I \) and \( J \) specify two subsets of the point pattern \( X \). They may be any type of subset indices, for example, logical vectors of length equal to \( npoints(X) \), or integer vectors with entries in the range 1 to \( npoints(X) \), or negative integer vectors.

Alternatively, \( I \) and \( J \) may be functions that will be applied to the point pattern \( X \) to obtain index vectors. If \( I \) is a function, then evaluating \( I(X) \) should yield a valid subset index. This option is useful when generating simulation envelopes using `envelope`.

The choice of smoothing kernel is controlled by the argument `kernel` which is passed to `density`. The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument `bw`. Its precise interpretation is explained in the documentation for `density.default`. For the Epanechnikov kernel with support \([-h, h]\), the argument `bw` is equivalent to \( h/\sqrt{5} \).

If `bw` is not specified, the default bandwidth is determined by Stoyan's rule of thumb (Stoyan and Stoyan, 1994, page 285) applied to the points of type \( J \). That is, \( h = c/\sqrt{\lambda} \), where \( \lambda \) is the (estimated) intensity of the point process of type \( J \), and \( c \) is a constant in the range from 0.1 to 0.2. The argument `stoyan` determines the value of \( c \).

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`pcfcross`, `pcfdot`, `pcf.ppp`
Examples

```r
adult <- (marks(longleaf) >= 30)
juvenile <- !adult
p <- pcfmulti(longleaf, adult, juvenile)
```

<table>
<thead>
<tr>
<th>perimeter</th>
<th>Perimeter Length of Window</th>
</tr>
</thead>
</table>

Description

Computes the perimeter length of a window

Usage

```r
perimeter(w)
```

Arguments

- `w` A window (object of class "owin") or data that can be converted to a window by `as.owin`.

Details

This function computes the perimeter (length of the boundary) of the window `w`. If `w` is a rectangle or a polygonal window, the perimeter is the sum of the lengths of the edges of `w`. If `w` is a mask, it is first converted to a polygonal window using `as.polygonal`, then staircase edges are removed using `simplify.owin`, and the perimeter of the resulting polygon is computed.

Value

A numeric value giving the perimeter length of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`area.owin`, `diameter.owin`, `owin.object`, `as.owin`

Examples

```r
perimeter(square(3))
data(letterR)
perimeter(letterR)
if(interactive()) print(perimeter(as.mask(letterR)))
```
Description

Given a spatial pattern (point pattern, line segment pattern, window, etc) make shifted copies of the pattern and optionally combine them to make a periodic pattern.

Usage

```r
periodify(X, ...)
S3 method for class 'ppp'
periodify(X, nx = 1, ny = 1, ...,
 combine=TRUE, warn=TRUE, check=TRUE,
 ix=(-nx):nx, iy=(-ny):ny,
 ixy=expand.grid(ix=ix, iy=iy))
S3 method for class 'psp'
periodify(X, nx = 1, ny = 1, ...,
 combine=TRUE, warn=TRUE, check=TRUE,
 ix=(-nx):nx, iy=(-ny):ny,
 ixy=expand.grid(ix=ix, iy=iy))
S3 method for class 'owin'
periodify(X, nx = 1, ny = 1, ...,
 combine=TRUE, warn=TRUE,
 ix=(-nx):nx, iy=(-ny):ny,
 ixy=expand.grid(ix=ix, iy=iy))
```

Arguments

- **X**: An object representing a spatial pattern (point pattern, line segment pattern or window).
- **nx, ny**: Integers. Numbers of additional copies of `X` in each direction. The result will be a grid of `2 * nx + 1` by `2 * ny + 1` copies of the original object. (Overruled by `ix`, `iy`, `ixy`).
- **...**: Ignored.
- **combine**: Logical flag determining whether the copies should be superimposed to make an object like `X` (if `combine=TRUE`) or simply returned as a list of objects (`combine=FALSE`).
- **warn**: Logical flag determining whether to issue warnings.
- **check**: Logical flag determining whether to check the validity of the combined pattern.
- **ix, iy**: Integer vectors determining the grid positions of the copies of `X`. (Overruled by `ixy`).
- **ixy**: Matrix or data frame with two columns, giving the grid positions of the copies of `X`. 
Given a spatial pattern (point pattern, line segment pattern, etc) this function makes a number of shifted copies of the pattern and optionally combines them. The function `periodify` is generic, with methods for various kinds of spatial objects.

The default is to make a 3 by 3 array of copies of \( X \) and combine them into a single pattern of the same kind as \( X \). This can be used (for example) to compute toroidal or periodic edge corrections for various operations on \( X \).

If the arguments \( nx, ny \) are given and other arguments are missing, the original object will be copied \( nx \) times to the right and \( nx \) times to the left, then \( ny \) times upward and \( ny \) times downward, making \((2 * nx + 1) * (2 * ny + 1)\) copies altogether, arranged in a grid, centred on the original object.

If the arguments \( ix, iy \) or \( ixy \) are specified, then these determine the grid positions of the copies of \( X \) that will be made. For example \((ix, iy) = (1, 2)\) means a copy of \( X \) shifted by the vector \((ix * w, iy * h)\) where \( w, h \) are the width and height of the bounding rectangle of \( X \).

If combine=TRUE (the default) the copies of \( X \) are superimposed to create an object of the same kind as \( X \). If combine=FALSE the copies of \( X \) are returned as a list.

**Value**

If combine=TRUE, an object of the same class as \( X \). If combine=FALSE, a list of objects of the same class as \( X \).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`shift`

**Examples**

```r
data(cells)
plot(periodify(cells))
a <- lapply(periodify(cells$window, combine=FALSE),
 plot, add=TRUE, lty=2)
```

---

**Description**

Displays a perspective plot of a pixel image.
Usage

```r
S3 method for class 'im'
persp(x, ...,
 colmap=NULL, colin=x, apron=FALSE, visible=FALSE)
```

Arguments

- **x**
  - The pixel image to be plotted as a surface. An object of class "im" (see `im.object`).
- **...**
  - Extra arguments passed to `persp.default` to control the display.
- **colmap**
  - Optional data controlling the colour map. See Details.
- **colin**
  - Optional. Colour input. Another pixel image (of the same dimensions as `x`) containing the values that will be mapped to colours.
- **apron**
  - Logical. If `TRUE`, a grey apron is placed around the sides of the perspective plot.
- **visible**
  - Logical value indicating whether to compute which pixels of `x` are visible in the perspective view. See Details.

Details

This is the `persp` method for the class "im".

The pixel image `x` must have real or integer values. These values are treated as heights of a surface, and the surface is displayed as a perspective plot on the current plot device, using equal scales on the `x` and `y` axes.

The optional argument `colmap` gives an easy way to display different altitudes in different colours (if this is what you want).

- If `colmap` is a colour map (object of class "colourmap", created by the function `colourmap`) then this colour map will be used to associate altitudes with colours.
- If `colmap` is a character vector, then the range of altitudes in the perspective plot will be divided into `length(colmap)` intervals, and those parts of the surface which lie in a particular altitude range will be assigned the corresponding colour from `colmap`.
- If `colmap` is a function in the R language of the form `function(n, ...)`, this function will be called with an appropriate value of `n` to generate a character vector of `n` colours. Examples of such functions are `heat.colors`, `terrain.colors`, `topo.colors` and `cm.colors`.
- If `colmap` is a function in the R language of the form `function(range, ...)` then it will be called with range equal to the range of altitudes, to determine the colour values or colour map. Examples of such functions are `beachcolours` and `beachcolourmap`.
- If `colmap` is a list with entries `breaks` and `col`, then `colmap$breaks` determines the breakpoints of the altitude intervals, and `colmap$col` provides the corresponding colours.

Alternatively, if the argument `colin` ("colour input") is present, then the colour map `colmap` will be applied to the pixel values of `colin` instead of the pixel values of `x`. The result is a perspective view of a surface with heights determined by `x` and colours determined by `colin` (mapped by `colmap`).

If `apron=TRUE`, vertical surface is drawn around the boundary of the perspective plot, so that the terrain appears to have been cut out of a solid material. If colour data were supplied, then the apron is coloured light grey.
Graphical parameters controlling the perspective plot are passed through the ... arguments directly to the function `persp.default`. See the examples in `persp.default` or in demo(persp).

The vertical scale is controlled by the argument `expand`: setting `expand=1` will interpret the pixel values as being in the same units as the spatial coordinates `x` and `y` and represent them at the same scale.

If `visible=TRUE`, the algorithm also computes whether each pixel in `x` is visible in the perspective view. In order to be visible, a pixel must not be obscured by another pixel which lies in front of it (as seen from the viewing direction), and the three-dimensional vector normal to the surface must be pointing toward the viewer. The return value of `persp.im` then has an attribute "visible" which is a pixel image, compatible with `x`, with pixel value equal to TRUE if the corresponding pixel in `x` is visible, and FALSE if it is not visible.

Value

(invisibly) the 3D transformation matrix returned by `persp.default`, together with an attribute "expand" which gives the relative scale of the `z` coordinate.

If argument `visible=TRUE` was given, the return value also has an attribute "visible" which is a pixel image, compatible with `x`, with logical values which are TRUE when the corresponding pixel is visible in the perspective view, and FALSE when it is obscured.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`perspPoints`, `perspLines` for drawing additional points or lines on the surface.

`im.object`, `plot.im`, `contour.im`

Examples

# an image
Z <- setcov(owin())
persp(Z, colmap=terrain.colors(128))
co <- colourmap(range=c(0,1), col=rainbow(128))
persp(Z, colmap=co, axes=FALSE, shade=0.3)

## Terrain elevation
persp(bei.extra$elev, colmap=terrain.colors(128),
apron=TRUE, theta=-30, phi=20,
zlab="Elevation", main="", ticktype="detailed",
expand=6)
perspPoints

*Draw Points or Lines on a Surface Viewed in Perspective*

**Description**

After a surface has been plotted in a perspective view using `persp.im`, these functions can be used to draw points or lines on the surface.

**Usage**

```r
perspPoints(x, y=NULL, ..., Z, M)
perspLines(x, y = NULL, ..., Z, M)
perspSegments(x0, y0 = NULL, x1 = NULL, y1 = NULL, ..., Z, M)
perspContour(Z, M, ...,
 nlevels=10, levels=pretty(range(Z), nlevels))
```

**Arguments**

- `x, y` Spatial coordinates, acceptable to `xy.coords`, for the points or lines on the horizontal plane.
- `Z` Pixel image (object of class "im") specifying the surface heights.
- `M` Projection matrix returned from `persp.im` when `Z` was plotted.
- `...` Graphical arguments passed to `points`, `lines` or `segments` to control the drawing.
- `x0, y0, x1, y1` Spatial coordinates of the line segments, on the horizontal plane. Alternatively `x0` can be a line segment pattern (object of class "psp") and `y0, x1, y1` can be `NULL`.
- `nlevels` Number of contour levels
- `levels` Vector of heights of contours.

**Details**

After a surface has been plotted in a perspective view, these functions can be used to draw points or lines on the surface.

The user should already have called `persp.im` in the form `M <- persp(Z, visible=TRUE, ...)` to display the perspective view of the surface `Z`.

Only points and lines which are visible from the viewer’s standpoint will be drawn.

**Value**

Same as the return value from `points` or `segments`. 
pixelcentres

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
persp.im

Examples
```r
M <- persp(bei.extra$elev, colmap=terrain.colors(128),
apron=TRUE, theta=-30, phi=20,
zlab="Elevation", main="",
expand=6, visible=TRUE, shade=0.3)
perspPoints(bei, Z=bei.extra$elev, M=M, pch=16, cex=0.3)
```

Description
Given a pixel image or binary mask window, extract the centres of all pixels and return them as a point pattern.

Usage
```r
pixelcentres(X, W = NULL, ...)
```

Arguments
- `X`  
  Pixel image (object of class "im") or window (object of class "owin").
- `W`  
  Optional window to contain the resulting point pattern.
- `...`  
  Optional arguments defining the pixel resolution.

Details
If the argument `X` is a pixel image, the result is a point pattern, consisting of the centre of every pixel whose pixel value is not NA.

If `X` is a window which is a binary mask, the result is a point pattern consisting of the centre of every pixel inside the window (i.e. every pixel for which the mask value is TRUE).

Otherwise, `X` is first converted to a window, then converted to a mask using `as.mask`, then handled as above.

Value
A point pattern (object of class "ppp").
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also
raster.xy

Examples
pixelcentres(letterR, dimx=5)

---

`pixellate(x)`  
Convert Spatial Object to Pixel Image

Description
Convert a spatial object to a pixel image by measuring the amount of stuff in each pixel.

Usage
`pixellate(x, ...)`

Arguments
- `x` Spatial object to be converted. A point pattern (object of class "ppp"), a window (object of class "owin"), a line segment pattern (object of class "psp"), or some other suitable data.
- `...` Arguments passed to methods.

Details
The function `pixellate` converts a geometrical object `x` into a pixel image, by measuring the amount of `x` that is inside each pixel.

If `x` is a point pattern, `pixellate(x)` counts the number of points of `x` falling in each pixel. If `x` is a window, `pixellate(x)` measures the area of intersection of each pixel with the window.

The function `pixellate` is generic, with methods for point patterns (`pixellate.ppp`), windows (`pixellate.owin`), and line segment patterns (`pixellate.psp`). See the separate documentation for these methods.

The related function `as.im` also converts `x` into a pixel image, but typically measures only the presence or absence of `x` inside each pixel.

Value
A pixel image (object of class "im").
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pixellate.ppp, pixellate.owin, pixellate.psp, pixellate.linnet, as.im

Description

Convert a window to a pixel image by measuring the area of intersection between the window and each pixel in a raster.

Usage

```r
S3 method for class 'owin'
pixellate(x, W = NULL, ...)
```

Arguments

- `x` Window (object of class "owin") to be converted.
- `W` Optional. Window determining the pixel raster on which the conversion should occur.
- `...` Optional. Extra arguments passed to `as.mask` to determine the pixel raster.

Details

This is a method for the generic function `pixellate`.

It converts a window `x` into a pixel image, by measuring the *amount* of `x` that is inside each pixel.

(The related function `as.im` also converts `x` into a pixel image, but records only the presence or absence of `x` in each pixel.)

The pixel raster for the conversion is determined by the argument `W` and the extra arguments `...`

- If `W` is given, and it is a binary mask (a window of type "mask") then it determines the pixel raster.
- If `W` is given, but it is not a binary mask (it is a window of another type) then it will be converted to a binary mask using `as.mask(W, ...)`.  
- If `W` is not given, it defaults to `as.mask(as.rectangle(x), ...)`

In the second and third cases it would be common to use the argument `dimyx` to control the number of pixels. See the Examples.

The algorithm then computes the area of intersection of each pixel with the window.

The result is a pixel image with pixel entries equal to these intersection areas.
**Value**

A pixel image (object of class "im").

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`pixellate.ppp`, `pixellate`, `as.im`

**Examples**

```r
data(letterR)
plot(pixellate(letterR, dimyx=15))
W <- grow.rectangle(as.rectangle(letterR), 0.2)
plot(pixellate(letterR, W, dimyx=15))
```

---

**Description**

Converts a point pattern to a pixel image. The value in each pixel is the number of points falling in that pixel, and is typically either 0 or 1.

**Usage**

```r
S3 method for class 'ppp'
pixellate(x, W=NULL, ..., weights = NULL, padzero=FALSE)

S3 method for class 'ppp'
as.im(X, ...)
```

**Arguments**

- `x, X` Point pattern (object of class "ppp").
- `...` Arguments passed to `as.mask` to determine the pixel resolution.
- `W` Optional window mask (object of class "owin") determining the pixel raster.
- `weights` Optional vector of weights associated with the points.
- `padzero` Logical flag indicating whether to set pixel values to zero outside the window.
Details

The functions `pixellate.ppp` and `as.im.ppp` convert a spatial point pattern $x$ into a pixel image, by counting the number of points (or the total weight of points) falling in each pixel.

Calling `as.im.ppp` is equivalent to calling `pixellate.ppp` with its default arguments. Note that `pixellate.ppp` is more general than `as.im.ppp` (it has additional arguments for greater flexibility).

The functions `as.im.ppp` and `pixellate.ppp` are methods for the generic functions `as.im` and `pixellate` respectively, for the class of point patterns.

The pixel raster (in which points are counted) is determined by the argument $W$ if it is present (for `pixellate.ppp` only). In this case $W$ should be a binary mask (a window object of class "owin" with type "mask"). Otherwise the pixel raster is determined by extracting the window containing $x$ and converting it to a binary pixel mask using `as.mask`. The arguments ... are passed to `as.mask` to control the pixel resolution.

If `weights` is `NULL`, then for each pixel in the mask, the algorithm counts how many points in $x$ fall in the pixel. This count is usually either 0 (for a pixel with no data points in it) or 1 (for a pixel containing one data point) but may be greater than 1. The result is an image with these counts as its pixel values.

If `weights` is given, it should be a numeric vector of the same length as the number of points in $x$. For each pixel, the algorithm finds the total weight associated with points in $x$ that fall in the given pixel. The result is an image with these total weights as its pixel values.

By default (if `zeropad=FALSE`) the resulting pixel image has the same spatial domain as the window of the point pattern $x$. If `zeropad=TRUE` then the resulting pixel image has a rectangular domain; pixels outside the original window are assigned the value zero.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`pixellate`, `im`, `as.im`, `density.ppp`, `Smooth.ppp`.

Examples

data(humberside)
plot(pixellate(humberside))
Convert Line Segment Pattern to Pixel Image

Description

Converts a line segment pattern to a pixel image by measuring the length or number of lines intersecting each pixel.

Usage

```r
S3 method for class 'psp'
pixellate(x, W=NULL, ..., weights = NULL,
 what=c("length", "number"))
```

Arguments

- `x`  
  Line segment pattern (object of class "psp").

- `W`  
  Optional window (object of class "owin") determining the pixel resolution.

- `...`  
  Optional arguments passed to `as.mask` to determine the pixel resolution.

- `weights`  
  Optional vector of weights associated with each line segment.

- `what`  
  String (partially matched) indicating whether to compute the total length of intersection (`what="length", the default) or the total number of segments intersecting each pixel (`what="number"`).

Details

This function converts a line segment pattern to a pixel image by computing, for each pixel, the total length of intersection between the pixel and the line segments. Alternatively it can count the number of line segments intersecting each pixel.

This is a method for the generic function `pixellate` for the class of line segment patterns.

The pixel raster is determined by `W` and the optional arguments `...`. If `W` is missing or `NULL`, it defaults to the window containing `x`. Then `W` is converted to a binary pixel mask using `as.mask`. The arguments `...` are passed to `as.mask` to control the pixel resolution.

If `weights` are given, then the length of the intersection between line segment `i` and pixel `j` is multiplied by `weights[i]` before the lengths are summed for each pixel.

Value

A pixel image (object of class "im") with numeric values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>  
http://www.maths.uwa.edu.au/~adrian/  
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
See Also

`pixellate, as.mask, as.mask.psp`.

Use `as.mask.psp` if you only want to know which pixels are intersected by lines.

Examples

```r
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot pixellate(X))
plot(X, add=TRUE)
sum(lengths.psp(X))
sum(pixellate(X))
plot(pixellate(X, what="n"))
```

---

**pixelquad**

*Quadrature Scheme Based on Pixel Grid*

**Description**

Makes a quadrature scheme with a dummy point at every pixel of a pixel image.

**Usage**

```r
pixelquad(X, W = as.owin(X))
```

**Arguments**

- `X`  
  Point pattern (object of class "ppp") containing the data points for the quadrature scheme.

- `W`  
  Specifies the pixel grid. A pixel image (object of class "im"), a window (object of class "owin"), or anything that can be converted to a window by `as.owin`.

**Details**

This is a method for producing a quadrature scheme for use by `ppm`. It is an alternative to `quadscheme`.

The function `ppm` fits a point process model to an observed point pattern using the Berman-Turner quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern, an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such quadrature schemes are represented by objects of class "quad". See `quad.object` for a description of this class.

Given a grid of pixels, this function creates a quadrature scheme in which there is one dummy point at the centre of each pixel. The counting weights are used (the weight attached to each quadrature point is 1 divided by the number of quadrature points falling in the same pixel).

The argument `X` specifies the locations of the data points for the quadrature scheme. Typically this would be a point pattern dataset.
The argument \( W \) specifies the grid of pixels for the dummy points of the quadrature scheme. It should be a pixel image (object of class "im"), a window (object of class "owin"), or anything that can be converted to a window by \texttt{as.owin}. If \( W \) is a pixel image or a binary mask (a window of type "mask") then the pixel grid of \( W \) will be used. If \( W \) is a rectangular or polygonal window, then it will first be converted to a binary mask using \texttt{as.mask} at the default pixel resolution.

\section*{Value}

An object of class "quad" describing the quadrature scheme (data points, dummy points, and quadrature weights) suitable as the argument \( Q \) of the function \texttt{ppm()} for fitting a point process model.

The quadrature scheme can be inspected using the \texttt{print} and \texttt{plot} methods for objects of class "quad".

\section*{Author(s)}

Adrian Baddeley \(<\texttt{Adrian.Baddeley@uwa.edu.au}>\) \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <\texttt{r.turner@auckland.ac.nz}>

\section*{See Also}

\texttt{quadscheme, quad.object, ppm}

\section*{Examples}

\begin{verbatim}
W <- owin(c(0,1),c(0,1))
X <- runifpoint(42, W)
W <- as.mask(W, dimyx=128)
pixelquad(X,W)
\end{verbatim}

\section*{Description}

Plots a list of things

\section*{Usage}

\begin{verbatim}
## S3 method for class 'anylist'
plot(x, ..., main, arrange=TRUE,
nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,
panel.begin=NULL, panel.end=NULL, panel.args=NULL, plotcommand="plot",
adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)
\end{verbatim}
Arguments

x
An object of the class "anylist". Essentially a list of objects.

... Arguments passed to plot when generating each plot panel.

main
Overall heading for the plot.

arrange
Logical flag indicating whether to plot the objects side-by-side on a single page (arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows,ncols
Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

main.panel
Optional. A character string, or a vector of character strings, giving the headings for each of the objects.

mar.panel
Size of the margins outside each plot panel. A numeric vector of length 4 giving the bottom, left, top, and right margins in that order. (Alternatively the vector may have length 1 or 2 and will be replicated to length 4). See the section on Spacing between plots.

hsep,vsep
Additional horizontal and vertical separation between plot panels, expressed in the same units as mar.panel.

panel.begin,panel.end
Optional. Functions that will be executed before and after each panel is plotted. See Details.

panel.args
Optional. Function that determines different plot arguments for different panels. See Details.

plotcommand
Optional. Character string containing the name of the command that should be executed to plot each panel.

adorn.left, adorn.right, adorn.top, adorn.bottom
Optional. Functions (with no arguments) that will be executed to generate additional plots at the margins (left, right and/or bottom, respectively) of the array of plots.

adorn.size
Relative width (as a fraction of the other panels' widths) of the margin plots.

equal.scales
Logical value indicating whether the components should be plotted at (approximately) the same physical scale.

halign, valign
Logical values indicating whether panels in a column should be aligned to the same x coordinate system (halign=TRUE) and whether panels in a row should be aligned to the same y coordinate system (valign=TRUE). These are applicable only if equal.scales=TRUE.

Details

This is the plot method for the class "anylist".

An object of class "anylist" represents a list of objects intended to be treated in the same way. This is the method for plot.

In the spatstat package, various functions produce an object of class "anylist", essentially a list of objects of the same kind. These objects can be plotted in a nice arrangement using plot.anylist. See the Examples.
The argument `panel.args` determines extra graphics parameters for each panel. It should be a function that will be called as `panel.args(i)` where `i` is the panel number. Its return value should be a list of graphics parameters that can be passed to the relevant `plot` method. These parameters override any parameters specified in the ... arguments.

The arguments `panel.begin` and `panel.end` determine graphics that will be plotted before and after each panel is plotted. They may be objects of some class that can be plotted with the generic `plot` command. Alternatively they may be functions that will be called as `panel.begin(i, y, main=main.panel[i])` and `panel.end(i, y, add=TRUE)` where `i` is the panel number and `y = x[[i]]`.

If all entries of `x` are pixel images, the function `image.listof` is called to control the plotting. The arguments `equal.ribbon` and `col` can be used to determine the colour map or maps applied.

If `equal.scales=FALSE` (the default), then the plot panels will have equal height on the plot device (unless there is only one column of panels, in which case they will have equal width on the plot device). This means that the objects are plotted at different physical scales, by default.

If `equal.scales=TRUE`, then the dimensions of the plot panels on the plot device will be proportional to the spatial dimensions of the corresponding components of `x`. This means that the objects will be plotted at approximately equal physical scales. If these objects have very different spatial sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under the following conditions:

- every component of `x` is a spatial object whose position can be shifted by `shift`;
- `panel.begin` and `panel.end` are either NULL or they are spatial objects whose position can be shifted by `shift`;
- `adorn.left`, `adorn.right`, `adorn.top` and `adorn.bottom` are all NULL.

Another special case is when every component of `x` is an object of class “fv” representing a function. If `equal.scales=TRUE` then all these functions will be plotted with the same axis scales (i.e. with the same `xlim` and the same `ylim`).

Value
Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters `mar.panel`, `hsep` and `vsep`.

If `equal.scales=FALSE`, the plot panels are logically separate plots. The margins for each panel are determined by the argument `mar.panel` which becomes the graphics parameter `mar` described in the help file for `par`. One unit of `mar` corresponds to one line of text in the margin. If `hsep` or `vsep` are present, `mar.panel` is augmented by `c(hsep, hsep, vsep, hsep)/2`.

If `equal.scales=TRUE`, all the plot panels are drawn in the same coordinate system which represents a physical scale. The unit of measurement for `mar.panel[1,3]` is one-sixth of the greatest height of any object plotted in the same row of panels, and the unit for `mar.panel[2,4]` is one-sixth of the greatest width of any object plotted in the same column of panels. If `hsep` or `vsep` are present, they are interpreted in the same units as `mar.panel[2]` and `mar.panel[1]` respectively.
Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects had a much smaller physical scale than the others. Ensure that \texttt{equal.scales=FALSE} and increase the values of \texttt{mar.panel}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

\texttt{contour.listof, image.listof, density.splitppp}

Examples

```r
trichotomy <- list(regular=cells,
 random=japanesepines,
 clustered=redwood)
K <- lapply(trichotomy, Kest)
K <- as.anylist(K)
plot(K, main="")

list of 3D point patterns
ape1 <- osteo[osteoshortid==4, "pts", drop=TRUE]
class(ape1)
plot(ape1, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,
cex=1.5, pch=21, bg='white')
```

---

\texttt{plot.bermantest} \hspace{1cm} \textit{Plot Result of Berman Test}

Description

Plot the result of Berman’s test of goodness-of-fit

Usage

```r
S3 method for class 'bermantest'
plot(x, ...,
 lwd=par("lwd"), col=par("col"), lty=par("lty"),
 lwd0=lwd, col0=2, lty0=2)
```
Arguments

- **x**: Object to be plotted. An object of class "bermantest" produced by `berman.test`. Extra arguments that will be passed to the plotting function `plot.ecdf`.

- **col, lwd, lty**: The width, colour and type of lines used to plot the empirical distribution curve.

- **col0, lwd0, lty0**: The width, colour and type of lines used to plot the predicted (null) distribution curve.

Details

This is the `plot` method for the class "bermantest". An object of this class represents the outcome of Berman’s test of goodness-of-fit of a spatial Poisson point process model, computed by `berman.test`.

For the Z1 test (i.e. if `x` was computed using `berman.test`, which="Z1"), the plot displays the two cumulative distribution functions that are compared by the test: namely the empirical cumulative distribution function of the covariate at the data points, \( F \), and the predicted cumulative distribution function of the covariate under the model, \( F_0 \), both plotted against the value of the covariate. Two vertical lines show the mean values of these two distributions. If the model is correct, the two curves should be close; the test is based on comparing the two vertical lines.

For the Z2 test (i.e. if `x` was computed using `berman.test`, which="Z2"), the plot displays the empirical cumulative distribution function of the values \( U_i = F_0(Y_i) \) where \( Y_i \) is the value of the covariate at the \( i \)-th data point. The diagonal line with equation \( y = x \) is also shown. Two vertical lines show the mean of the values \( U_i \) and the value 1/2. If the model is correct, the two curves should be close. The test is based on comparing the two vertical lines.

Value

- `NULL`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/], Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

- `berman.test`

Examples

```r
synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(-x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X, ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }
```
# test wrong model
k <- berman.test(fit0, xcoord, "Z1")

# plot result of test
plot(k, col="red", col0="green")

---

**plot.cdftest**  
*Plot a Spatial Distribution Test*

**Description**
Plot the result of a spatial distribution test computed by cdf.test.

**Usage**
```r
S3 method for class 'cdftest'
plot(x, ..., style=c("cdf", "PP", "QQ"),
 lwd=par("lwd"), col=par("col"), lty=par("lty"),
 lwd0=lwd, col0=2, lty0=2,
 do.legend)
```

**Arguments**
- `x`: Object to be plotted. An object of class "cdftest" produced by a method for cdf.test.
- `...`: extra arguments that will be passed to the plotting function plot.default.
- `style`: Style of plot. See Details.
- `col, lwd, lty`: The width, colour and type of lines used to plot the empirical curve (the empirical distribution, or PP plot or QQ plot).
- `col0, lwd0, lty0`: The width, colour and type of lines used to plot the reference curve (the predicted distribution, or the diagonal).
- `do.legend`: Logical value indicating whether to add an explanatory legend. Applies only when style="cdf".

**Details**
This is the plot method for the class "cdftest". An object of this class represents the outcome of a spatial distribution test, computed by cdf.test, and based on either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test.

If style="cdf" (the default), the plot displays the two cumulative distribution functions that are compared by the test: namely the empirical cumulative distribution function of the covariate at the data points, and the predicted cumulative distribution function of the covariate under the model, both plotted against the value of the covariate. The Kolmogorov-Smirnov test statistic (for example) is the maximum vertical separation between the two curves.
If style="PP" then the P-P plot is drawn. The $x$ coordinates of the plot are cumulative probabilities for the covariate under the model. The $y$ coordinates are cumulative probabilities for the covariate at the data points. The diagonal line $y = x$ is also drawn for reference. The Kolmogorov-Smirnov test statistic is the maximum vertical separation between the P-P plot and the diagonal reference line.

If style="QQ" then the Q-Q plot is drawn. The $x$ coordinates of the plot are quantiles of the covariate under the model. The $y$ coordinates are quantiles of the covariate at the data points. The diagonal line $y = x$ is also drawn for reference. The Kolmogorov-Smirnov test statistic cannot be read off the Q-Q plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cdf.test

Examples

op <- options(useFancyQuotes=FALSE)

# synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

# fit uniform Poisson process
fit0 <- ppm(X, ~1)

# test covariate = x coordinate
xcoord <- function(x,y) { x }

# test wrong model
k <- cdf.test(fit0, xcoord)

# plot result of test
plot(k, lwd=3)
plot(k, style="PP")
plot(k, style="QQ")
options(op)
plot.colourmap  

Plot a Colour Map

Description
Displays a colour map as a colour ribbon

Usage
```r
S3 method for class 'colourmap'
plot(x, ...,
 main = NULL, xlim = NULL, ylim = NULL, vertical = FALSE, axis = TRUE,
 labelmap=NULL, gap=0.25, add=FALSE)
```

Arguments
- `x`  Colour map to be plotted. An object of class "colourmap".
- `...` Graphical arguments passed to `image.default` or `axis`.
- `main` Main title for plot. A character string.
- `xlim` Optional range of x values for the location of the colour ribbon.
- `ylim` Optional range of y values for the location of the colour ribbon.
- `vertical` Logical flag determining whether the colour ribbon is plotted as a horizontal strip (FALSE) or a vertical strip (TRUE).
- `axis` Logical flag determining whether an axis should be plotted showing the numerical values that are mapped to the colours.
- `labelmap` Function. If this is present, then the labels on the plot, which indicate the input values corresponding to particular colours, will be transformed by `labelmap` before being displayed on the plot. Typically used to simplify or shorten the labels on the plot.
- `gap` Distance between separate blocks of colour, as a fraction of the width of one block, if the colourmap is discrete.
- `add` Logical value indicating whether to add the colourmap to the existing plot (add=TRUE), or to start a new plot (add=FALSE, the default).

Details
This is the plot method for the class "colourmap". An object of this class (created by the function `colourmap`) represents a colour map or colour lookup table associating colours with each data value.

The command `plot.colourmap` displays the colour map as a colour ribbon or as a colour legend (a sequence of blocks of colour). This plot can be useful on its own to inspect the colour map.

If the domain of the colourmap is an interval of real numbers, the colourmap is displayed as a continuous ribbon of colour. If the domain of the colourmap is a finite set of inputs, the colours are displayed as separate blocks of colour. The separation between blocks is equal to `gap` times the width of one block.
To annotate an existing plot with an explanatory colour ribbon or colour legend, specify `add=TRUE` and use the arguments `xlim` and/or `ylim` to control the physical position of the ribbon on the plot. Labels explaining the colour map are drawn by `axis` and can be modified by specifying arguments that will be passed to this function.

**Value**

None.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`colourmap`

**Examples**

```r
co <- colourmap(rainbow(100), breaks=seq(-1,1,length=101))
plot(co)
plot(co, col.ticks="pink")
ca <- colourmap(rainbow(8), inputs=letters[1:8])
plot(ca, vertical=TRUE)
```

---

**plot.envelope**  
*Plot a Simulation Envelope*

**Description**

Plot method for the class "envelope".

**Usage**

```r
S3 method for class 'envelope'
plot(x, ..., main)
```

**Arguments**

- **x**  
  An object of class "envelope", containing the variables to be plotted or variables from which the plotting coordinates can be computed.

- **main**  
  Main title for plot.

- **...**  
  Extra arguments passed to `plot.fv`. 

Details

This is the plot method for the class "envelope" of simulation envelopes. Objects of this class are created by the command `envelope`.

This plot method is currently identical to `plot.fv`.

Its default behaviour is to shade the region between the upper and lower envelopes in a light grey colour. To suppress the shading and plot the upper and lower envelopes as curves, set `shade=NULL`.

To change the colour of the shading, use the argument `shadecol` which is passed to `plot.fv`.

See `plot.fv` for further information on how to control the plot.

Value

Either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`envelope, plot.fv`

Examples

data(cells)
E <- envelope(cells, Kest, nsim=19)
plot(E)
plot(E, sqrt(./pi) ~ r)

-------

plot.fasp 
Plot a Function Array
-------

Description

Plots an array of summary functions, usually associated with a point pattern, stored in an object of class "fasp". A method for plot.

Usage

```r
S3 method for class 'fasp'
plot(x, formule=NULL, ...,
 subset=NULL, title=NULL, banner=TRUE,
 transpose=FALSE,
 sameX=FALSE, sameY=FALSE,
 mar.panel=NULL,
 outerlabels=TRUE, cex.outerlabels=1.25,
 legend=FALSE)
```
Arguments

- **x**: An object of class "fasp" representing a function array.
- **formule**: A formula or list of formulae indicating what variables are to be plotted against what variable. Each formula is either an R language formula object, or a string that can be parsed as a formula. If *formule* is a list, its $k^{th}$ component should be applicable to the $(i,j)^{th}$ plot where $x$which[i,j]=k. If the formula is left as NULL, then *plot.fasp* attempts to use the component default.formula of *x*. If that component is NULL as well, it gives up.

... Arguments passed to *plot.fv* to control the individual plot panels.
- **subset**: A logical vector, or a vector of indices, or an expression or a character string, or a list of such, indicating a subset of the data to be included in each plot. If *subset* is a list, its $k^{th}$ component should be applicable to the $(i,j)^{th}$ plot where $x$which[i,j]=k.
- **title**: Overall title for the plot.
- **banner**: Logical. If TRUE, the overall title is plotted. If FALSE, the overall title is not plotted and no space is allocated for it.
- **transpose**: Logical. If TRUE, rows and columns will be exchanged.
- **samex, samey**: Logical values indicating whether all individual plot panels should have the same x axis limits and the same y axis limits, respectively. This makes it easier to compare the plots.
- **mar.panel**: Vector of length 4 giving the value of the graphics parameter mar controlling the size of plot margins for each individual plot panel. See *par*.
- **outerlabels**: Logical. If TRUE, the row and column names of the array of functions are plotted in the margins of the array of plot panels. If FALSE, each individual plot panel is labelled by its row and column name.
- **cex.outerlabels**: Character expansion factor for row and column labels of array.
- **legend**: Logical flag determining whether to plot a legend in each panel.

Details

An object of class "fasp" represents an array of summary functions, usually associated with a point pattern. See *fasp.object* for details. Such an object is created, for example, by *alltypes*.

The function *plot.fasp* is a method for *plot*. It calls *plot.fv* to plot the individual panels.

For information about the interpretation of the arguments *formule* and *subset*, see *plot.fv*.

Arguments that are often passed through ... include *col* to control the colours of the different lines in a panel, and *lty* and *lwd* to control the line type and line width of the different lines in a panel. The argument *shade* can also be used to display confidence intervals or significance bands as filled grey shading. See *plot.fv*.

The argument *title*, if present, will determine the overall title of the plot. If it is absent, it defaults to *x$title*. Titles for the individual plot panels will be taken from *x$titles*.

Value

None.
Warnings

(Each component of) the subset argument may be a logical vector (of the same length as the vectors of data which are extracted from x), or a vector of indices, or an expression such as expression(r<=0.2), or a text string, such as "r<=0.2".

Attempting a syntax such as subset = r<=0.2 (without wrapping r<=0.2 either in quote marks or in expression()) will cause this function to fall over.

Variables referred to in any formula must exist in the data frames stored in x. What the names of these variables are will of course depend upon the nature of x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fv, fasp.object

Examples

## Not run:
# Bramble Canes data.
data(bramblecanes)

X.G <- alltypes(bramblecanes,"G",dataname="Bramblecanes",verb=TRUE)
plot(X.G)
plot(X.G,subset="r<=0.2")
plot(X.G,formule=asin(sqrt(cbind(km,theo))) ~ asin(sqrt(theo)))
plot(X.G,fo=cbind(km,theo) ~ theo~r,subset="r<=0.2")

# Simulated data.
pp <- runifpoint(350, owin(c(0,1),c(0,1)))
pp <- pp %mark% factor(c(rep(1,50),rep(2,100),rep(3,200)))
X.K <- alltypes(pp,"K",verb=TRUE,dataname="Fake Data")
plot(X.K,fo=cbind(border,tho)~tho,subset="tho<=0.75")

## End(Not run)
Usage

```r
S3 method for class 'fv'
plot(x, fmla, ..., subset=NULL, lty=NULL, col=NULL, lwd=NULL,
 xlab=NULL, ylab=NULL, ylim=NULL, llim.covers=NULL,
 legend=!add, legendpos="topleft", legendavoid=missing(legendpos),
 legendmath=TRUE, legendargs=list(),
 shade=fvnames(x, ".s"), shadedcol="grey",
 add=FALSE, log="",
 mathfont=c("italic", "plain", "bold", "bolditalic"),
 limitsonly=FALSE)
```

Arguments

- **x**: An object of class "fv", containing the variables to be plotted or variables from which the plotting coordinates can be computed.
- **fmla**: an R language formula determining which variables or expressions are plotted. Either a formula object, or a string that can be parsed as a formula. See Details.
- **subset**: (optional) subset of rows of the data frame that will be plotted.
- **lty**: (optional) numeric vector of values of the graphical parameter `lty` controlling the line style of each plot.
- **col**: (optional) numeric vector of values of the graphical parameter `col` controlling the colour of each plot.
- **lwd**: (optional) numeric vector of values of the graphical parameter `lwd` controlling the line width of each plot.
- **xlim**: (optional) range of x axis
- **ylim**: (optional) range of y axis
- **xlab**: (optional) label for x axis
- **ylab**: (optional) label for y axis
- **...**: Extra arguments passed to `plot.default`.
- **ylim.covers**: Optional vector of y values that must be included in the y axis. For example `ylim.covers=0` will ensure that the y axis includes the origin.
- **legend**: Logical flag or NULL. If `legend=TRUE`, the algorithm plots a legend in the top left corner of the plot, explaining the meaning of the different line types and colours.
- **legendpos**: The position of the legend. Either a character string keyword (see `legend` for keyword options) or a pair of coordinates in the format `list(x,y)`. Alternatively if `legendpos="float"`, a location will be selected inside the plot region, avoiding the graphics.
- **legendavoid**: Whether to avoid collisions between the legend and the graphics. Logical value. If TRUE, the code will check for collisions between the legend box and the graphics, and will override `legendpos` if a collision occurs. If FALSE, the value of `legendpos` is always respected.
- **legendmath**: Logical. If TRUE, the legend will display the mathematical notation for each curve. If FALSE, the legend text is the identifier (column name) for each curve.
**legendargs**  Named list containing additional arguments to be passed to `legend` controlling the appearance of the legend.

**shade**  A character vector giving the names of two columns of `x`, or another type of index that identifies two columns. When the corresponding curves are plotted, the region between the curves will be shaded in light grey. The object `x` may or may not contain two columns which are designated as boundaries for shading; they are identified by `fvnames(x, "s")`. The default is to shade between these two curves if they exist. To suppress this behaviour, set `shade=NULL`.

**shadecol**  The colour to be used in the shade plot. A character string or an integer specifying a colour.

**add**  Logical. Whether the plot should be added to an existing plot.

**log**  A character string which contains "x" if the x axis is to be logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

**mathfont**  Character string. The font to be used for mathematical expressions in the axis labels and the legend.

**limitsonly**  Logical. If `false`, plotting is performed normally. If `true`, no plotting is performed at all; just the `x` and `y` limits of the plot are computed and returned.

---

**Details**

This is the `plot` method for the class "fv".

The use of the argument `fmla` is like `plot.formula`, but offers some extra functionality.

The left and right hand sides of `fmla` are evaluated, and the results are plotted against each other (the left side on the y axis against the right side on the x axis).

The left and right hand sides of `fmla` may be the names of columns of the data frame `x`, or expressions involving these names. If a variable in `fmla` is not the name of a column of `x`, the algorithm will search for an object of this name in the environment where `plot.fv` was called, and then in the enclosing environment, and so on.

Multiple curves may be specified by a single formula of the form `cbind(y1,y2,...,yn) ~ x`, where `x,y1,y2,...,yn` are expressions involving the variables in the data frame. Each of the variables `y1,y2,...,yn` in turn will be plotted against `x`. See the examples.

Convenient abbreviations which can be used in the formula are

- the symbol `.` which represents all the columns in the data frame that will be plotted by default;
- the symbol `.x` which represents the function argument;
- the symbol `.y` which represents the recommended value of the function.

For further information, see `fvnames`.

The value returned by this plot function indicates the meaning of the line types and colours in the plot. It can be used to make a suitable legend for the plot if you want to do this by hand. See the examples.

The argument `shade` can be used to display critical bands or confidence intervals. If it is not `NULL`, then it should be a subset index for the columns of `x`, that identifies exactly 2 columns. When the corresponding curves are plotted, the region between the curves will be shaded in light grey. See the Examples.
plot.fv

The default values of lty, col and lwd can be changed using spatstat.options("plot.fv"). Use type = "n" to create the plot region and draw the axes without plotting any data. Use limitsonly=TRUE to suppress all plotting and just compute the x and y limits. This can be used to calculate common x and y scales for several plots. To change the kind of parenthesis enclosing the explanatory text about the unit of length, use spatstat.options('units.paren')

Value

Either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

Examples

K <- Kest(cells)
# K is an object of class "fv"
plot(K, iso ~ r)        # plots iso against r
plot(K, sqrt(iso/pi) ~ r) # plots sqrt(iso/r) against r
plot(K, cbind(iso, theo) ~ r) # plots iso against r AND theo against r
plot(K, . ~ r) # plots all available estimates of K against r
plot(K, sqrt(./pi) ~ r) # plots all estimates of L-function
# L(r) = sqrt(K(r)/pi)
plot(K, cbind(iso, theo) ~ r, col=c(2,3))
# plots iso against r in colour 2
# and theo against r in colour 3
plot(K, iso ~ r, subset=quote(r < 0.2))
# plots iso against r for r < 0.2

# Can't remember the names of the columns? No problem..
plot(K, sqrt(./pi) ~ .x)

# making a legend by hand
v <- plot(K, . ~ r, legend=FALSE)
legend("topleft", legend=v$meaning, lty=v$lty, col=v$col)

# significance bands
KE <- envelope(cells, Kest, nsim=19)
plot(KE, shade=c("hi", "lo"))

# how to display two functions on a common scale
Kr <- Kest(redwood)
a <- plot(K, limitsonly=TRUE)
b <- plot(Kr, limitsonly=TRUE)
xlim <- range(a$xlim, b$xlim)
ylim <- range(a$ylim, b$ylim)
opa <- par(mfrow=c(1,2))
plot(K, xlim=xlim, ylim=ylim)
plot(Kr, xlim=xlim, ylim=ylim)
par(opa)

plot.hyperframe  Plot Entries in a Hyperframe

Description
Plots the entries in a hyperframe, in a series of panels, one panel for each row of the hyperframe.

Usage

## S3 method for class 'hyperframe'
plot(x, e, ..., main, arrange=TRUE,
nrows=NULL, ncols=NULL,
parargs=list(mar=mar * marsize),
marsize=0.1, mar=c(1,1,3,1))

Arguments

x  Data to be plotted. A hyperframe (object of class "hyperframe", see hyperframe).
e  How to plot each row. Optional. An R language call or expression (typically enclosed in quote() that will be evaluated in each row of the hyperframe to generate the plots.
... Extra arguments controlling the plot (when e is missing).
main Overall title for the array of plots.
arrange Logical flag indicating whether to plot the objects side-by-side on a single page (arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).
nrows, ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE). You can specify either or both of these numbers.
parargs Optional list of arguments passed to par before plotting each panel. Can be used to control margin sizes, etc.
marsize Optional scale parameter controlling the sizes of margins between the panels. Incompatible with parargs.
mar Optional numeric vector of length 1, 2 or 4 controlling the relative sizes of margins between the panels. Incompatible with parargs.
Details

This is the plot method for the class "hyperframe".

The argument x must be a hyperframe (like a data frame, except that the entries can be objects of any class; see hyperframe).

This function generates a series of plots, one plot for each row of the hyperframe. If arrange=TRUE (the default), then these plots are arranged in a neat array of panels within a single plot frame. If arrange=FALSE, the plots are simply executed one after another.

Exactly what is plotted, and how it is plotted, depends on the argument e. The default (if e is missing) is to plot only the first column of x. Each entry in the first column is plotted using the generic plot command, together with any extra arguments given in ... .

If e is present, it should be an R language expression involving the column names of x. (It is typically created using quote or expression.) The expression will be evaluated once for each row of x. It will be evaluated in an environment where each column name of x is interpreted as meaning the object in that column in the current row. See the Examples.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe, with.hyperframe

Examples

H <- hyperframe(id=1:10)
H$X <- with(H, rpoispp(100))
H$D <- with(H, distmap(X))
# points only
plot(H,"X")
plot(H, quote(plot(X, main=id)))
# points superimposed on images
plot(H, quote({plot(D, main=id); plot(X, add=TRUE)}))

plot.im        Plot a Pixel Image

Description

Plot a pixel image.
Usage

```r
S3 method for class 'im'
plot(x, ...,
 main,
 add=FALSE, clipwin=NULL,
 col=NULL, valuesAreColours=NULL, log=FALSE,
 ribbon=show.all, show.all=!add,
 ribs=c("right", "left", "bottom", "top"),
 ribsep=0.15, ribwid=0.05, ribn=1024,
 ribscale=1, ribargs=list(), colargs=list(),
 useRaster=NULL,
 do.plot=TRUE)
```

```r
S3 method for class 'im'
image(x, ...,
 main,
 add=FALSE, clipwin=NULL,
 col=NULL, valuesAreColours=NULL, log=FALSE,
 ribbon=show.all, show.all=!add,
 ribs=c("right", "left", "bottom", "top"),
 ribsep=0.15, ribwid=0.05, ribn=1024,
 ribscale=1, ribargs=list(), colargs=list(),
 useRaster=NULL,
 do.plot=TRUE)
```

Arguments

- **x**
  The pixel image to be plotted. An object of class "im" (see `im.object`).

- **...**
  Extra arguments passed to `image.default` to control the plot. See Details.

- **main**
  Main title for the plot.

- **add**
  Logical value indicating whether to superimpose the image on the existing plot (add=TRUE) or to initialise a new plot (add=FALSE, the default).

- **clipwin**
  Optional. A window (object of class "owin"). Only this subset of the image will be displayed.

- **col**
  Colours for displaying the pixel values. Either a character vector of colour values, an object of class `colourmap`, or a function as described under Details.

- **valuesAreColours**
  Logical value. If TRUE, the pixel values of x are to be interpreted as colour values.

- **log**
  Logical value. If TRUE, the colour map will be evenly-spaced on a logarithmic scale.

- **ribbon**
  Logical flag indicating whether to display a ribbon showing the colour map. Default is TRUE for new plots and FALSE for added plots.

- **show.all**
  Logical value indicating whether to display all plot elements including the main title and colour ribbon. Default is TRUE for new plots and FALSE for added plots.
plot.im

**ribside**
Character string indicating where to display the ribbon relative to the main image.

**ribsep**
Factor controlling the space between the ribbon and the image.

**ribwid**
Factor controlling the width of the ribbon.

**ribn**
Number of different values to display in the ribbon.

**ribscale**
Rescaling factor for tick marks. The values on the numerical scale printed beside the ribbon will be multiplied by this rescaling factor.

**ribargs**
List of additional arguments passed to `image.default` and `axis` to control the display of the ribbon and its scale axis. These may override the ... arguments.

**colargs**
List of additional arguments passed to `col` if it is a function.

**useRaster**
Logical value, passed to `image.default`. Images are plotted using a bitmap raster if `useRaster=TRUE` or by drawing polygons if `useRaster=FALSE`. Bitmap raster display tends to produce better results, but is not supported on all graphics devices. The default is to use bitmap raster display if it is supported.

**do.plot**
Logical value indicating whether to actually plot the image and colour ribbon. Setting `do.plot=FALSE` will simply return the colour map and the bounding box that were chosen for the plot.

**Details**

This is the plot method for the class "im". [It is also the image method for "im".]

The pixel image `x` is displayed on the current plot device, using equal scales on the x and y axes.

If `ribbon=TRUE`, a legend will be plotted. The legend consists of a colour ribbon and an axis with tick-marks, showing the correspondence between the pixel values and the colour map.

By default, the ribbon is placed at the right of the main image. This can be changed using the argument `ribside`.

Arguments `ribsep`, `ribwid`, `ribn` control the appearance of the ribbon. The width of the ribbon is `ribwid` times the size of the pixel image, where ‘size’ means the larger of the width and the height. The distance separating the ribbon and the image is `ribsep` times the size of the pixel image. The ribbon contains `ribn` different numerical values, evenly spaced between the minimum and maximum pixel values in the image `x`, rendered according to the chosen colour map.

Arguments `ribscale`, `ribargs` control the annotation of the colour ribbon. To plot the colour ribbon without the axis and tick-marks, use `ribargs=list(axes=FALSE)`.

Normally the pixel values are displayed using the colours given in the argument `col`. This may be either

- an explicit colour map (an object of class "colourmap", created by the command `colourmap`). This is the best way to ensure that when we plot different images, the colour maps are consistent.

- a character vector or integer vector that specifies a set of colours. The colour mapping will be stretched to match the range of pixel values in the image `x`. The mapping of pixel values to colours is determined as follows.

  **logical-valued images**: the values `FALSE` and `TRUE` are mapped to the colours `col[1]` and `col[2]` respectively. The vector `col` should have length 2.
factor-valued images: the factor levels levels(x) are mapped to the entries of col in order. The vector col should have the same length as levels(x).

numeric-valued images: By default, the range of pixel values in x is divided into \( n = \text{length}(\text{col}) \) equal subintervals, which are mapped to the colours in col. (If col was not specified, it defaults to a vector of 255 colours.) Alternatively if the argument zlim is given, it should be a vector of length 2 specifying an interval of real numbers. This interval will be used instead of the range of pixel values. The interval from zlim[1] to zlim[2] will be mapped to the colours in col. This facility enables the user to plot several images using a consistent colour map. Alternatively if the argument breaks is given, then this specifies the endpoints of the subintervals that are mapped to each colour. This is incompatible with zlim. The arguments col and zlim or breaks are then passed to the function image.default. For examples of the use of these arguments, see image.default.

- a function in the \( \text{\ R} \) language with an argument named range or inputs. If col is a function with an argument named range, and if the pixel values of x are numeric values, then the colour values will be determined by evaluating \( \text{col}(\text{range} = \text{range}(x)) \). The result of this evaluation should be a character vector containing colour values, or a "colourmap" object. Examples of such functions are beachcolours and beachcolourmap.
If col is a function with an argument named inputs, and if the pixel values of x are discrete values (integer, logical, factor or character), then the colour values will be determined by evaluating \( \text{col}(\text{inputs} = p) \) where \( p \) is the set of possible pixel values. The result should be a character vector containing colour values, or a "colourmap" object.
- a function in the \( \text{\ R} \) language with first argument named n. The colour values will be determined by evaluating \( \text{col}(n) \) where \( n \) is the number of distinct pixel values, up to a maximum of 128. The result of this evaluation should be a character vector containing color values. Examples of such functions are heat.colors, terrain.colors, topo.colors and cm.colors.

If spatstat.options("monochrome") has been set to TRUE then all colours will be converted to grey scale values.

Other graphical parameters controlling the display of both the pixel image and the ribbon can be passed through the ... arguments to the function image.default. A parameter is handled only if it is one of the following:

- a formal argument of image.default that is operative when add=TRUE.
- the argument box, a logical value specifying whether a box should be drawn.

Images are plotted using a bitmap raster if useRaster=TRUE or by drawing polygons if useRaster=FALSE. Bitmap raster display (performed by rasterImage) tends to produce better results, but is not supported on all graphics devices. The default is to use bitmap raster display if it is supported according to dev.capabilities.
Alternatively, the pixel values could be directly interpretable as colour values in \( \text{\ R} \). That is, the pixel values could be character strings that represent colours, or values of a factor whose levels are character strings representing colours.

- If valuesAreColours=TRUE, then the pixel values will be interpreted as colour values and displayed using these colours.
• If `valuesAreColours`=FALSE, then the pixel values will *not* be interpreted as colour values, even if they could be.
• If `valuesAreColours`=NULL, the algorithm will guess what it should do. If the argument `col` is given, the pixel values will *not* be interpreted as colour values. Otherwise, if all the pixel values are strings that represent colours, then they will be interpreted and displayed as colours.

If pixel values are interpreted as colours, the arguments `col` and `ribbon` will be ignored, and a ribbon will not be plotted.

**Value**

The colour map used. An object of class "colourmap".

Also has an attribute "bbox" giving a bounding box for the colour image (including the ribbon if present).

**Monochrome colours**

If `spatstat.options("monochrome")` has been set to TRUE, then the image will be plotted in *greyscale*. The colours are converted to grey scale values using `to.grey`. The choice of colour map still has an effect, since it determines the final grey scale values.

Monochrome display can also be achieved by setting the graphics device parameter `colormodel="grey"` when starting a new graphics device, or in a call to `ps.options` or `pdf.options`.

**Image Rendering Errors and Problems**

The help for `image.default` and `rasterImage` explains that errors may occur, or images may be rendered incorrectly, on some devices, depending on the availability of colours and other device-specific constraints.

If the image is not displayed at all, try setting `useRaster=FALSE` in the call to `plot.im`. If the ribbon colours are not displayed, set `ribargs=list(useRaster=FALSE)`.

Errors may occur on some graphics devices if the image is very large. If this happens, try setting `useRaster=FALSE` in the call to `plot.im`.

The error message `useRaster=TRUE` can only be used with a regular grid means that the `x` and `y` coordinates of the pixels in the image are not perfectly equally spaced, due to numerical rounding. This occurs with some images created by earlier versions of `spatstat`. To repair the coordinates in an image `X`, type `X <- as.im(X)`. 

**Author(s)**

and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`im.object, colourmap, contour.im, persp.im, image.default, spatstat.options`
Examples

```r
an image
Z <- setcov(owin())
plot(Z)
plot(Z, ribside="bottom") # stretchable colour map
plot(Z, col=terrain.colors(128), axes=FALSE) # fixed colour map
tc <- colourmap(rainbow(128), breaks=seq(-1,2,length=129))
plot(Z, col=tc) # colour map function, with argument 'range'
plot(Z, col=beachcolours, colargs=list(sealevel=0.5)) # tweaking the plot
plot(Z, main="La vie en bleu", col.main="blue", cex.main=1.5, box=FALSE, ribargs=list(col.axis="blue", col.ticks="blue", cex.axis=0.75)) # log scale
V <- eval.im(exp(exp(Z+2))/1e4)
plot(V, log=TRUE, main="Log scale")
```

Description

Plots an array of pixel images.

Usage

```r
S3 method for class 'imlist'
plot(x, ..., equal.ribbon=FALSE, ribmar=NULL)

S3 method for class 'imlist'
image(x, ..., equal.ribbon=FALSE, ribmar=NULL)

S3 method for class 'listof'
image(x, ..., equal.ribbon=FALSE, ribmar=NULL)
```

Arguments

- `x` An object of the class "imlist" representing a list of pixel images. Alternatively `x` may belong to the outdated class "listof".
- `...` Arguments passed to `plot.solist` to control the spatial arrangement of panels, and arguments passed to `plot.im` to control the display of each panel.
- `equal.ribbon` Logical. If TRUE, the colour maps of all the images will be the same. If FALSE, the colour map of each image is adjusted to the range of values of that image.
- `ribmar` Numeric vector of length 4 specifying the margins around the colour ribbon, if `equal.ribbon=TRUE`. Entries in the vector give the margin at the bottom, left, top, and right respectively, as a multiple of the height of a line of text.
Details

These are methods for the generic plot commands plot and image for the class "imlist". They are currently identical.

An object of class "imlist" represents a list of pixel images. (The outdated class "listof" is also handled.)

Each entry in the list x will be displayed as a pixel image, in an array of panels laid out on the same graphics display, using plot.solist. Individual panels are plotted by plot.im.

If equal.ribbon=FALSE (the default), the images are rendered using different colour maps, which are displayed as colour ribbons beside each image. If equal.ribbon=TRUE, the images are rendered using the same colour map, and a single colour ribbon will be displayed at the right side of the array. The colour maps and the placement of the colour ribbons are controlled by arguments ... passed to plot.im.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

plot.solist, plot.im

Examples

D <- density(split(amacrine))
image(D, equal.ribbon=TRUE, main="", col.ticks="red", col.axis="red")

plot.influence.ppm  Plot Influence Measure

Description

Plots an influence measure that has been computed by influence.ppm.

Usage

## S3 method for class 'influence.ppm'
plot(x, ...)

Arguments

x  Influence measure (object of class "influence.ppm") computed by influence.ppm.
...  Arguments passed to plot.ppp to control the plotting.
This is the plot method for objects of class "influence.ppm". These objects are computed by the command influence.ppm. The display shows circles centred at the data points with radii proportional to the influence values. Use the argument clipwin to restrict the plot to a subset of the full data.

Value
None.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also
influence.ppm

Examples
X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(influence(fit))

plot.kppm

Plot a fitted cluster point process

Description
Plots a fitted cluster point process model, displaying the fitted intensity and the fitted K-function.

Usage
## S3 method for class 'kppm'
plot(x, ..., what=c("intensity", "statistic", "cluster"))

Arguments
x Fitted cluster point process model. An object of class "kppm".
... Arguments passed to plot.ppm and plot.fv to control the plot.
what Character vector determining what will be plotted.
Details

This is a method for the generic function `plot` for the class "kppm" of fitted cluster point process models.

The argument `x` should be a cluster point process model (object of class "kppm") obtained using the function `kppm`.

The choice of plots (and the order in which they are displayed) is controlled by the argument `what`. The options (partially matched) are "intensity", "statistic" and "cluster".

This command is capable of producing three different plots:

- `what="intensity"` specifies the fitted intensity of the model, which is plotted using `plot.ppm`. By default this plot is not produced for stationary models.

- `what="statistic"` specifies the empirical and fitted summary statistics, which are plotted using `plot.fv`. This is only meaningful if the model has been fitted using the Method of Minimum Contrast, and it is turned off otherwise.

- `what="cluster"` specifies a fitted cluster, which is computed by `clusterfield` and plotted by `plot.im`. It is only meaningful for Poisson cluster (incl. Neyman-Scott) processes, and it is turned off for log-Gaussian Cox processes (LGCP). If the model is stationary (and non-LGCP) this option is turned on by default and shows a fitted cluster positioned at the centroid of the observation window. For non-stationary (and non-LGCP) models this option is only invoked if explicitly told so, and in that case an additional argument `locations` (see `clusterfield`) must be given to specify where to position the parent point(s).

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `kppm`, `plot.ppm`

Examples

```r
data(redwood)
fit <- kppm(redwood~1, "Thomas")
plot(fit)
```
plot.layered  

Layered Plot

Description
Generates a layered plot. The plot method for objects of class "layered".

Usage

```r
S3 method for class 'layered'
plot(x, ..., which = NULL, plotargs = NULL,
 add=FALSE, show.all=!add, main=NULL, do.plot=TRUE)
```

Arguments

- `x`: An object of class "layered" created by the function `layered`.
- `...`: Arguments to be passed to the `plot` method for every layer.
- `which`: Subset index specifying which layers should be plotted.
- `plotargs`: Arguments to be passed to the `plot` methods for individual layers. A list of lists of arguments of the form `name=value`.
- `add`: Logical value indicating whether to add the graphics to an existing plot.
- `show.all`: Logical value indicating whether the first layer should be displayed in full (including the main title, bounding window, coordinate axes, colour ribbon, and so on).
- `main`: Main title for the plot.
- `do.plot`: Logical value indicating whether to actually do the plotting.

Details
Layering is a simple mechanism for controlling a high-level plot that is composed of several successive plots, for example, a background and a foreground plot. The layering mechanism makes it easier to plot, to switch on or off the plotting of each individual layer, to control the plotting arguments that are passed to each layer, and to zoom in on a subregion.

The layers of data to be plotted should first be converted into a single object of class "layered" using the function `layered`. Then the layers can be plotted using the method `plot.layered`.

To zoom in on a subregion, apply the subset operator `[].layered to x before plotting.

Graphics parameters for each layer are determined by (in order of precedence) `...`, `plotargs`, and `layerplotargs(x)`.

The graphics parameters may also include the special argument `.plot` specifying (the name of) a function which will be used to perform the plotting instead of the generic `plot`.

The argument `show.all` is recognised by many plot methods in `spatstat`. It determines whether a plot is drawn with all its additional components such as the main title, bounding window, coordinate axes, colour ribbons and legends. The default is `TRUE` for new plots and `FALSE` for added plots.
In `plot.layered`, the argument `showNall` applies only to the first layer. The subsequent layers are plotted with `showNall=FALSE`.

To override this, that is, if you really want to draw all the components of all layers of x, insert the argument `showNall=TRUE` in each entry of `plotargs` or `layerplotargs(x)`.

**Value**

(Invisibly) a list containing the return values from the plot commands for each layer. This list has an attribute "bbox" giving a bounding box for the entire plot.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`layered`, `layerplotargs`, `[.layered.plot`.

**Examples**

```r
data(cells)
D <- distmap(cells)
L <- layered(D, cells)
plot(L)
plot(L, which = 2)
plot(L, plotargs=list(list(ribbon=FALSE), list(pch=3, cols="white")))
plot a subregion
plot(L[, square(0.5)])
```

---

**plot.leverage.ppm**

---

**Description**

Plots a leverage function that has been computed by `leverage.ppm`.

**Usage**

```r
S3 method for class 'leverage.ppm'
plot(x, ..., showcut=TRUE, col.cut=par("fg"))
```

**Arguments**

- `x`  
  Leverage measure (object of class "leverage.ppm") computed by `leverage.ppm`.

- `...`  
  Arguments passed to `plot.im` or `contour.im` controlling the plot.

- `showcut`  
  Logical. If TRUE, a contour line is plotted at the level equal to the theoretical mean of the leverage.

- `col.cut`  
  Optional colour for the contour line.
plot.linim

Details

This is the plot method for objects of class "leverage.ppm". These objects are computed by the command leverage.ppm.

Use the argument clipwin to restrict the plot to a subset of the full data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

leverage.ppm

Examples

```r
X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(leverage(fit))
```

---

plot.linim  
Plot Pixel Image on Linear Network

Description

Given a pixel image on a linear network, the pixel values are displayed either as colours or as line widths.

Usage

```r
S3 method for class 'linim'
plot(x, ..., style = c("colour", "width"),
 scale, adjust = 1,
 do.plot=TRUE)
```
Arguments

- `x`: The pixel image to be plotted. An object of class "linim".
- `...`: Extra graphical parameters, passed to `plot.im` if `style="colour"`, or to `polygon` if `style="width"`.
- `style`: Character string specifying the type of plot. See Details.
- `scale`: Physical scale factor for representing the pixel values as line widths.
- `adjust`: Adjustment factor for the default scale.
- `do.plot`: Logical value indicating whether to actually perform the plot.

Details

This is the `plot` method for objects of class "linim". Such an object represents a pixel image defined on a linear network.

- If `style="colour"` (the default) then the pixel values of `x` are plotted as colours, using `plot.im`.
- If `style="width"` then the pixel values of `x` are used to determine the widths of thick lines centred on the line segments of the linear network.

Value

An (invisible) window (class "owin") containing the area that will be plotted, including the colour ribbon.

Author(s)


References


See Also

`linim`, `plot.im`, `polygon`

Examples

```r
example(linim)
plot(X)
plot(X, style="width")
```
plot.linnet  

Plot a linear network

Description

Plots a linear network

Usage

## S3 method for class 'linnet'
plot(x, ..., main=NULL, add=FALSE,
     vertices=FALSE, window=FALSE,
     do.plot=TRUE)

Arguments

x  Linear network (object of class "linnet").

... Arguments passed to plot.psp controlling the plot.

main Main title for plot. Use main="" to suppress it.

add Logical. If codeTRUE, superimpose the graphics over the current plot. If FALSE, generate a new plot.

vertices Logical. Whether to plot the vertices as well.

window Logical. Whether to plot the window containing the linear network.

do.plot Logical. Whether to actually perform the plot.

Details

This is the plot method for class "linnet".

Value

An (invisible) object of class "owin" giving the bounding box of the network.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

See Also

linnet

Examples

example(linnet)
plot(letterA)
Description

Plots a list of things

Usage

```r
S3 method for class 'listof'
plot(x, ..., main, arrange=TRUE,
 nrows=NULL, ncols=NULL, main.panel=NULL,
 mar.panel=c(2,1,1,2), hsep=0, vsep=0,
 panel.begin=NULL, panel.end=NULL, panel.args=NULL, plotcommand="plot",
 adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
 adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)
```

Arguments

- `x` An object of the class "listof". Essentially a list of objects.
- `...` Arguments passed to `plot` when generating each plot panel.
- `main` Overall heading for the plot.
- `arrange` Logical flag indicating whether to plot the objects side-by-side on a single page (`arrange=TRUE`) or plot them individually in a succession of frames (`arrange=FALSE`).
- `nrows, ncols` Optional. The number of rows/columns in the plot layout (assuming `arrange=TRUE`). You can specify either or both of these numbers.
- `main.panel` Optional. A character string, or a vector of character strings, giving the headings for each of the objects.
- `mar.panel` Size of the margins outside each plot panel. A numeric vector of length 4 giving the bottom, left, top, and right margins in that order. (Alternatively the vector may have length 1 or 2 and will be replicated to length 4). See the section on Spacing between plots.
- `hsep, vsep` Additional horizontal and vertical separation between plot panels, expressed in the same units as `mar.panel`.
- `panel.begin, panel.end` Optional. Functions that will be executed before and after each panel is plotted. See Details.
- `panel.args` Optional. Function that determines different plot arguments for different panels. See Details.
- `plotcommand` Optional. Character string containing the name of the command that should be executed to plot each panel.
- `adorn.left, adorn.right, adorn.top, adorn.bottom` Optional. Functions (with no arguments) that will be executed to generate additional plots at the margins (left, right, top and/or bottom, respectively) of the array of plots.
adorn.size  Relative width (as a fraction of the other panels’ widths) of the margin plots.
equal.scales  Logical value indicating whether the components should be plotted at (approximately) the same physical scale.
halign, valign  Logical values indicating whether panels in a column should be aligned to the same \(x\) coordinate system (halign=TRUE) and whether panels in a row should be aligned to the same \(y\) coordinate system (valign=TRUE). These are applicable only if equal.scales=TRUE.

Details

This is the plot method for the class "listof".

An object of class "listof" (defined in the base R package) represents a list of objects, all belonging to a common class. The base R package defines a method for printing these objects, `print.listof`, but does not define a method for `plot`. So here we have provided a method for `plot`.

In the `spatstat` package, various functions produce an object of class "listof", essentially a list of spatial objects of the same kind. These objects can be plotted in a nice arrangement using `plot.listof`. See the Examples.

The argument `panel.args` determines extra graphics parameters for each panel. It should be a function that will be called as `panel.args(i)` where \(i\) is the panel number. Its return value should be a list of graphics parameters that can be passed to the relevant `plot` method. These parameters override any parameters specified in the \(\ldots\) arguments.

The arguments `panel.begin` and `panel.end` determine graphics that will be plotted before and after each panel is plotted. They may be objects of some class that can be plotted with the generic `plot` command. Alternatively they may be functions that will be called as `panel.begin(i, y, main=main.panel[i])` and `panel.end(i, y, add=TRUE)` where \(i\) is the panel number and \(y = x[[i]]\).

If all entries of \(x\) are pixel images, the function `image.listof` is called to control the plotting. The arguments `equal.ribbon` and `col` can be used to determine the colour map or maps applied.

If equal.scales=FALSE (the default), then the plot panels will have equal height on the plot device (unless there is only one column of panels, in which case they will have equal width on the plot device). This means that the objects are plotted at different physical scales, by default.

If equal.scales=TRUE, then the dimensions of the plot panels on the plot device will be proportional to the spatial dimensions of the corresponding components of \(x\). This means that the objects will be plotted at approximately equal physical scales. If these objects have very different spatial sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under the following conditions:

- every component of \(x\) is a spatial object whose position can be shifted by `shift`;
- `panel.begin` and `panel.end` are either `NULL` or they are spatial objects whose position can be shifted by `shift`;
- `adorn.left`, `adorn.right`, `adorn.top` and `adorn.bottom` are all `NULL`.

Another special case is when every component of \(x\) is an object of class "fv" representing a function. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e. with the same `xlim` and the same `ylim`).
**Value**

Null.

**Spacing between plots**

The spacing between individual plots is controlled by the parameters mar.panel, hsep and vsep. If `equal.scales`=FALSE, the plot panels are logically separate plots. The margins for each panel are determined by the argument `mar.panel` which becomes the graphics parameter `mar` described in the help file for `par`. One unit of `mar` corresponds to one line of text in the margin. If `hsep` or `vsep` are present, `mar.panel` is augmented by `c(vsep, hsep, vsep, hsep)/2`.

If `equal.scales`=TRUE, all the plot panels are drawn in the same coordinate system which represents a physical scale. The unit of measurement for `mar.panel[1,3]` is one-sixth of the greatest height of any object plotted in the same row of panels, and the unit for `mar.panel[2,4]` is one-sixth of the greatest width of any object plotted in the same column of panels. If `hsep` or `vsep` are present, they are interpreted in the same units as `mar.panel[1,3]` and `mar.panel[1,2]` respectively.

**Error messages**

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects had a much smaller physical scale than the others. Ensure that `equal.scales`=FALSE and increase the values of `mar.panel`.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`print.listof`, `contour.listof`, `image.listof`, `density.splitppp`

**Examples**

```r
Intensity estimate of multitype point pattern
plot(D <- density(split(amacrine)))
plot(D, main="", equal.ribbon=TRUE,
 panel.end=function(i,y,...){contour(y, ...)})

list of 3D point patterns
ape1 <- osteo[osteo$shortid==4, "pts", drop=TRUE]
class(ape1)
plot(ape1, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,
 cex=1.5, pch=21, bg='white')
```
plot.lpp  

Plot Point Pattern on Linear Network

Description

Plots a point pattern on a linear network. Plot method for the class "lpp" of point patterns on a linear network.

Usage

```r
S3 method for class 'lpp'
plot(x, ..., main, add = FALSE,
 use.marks=TRUE, which.marks=NULL,
 show.all = !add, show.window=FALSE,
 do.plot = TRUE, multiplot=TRUE)
```

Arguments

- `x` Point pattern on a linear network (object of class "lpp").
- `...` Additional arguments passed to `plot.linnet` or `plot.ppp`.
- `main` Main title for plot.
- `add` Logical value indicating whether the plot is to be added to the existing plot (`add=TRUE`) or whether a new plot should be initialised (`add=FALSE`, the default).
- `use.marks` Logical flag; if `TRUE`, plot points using a different plotting symbol for each mark; if `FALSE`, only the locations of the points will be plotted, using `points()`.
- `which.marks` Index determining which column of marks to use, if the marks of `x` are a data frame. A character or integer vector identifying one or more columns of marks. If `add=FALSE` then the default is to plot all columns of marks, in a series of separate plots. If `add=TRUE` then only one column of marks can be plotted, and the default is `which.marks=1` indicating the first column of marks.
- `show.all` Logical value indicating whether to plot everything including the main title and the window containing the network.
- `show.window` Logical value indicating whether to plot the window containing the network. Overrides `show.all`.
- `do.plot` Logical value determining whether to actually perform the plotting.
- `multiplot` Logical value giving permission to display multiple plots.

Details

The linear network is plotted by `plot.linnet`, then the points are plotted by `plot.ppp`. Commonly-used arguments include:

- `col` and `lwd` for the colour and width of lines in the linear network
- `cols` for the colour or colours of the points
- `chars` for the plot characters representing different types of points
- `legend` and `leg.side` to control the graphics legend
Value

(Invisible) object of class "symbolmap" giving the correspondence between mark values and plotting characters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

lpp.
See plot.ppp for options for representing the points.

Examples

plot(chicago, cols=1:6)
plot.mppm

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

See Also

lppm, plot.linim, methods.lppm, predict.lppm.

Examples

e.example(lpp)
fit <- lppm(X, ~x)
plot(fit)
plot(fit, style="width")

plot.mppm plot a Fitted Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns by mppm, compute spatial trend or conditional intensity surface of the model, in a form suitable for plotting, and (optionally) plot this surface.

Usage

### S3 method for class 'mppm'
plot(x, ..., trend = TRUE, cif = FALSE,
     how="image")

Arguments

x A point process model fitted to multiple point patterns, typically obtained from the model-fitting algorithm mppm. An object of class "mppm".
... Arguments passed to plot.ppm or plot.listof controlling the plot.
trend logical flag: if TRUE, the spatial trend surface will be produced.
cif logical flag: if TRUE, the conditional intensity surface will be produced.
how character string vector indicating the style of plot to be performed.
Details

This is the plot method for the class "mppm" of point process models fitted to multiple point patterns (see mppm).

It invokes subfits to compute the fitted model for each individual point pattern dataset, then calls plot.ppm to plot these individual models. These individual plots are displayed using plot.listof, which generates either a series of separate plot frames or an array of plot panels on a single page.

Value

null.

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <rolf@math.unb.ca> http://www.math.unb.ca/~rolf

See Also

plot.ppm, mppm, plot.listof

plot.msr

Plot a Signed or Vector-Valued Measure

Description

Plot a signed measure or vector-valued measure.

Usage

## S3 method for class 'msr'
plot(x, ..., add=FALSE,
    how=c("image", "contour", "imagecontour"),
    main=NULL,
    do.plot=TRUE)

Arguments

x

The signed or vector measure to be plotted. An object of class "msr" (see msr).

... Extra arguments passed to Smooth.ppp to control the interpolation of the continuous density component of x, or passed to plot.im or plot.ppp to control the appearance of the plot.

add Logical flag; if TRUE, the graphics are added to the existing plot. If FALSE (the default) a new plot is initialised.

how String indicating how to display the continuous density component.

main String. Main title for the plot.

do.plot Logical value determining whether to actually perform the plotting.
Details

This is the plot method for the class "msr".

The continuous density component of \( x \) is interpolated from the existing data by \texttt{Smooth.ppp}, and then displayed as a colour image by \texttt{plot.im}.

The discrete atomic component of \( x \) is then superimposed on this image by plotting the atoms as circles (for positive mass) or squares (for negative mass) by \texttt{plot.ppp}.

To smooth both the discrete and continuous components, use \texttt{Smooth.msr}.

Use the argument \texttt{clipwin} to restrict the plot to a subset of the full data.

Value

(Invisible) colour map (object of class "colourmap") for the colour image.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>\ http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{msr, Smooth.ppp, Smooth.msr, plot.im, plot.ppp}

Examples

```r
example(msr)
plot(rp)
plot(rs)
plot(rs, how="contour")
```

plot.onearrow

Plot an Arrow

Description

Plots an object of class "onearrow".

Usage

```r
S3 method for class 'onearrow'
plot(x, ...,
 add = FALSE, main = "",
 retract = 0.05, headfraction = 0.25, headangle = 12, headnick = 0.1,
 col.head = NA, lwd.head = lwd, lwd = 1, col = 1,
 zap = FALSE, zapfraction = 0.07,
 pch = 1, cex = 1, do.plot = TRUE, do.points = FALSE, show.all = !add)
```
plot.onearrow

Arguments

x Object of class "onearrow" to be plotted. This object is created by the command onearrow.

... Additional graphics arguments passed to segments to control the appearance of the line.

add Logical value indicating whether to add graphics to the existing plot (add=TRUE) or to start a new plot (add=FALSE).

main Main title for the plot.

retract Fraction of length of arrow to remove at each end.

headfraction Length of arrow head as a fraction of overall length of arrow.

headangle Angle (in degrees) between the outer edge of the arrow head and the shaft of the arrow.

headnick Size of the nick in the trailing edge of the arrow head as a fraction of length of arrow head.

col.head, lwd.head Colour and line style of the filled arrow head.

col, lwd Colour and line style of the arrow shaft.

zap Logical value indicating whether the arrow should include a Z-shaped (lightning-bolt) feature in the middle of the shaft.

zapfraction Size of Z-shaped deviation as a fraction of total arrow length.

pch, cex Plot character and character size for the two end points of the arrow, if do.points=TRUE.

do.plot Logical. Whether to actually perform the plot.

do.points Logical. Whether to display the two end points of the arrow as well.

show.all Internal use only.

Details

The argument x should be an object of class "onearrow" created by the command onearrow.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

onearrow, yardstick

Examples

oa <- onearrow(cells[c(1, 42)])
plot(oa)
plot(oa, zap=TRUE, do.points=TRUE, col.head="pink", col="red")
plot.owin  

Plot a Spatial Window

Description

Plot a two-dimensional window of observation for a spatial point pattern

Usage

```r
S3 method for class 'owin'
plot(x, main, add=FALSE, ..., box, edge=0.04,
 type=c("w","n"), show.all=!add,
 hatch=FALSE,
 hatchargs=list(),
 invert=FALSE, do.plot=TRUE)
```

Arguments

- `x`  
  The window to be plotted. An object of class `owin`, or data which can be converted into this format by `as.owin()`.
- `main`  
  Text to be displayed as a title above the plot.
- `add`  
  Logical flag: if `TRUE`, draw the window in the current plot; if `FALSE`, generate a new plot.
- `...`  
  Extra arguments passed to the generic `plot` function.
- `box`  
  Logical flag; if `TRUE`, plot the enclosing rectangular box.
- `edge`  
  Nonnegative number; the plotting region will have coordinate limits that are `1 + edge` times as large as the limits of the rectangular box that encloses the pattern.
- `type`  
  Type of plot: either "w" or "n". If `type="w"` (the default), the window is plotted. If `type="n"` and `add=TRUE`, a new plot is initialised and the coordinate system is established, but nothing is drawn.
- `show.all`  
  Logical value indicating whether to plot everything including the main title.
- `hatch`  
  Logical flag: if `TRUE`, the interior of the window will be shaded by texture, such as a grid of parallel lines.
- `hatchargs`  
  List of arguments passed to `add.texture` to control the texture shading when `hatch=TRUE`.
- `invert`  
  Logical flag; when the window is a binary pixel mask, the mask colours will be inverted if `invert=TRUE`.
- `do.plot`  
  Logical value indicating whether to actually perform the plot.
Details

This is the plot method for the class owin. The action is to plot the boundary of the window on the current plot device, using equal scales on the x and y axes.

If the window x is of type "rectangle" or "polygonal", the boundary of the window is plotted as a polygon or series of polygons. If x is of type "mask" the discrete raster approximation of the window is displayed as a binary image (white inside the window, black outside).

Graphical parameters controlling the display (e.g. setting the colours) may be passed directly via the ... arguments, or indirectly reset using spatstat.options.

When x is of type "rectangle" or "polygonal", it is plotted by the R function polygon. To control the appearance (colour, fill density, line density etc) of the polygon plot, determine the required argument of polygon and pass it through .... For example, to paint the interior of the polygon in red, use the argument col="red". To draw the polygon edges in green, use border="green". To suppress the drawing of polygon edges, use border=NA.

When x is of type "mask", it is plotted by image.default. The appearance of the image plot can be controlled by passing arguments to image.default through .... The default appearance can also be changed by setting the parameter par.binary of spatstat.options.

To zoom in (to view only a subset of the window at higher magnification), use the graphical arguments xlim and ylim to specify the desired rectangular field of view. (The actual field of view may be larger, depending on the graphics device).

Value

none.

Notes on Filled Polygons with Holes

The function polygon can only handle polygons without holes. To plot polygons with holes in a solid colour, we have implemented two workarounds.

polypath function: The first workaround uses the relatively new function polypath which does have the capability to handle polygons with holes. However, not all graphics devices support polypath. The older devices xfig and pictex do not support polypath. On a Windows system, the default graphics device windows supports polypath. On a Linux system, the default graphics device X11(type="Xlib") does not support polypath but X11(type="cairo") does support it. See X11 and the section on Cairo below.

polygon decomposition: The other workaround involves decomposing the polygonal window into pieces which do not have holes. This code is experimental but works in all our test cases. If this code fails, a warning will be issued, and the filled colours will not be plotted.

Cairo graphics on a Linux system

Linux systems support the graphics device X11(type="cairo") (see X11) provided the external library cairo is installed on the computer. See http://www.cairographics.org/download for instructions on obtaining and installing cairo. After having installed cairo one needs to re-install R from source so that it has cairo capabilities. To check whether your current installation of R has cairo capabilities, type (in R) capabilities()["cairo"]. The default type for X11 is controlled
by \texttt{X11.options}. You may find it convenient to make \texttt{cairo} the default, e.g. via your .\texttt{Rprofile}. The magic incantation to put into .\texttt{Rprofile} is

\begin{verbatim}
  setHook(packageEvent("graphics", "onLoad"),
         function(...) grDevices::X11.options(type="cairo"))
\end{verbatim}

\section*{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

\section*{See Also}

\texttt{owin.object, plot.ppp, polygon, image.default, spatstat.options}

\section*{Examples}

\begin{verbatim}
  # rectangular window
  plot(Window(nztrees))
  abline(v=148, lty=2)

  # polygonal window
  w <- Window(demopat)
  plot(w)
  plot(w, col="red", border="green", lwd=2)
  plot(w, hatch=TRUE, lwd=2)

  # binary mask
  we <- as.mask(w)
  plot(we)
  op <- spatstat.options(par.binary=list(col=grey(c(0.5,1))))
  plot(we)
  spatstat.options(op)
\end{verbatim}

\section*{Description}

The function \texttt{plot.ppm} produces objects which specify plots of fitted point process models. The function \texttt{plot.plotppm} carries out the actual plotting of these objects.

\section*{Usage}

\begin{verbatim}
  S3 method for class 'plotppm'
  plot(x, data = NULL, trend = TRUE, cif = TRUE,
       se = TRUE, pause = interactive(),
       how = c("persp", "image", "contour"),
       ..., pppargs)
\end{verbatim}
Arguments

- **x**: An object of class `plotppm` produced by `plot.ppm()`.
- **data**: The point pattern (an object of class `ppp`) to which the point process model was fitted (by `ppm`).
- **trend**: Logical scalar; should the trend component of the fitted model be plotted?
- **cif**: Logical scalar; should the complete conditional intensity of the fitted model be plotted?
- **se**: Logical scalar; should the estimated standard error of the fitted intensity be plotted?
- **pause**: Logical scalar indicating whether to pause with a prompt after each plot. Set `pause=FALSE` if plotting to a file.
- **how**: Character string or character vector indicating the style or styles of plots to be performed.
- **...**: Extra arguments to the plotting functions `persp`, `image` and `contour`.
- **pppargs**: List of extra arguments passed to `plot.ppp` when displaying the original point pattern data.

Details

If argument `data` is supplied then the point pattern will be superimposed on the image and contour plots.

Sometimes a fitted model does not have a trend component, or the trend component may constitute all of the conditional intensity (if the model is Poisson). In such cases the object `x` will not contain a trend component, or will contain only a trend component. This will also be the case if one of the arguments `trend` and `cif` was set equal to `FALSE` in the call to `plot.ppm()` which produced `x`. If this is so then only the item which is present will be plotted. Explicitly setting `trend=TRUE`, or `cif=TRUE`, respectively, will then give an error.

Value

None.

Warning

Arguments which are passed to `persp`, `image`, and `contour` via the `...` argument get passed to any of the other functions listed in the `how` argument, and won’t be recognized by them. This leads to a lot of annoying but harmless warning messages. Arguments to `persp` may be supplied via `spatstat.options()` which alleviates the warning messages in this instance.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`plot.ppm()`
**Examples**

```r
Not run:
m <- ppm(cells ~ 1, Strauss(0.05))
mpic <- plot(m)
Perspective plot only, with altered parameters:
plot(mpic, how = "persp", theta = -30, phi = 40, d = 4)
All plots, with altered parameters for perspective plot:
op <- spatstat.options(par.persp = list(theta = -30, phi = 40, d = 4))
plot(mpic)
Revert
spatstat.options(op)
End(Not run)
```

---

**plot.pp3**

*Plot a Three-Dimensional Point Pattern*

**Description**

Plots a three-dimensional point pattern.

**Usage**

```r
S3 method for class 'pp3'
plot(x, ..., eye = NULL, org = NULL, theta = 25, phi = 15,
 type = c("p", "n", "h"))
```

**Arguments**

- `x` Three-dimensional point pattern (object of class "pp3").
- `...` Arguments passed to `points` controlling the appearance of the points.
- `eye` Optional. Eye position. A numeric vector of length 3 giving the location from which the scene is viewed.
- `org` Optional. Origin (centre) of the view. A numeric vector of length 3 which will be at the centre of the view.
- `theta, phi` Optional angular coordinates (in degrees) specifying the direction from which the scene is viewed: theta is the azimuth and phi is the colatitude. Ignored if `eye` is given.
- `type` Type of plot: type="p" for points, type="h" for points on vertical lines, type="n" for box only.

**Details**

This is the plot method for objects of class "pp3". It generates a two-dimensional plot of the point pattern `x` and its containing box as if they had been viewed from the location specified by `eye` (or from the direction specified by `theta` and `phi`).

Note that default values of arguments to `plot.pp3` can be set by `spatstat.options("par.pp3")`. 
Value
Null.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
pp3, spatstat.options.

Examples

```r
X <- osteo$pts[1]
plot(X, main="Osteocyte lacunae, animal 1, brick 1",
cex=1.5, pch=16)
```

Description
Given a fitted point process model obtained by ppm, create spatial trend and conditional intensity surfaces of the model, in a form suitable for plotting, and (optionally) plot these surfaces.

Usage

```r
S3 method for class 'ppm'
plot(x, ngrid = c(40,40), superimpose = TRUE,
trend = TRUE, cif = TRUE, se = TRUE, pause = interactive(),
how=c("persp","image", "contour"), plot.it = TRUE,
locations = NULL, covariates=NULL, ...)
```

Arguments

- **x**: A fitted point process model, typically obtained from the model-fitting algorithm ppm. An object of class "ppm".
- **ngrid**: The dimensions for a grid on which to evaluate, for plotting, the spatial trend and conditional intensity. A vector of 1 or 2 integers. If it is of length 1, ngrid is replaced by c(ngrid,ngrid).
- **superimpose**: logical flag; if TRUE (and if plot=TRUE) the original data point pattern will be superimposed on the plots.
- **trend**: logical flag; if TRUE, the spatial trend surface will be produced.
- **cif**: logical flag; if TRUE, the conditional intensity surface will be produced.
se

logical flag; if TRUE, the estimated standard error of the spatial trend surface will be produced.

pause

logical flag indicating whether to pause with a prompt after each plot. Set pause=FALSE if plotting to a file. (This flag is ignored if plot=FALSE).

how

character string or character vector indicating the style or styles of plots to be performed. Ignored if plot=FALSE.

plot.it

logical scalar; should a plot be produced immediately?

locations

If present, this determines the locations of the pixels at which predictions are computed. It must be a binary pixel image (an object of class "owin" with type "mask"). (Incompatible with ngrid).

covariates

Values of external covariates required by the fitted model. Passed to predict.ppm.

... extra arguments to the plotting functions persp, image and contour.

Details

This is the plot method for the class "ppm" (see ppm.object for details of this class).

It invokes predict.ppm to compute the spatial trend and conditional intensity of the fitted point process model. See predict.ppm for more explanation about spatial trend and conditional intensity.

The default action is to create a rectangular grid of points in (the bounding box of) the observation window of the data point pattern, and evaluate the spatial trend and conditional intensity of the fitted spatial point process model x at these locations. If the argument locations= is supplied, then the spatial trend and conditional intensity are calculated at the grid of points specified by this argument.

The argument locations, if present, should be a binary image mask (an object of class "owin" and type "mask"). This determines a rectangular grid of locations, or a subset of such a grid, at which predictions will be computed. Binary image masks are conveniently created using as.mask.

The argument covariates gives the values of any spatial covariates at the prediction locations. If the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates x, y) then covariates is required.

The argument covariates has the same format and interpretation as in predict.ppm. It may be either a data frame (the number of whose rows must match the number of pixels in locations multiplied by the number of possible marks in the point pattern), or a list of images. If argument locations is not supplied, and covariates is supplied, then it must be a list of images.

If the fitted model was a marked (multitype) point process, then predictions are made for each possible mark value in turn.

If the fitted model had no spatial trend, then the default is to omit calculating this (flat) surface, unless trend=TRUE is set explicitly.

If the fitted model was Poisson, so that there were no spatial interactions, then the conditional intensity and spatial trend are identical, and the default is to omit the conditional intensity, unless cif=TRUE is set explicitly.

If plot.it=TRUE then plot.plotppm() is called upon to plot the class plotppm object which is produced. (That object is also returned, silently.)

Plots are produced successively using persp, image and contour (or only a selection of these three, if how is given). Extra graphical parameters controlling the display may be passed directly via the arguments ... or indirectly reset using spatstat.options.
An object of class plotppm. Such objects may be plotted by plot.plotppm().

This is a list with components named trend and cif, either of which may be missing. They will be missing if the corresponding component does not make sense for the model, or if the corresponding argument was set equal to FALSE.

Both trend and cif are lists of images. If the model is an unmarked point process, then they are lists of length 1, so that trend[[1]] is an image of the spatial trend and cif[[1]] is an image of the conditional intensity.

If the model is a marked point process, then trend[[i]] is an image of the spatial trend for the mark m[i], and cif[[1]] is an image of the conditional intensity for the mark m[i], where m is the vector of levels of the marks.

See warnings in predict.ppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.plotppm, ppm, ppm.object, predict.ppm, print.ppm, persp, image, contour, plot, spatstat.options

Examples

```
Not run:
data(cells)
m <- ppm(cells, ~1, Strauss(0.05))
pm <- plot(m) # The object `pm`` will be plotted as well as saved
for future plotting.

End(Not run)
```
Usage

```r
S3 method for class 'ppp'
plot(x, main, ..., clipwin=NULL,
 chars=NULL, cols=NULL,
 use.marks=TRUE, which.marks=NULL,
 add=FALSE, type=c("p","n"),
 legend=TRUE,
 leg.side=c("left", "bottom", "top", "right"),
 leg.args=list(),
 symap=NULL, maxsize=NULL, meansize=NULL, markscale=NULL,
 zap=0.01,
 show.window=show.all, show.all=!add, do.plot=TRUE,
 multiplot=TRUE)
```

Arguments

- **x**
  The spatial point pattern to be plotted. An object of class "ppp", or data which can be converted into this format by `as.ppp()`.

- **main**
  text to be displayed as a title above the plot.

- **...**
  extra arguments that will be passed to the plotting functions `plot.default`, `points` and/or `symbols`.

- **clipwin**
  Optional. A window (object of class "owin"). Only this subset of the image will be displayed.

- **chars**
  plotting character(s) used to plot points.

- **cols**
  the colour(s) used to plot points.

- **use.marks**
  logical flag; if TRUE, plot points using a different plotting symbol for each mark; if FALSE, only the locations of the points will be plotted, using `points()`.

- **which.marks**
  Index determining which column of marks to use, if the marks of `x` are a data frame. A character or integer vector identifying one or more columns of marks. If `add=FALSE` then the default is to plot all columns of marks, in a series of separate plots. If `add=TRUE` then only one column of marks can be plotted, and the default is `which.marks=1` indicating the first column of marks.

- **add**
  logical flag; if TRUE, just the points are plotted, over the existing plot. A new plot is not created, and the window is not plotted.

- **type**
  Type of plot: either "p" or "n". If `type="p"` (the default), both the points and the observation window are plotted. If `type="n"`, only the window is plotted.

- **legend**
  Logical value indicating whether to add a legend showing the mapping between mark values and graphical symbols (for a marked point pattern).

- **leg.side**
  Position of legend relative to main plot.

- **leg.args**
  List of additional arguments passed to `plot.symbolmap` or `symbolmap` to control the legend. In addition to arguments documented under `plot.symbolmap`, and graphical arguments recognised by `symbolmap`, the list may also include the argument `sep` giving the separation between the main plot and the legend, or `sep.frac` giving the separation as a fraction of the relevant dimension (width or height) of the main plot.
**symap**

Optional. The graphical symbol map to be applied to the marks. An object of class "symbolmap"; see `symbolmap`.

**maxsize**

*Maximum* physical size of the circles/squares plotted when \(x\) is a marked point pattern with numerical marks. Incompatible with `meansize` and `markscale`. Ignored if `symap` is given.

**meansize**

*Average* physical size of the circles/squares plotted when \(x\) is a marked point pattern with numerical marks. Incompatible with `maxsize` and `markscale`. Ignored if `symap` is given.

**markscale**

physical scale factor determining the sizes of the circles/squares plotted when \(x\) is a marked point pattern with numerical marks. Mark value will be multiplied by `markscale` to determine physical size. Incompatible with `maxsize` and `meansize`. Ignored if `symap` is given.

**zap**

Fraction between 0 and 1. When \(x\) is a marked point pattern with numerical marks, `zap` is the smallest mark value (expressed as a fraction of the maximum possible mark) that will be plotted. Any points which have marks smaller in absolute value than `zap \times \max(\abs{\text{marks}(x)})` will not be plotted.

**show.window**

Logical value indicating whether to plot the observation window of \(x\).

**show.all**

Logical value indicating whether to plot everything including the main title and the observation window of \(x\).

**do.plot**

Logical value determining whether to actually perform the plotting.

**multiplot**

Logical value giving permission to display multiple plots.

### Details

This is the `plot` method for point pattern datasets (of class "ppp", see `ppp.object`).

First the observation window \(x\$\text{window}\) is plotted (if `show.window=TRUE`). Then the points themselves are plotted, in a fashion that depends on their marks, as follows.

**unmarked point pattern:** If the point pattern does not have marks, or if `use.marks = FALSE`, then the locations of all points will be plotted using a single plot character.

**multitype point pattern:** If \(x\$\text{marks}\) is a factor, then each level of the factor is represented by a different plot character.

**continuous marks:** If \(x\$\text{marks}\) is a numeric vector, the marks are rescaled to the unit interval and each point is represented by a circle with *diameter* proportional to the rescaled mark (if the value is positive) or a square with *side length* proportional to the absolute value of the rescaled mark (if the value is negative).

**other kinds of marks:** If \(x\$\text{marks}\) is neither numeric nor a factor, then each possible mark will be represented by a different plotting character. The default is to represent the \(i\)th smallest mark value by `points(..., pch=i)`.

If there are several columns of marks, and if `which.marks` is missing or `NULL`, then

- if `add=FALSE` and `multiplot=TRUE` the default is to plot all columns of marks, in a series of separate plots, placed side-by-side. The plotting is coordinated by `plot.listof`, which calls `plot.ppp` to make each of the individual plots.
• Otherwise, only one column of marks can be plotted, and the default is which.marks=1 indicating the first column of marks.

Plotting of the window \texttt{Window(x)} is performed by \texttt{plot.owin}. This plot may be modified through the \ldots arguments. In particular the extra argument \texttt{border} determines the colour of the window, if the window is not a binary mask.

Plotting of the points themselves is performed by the function \texttt{points}, except for the case of continuous marks, where it is performed by \texttt{symbols}. Their plotting behaviour may be modified through the \ldots arguments.

The argument \texttt{chars} determines the plotting character or characters used to display the points (in all cases except for the case of continuous marks). For an unmarked point pattern, this should be a single integer or character determining a plotting character (see \texttt{par("pch")}). For a multitype point pattern, \texttt{chars} should be a vector of integers or characters, of the same length as \texttt{levels(x$marks)}, and then the \texttt{i}th level or type will be plotted using character \texttt{chars[i]}.

If \texttt{chars} is absent, but there is an extra argument \texttt{pch}, then this will determine the plotting character for all points.

The argument \texttt{cols} determines the colour or colours used to display the points. For an unmarked point pattern, or a marked point pattern with continuous marks, this should be a character string determining a colour. For a multitype point pattern, \texttt{cols} should be a character vector, of the same length as \texttt{levels(x$marks)}. The \texttt{i}th level or type will be plotted using colour \texttt{cols[i]}.

If \texttt{cols} is absent, the colour used to plot all the points may be determined by the extra argument \texttt{fg} (for multitype point patterns) or the extra argument \texttt{col} (for all other cases). Note that \texttt{col} will also reset the colour of the window.

The arguments \texttt{maxsize}, \texttt{meansize} and \texttt{markscale} incompatible. They control the physical size of the circles and squares which represent the marks in a point pattern with continuous marks. The size of a circle is defined as its diameter; the size of a square is its side length. If \texttt{markscale} is given, then a mark value of \texttt{m} is plotted as a circle of diameter \texttt{m * markscale} (if \texttt{m} is positive) or a square of side \texttt{abs(m) * markscale} (if \texttt{m} is negative). If \texttt{maxsize} is given, then the largest mark in absolute value, \texttt{mmax=max(abs(marks(x)))}, will be scaled to have physical size \texttt{maxsize}. If \texttt{meansize} is given, then the average absolute mark value, \texttt{mmean=mean(abs(marks(x)))}, will be scaled to have physical size \texttt{meansize}.

The user can set the default values of these plotting parameters using \texttt{spatstat.options("par.points")}.

To zoom in (to view only a subset of the point pattern at higher magnification), use the graphical arguments \texttt{xlim} and \texttt{ylim} to specify the rectangular field of view.

The value returned by this plot function is an object of class "symbolmap" representing the mapping from mark values to graphical symbols. See \texttt{symbolmap}. It can be used to make a suitable legend, or to ensure that two plots use the same graphics map.

Value

(Invisible) object of class "symbolmap" giving the correspondence between mark values and plotting characters.

Removing White Space Around The Plot

A frequently-asked question is: How do I remove the white space around the plot? Currently \texttt{plot.ppp} uses the base graphics system of \texttt{R}, so the space around the plot is controlled by parame-
To reduce the white space, change the parameter `mar`. Typically, `par(mar=rep(0.5, 4))` is adequate, if there are no annotations or titles outside the window.

**Author(s)**

Adrian Baddeley &lt;Adrian.Baddeley@uwa.edu.au&gt; http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner &lt;r.turner@auckland.ac.nz&gt;

**See Also**

iplot, ppp.object, plot, par, points, plot.owin, symbols

**Examples**

```r
plot(cells)
plot(cells, pch=16)

make the plotting symbols larger (for publication at reduced scale)
plot(cells, cex=2)

set it in spatstat.options
oldopt <- spatstat.options(par.points=list(cex=2))
plot(cells)
spatstat.options(oldopt)

multitype
plot(lansing)

marked by a real number
plot(longleaf)

just plot the points
plot(longleaf, use.marks=FALSE)
plot(unmark(longleaf)) # equivalent

point pattern with multiple marks
plot(finpines)
plot(finpines, which.marks="height")

controlling COLOURS of points
plot(cells, cols="blue")
plot(lansing, cols=c("black", "yellow", "green",
 "blue", "red", "pink"))
plot(longleaf, fg="blue")

make window purple
plot(lansing, border="purple")
make everything purple
plot(lansing, border="purple", cols="purple", col.main="purple",
 leg.args=list(col.axis="purple"))
```
# controlling PLOT CHARACTERS
plot(lansing, chars = 11:16)
plot(lansing, chars = c("o","h","m",".","o","o"))

# controlling MARK SCALE
plot(longleaf, markscale=0.1)
plot(longleaf, maxsize=5)
plot(longleaf, meansize=2)

# draw circles of diameter equal to nearest neighbour distance
plot(cells %mark% nndist(cells), markscale=1, legend=FALSE)

# inspecting the symbol map
v <- plot(amacrine)
v

## variable colours ('cols' not 'col')
plot(longleaf, cols=function(x) ifelse(x < 30, "red", "black"))

## re-using the same mark scale
a <- plot(longleaf)
juveniles <- longleaf[marks(longleaf) < 30]
plot(juveniles, symap=a)

## numerical marks mapped to symbols of fixed size with variable colour
ra <- range(marks(longleaf))
colmap <- colourmap(terrain.colors(20), range=ra)
## filled plot characters are the codes 21-25
## fill colour is indicated by 'bg'

sy <- symbolmap(pch=21, bg=colmap, range=ra)
plot(longleaf, symap=sy)

---

**plot.psp**  
*plot a Spatial Line Segment Pattern*

**Description**

Plot a two-dimensional line segment pattern

**Usage**

```R
S3 method for class 'psp'
plot(x, ..., main, add=FALSE, show.all=!add, which.marks=1,
 ribbon=show.all, ribsep=0.15, ribwid=0.05, ribn=1024,
 do.plot=TRUE)
```
Arguments

x  The line segment pattern to be plotted. An object of class "psp", or data which can be converted into this format by \texttt{as.psp()}.  

...  extra arguments that will be passed to the plotting functions \texttt{segments} (to plot the segments) and \texttt{plot.owin} (to plot the observation window).  

main  Character string giving a title for the plot.  

add  Logical. If \texttt{TRUE}, the current plot is not erased; the segments are plotted on top of the current plot, and the window is not plotted (by default).  

show.all  Logical value specifying whether to plot everything including the window, main title, and colour ribbon.  

which.marks  Index determining which column of marks to use, if the marks of \texttt{x} are a data frame. A character string or an integer. Defaults to 1 indicating the first column of marks.  

ribbon  Logical flag indicating whether to display a ribbon showing the colour map (in which mark values are associated with colours).  

ribsep  Factor controlling the space between the ribbon and the image.  

ribwid  Factor controlling the width of the ribbon.  

ribn  Number of different values to display in the ribbon.  

do.plot  Logical value indicating whether to actually perform the plot.  

Details

This is the \texttt{plot} method for line segment pattern datasets (of class "psp", see \texttt{psp.object}). It plots both the observation window \texttt{x$window} and the line segments themselves.  

Plotting of the window \texttt{x$window} is performed by \texttt{plot.owin}. This plot may be modified through the \texttt{...} arguments.  

Plotting of the segments themselves is performed by the standard R function \texttt{segments}. Its plotting behaviour may also be modified through the \texttt{...} arguments.  

For a \texttt{marked} line segment pattern (i.e. if \texttt{marks(x)} is not \texttt{NULL}) the line segments are plotted in colours determined by the mark values. If \texttt{marks(x)} is a data frame, the default is to use the first column of \texttt{marks(x)} to determine the colours. To specify another column, use the argument \texttt{which.marks}. The colour map (associating mark values with colours) will be displayed as a vertical colour ribbon to the right of the plot, if \texttt{ribbon=TRUE}.  

Value

(Invisibly) a colour map object specifying the association between marks and colours, if any. The return value also has an attribute "bbox" giving a bounding box for the plot.  

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>
See Also

`psp.object`, `plot.par`, `plot.owin`, `symbols`

Examples

```r
X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
plot(X)
plot(X, lwd=3)
lettuce <- sample(letters[1:4], 20, replace=TRUE)
marks(X) <- data.frame(A=1:20, B=factor(lettuce))
plot(X)
plot(X, which.marks="B")
```

**plot.quad**

*Plot a Spatial Quadrature Scheme*

**Description**

Plot a two-dimensional spatial quadrature scheme.

**Usage**

```r
S3 method for class 'quad'
plot(x, ..., main, add=FALSE, dum=list(), tiles=FALSE)
```

**Arguments**

- `x` The spatial quadrature scheme to be plotted. An object of class "quad".
- `...` extra arguments controlling the plotting of the data points of the quadrature scheme.
- `main` text to be displayed as a title above the plot.
- `add` Logical value indicating whether the graphics should be added to the current plot if there is one (add=TRUE) or whether a new plot should be initialised (add=FALSE, the default).
- `dum` list of extra arguments controlling the plotting of the dummy points of the quadrature scheme. See below.
- `tiles` Logical value indicating whether to display the tiles used to compute the quadrature weights.

**Details**

This is the `plot` method for quadrature schemes (objects of class "quad", see `quad.object`).

First the data points of the quadrature scheme are plotted (in their observation window) using `plot.ppp` with any arguments specified in `...`.

Then the dummy points of the quadrature scheme are plotted using `plot.ppp` with any arguments specified in `dum`. 
By default the dummy points are superimposed onto the plot of data points. This can be overridden by including the argument `add=FALSE` in the list `dum` as shown in the examples. In this case the data and dummy point patterns are plotted separately.

See `par` and `plot.ppp` for other possible arguments controlling the plots.

**Value**

NULL.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`quad.object`, `plot.ppp`, `par`

**Examples**

```r
data(nztrees)
Q <- quadscheme(nztrees)

plot(Q, main="NZ trees: quadrature scheme")

oldpar <- par(mfrow=c(2,1))
plot(Q, main="NZ trees", dum=list(add=FALSE))
par(oldpar)
```

---

**Description**

Given a table of quadrat counts for a spatial point pattern, plot the quadrats which were used, and display the quadrat count as text in the centre of each quadrat.

**Usage**

```r
S3 method for class 'quadratcount'
plot(x, ..., add = FALSE,
 entries = as.vector(t(as.table(x))),
 dx = 0, dy = 0, show.tiles = TRUE,
 textargs = list())
```
plot.quadratcount

Arguments

x
Object of class "quadratcount" produced by the function quadratcount.

...  
Additional arguments passed to plot.tess to plot the quadrats.

add
Logical. Whether to add the graphics to an existing plot.

entries
Vector of numbers to be plotted in each quadrat. The default is to plot the quadrat counts.

dx, dy
Horizontal and vertical displacement of text relative to centroid of quadrat.

show.tiles
Logical value indicating whether to plot the quadrats.

textargs
List containing extra arguments passed to text.default to control the annotation.

Details

This is the plot method for the objects of class "quadratcount" that are produced by the function quadratcount. Given a spatial point pattern, quadratcount divides the observation window into disjoint tiles or quadrats, counts the number of points in each quadrat, and stores the result as a contingency table which also belongs to the class "quadratcount".

First the quadrats are plotted (provided show.tiles=TRUE, the default). This display can be controlled by passing additional arguments ... to plot.tess.

Then the quadrat counts are printed using text.default. This display can be controlled using the arguments dx, dy and textargs.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadratcount, plot.tess, text.default, plot.quadrattest.

Examples

plot(quadratcount(swedishpines, 5))
plot.quadrattest

Display the result of a quadrat counting test.

Description

Given the result of a quadrat counting test, graphically display the quadrats that were used, the observed and expected counts, and the residual in each quadrat.

Usage

```r
S3 method for class 'quadrattest'
plot(x, ..., textargs=list())
```

Arguments

- `x` Object of class "quadrattest" containing the result of `quadrat.test`.
- `...` Additional arguments passed to `plot.tess` to control the display of the quadrats.
- `textargs` List of additional arguments passed to `text.default` to control the appearance of the text.

Details

This is the plot method for objects of class "quadrattest". Such an object is produced by `quadrat.test` and represents the result of a $\chi^2$ test for a spatial point pattern.

The quadrats are first plotted using `plot.tess`. Then in each quadrat, the observed and expected counts and the Pearson residual are displayed as text using `text.default`. Observed count is displayed at top left; expected count at top right; and Pearson residual at bottom.

Value

Null.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `quadrat.test`, `plot.tess`, `text.default`, `plot.quadratcount`

Examples

```r
plot(quadrat.test(swedishpines, 3))
```
plot.scan.test  

Plot Result of Scan Test

Description

Computes or plots an image showing the likelihood ratio test statistic for the scan test, or the optimal circle radius.

Usage

```r
S3 method for class 'scan.test'
plot(x, ..., what=c("statistic", "radius"),
 do.window = TRUE)

S3 method for class 'scan.test'
as.im(X, ..., what=c("statistic", "radius"))
```

Arguments

- `x`: Result of a scan test. An object of class "scan.test" produced by `scan.test`.
- `...`: Arguments passed to `plot.im` to control the appearance of the plot.
- `what`: Character string indicating whether to produce an image of the (profile) likelihood ratio test statistic (`what="statistic", the default) or an image of the optimal value of circle radius (`what="radius"`).
- `do.window`: Logical value indicating whether to plot the original window of the data as well.

Details

These functions extract, and plot, the spatially-varying value of the likelihood ratio test statistic which forms the basis of the scan test.

If the test result `x` was based on circles of the same radius `r`, then `as.im(X)` is a pixel image of the likelihood ratio test statistic as a function of the position of the centre of the circle.

If the test result `x` was based on circles of several different radii `r`, then `as.im(X)` is a pixel image of the profile (maximum value over all radii `r`) likelihood ratio test statistic as a function of the position of the centre of the circle, and `as.im(X, what="radius")` is a pixel image giving for each location `u` the value of `r` which maximised the likelihood ratio test statistic at that location.

The `plot` method plots the corresponding image.

Value

The value of `as.im.scan.test` is a pixel image (object of class "im"). The value of `plot.scan.test` is `NULL`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
See Also

scan.test, scanLRTS

Examples

```r
if(interactive()) {
 a <- scan.test(redwood, seq(0.04, 0.1, by=0.01),
 method="poisson", nsim=19)
} else {
 a <- scan.test(redwood, c(0.05, 0.1), method="poisson", nsim=2)
}
plot(a)
as.im(a)
plot(a, what="radius")
```

plot.slrm

Plot a Fitted Spatial Logistic Regression

Description

Plots a fitted Spatial Logistic Regression model.

Usage

```r
S3 method for class 'slrm'
plot(x, ..., type = "intensity")
```

Arguments

- `x` a fitted spatial logistic regression model. An object of class "slrm".
- `...` Extra arguments passed to `plot.im` to control the appearance of the plot.
- `type` Character string (partially) matching one of "probabilities", "intensity" or "link".

Details

This is a method for `plot` for fitted spatial logistic regression models (objects of class "slrm", usually obtained from the function `slrm`).

This function plots the result of `predict.slrm`.

Value

None.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
See Also

\textit{slrm}, \textit{predict.slrm}, \textit{plot.im}

Examples

data(copper)
X <- copper$SouthPoints
Y <- copper$Southlines
Z <- distmap(Y)
fit <- slrm(X ~ Z)
plot(fit)
plot(fit, type="link")

---

\textbf{plot.solist} \hfill \textit{Plot a List of Spatial Objects}

\textbf{Description}

Plots a list of two-dimensional spatial objects.

\textbf{Usage}

\#
## S3 method for class 'solist'
plot(x, ..., main, arrange=TRUE,
     nrows=NULL, ncols=NULL, main.panel=NULL,
     mar.panel=c(2,1,1,2), hsep=0, vsep=0,
     panel.begin=NULL, panel.end=NULL, panel.args=NULL, plotcommand="plot",
     adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
     adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)

\textbf{Arguments}

\texttt{x} \quad An object of the class "solist", essentially a list of two-dimensional spatial datasets.

\texttt{...} \quad Arguments passed to \texttt{plot} when generating each plot panel.

\texttt{main} \quad Overall heading for the plot.

\texttt{arrange} \quad Logical flag indicating whether to plot the objects side-by-side on a single page (\texttt{arrange=TRUE}) or plot them individually in a succession of frames (\texttt{arrange=FALSE}).

\texttt{nrows, ncols} \quad Optional. The number of rows/columns in the plot layout (assuming \texttt{arrange=TRUE}). You can specify either or both of these numbers.

\texttt{main.panel} \quad Optional. A character string, or a vector of character strings, giving the headings for each of the objects.

\texttt{mar.panel} \quad Size of the margins outside each plot panel. A numeric vector of length 4 giving the bottom, left, top, and right margins in that order. (Alternatively the vector may have length 1 or 2 and will be replicated to length 4). See the section on \textit{Spacing between plots}. 
**plot.solist**

Additional horizontal and vertical separation between plot panels, expressed in the same units as `mar.panel`.

Optional. Functions that will be executed before and after each panel is plotted. See Details.

Optional. Function that determines different plot arguments for different panels. See Details.

Optional. Character string containing the name of the command that should be executed to plot each panel.

Optional. Functions (with no arguments) that will be executed to generate additional plots at the margins (left, right, top and/or bottom, respectively) of the array of plots.

Relative width (as a fraction of the other panels’ widths) of the margin plots.

Logical value indicating whether the components should be plotted at (approximately) the same physical scale.

Logical values indicating whether panels in a column should be aligned to the same x coordinate system (halign=TRUE) and whether panels in a row should be aligned to the same y coordinate system (valign=TRUE). These are applicable only if `equal.scales=TRUE`.

Details

This is the plot method for the class "solist".

An object of class "solist" represents a list of two-dimensional spatial datasets. This is the plot method for such objects.

In the `spatstat` package, various functions produce an object of class "solist". These objects can be plotted in a nice arrangement using `plot.solist`. See the Examples.

The argument `panel.args` determines extra graphics parameters for each panel. It should be a function that will be called as `panel.args(i)` where `i` is the panel number. Its return value should be a list of graphics parameters that can be passed to the relevant plot method. These parameters override any parameters specified in the ... arguments.

The arguments `panel.begin` and `panel.end` determine graphics that will be plotted before and after each panel is plotted. They may be objects of some class that can be plotted with the generic plot command. Alternatively they may be functions that will be called as `panel.begin(i, y, main=main.panel[i])` and `panel.end(i, y, add=TRUE)` where `i` is the panel number and `y = x[[i]]`.

If all entries of `x` are pixel images, the function `image.listof` is called to control the plotting. The arguments `equal.ribbon` and `col` can be used to determine the colour map or maps applied.

If `equal.scales=FALSE` (the default), then the plot panels will have equal height on the plot device (unless there is only one column of panels, in which case they will have equal width on the plot device). This means that the objects are plotted at different physical scales, by default.

If `equal.scales=TRUE`, then the dimensions of the plot panels on the plot device will be proportional to the spatial dimensions of the corresponding components of `x`. This means that the objects will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under the following conditions:

- every component of \( \mathbf{x} \) is a spatial object whose position can be shifted by \( \text{shift} \);
- \( \text{panel.begin} \) and \( \text{panel.end} \) are either NULL or they are spatial objects whose position can be shifted by \( \text{shift} \);
- \( \text{adorn.left} \), \( \text{adorn.right} \), \( \text{adorn.top} \) and \( \text{adorn.bottom} \) are all NULL.

Another special case is when every component of \( \mathbf{x} \) is an object of class "fv" representing a function. If \( \text{equal.scales=TRUE} \) then all these functions will be plotted with the same axis scales (i.e. with the same \( \text{xlim} \) and the same \( \text{ylim} \)).

**Value**

Null.

**Spacing between plots**

The spacing between individual plots is controlled by the parameters \( \text{mar.panel} \), \( \text{hsep} \) and \( \text{vsep} \).

If \( \text{equal.scales=FALSE} \), the plot panels are logically separate plots. The margins for each panel are determined by the argument \( \text{mar.panel} \) which becomes the graphics parameter \( \text{mar} \) described in the help file for \( \text{par} \). One unit of \( \text{mar} \) corresponds to one line of text in the margin. If \( \text{hsep} \) or \( \text{vsep} \) are present, \( \text{mar.panel} \) is augmented by \( c(\text{vsep}, \text{hsep}, \text{vsep}, \text{hsep})/2 \).

If \( \text{equal.scales=TRUE} \), all the plot panels are drawn in the same coordinate system which represents a physical scale. The unit of measurement for \( \text{mar.panel[1,3]} \) is one-sixth of the greatest height of any object plotted in the same row of panels, and the unit for \( \text{mar.panel[2,4]} \) is one-sixth of the greatest width of any object plotted in the same column of panels. If \( \text{hsep} \) or \( \text{vsep} \) are present, they are interpreted in the same units as \( \text{mar.panel[2]} \) and \( \text{mar.panel[1]} \) respectively.

**Error messages**

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects had a much smaller physical scale than the others. Ensure that \( \text{equal.scales=FALSE} \) and increase the values of \( \text{mar.panel} \).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**See Also**

plot.anylist, contour.listof, image.listof, density.splitppp
plot.splitppp

Examples

# Intensity estimate of multitype point pattern
plot(D <- density(split(amacrine)))
plot(D, main="", equal.ribbon=TRUE,
     panel.end=function(i,y,...)(contour(y, ...)))

plot.splitppp  Plot a List of Point Patterns

Description

Plots a list of point patterns.

Usage

## S3 method for class 'splitppp'
plot(x, ..., main)

Arguments

x A named list of point patterns, typically obtained from split.ppp.
...
Arguments passed to plot.listof which control the layout of the plot panels,
their appearance, and the plot behaviour in individual plot panels.
main Optional main title for the plot.

Details

This is the plot method for the class "splitppp". It is typically used to plot the result of the
function split.ppp.

The argument x should be a named list of point patterns (objects of class "ppp", see ppp.object).
Each of these point patterns will be plotted in turn using plot.ppp.

Plotting is performed by plot.listof.

Value

Null.

Error messages

If the error message ‘Figure margins too large’ occurs, ensure that equal.scales=FALSE and in-
crease the values of mar.panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
plot.symbolmap

See Also
plot.listof for arguments controlling the plot.

split.ppp, plot.ppp, ppp.object.

Examples

# Multitype point pattern
plot(split(amacrine))
plot(split(amacrine), main="",
     panel.begin=function(i, y, ...)
     { plot(density(y), ribbon=FALSE, ...) })

plot.symbolmap  Plot a Graphics Symbol Map

Description
Plot a representation of a graphics symbol map, similar to a plot legend.

Usage

## S3 method for class 'symbolmap'
plot(x, ..., main, xlim = NULL, ylim = NULL,
     vertical = FALSE,
     side = c("bottom", "left", "top", "right"),
     annotate = TRUE, labelmap = NULL, add = FALSE)

Arguments

x  Graphics symbol map (object of class "symbolmap").
...
... Additional graphics arguments passed to points, symbols or axis.
main Main title for the plot. A character string.
xlim,ylim Coordinate limits for the plot. Numeric vectors of length 2.
vertical Logical. Whether to plot the symbol map in a vertical orientation.
side Character string specifying the position of the text that annotates the symbols.
annotate Logical. Whether to annotate the symbols with labels.
labelmap Transformation of the labels. A function or a scale factor which will be applied
to the data values corresponding to the plotted symbols.
add Logical value indicating whether to add the plot to the current plot (add=TRUE) or to initialise a new plot.

Details
A graphics symbol map is an association between data values and graphical symbols.
This command plots the graphics symbol map itself, in the style of a plot legend.
plot.tess

Description

Plots a tessellation.

Usage

```r
S3 method for class 'tess'
plot(x, ..., main, add=FALSE, show.all=!add, col=NULL)
```

Arguments

- `x` : Tessellation (object of class "tess") to be plotted.
- `...` : Arguments controlling the appearance of the plot.
- `main` : Heading for the plot. A character string.
- `add` : Logical. Determines whether the tessellation plot is added to the existing plot.
- `show.all` : Logical value indicating whether to plot everything including the main title and the observation window of `x`.
Details

This is a method for the generic `plot` function for the class "tess" of tessellations (see `tess`). The arguments ... control the appearance of the plot. They are passed to `segments`, `plot.owin` or `plot.im`, depending on the type of tessellation.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess

Examples

```r
A <- tess(xgrid=0:4, ygrid=0:4)
plot(A, col="blue", lwd=2, lty=2)
B <- A[c(1, 2, 5, 7, 9)]
plot(B, hatch=TRUE)
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]
E <- tess(image=v)
plot(E)
```

plot.textstring

*Plot a Text String*

Description

Plots an object of class "textstring".

Usage

```r
S3 method for class 'textstring'
plot(x, ..., do.plot = TRUE)
```

Arguments

- `x` Object of class "textstring" to be plotted. This object is created by the command `textstring`.
- `...` Additional graphics arguments passed to `text` to control the plotting of text.
- `do.plot` Logical value indicating whether to actually plot the text.
Details

The argument x should be an object of class "textstring" created by the command textstring. This function displays the text using text.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

onearrow, yardstick

Examples

W <- Window(humberside)
te <- textstring(centroid.owin(W), txt="Humberside", cex=2.5)
plot(layered(W, te), main="")

plot.texturemap  

\textit{Plot a Texture Map}

Description

Plot a representation of a texture map, similar to a plot legend.

Usage

\begin{verbatim}
## S3 method for class 'texturemap'
plot(x, ..., main, xlim = NULL, ylim = NULL,
     vertical = FALSE, axis = TRUE,
     labelmap = NULL, gap = 0.25, add = FALSE)
\end{verbatim}

Arguments

\begin{itemize}
\item \textbf{x}  
  Texture map object (class "texturemap").
\item \textbf{...}  
  Additional graphics arguments passed to add.texture or axis.default.
\item \textbf{main}  
  Main title for plot.
\item \textbf{xlim,ylim}  
  Optional vectors of length 2 giving the \textit{x} and \textit{y} limits of the plot.
\item \textbf{vertical}  
  Logical value indicating whether to arrange the texture boxes in a vertical column (vertical=TRUE or a horizontal row (vertical=FALSE, the default).
\item \textbf{axis}  
  Logical value indicating whether to plot an axis line joining the texture boxes.
\end{itemize}
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labelmap</td>
<td>Optional. A function which will be applied to the data values (the inputs of the texture map) before they are displayed on the plot.</td>
</tr>
<tr>
<td>gap</td>
<td>Separation between texture boxes, as a fraction of the width or height of a box.</td>
</tr>
<tr>
<td>add</td>
<td>Logical value indicating whether to add the graphics to an existing plot (add=TRUE) or to initialise a new plot (add=FALSE, the default).</td>
</tr>
</tbody>
</table>

**Details**

A texture map is an association between data values and graphical textures. An object of class "texturemap" represents a texture map. Such objects are returned from the plotting function `textureplot`, and can be created directly by the function `texturemap`.

This function `plot.texturemap` is a method for the generic `plot` for the class "texturemap". It displays a sample of each of the textures in the texture map, in a separate box, annotated by the data value which is mapped to that texture.

The arrangement and position of the boxes is controlled by the arguments `vertical`, `xlim`, `ylim` and `gap`.

**Value**

Null.

**Author(s)**

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

**See Also**

`texturemap`, `textureplot`, `add.texture`.

**Examples**

```r
tm <- texturemap(c("First", "Second", "Third"), 2:4, col=2:4)
plot(tm, vertical=FALSE)
abbreviate the labels
plot(tm, labelmap=function(x) substr(x, 1, 2))
```

---

**plot.yardstick**

*Plot a Yardstick or Scale Bar*

**Description**

Plots an object of class "yardstick".
Usage

```r
S3 method for class 'yardstick'
plot(x, ...,
 angle = 20, frac = 1/8,
 split = FALSE, shrink = 1/4,
 pos = NULL,
 txt.args=list(),
 txt.shift=c(0,0),
 do.plot = TRUE)
```

Arguments

- `x` Object of class "yardstick" to be plotted. This object is created by the command `yardstick`.
- `...` Additional graphics arguments passed to `segments` to control the appearance of the line.
- `angle` Angle between the arrows and the line segment, in degrees.
- `frac` Length of arrow as a fraction of total length of the line segment.
- `split` Logical. If `true`, then the line will be broken in the middle, and the text will be placed in this gap. If `false`, the line will be unbroken, and the text will be placed beside the line.
- `shrink` Fraction of total length to be removed from the middle of the line segment, if `split=TRUE`.
- `pos` Integer (passed to `text`) determining the position of the annotation text relative to the line segment, if `split=FALSE`. Values of 1, 2, 3 and 4 indicate positions below, to the left of, above and to the right of the line, respectively.
- `txt.args` Optional list of additional arguments passed to `text` controlling the appearance of the text. Examples include `adj, srt, col, cex, font`.
- `txt.shift` Optional numeric vector of length 2 specifying displacement of the text position relative to the centre of the yardstick.
- `do.plot` Logical. Whether to actually perform the plot (`do.plot=TRUE`).

Details

A yardstick or scale bar is a line segment, drawn on any spatial graphics display, indicating the scale of the plot.

The argument `x` should be an object of class "yardstick" created by the command `yardstick`.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
pointsOnLines

Place Points Evenly Along Specified Lines

Description

Given a line segment pattern, place a series of points at equal distances along each line segment.

Usage

pointsOnLines(X, eps = NULL, np = 1000, shortok=TRUE)

Arguments

- **X**: A line segment pattern (object of class "psp").
- **eps**: Spacing between successive points.
- **np**: Approximate total number of points (incompatible with eps).
- **shortok**: Logical. If FALSE, very short segments (of length shorter than eps) will not generate any points. If TRUE, a very short segment will be represented by its midpoint.

Details

For each line segment in the pattern X, a succession of points is placed along the line segment. These points are equally spaced at a distance eps, except for the first and last points in the sequence. The spacing eps is measured in coordinate units of X.

If eps is not given, then it is determined by eps = len/np where len is the total length of the segments in X. The actual number of points will then be slightly larger than np.

Value

A point pattern (object of class "ppp") in the same window as X.
Poisson Point Process Model

**Description**

Creates an instance of the Poisson point process model which can then be fitted to point pattern data.

**Usage**

Poisson()

**Details**

The function `ppm`, which fits point process models to point pattern data, requires an argument `interaction` of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Poisson process is provided by the value of the function `Poisson`.

This works for all types of Poisson processes including multitype and nonstationary Poisson processes.

**Value**

An object of class "interact" describing the interpoint interaction structure of the Poisson point process (namely, there are no interactions).

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>
Ponderosa Pine Tree Point Pattern

Description

The data record the locations of 108 Ponderosa Pine (Pinus ponderosa) trees in a 120 metre square region in the Klamath National Forest in northern California, published as Figure 2 of Getis and Franklin (1987).

Franklin et al. (1985) determined the locations of approximately 5000 trees from United States Forest Service aerial photographs and digitised them for analysis. Getis and Franklin (1987) selected a 120 metre square subregion that appeared to exhibit clustering. This subregion is the ponderosa dataset.

In principle these data are equivalent to Figure 2 of Getis and Franklin (1987) but they are not exactly identical; some of the spatial locations appear to be slightly perturbed.

The data points identified as A, B, C on Figure 2 of Getis and Franklin (1987) correspond to points numbered 42, 7 and 77 in the dataset respectively.
Usage

data(ponderosa)

Format

Typing `data(ponderosa)` gives access to two objects, `ponderosa` and `ponderosa.extra`.

The dataset `ponderosa` is a spatial point pattern (object of class "ppp") representing the point pattern of tree positions. See `ppp.object` for details of the format.

The dataset `ponderosa.extra` is a list containing supplementary data. The entry `id` contains the index numbers of the three special points A, B, C in the point pattern. The entry `plotit` is a function that can be called to produce a nice plot of the point pattern.

Source

Prof. Janet Franklin, University of California, Santa Barbara

References


Examples

```r
data(ponderosa)
ponderosa.extra$plotit()
```

---

### pool

**Pool Data**

#### Description

Pool the data from several objects of the same class.

#### Usage

`pool(...)`

#### Arguments

`...`  
Objects of the same type.
Details

The function pool is generic. There are methods for several classes, listed below.

pool is used to combine the data from several objects of the same type, and to compute statistics based on the combined dataset. It may be used to pool the estimates obtained from replicated datasets. It may also be used in high-performance computing applications, when the objects have been computed on different processors or in different batch runs, and we wish to combine them.

Value

An object of the same class as the arguments . . . .

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pool.envelope, pool.fasp, pool.rat, pool.fv

Description

Pool the data from a list of objects.

Usage

## S3 method for class 'anylist'

```
pool(x, ...)
```

Arguments

- `x` A list, belonging to the class "anylist", containing objects that can be pooled.
- `...` Optional additional objects which can be pooled with the elements of x.

Details

The function pool is generic. Its purpose is to combine data from several objects of the same type (typically computed from different datasets) into a common, pooled estimate.

The function pool.anylist is the method for the class "anylist". It is used when the objects to be pooled are given in a list x.

Each of the elements of the list x, and each of the subsequent arguments . . . if provided, must be an object of the same class.
pool.envelope

Value

An object of the same class as each of the entries in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

anystat.pool.

Examples

k <- anylapply(waterstriders, Kest, ratio=TRUE, correction="iso")
K <- pool(k)

Description

Pool the simulation data from several simulation envelopes (objects of class "envelope") and compute a new envelope.

Usage

## S3 method for class 'envelope'
pool(..., savefuns=FALSE, savepatterns=FALSE)

Arguments

... Objects of class "envelope".
savefuns Logical flag indicating whether to save all the simulated function values.
savepatterns Logical flag indicating whether to save all the simulated point patterns.

Details

The function pool is generic. This is the method for the class "envelope" of simulation envelopes. It is used to combine the simulation data from several simulation envelopes and to compute an envelope based on the combined data.

Each of the arguments ... must be an object of class "envelope". These envelopes must be compatible, in that they are envelopes for the same function, and were computed using the same options.
In normal use, each envelope object will have been created by running the command `envelope` with the argument `savefuns=TRUE`. This ensures that each object contains the simulated data (summary function values for the simulated point patterns) that were used to construct the envelope.

The simulated data are extracted from each object and combined. A new envelope is computed from the combined set of simulations.

Alternatively, if each envelope object was created by running `envelope` with `VARIANCE=TRUE`, then the saved functions are not required.

The sample means and sample variances from each envelope will be pooled. A new envelope is computed from the pooled mean and variance.

Warnings or errors will be issued if the envelope objects ... appear to be incompatible. Apart from these basic checks, the code is not smart enough to decide whether it is sensible to pool the data.

To modify the envelope parameters or the type of envelope that is computed, first pool the envelope data using `pool.envelope`, then use `envelope.envelope` to modify the envelope parameters.

Value

An object of class "envelope".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`envelope, envelope.envelope, pool, pool.fasp`

Examples

data(cells)
E1 <- envelope(cells, Kest, nsim=10, savefuns=TRUE)
E2 <- envelope(cells, Kest, nsim=20, savefuns=TRUE)
op(E1, E2)

V1 <- envelope(E1, VARIANCE=TRUE)
V2 <- envelope(E2, VARIANCE=TRUE)
op(V1, V2)

---

**Pool Data from Several Function Arrays**

Description

Pool the simulation data from several function arrays (objects of class "fasp") and compute a new function array.
Usage

```r
S3 method for class 'fasp'
pool(...)```

Arguments

...

Objects of class "fasp".

Details

The function `pool` is generic. This is the method for the class "fasp" of function arrays. It is used to combine the simulation data from several arrays of simulation envelopes and to compute a new array of envelopes based on the combined data.

Each of the arguments ... must be a function array (object of class "fasp") containing simulation envelopes. This is typically created by running the command `alltypes` with the arguments `envelope=TRUE` and `savefuns=TRUE`. This ensures that each object is an array of simulation envelopes, and that each envelope contains the simulated data (summary function values) that were used to construct the envelope.

The simulated data are extracted from each object and combined. A new array of envelopes is computed from the combined set of simulations.

Warnings or errors will be issued if the objects ... appear to be incompatible. However, the code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`fasp, alltypes, pool.envelope, pool`

Examples

```r
data(amacrine)
A1 <- alltypes(amacrine,"K",nsim=9,envelope=TRUE,savefuns=TRUE)
A2 <- alltypes(amacrine,"K",nsim=10,envelope=TRUE,savefuns=TRUE)
pool(A1, A2)`
**pool.fv**

*Pool Several Functions*

**Description**

Combine several summary functions into a single function.

**Usage**

```r
S3 method for class 'fv'
pool(..., weights=NULL)
```

**Arguments**

- `...` Objects of class “fv”.
- `weights` Optional numeric vector of weights for the functions.

**Details**

The function `pool` is generic. This is the method for the class "fv" of summary functions. It is used to combine several estimates of the same function into a single function.

Each of the arguments ... must be an object of class "fv". They must be compatible, in that they are estimates of the same function, and were computed using the same options.

The sample mean and sample variance of the corresponding estimates will be computed.

**Value**

An object of class "fv".

**Author(s)**


Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**See Also**

`pool`, `pool.anylist`, `pool.rat`

**Examples**

```r
K <- lapply(waterstriders, Kest, correction="iso")
Kall <- pool(K[[1]], K[[2]], K[[3]])
plot(Kall, cbind(pooliso, pooltheo) ~ r,
 shade=c("loiso", "hiiso"),
 main="Pooled K function of waterstriders")
```
Pool several quadrat tests into a single quadrat test.

## Usage

```r
S3 method for class 'quadrattest'
pool(..., df=NULL, df.est=NULL, nsim=1999,
 Xname=NULL, CR=NULL)
```

## Arguments

- `...` Any number of objects, each of which is a quadrat test (object of class "quadrattest").
- `df` Optional. Number of degrees of freedom of the test statistic. Relevant only for \( \chi^2 \) tests. Incompatible with `df.est`.
- `df.est` Optional. The number of fitted parameters, or the number of degrees of freedom lost by estimation of parameters. Relevant only for \( \chi^2 \) tests. Incompatible with `df`.
- `nsim` Number of simulations, for Monte Carlo test.
- `Xname` Optional. Name of the original data.
- `CR` Optional. Numeric value of the Cressie-Read exponent \( CR \) overriding the value used in the tests.

## Details

The function `pool` is generic. This is the method for the class "quadrattest".

An object of class "quadrattest" represents a \( \chi^2 \) test or Monte Carlo test of goodness-of-fit for a point process model, based on quadrat counts. Such objects are created by the command `quadrat.test`.

Each of the arguments `...` must be an object of class "quadrattest". They must all be the same type of test (chi-squared test or Monte Carlo test, conditional or unconditional) and must all have the same type of alternative hypothesis.

The test statistic of the pooled test is the Pearson \( X^2 \) statistic taken over all cells (quadrats) of all tests. The \( p \) value of the pooled test is then computed using either a Monte Carlo test or a \( \chi^2 \) test.

For a pooled \( \chi^2 \) test, the number of degrees of freedom of the combined test is computed by adding the degrees of freedom of all the tests (equivalent to assuming the tests are independent) unless it is determined by the arguments `df` or `df.est`. The resulting \( p \) value is computed to obtain the pooled test.

For a pooled Monte Carlo test, new simulations are performed to determine the pooled Monte Carlo \( p \) value.
Another object of class "quadrat.test".

See Also

pool, quadrat.test

Examples

Y <- split(humberside)
test1 <- quadrat.test(Y[[1]])
test2 <- quadrat.test(Y[[2]])
pool(test1, test2, Xname="Humberside")

Description

Pool the data from several ratio objects (objects of class "rat") and compute a pooled estimate.

Usage

## S3 method for class 'rat'
pool(...)

Arguments

... Objects of class "rat".

Details

The function pool is generic. This is the method for the class "rat" of ratio objects. It is used to combine several estimates of the same quantity when each estimate is a ratio.

Each of the arguments ... must be an object of class "rat" representing a ratio object (basically a numerator and a denominator; see rat). We assume that these ratios are all estimates of the same quantity.

If the objects are called $R_1, \ldots, R_n$ and if $R_i$ has numerator $Y_i$ and denominator $X_i$, so that notionally $R_i = Y_i / X_i$, then the pooled estimate is the ratio-of-sums estimator

$$R = \frac{\sum_i Y_i}{\sum_i X_i}.$$
The standard error of \( R \) is computed using the delta method as described in Baddeley et al. (1993) or Cochran (1977, pp 154, 161).

This calculation is implemented only for certain classes of objects where the arithmetic can be performed.

This calculation is currently implemented only for objects which also belong to the class "fv" (function value tables). For example, if `Kest` is called with argument `ratio=TRUE`, the result is a suitable object (belonging to the classes "rat" and "fv").

Warnings or errors will be issued if the ratio objects ... appear to be incompatible. However, the code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of the same class as the input.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References


See Also

`rat, pool, pool.fv, Kest`

Examples

```r
K1 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K2 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K3 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K <- pool(K1, K2, K3)
plot(K, pooliso ~ r, shade=c("hiiso", "loiso"))
```

---

**pp3**

Three Dimensional Point Pattern

**Description**

Create a three-dimensional point pattern

**Usage**

```r
pp3(x, y, z, ...)
```
Arguments

\(x, y, z\) Numeric vectors of equal length, containing Cartesian coordinates of points in three-dimensional space.

\(\ldots\) Arguments passed to \texttt{as.box3} to determine the three-dimensional box in which the points have been observed.

Details

An object of class "pp3" represents a pattern of points in three-dimensional space. The points are assumed to have been observed by exhaustively inspecting a three-dimensional rectangular box. The boundaries of the box are included as part of the dataset.

Value

Object of class "pp3" representing a three dimensional point pattern. Also belongs to class "ppx".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{box3}, \texttt{print.pp3}, \texttt{ppx}

Examples

\begin{verbatim}
X <- pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
\end{verbatim}
Arguments

Q

A formula in the R language describing the model to be fitted.

interaction

An object of class "interact" describing the point process interaction structure, or NULL indicating that a Poisson process (stationary or nonstationary) should be fitted.

...  

Arguments passed to ppm.ppp or ppm.quad to control the model-fitting process.

data

Optional. The values of spatial covariates (other than the Cartesian coordinates) required by the model. Either a data frame, or a list whose entries are images, functions, windows, tessellations or single numbers. See Details.

subset

Optional. An expression (typically involving the Cartesian coordinates x and y or the names of entries in data) defining a subset of the spatial domain, to which the model-fitting should be restricted.

Details

This function fits a point process model to an observed point pattern. The model may include spatial trend, interpoint interaction, and dependence on covariates.

The function ppm is generic, with methods for the classes formula, ppp and quad. This page describes the method for a formula.

The first argument is a formula in the R language describing the spatial trend model to be fitted. It has the general form pattern ~ trend where the left hand side pattern is usually the name of a spatial point pattern (object of class "ppp") to which the model should be fitted, or an expression which evaluates to a point pattern; and the right hand side trend is an expression specifying the spatial trend of the model.

Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by the trend expression on the right hand side of the formula. The trend may involve the Cartesian coordinates x, y, the marks marks, the names of entries in the argument data (if supplied), or the names of objects that exist in the R session. The trend formula specifies the logarithm of the intensity of a Poisson process, or in general, the logarithm of the first order potential of the Gibbs process. The formula should not use any names beginning with .mpl as these are reserved for internal use. If the formula is pattern~1, then the model to be fitted is stationary (or at least, its first order potential is constant).

The symbol . in the trend expression stands for all the covariates supplied in the argument data. For example the formula pattern ~ . indicates an additive model with a main effect for each covariate in data.

Stochastic interactions between random points of the point process are defined by the argument interaction. This is an object of class "interact" which is initialised in a very similar way to the usage of family objects in glm and gam. The models currently available are: Poisson, AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, LennardJones, MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Saturated, SatPiece, Softcore, Strauss and StraussHard. See the examples below. It is also possible to combine several interactions using Hybrid.

If interaction is missing or NULL, then the model to be fitted has no interpoint interactions, that is, it is a Poisson process (stationary or nonstationary according to trend). In this case the methods of maximum pseudolikelihood and maximum logistic likelihood coincide with maximum likelihood.
The fitted point process model returned by this function can be printed (by the print method `print.ppm`) to inspect the fitted parameter values. If a nonparametric spatial trend was fitted, this can be extracted using the predict method `predict.ppm`.

To fit a model involving spatial covariates other than the Cartesian coordinates \( x \) and \( y \), the values of the covariates should either be supplied in the argument `data`, or should be stored in objects that exist in the \( R \) session. Note that it is not sufficient to have observed the covariate only at the points of the data point pattern; the covariate must also have been observed at other locations in the window.

If it is given, the argument `data` is typically a list, with names corresponding to variables in the trend formula. Each entry in the list is either

- **a pixel image**, giving the values of a spatial covariate at a fine grid of locations. It should be an object of class "im", see `im.object`.
- **a function**, which can be evaluated at any location \((x, y)\) to obtain the value of the spatial covariate. It should be a function\((x, y)\) or function\((x, y, \ldots)\) in the \( R \) language. The first two arguments of the function should be the Cartesian coordinates \( x \) and \( y \). The function may have additional arguments; if the function does not have default values for these additional arguments, then the user must supply values for them, in `covfunargs`. See the Examples.
- **a window**, interpreted as a logical variable which is TRUE inside the window and FALSE outside it. This should be an object of class "owin".
- **a tessellation**, interpreted as a factor covariate. For each spatial location, the factor value indicates which tile of the tessellation it belongs to. This should be an object of class "tess".
- **a single number**, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature points). Note that, for covariate functions, only the name of the function appears in the trend formula. A covariate function is treated as if it were a single variable. The function arguments do not appear in the trend formula. See the Examples.

If `data` is a list, the list entries should have names corresponding to (some of) the names of covariates in the model formula `trend`. The variable names \( x \), \( y \) and `marks` are reserved for the Cartesian coordinates and the mark values, and these should not be used for variables in `data`.

Alternatively, `data` may be a data frame giving the values of the covariates at specified locations. Then `pattern` should be a quadrature scheme (object of class "quad") giving the corresponding locations. See `ppm_quad` for details.

**Value**

An object of class "ppm" describing a fitted point process model.

See `ppm.object` for details of the format of this object and methods available for manipulating it.

**Interaction parameters**

Apart from the Poisson model, every point process model fitted by `ppm` has parameters that determine the strength and range of 'interaction' or dependence between points. These parameters are of two types:
**regular parameters**: A parameter $\phi$ is called *regular* if the log likelihood is a linear function of $\theta$ where $\theta = \theta(\psi)$ is some transformation of $\psi$. [Then $\theta$ is called the canonical parameter.]

**irregular parameters** Other parameters are called *irregular*.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter $\gamma$ controlling the strength of interpoint inhibition, and an irregular parameter $r$ determining the range of interaction.

The `ppm` command is only designed to estimate regular parameters of the interaction. It requires the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss process model to the `cells` dataset, you could type `ppm(cells ~ QL strauss(r=0.07))`. Note that the value of the irregular parameter $r$ must be given. The result of this command will be a fitted model in which the regular parameter $\gamma$ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general statistical theory available. Useful techniques include maximum profile pseudolikelihood, which is implemented in the command `profilepl`, and Newton-Raphson maximisation, implemented in the experimental command `ippm`.

**Author(s)**

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

**References**


**See Also**

`ppm.ppp` and `ppm.quad` for more details on the fitting technique and edge correction.

`ppm.object` for details of how to print, plot and manipulate a fitted model.

`ppp` and `quadscheme` for constructing data.
Interactions: Poisson, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Geyer, Fiksel, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Saturated, SatPiece, Softcore, Strauss and StraussHard.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular parameters in the trend.

See valid.ppm and project.ppm for ensuring the fitted model is a valid point process.

Examples

```r
fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees ~ 1)

Not run:
Q <- quadscheme(nztrees)
ppm(Q ~ 1)
equivalent.

End(Not run)

fit1 <- ppm(nztrees ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(ax + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

fit1
coeff(fit1)
coeff(summary(fit1))

Not run:
ppm(nztrees ~ polynom(x,2))

End(Not run)

fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx + cx^2)

Not run:
library(splines)
ppm(nztrees ~ bs(x,df=3))

End(Not run)
WARNING: do not use predict.ppm() on this result
Fits the nonstationary Poisson process
with intensity function lambda(x,y) = exp(B(x))
where B is a B-spline with df = 3

Not run:
ppm(nztrees ~ 1, Strauss(r=10), rbord=10)
```
## End(Not run)

# Fit the stationary Strauss process with interaction range r=10
# using the border method with margin rbord=10

## Not run
ppm(nztrees ~ x, Strauss(13), correction="periodic")

## End(Not run)

# Fit the nonstationary Strauss process with interaction range r=13
# and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
# using the periodic correction.

# Compare Maximum Pseudolikelihood and Huang-Ogata fits:
## Not run: ppm(swedishpines ~ 1, Strauss(9))
## Not run: ppm(swedishpines ~ 1, Strauss(9), method="ho")

# COVARIATES
#
X <- rpoispp(42)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }
#
# (a) covariate values as function
ppm(X ~ y + weirdfunction)
#
# (b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X ~ y + Z, covariates=list(Z=Zimage))
#
# (c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q ~ y + Z, data=data.frame(Z=Zvalues))
# Note Q not X

# COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#
f <- function(x,y,a){ y - a }
ppm(X ~ x + f, covfunargs=list(a=1/2))

# COVARIATE: inside/outside window
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X ~ b)

## MULTITYPE POINT PROCESSES ###
# fit stationary marked Poisson process
# with different intensity for each species
## Not run: ppm(lansing ~ marks, Poisson())

# fit nonstationary marked Poisson process
# with different log-cubic trend for each species
## Not run: ppm(lansing ~ marks * polyom(x,y,3), Poisson())

## ppm.object Class of Fitted Point Process Models

**Description**

A class ppm to represent a fitted stochastic model for a point process. The output of ppm.

**Details**

An object of class ppm represents a stochastic point process model that has been fitted to a point pattern dataset. Typically it is the output of the model fitter, ppm.

The class ppm has methods for the following standard generic functions:

<table>
<thead>
<tr>
<th>generic</th>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>print.ppm</td>
<td>print details</td>
</tr>
<tr>
<td>plot</td>
<td>plot.ppm</td>
<td>plot fitted model</td>
</tr>
<tr>
<td>predict</td>
<td>predict.ppm</td>
<td>fitted intensity and conditional intensity</td>
</tr>
<tr>
<td>fitted</td>
<td>fitted.ppm</td>
<td>fitted intensity</td>
</tr>
<tr>
<td>coef</td>
<td>coef.ppm</td>
<td>fitted coefficients of model</td>
</tr>
<tr>
<td>anova</td>
<td>anova.ppm</td>
<td>Analysis of Deviance</td>
</tr>
<tr>
<td>formula</td>
<td>formula.ppm</td>
<td>Extract model formula</td>
</tr>
<tr>
<td>terms</td>
<td>terms.ppm</td>
<td>Terms in the model formula</td>
</tr>
<tr>
<td>labels</td>
<td>labels.ppm</td>
<td>Names of estimable terms in the model formula</td>
</tr>
<tr>
<td>residuals</td>
<td>residuals.ppm</td>
<td>Point process residuals</td>
</tr>
<tr>
<td>simulate</td>
<td>simulate.ppm</td>
<td>Simulate the fitted model</td>
</tr>
<tr>
<td>update</td>
<td>update.ppm</td>
<td>Change or refit the model</td>
</tr>
<tr>
<td>vcov</td>
<td>vcov.ppm</td>
<td>Variance/covariance matrix of parameter estimates</td>
</tr>
<tr>
<td>model.frame</td>
<td>model.frame.ppm</td>
<td>Model frame</td>
</tr>
<tr>
<td>model.matrix</td>
<td>model.matrix.ppm</td>
<td>Design matrix</td>
</tr>
<tr>
<td>logLik</td>
<td>logLik.ppm</td>
<td>log pseudo likelihood</td>
</tr>
<tr>
<td>extractAIC</td>
<td>extractAIC.ppm</td>
<td>pseudolikelihood counterpart of AIC</td>
</tr>
<tr>
<td>nobs</td>
<td>nobs.ppm</td>
<td>number of observations</td>
</tr>
</tbody>
</table>

Objects of class ppm can also be handled by the following standard functions, without requiring a special method:

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
</tr>
</thead>
</table>

...
The class `ppm` also has methods for the following generic functions defined in the `spatstat` package:

<table>
<thead>
<tr>
<th>generic</th>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as.interact</code></td>
<td><code>as.interact.ppm</code></td>
<td>Interpoint interaction structure</td>
</tr>
<tr>
<td><code>as.owin</code></td>
<td><code>as.owin.ppm</code></td>
<td>Observation window of data</td>
</tr>
<tr>
<td><code>berman.test</code></td>
<td><code>berman.test.ppm</code></td>
<td>Berman’s test</td>
</tr>
<tr>
<td><code>envelope</code></td>
<td><code>envelope.ppm</code></td>
<td>Simulation envelopes</td>
</tr>
<tr>
<td><code>fitin</code></td>
<td><code>fitin.ppm</code></td>
<td>Fitted interaction</td>
</tr>
<tr>
<td><code>is.marked</code></td>
<td><code>is.marked.ppm</code></td>
<td>Determine whether the model is marked</td>
</tr>
<tr>
<td><code>is.multitype</code></td>
<td><code>is.multitype.ppm</code></td>
<td>Determine whether the model is multitype</td>
</tr>
<tr>
<td><code>is.poisson</code></td>
<td><code>is.poisson.ppm</code></td>
<td>Determine whether the model is Poisson</td>
</tr>
<tr>
<td><code>is.stationary</code></td>
<td><code>is.stationary.ppm</code></td>
<td>Determine whether the model is stationary</td>
</tr>
<tr>
<td><code>cdf.test</code></td>
<td><code>cdf.test.ppm</code></td>
<td>Spatial distribution test</td>
</tr>
<tr>
<td><code>quadrat.test</code></td>
<td><code>quadrat.test.ppm</code></td>
<td>Quadrat counting test</td>
</tr>
<tr>
<td><code>reach</code></td>
<td><code>reach.ppm</code></td>
<td>Interaction range of model</td>
</tr>
<tr>
<td><code>rmhmodel</code></td>
<td><code>rmhmodel.ppm</code></td>
<td>Model in a form that can be simulated</td>
</tr>
<tr>
<td><code>rmh</code></td>
<td><code>rmh.ppm</code></td>
<td>Perform simulation</td>
</tr>
<tr>
<td><code>unitname</code></td>
<td><code>unitname.ppm</code></td>
<td>Name of unit of length</td>
</tr>
</tbody>
</table>

Information about the data (to which the model was fitted) can be extracted using `data.ppm`, `dummy.ppm` and `quad.ppm`.

**Internal format**

If you really need to get at the internals, a `ppm` object contains at least the following entries:

- `coef`: the fitted regular parameters (as returned by `glm`)
- `trend`: the trend formula or NULL
- `interaction`: the point process interaction family (an object of class "interact") or NULL
- `Q`: the quadrature scheme used
- `maxlogpl`: the maximised value of log pseudolikelihood
- `correction`: name of edge correction method used

See `ppm` for explanation of these concepts. The irregular parameters (e.g. the interaction radius of the Strauss process) are encoded in the `interaction` entry. However see the Warnings.

**Warnings**

The internal representation of `ppm` objects may change slightly between releases of the `spatstat` package.
ppm.ppp

Fit Point Process Model to Point Pattern Data

Description

Fits a point process model to an observed point pattern.

Usage

## S3 method for class 'ppp'
ppm(Q, trend=-1, interaction=Poisson(),
    ...,
    covariates=data,
    data=NULL,
    covfunargs = list(),
    subset,
    correction="border",
    rbord=reach(interaction),
    use.gam=FALSE,
    method="mpl",
    forcefit=FALSE,
    project=FALSE,
    nd = NULL,
    eps = NULL,

Examples

```r
data(cells)
fit <- ppm(cells, ~ x, Strauss(0.1), correction="periodic")
fit
coeff(fit)
Not run:
pred <- predict(fit)
End(Not run)

pred <- predict(fit, ngrid=20, type="trend")
Not run:
plot(fit)
End(Not run)
```
Arguments

\( Q \)  
A data point pattern (of class "ppp") to which the model will be fitted, or a quadrature scheme (of class "quad") containing this pattern.

\( \text{trend} \)  
An \( \text{R} \) formula object specifying the spatial trend to be fitted. The default formula, \(~1\), indicates the model is stationary and no trend is to be fitted.

\( \text{interaction} \)  
An object of class "interact" describing the point process interaction structure, or NULL indicating that a Poisson process (stationary or nonstationary) should be fitted.

...  
Ignored.

data, covariates  
The values of any spatial covariates (other than the Cartesian coordinates) required by the model. Either a data frame, or a list whose entries are images, functions, windows, tessellations or single numbers. See Details.

\( \text{subset} \)  
Optional. An expression (typically involving the Cartesian coordinates \( x \) and \( y \) or the names of entries in \( \text{data} \)) defining a subset of the spatial domain, to which the model-fitting should be restricted.

covfunargs  
A named list containing the values of any additional arguments required by covariate functions.

\( \text{correction} \)  
The name of the edge correction to be used. The default is "border" indicating the border correction. Other possibilities may include "Ripley", "isotropic", "periodic", "translate" and "none", depending on the interaction.
rbord
If correction = "border" this argument specifies the distance by which the window should be eroded for the border correction.

use.gam
Logical flag; if TRUE then computations are performed using gam instead of glm.

method
The method used to fit the model. Options are "mpl" for the method of Maximum PseudoLikelihood, "logi" for the Logistic Likelihood method, and "ho" for the Huang-Ogata approximate maximum likelihood method.

forcefit
Logical flag for internal use. If forcefit=FALSE, some trivial models will be fitted by a shortcut. If forcefit=TRUE, the generic fitting method will always be used.

project
Logical. Setting project=TRUE will ensure that the fitted model is always a valid point process by applying project.ppm.

nd
Optional. Integer or pair of integers. The dimension of the grid of dummy points (nd * nd or nd[1] * nd[2]) used to evaluate the integral in the pseudolikelihood. Incompatible with eps.

eps
Optional. A positive number, or a vector of two positive numbers, giving the horizontal and vertical spacing, respectively, of the grid of dummy points. Incompatible with nd.

gcontrol
Optional. List of parameters passed to glm.control (or passed to gam.control if use.gam=TRUE) controlling the model-fitting algorithm.

nsim
Number of simulated realisations to generate (for method="ho")

nrmh
Number of Metropolis-Hastings iterations for each simulated realisation (for method="ho")

start.control
Arguments passed to rmh controlling the behaviour of the Metropolis-Hastings algorithm (for method="ho")

verb
Logical flag indicating whether to print progress reports (for method="ho")

callstring
Internal use only.

Details
NOTE: This help page describes the old syntax of the function ppm, described in many older documents. This old syntax is still supported. However, if you are learning about ppm for the first time, we recommend you use the new syntax described in the help file for ppm.

This function fits a point process model to an observed point pattern. The model may include spatial trend, interpoint interaction, and dependence on covariates.

basic use: In basic use, Q is a point pattern dataset (an object of class "ppp") to which we wish to fit a model.

The syntax of ppm() is closely analogous to the R functions glm and gam. The analogy is:

\[
\begin{align*}
glm & \quad ppm \\
\text{formula} & \quad \text{trend} \\
\text{family} & \quad \text{interaction}
\end{align*}
\]

The point process model to be fitted is specified by the arguments trend and interaction.
which are respectively analogous to the formula and family arguments of glm(). Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by the argument trend. This is an R formula object, which may be expressed in terms of the Cartesian coordinates $x, y$, the marks marks, or the variables in covariates (if supplied), or both. It specifies the logarithm of the first order potential of the process. The formula should not use any names beginning with .mpl as these are reserved for internal use. If trend is absent or equal to the default, ~1, then the model to be fitted is stationary (or at least, its first order potential is constant).

The symbol . in the trend expression stands for all the covariates supplied in the argument data. For example the formula ~ . indicates an additive model with a main effect for each covariate in data.

Stochastic interactions between random points of the point process are defined by the argument interaction. This is an object of class "interact" which is initialised in a very similar way to the usage of family objects in glm and gam. The models currently available are: Poisson, AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, LennardJones, MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Saturated, SatPiece, Softcore, Strauss and StraussHard. See the examples below. It is also possible to combine several interactions using Hybrid.

If interaction is missing or NULL, then the model to be fitted has no interpoint interactions, that is, it is a Poisson process (stationary or nonstationary according to trend). In this case the methods of maximum pseudolikelihood and maximum logistic likelihood coincide with maximum likelihood.

The fitted point process model returned by this function can be printed (by the print method print.ppm) to inspect the fitted parameter values. If a nonparametric spatial trend was fitted, this can be extracted using the predict method predict.ppm.

Models with covariates: To fit a model involving spatial covariates other than the Cartesian coordinates $x$ and $y$, the values of the covariates should be supplied in the argument covariates. Note that it is not sufficient to have observed the covariate only at the points of the data point pattern; the covariate must also have been observed at other locations in the window.

Typically the argument covariates is a list, with names corresponding to variables in the trend formula. Each entry in the list is either

- a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be an object of class "im", see im.object.
- a function, which can be evaluated at any location $(x, y)$ to obtain the value of the spatial covariate. It should be a function$(x, y)$ or function$(x, y, ...)$ in the R language. The first two arguments of the function should be the Cartesian coordinates $x$ and $y$. The function may have additional arguments; if the function does not have default values for these additional arguments, then the user must supply values for them, in covfunargs. See the Examples.
- a window, interpreted as a logical variable which is TRUE inside the window and FALSE outside it. This should be an object of class "owin".
- a tessellation, interpreted as a factor covariate. For each spatial location, the factor value indicates which tile of the tessellation it belongs to. This should be an object of class "tess".
- a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature points).
Note that, for covariate functions, only the *name* of the function appears in the trend formula. A covariate function is treated as if it were a single variable. The function arguments do not appear in the trend formula. See the Examples.

If `covariates` is a list, the list entries should have names corresponding to the names of covariates in the model formula `trend`. The variable names `x`, `y` and `marks` are reserved for the Cartesian coordinates and the mark values, and these should not be used for variables in `covariates`.

If `covariates` is a data frame, `Q` must be a quadrature scheme (see under Quadrature Schemes below). Then `covariates` must have as many rows as there are points in `Q`. The $i$th row of `covariates` should contain the values of spatial variables which have been observed at the $i$th point of `Q`.

**Quadrature schemes:** In advanced use, `Q` may be a ‘quadrature scheme’. This was originally just a technicality but it has turned out to have practical uses, as we explain below.

Quadrature schemes are required for our implementation of the method of maximum pseudolikelihood. The definition of the pseudolikelihood involves an integral over the spatial window containing the data. In practice this integral must be approximated by a finite sum over a set of quadrature points. We use the technique of Baddeley and Turner (2000), a generalisation of the Berman-Turner (1992) device. In this technique the quadrature points for the numerical approximation include all the data points (points of the observed point pattern) as well as additional ‘dummy’ points.

Quadrature schemes are also required for the method of maximum logistic likelihood, which combines the data points with additional ‘dummy’ points.

A quadrature scheme is an object of class "quad" (see `quad.object`) which specifies both the data point pattern and the dummy points for the quadrature scheme, as well as the quadrature weights associated with these points. If `Q` is simply a point pattern (of class "ppp", see `ppp.object`) then it is interpreted as specifying the data points only; a set of dummy points specified by `default.dummy()` is added, and the default weighting rule is invoked to compute the quadrature weights.

Finer quadrature schemes (i.e. those with more dummy points) generally yield a better approximation, at the expense of higher computational load.

An easy way to fit models using a finer quadrature scheme is to let `Q` be the original point pattern data, and use the argument `nd` to determine the number of dummy points in the quadrature scheme.

Complete control over the quadrature scheme is possible. See `quadscheme` for an overview. Use `quadscheme(X, D, method="dirichlet")` to compute quadrature weights based on the Dirichlet tessellation, or `quadscheme(X, D, method="grid")` to compute quadrature weights by counting points in grid squares, where `X` and `D` are the patterns of data points and dummy points respectively. Alternatively use `pixelquad` to make a quadrature scheme with a dummy point at every pixel in a pixel image.

A practical advantage of quadrature schemes arises when we want to fit a model involving covariates (e.g. soil pH). Suppose we have only been able to observe the covariates at a small number of locations. Suppose `cov.dat` is a data frame containing the values of the covariates at the data points (i.e. `cov.dat[i,]` contains the observations for the $i$th data point) and `cov.dum` is another data frame (with the same columns as `cov.dat`) containing the covariate values at another set of points whose locations are given by the point pattern `Y`. Then setting `Q = quadscheme(X,Y)` combines the data points and dummy points into a quadrature scheme,
and covariates = rbind(cov.dat, cov.dum) combines the covariate data frames. We can then fit the model by calling ppm(Q, ..., covariates).

**Model-fitting technique:** There are several choices for the technique used to fit the model.

- **method="mpl"** (the default): the model will be fitted by maximising the pseudolikelihood (Besag, 1975) using the Berman-Turner computational approximation (Berman and Turner, 1992; Baddeley and Turner, 2000). Maximum pseudolikelihood is equivalent to maximum likelihood if the model is a Poisson process. Maximum pseudolikelihood is biased if the interpoint interaction is very strong, unless there is a large number of dummy points. The default settings for method='mpl' specify a moderately large number of dummy points, striking a compromise between speed and accuracy.

- **method="logi"**: the model will be fitted by maximising the logistic likelihood (Baddeley et al., 2014). This technique is roughly equivalent in speed to maximum pseudolikelihood, but is believed to be less biased. Because it is less biased, the default settings for method='logi' specify a relatively small number of dummy points, so that this method is the fastest, in practice.

- **method="ho"**: the model will be fitted by applying the approximate maximum likelihood method of Huang and Ogata (1999). See below. The Huang-Ogata method is slower than the other options, but has better statistical properties.

Note that method='logi' and method='ho' involve randomisation, so that the results are subject to random variation.

**Huang-Ogata method:** If method="ho" then the model will be fitted using the Huang-Ogata (1999) approximate maximum likelihood method. First the model is fitted by maximum pseudolikelihood as described above, yielding an initial estimate of the parameter vector \( \theta_0 \). From this initial model, \( n \) simulated realisations are generated. The score and Fisher information of the model at \( \theta = \theta_0 \) are estimated from the simulated realisations. Then one step of the Fisher scoring algorithm is taken, yielding an updated estimate \( \theta_1 \). The corresponding model is returned.

Simulated realisations are generated using rmh. The iterative behaviour of the Metropolis-Hastings algorithm is controlled by the arguments start and control which are passed to rmh.

As a shortcut, the argument nrmh determines the number of Metropolis-Hastings iterations run to produce one simulated realisation (if control is absent). Also if start is absent or equal to NULL, it defaults to list(n.start=N) where N is the number of points in the data point pattern.

**Edge correction** Edge correction should be applied to the sufficient statistics of the model, to reduce bias. The argument correction is the name of an edge correction method. The default correction="border" specifies the border correction, in which the quadrature window (the domain of integration of the pseudolikelihood) is obtained by trimming off a margin of width rbord from the observation window of the data pattern. Not all edge corrections are implemented (or implementable) for arbitrary windows. Other options depend on the argument interaction, but these generally include correction="periodic" (the periodic or toroidal edge correction in which opposite edges of a rectangular window are identified) and correction="translate" (the translation correction, see Baddeley 1998 and Baddeley and Turner 2000). For pairwise interaction models there is also Ripley’s isotropic correction, identified by correction="isotropic" or "Ripley".
Value

An object of class "ppm" describing a fitted point process model.

See `ppm.object` for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by `ppm` has parameters that determine the strength and range of ‘interaction’ or dependence between points. These parameters are of two types:

**regular parameters**: A parameter \( \phi \) is called regular if the log likelihood is a linear function of \( \theta \) where \( \theta = \theta(\psi) \) is some transformation of \( \psi \). [Then \( \theta \) is called the canonical parameter.]

**irregular parameters** Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter \( \gamma \) controlling the strength of interpoint inhibition, and an irregular parameter \( r \) determining the range of interaction.

The `ppm` command is only designed to estimate regular parameters of the interaction. It requires the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss process model to the `cells` dataset, you could type `ppm(cells ~ 1, Strauss(r=0.07))`. Note that the value of the irregular parameter \( r \) must be given. The result of this command will be a fitted model in which the regular parameter \( \gamma \) has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general statistical theory available. One useful technique is maximum profile pseudolikelihood, which is implemented in the command `profilepl`.

Warnings

The implementation of the Huang-Ogata method is experimental; several bugs were fixed in `spatstat` 1.19-0.

See the comments above about the possible inefficiency and bias of the maximum pseudolikelihood estimator.

The accuracy of the Berman-Turner approximation to the pseudolikelihood depends on the number of dummy points used in the quadrature scheme. The number of dummy points should at least equal the number of data points.

The parameter values of the fitted model do not necessarily determine a valid point process. Some of the point process models are only defined when the parameter values lie in a certain subset. For example the Strauss process only exists when the interaction parameter \( \gamma \) is less than or equal to 1, corresponding to a value of `ppm()`$\theta[2]$ less than or equal to 0.

By default (if `project=FALSE`) the algorithm maximises the pseudolikelihood without constraining the parameters, and does not apply any checks for sanity after fitting the model. This is because the fitted parameter value could be useful information for data analysis. To constrain the parameters to ensure that the model is a valid point process, set `project=TRUE`. See also the functions `valid.ppm` and `project.ppm`.

The trend formula should not use any variable names beginning with the prefixes \( \text{mpl} \) or `interaction` as these names are reserved for internal use. The data frame `covariates` should have as many rows
as there are points in $Q$. It should not contain variables called $x$, $y$ or marks as these names are reserved for the Cartesian coordinates and the marks.

If the model formula involves one of the functions poly(), bs() or ns() (e.g. applied to spatial coordinates $x$ and $y$), the fitted coefficients can be misleading. The resulting fit is not to the raw spatial variates ($x$, $x^2$, $xy$, etc.) but to a transformation of these variates. The transformation is implemented by poly() in order to achieve better numerical stability. However the resulting coefficients are appropriate for use with the transformed variates, not with the raw variates. This affects the interpretation of the constant term in the fitted model, $\log \beta$. Conventionally, $\beta$ is the background intensity, i.e. the value taken by the conditional intensity function when all predictors (including spatial or “trend” predictors) are set equal to 0. However the coefficient actually produced is the value that the log conditional intensity takes when all the predictors, including the transformed spatial predictors, are set equal to $P$, which is not the same thing.

Worse still, the result of predict.ppm can be completely wrong if the trend formula contains one of the functions poly(), bs() or ns(). This is a weakness of the underlying function predict.glm.

If you wish to fit a polynomial trend, we offer an alternative to poly(), namely polynom(), which avoids the difficulty induced by transformations. It is completely analogous to poly except that it does not orthonormalise. The resulting coefficient estimates then have their natural interpretation and can be predicted correctly. Numerical stability may be compromised.

Values of the maximised pseudolikelihood are not comparable if they have been obtained with different values of rbord.

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**References**


See Also

ppm.object for details of how to print, plot and manipulate a fitted model.
ppp and quadscheme for constructing data.
Interactions: Poisson, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Geyer, Fiksel, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Saturated, SatPiece, Softcore, Strauss and StraussHard.
See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular parameters in the trend.
See valid.ppm and project.ppm for ensuring the fitted model is a valid point process.

Examples

# fit the stationary Poisson process
# to point pattern 'nztrees'

ppm(nztrees)
ppm(nztrees ~ 1)

## Not run:
Q <- quadscheme(nztrees)
ppm(Q)
# equivalent.

## End(Not run)

## Not run:
ppm(nztrees, nd=128)

## End(Not run)

fit1 <- ppm(nztrees, ~ x)
# fit the nonstationary Poisson process
# with intensity function lambda(x,y) = exp(a + bx)
# where x,y are the Cartesian coordinates
# and a,b are parameters to be estimated

fit1
coeff(fit1)
coeff(summary(fit1))

## Not run:
ppm(nztrees, ~ polynom(x,2))

## End(Not run)

# fit the nonstationary Poisson process
# with intensity function lambda(x,y) = exp(a + bx + cx^2)
## Not run:
library(splines)
ppm(nztrees, ~ bs(x, df=3))

## End(Not run)
# WARNING: do not use predict.ppm() on this result
# Fits the nonstationary Poisson process
# with intensity function \( \lambda(x, y) = \exp(B(x)) \)
# where \( B \) is a B-spline with df = 3

## Not run:
ppm(nztrees, ~1, Strauss(r=10), rbord=10)

## End(Not run)

# Fit the stationary Strauss process with interaction range r=10
# using the border method with margin rbord=10

## Not run:
ppm(nztrees, ~ x, Strauss(13), correction="periodic")

## End(Not run)

# Fit the nonstationary Strauss process with interaction range r=13
# and \( \exp(\text{first order potential}) = \text{activity} = \beta(x, y) = \exp(a+bx) \)
# using the periodic correction.

# Compare Maximum Pseudolikelihood and Huang-Ogata fits:
## Not run: ppm(swedishpines, ~1, Strauss(9))

## Not run: ppm(swedishpines, ~1, Strauss(9), method="ho")

## COVARIATES
#
X <- rpoispp(42)
weirdfunction <- function(x,y)( 10 * x^2 + 5 * sin(10 * y) )
#
# (a) covariate values as function
ppm(X, ~ y + Z, covariates=list(Z=weirdfunction))
#
# (b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X, ~ y + Z, covariates=list(Z=Zimage))
#
# (c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q, ~ y + Z, covariates=data.frame(Z=Zvalues))
# Note Q not X
# COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#
f <- function(x,y,a){ y - a }
ppm(X, ~x + f, covariates=list(f=f), covfunargs=list(a=1/2))

# COVARIATE: inside/outside window
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X, ~w, covariates=list(w=b))

## MULTITYPE POINT PROCESSES ##
# fit stationary marked Poisson process
# with different intensity for each species
## Not run: ppm(lansing, ~ marks, Poisson())

# fit nonstationary marked Poisson process
# with different log-cubic trend for each species
## Not run: ppm(lansing, ~ marks * polynom(x,y,3), Poisson())

---

ppp

Create a Point Pattern

Description

Creates an object of class "ppp" representing a point pattern dataset in the two-dimensional plane.

Usage

ppp(x,y, ..., window, marks, check=TRUE, drop=TRUE)

Arguments

- **x**: Vector of \(x\) coordinates of data points
- **y**: Vector of \(y\) coordinates of data points
- **window**: window of observation, an object of class "owin"
- **...**: arguments passed to owin to create the window, if window is missing
- **marks**: (optional) mark values for the points. A vector or data frame.
- **check**: Logical flag indicating whether to check that all the \((x, y)\) points lie inside the specified window. Do not set this to FALSE unless you are sure that this check is unnecessary.
- **drop**: Logical flag indicating whether to simplify data frames of marks. See Details.
Details

In the spatstat library, a point pattern dataset is described by an object of class "ppp". This function creates such objects.

The vectors x and y must be numeric vectors of equal length. They are interpreted as the cartesian coordinates of the points in the pattern.

A point pattern dataset is assumed to have been observed within a specific region of the plane called the observation window. An object of class "ppp" representing a point pattern contains information specifying the observation window. This window must always be specified when creating a point pattern dataset; there is intentionally no default action of “guessing” the window dimensions from the data points alone.

You can specify the observation window in several (mutually exclusive) ways:

- xrange, yrange specify a rectangle with these dimensions;
- poly specifies a polygonal boundary. If the boundary is a single polygon then poly must be a list with components x, y giving the coordinates of the vertices. If the boundary consists of several disjoint polygons then poly must be a list of such lists so that poly[[i]]$x gives the x coordinates of the vertices of the ith boundary polygon.
- mask specifies a binary pixel image with entries that are TRUE if the corresponding pixel is inside the window.
- window is an object of class "owin" (see owin.object) specifying the window.

The arguments xrange, yrange or poly or mask are passed to the window creator function owin for interpretation. See owin for further details.

The argument window, if given, must be an object of class "owin". It is a full description of the window geometry, and could have been obtained from owin or as.owin, or by just extracting the observation window of another point pattern, or by manipulating such windows. See owin or the Examples below.

The points with coordinates x and y must lie inside the specified window, in order to define a valid object of this class. Any points which do not lie inside the window will be removed from the point pattern, and a warning will be issued. See the section on Rejected Points.

The name of the unit of length for the x and y coordinates can be specified in the dataset, using the argument unitname, which is passed to owin. See the examples below, or the help file for owin.

The optional argument marks is given if the point pattern is marked, i.e. if each data point carries additional information. For example, points which are classified into two or more different types, or colours, may be regarded as having a mark which identifies which colour they are. Data recording the locations and heights of trees in a forest can be regarded as a marked point pattern where the mark is the tree height.

The argument marks can be either

- a vector, of the same length as x and y, which is interpreted so that marks[i] is the mark attached to the point (x[i],y[i]). If the mark is a real number then marks should be a numeric vector, while if the mark takes only a finite number of possible values (e.g. colours or types) then marks should be a factor.
- a data frame, with the number of rows equal to the number of points in the point pattern. The 1th row of the data frame is interpreted as containing the mark values for the 1th point in the
point pattern. The columns of the data frame correspond to different mark variables (e.g. tree
species and tree diameter).

If drop=TRUE (the default), then a data frame with only one column will be converted to a vector,
and a data frame with no columns will be converted to NULL.

See ppp.object for a description of the class "ppp".

Users would normally invoke ppp to create a point pattern, but the functions as.ppp and scanpp
may sometimes be convenient.

Value

An object of class "ppp" describing a point pattern in the two-dimensional plane (see ppp.object).

Rejected points

The points with coordinates x and y must lie inside the specified window, in order to define a valid
object of class "ppp". Any points which do not lie inside the window will be removed from the
point pattern, and a warning will be issued.

The rejected points are still accessible: they are stored as an attribute of the point pattern called
"rejects" (which is an object of class "ppp" containing the rejected points in a large window).
However, rejected points in a point pattern will be ignored by all other functions except plot.ppp.
To remove the rejected points altogether, use as.ppp. To include the rejected points, you will need
to find a larger window that contains them, and use this larger window in a call to ppp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, as.ppp, owin.object, owin, as.owin

Examples

# some arbitrary coordinates in [0,1]
x <- runif(20)
y <- runif(20)

# the following are equivalent
X <- ppp(x, y, c(0,1), c(0,1))
X <- ppp(x, y)
X <- ppp(x, y, window=owin(c(0,1),c(0,1)))

# specify that the coordinates are given in metres
X <- ppp(x, y, c(0,1), c(0,1), unitname=c("metre","metres"))

## Not run: plot(X)

# marks
m <- sample(1:2, 20, replace=TRUE)
m <- factor(m, levels=1:2)
X <- ppp(x, y, c(0,1), c(0,1), marks=m)
## Not run: plot(X)

# polygonal window
X <- ppp(x, y, poly=list(x=c(0,10,0), y=c(0,0,10)))
## Not run: plot(X)

# copy the window from another pattern
data(cells)
X <- ppp(x, y, window=cells$window)

### ppp.object

#### Class of Point Patterns

**Description**

A class "ppp" to represent a two-dimensional point pattern. Includes information about the window in which the pattern was observed. Optionally includes marks.

**Details**

This class represents a two-dimensional point pattern dataset. It specifies

- the locations of the points
- the window in which the pattern was observed
- optionally, "marks" attached to each point (extra information such as a type label).

If \( X \) is an object of type \( \text{ppp} \), it contains the following elements:

\[
\begin{align*}
x & \quad \text{vector of } x \text{ coordinates of data points} \\
y & \quad \text{vector of } y \text{ coordinates of data points} \\
n & \quad \text{number of points} \\
\text{window} & \quad \text{window of observation} \\
& \quad \quad \quad \quad \text{(an object of class } \text{owin}) \\
\text{marks} & \quad \text{optional vector or data frame of marks}
\end{align*}
\]

Users are strongly advised not to manipulate these entries directly.

Objects of class "ppp" may be created by the function \( \text{ppp} \) and converted from other types of data by the function \( \text{as.ppp} \). Note that you must always specify the window of observation; there is intentionally no default action of "guessing" the window dimensions from the data points alone.

Standard point pattern datasets provided with the package include \text{amacrine}, \text{betacells}, \text{bramblecanes}, \text{cells}, \text{demopat}, \text{ganglia}, \text{lansing}, \text{longleaf}, \text{nztrees}, \text{redwood}, \text{simdat} and \text{swedishpines}.

Point patterns may be scanned from your own data files by \text{scanpp} or by using \text{read.table} and \text{as.ppp}. 

---
They may be manipulated by the functions `.[.ppp` and `superimpose`.

Point pattern objects can be plotted just by typing `plot(X)` which invokes the plot method for point pattern objects, `plot.ppp`. See `plot.ppp` for further information.

There are also methods for summary and print for point patterns. Use `summary(X)` to see a useful description of the data.

Patterns may be generated at random by `runifpoint`, `rpoispp`, `rMaternI`, `rMaternII`, `rSSI`, `rNeymanScott`, `rMatClust`, and `rThomas`.

Most functions which are intended to operate on a window (of class `owin`) will, if presented with a `ppp` object instead, automatically extract the window information from the point pattern.

**Warnings**

The internal representation of marks is likely to change in the next release of this package.

**Author(s)**


and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`owin`, `ppp`, `as.ppp`, `.[.ppp`

**Examples**

```r
x <- runif(100)
y <- runif(100)
X <- ppp(x, y, c(0,1),c(0,1))
X
Not run: plot(X)
mar <- sample(1:3, 100, replace=TRUE)
mm <- ppp(x, y, c(0,1), c(0,1), marks=mar)
Not run: plot(mm)
points with mark equal to 2
ss <- mm[mm$marks == 2 ,]
Not run: plot(ss)
left half of pattern 'mm'
lu <- owin(c(0,0.5),c(0,1))
mmleft <- mm[, lu]
Not run: plot(mmleft)
Not run:
input data from file
qq <- scanpp("my.table", unit.square())

interactively build a point pattern
plot(unit.square())
X <- as.ppp(locator(10), unit.square())
plot(X)
End(Not run)
```
**pppdist**

*Distance Between Two Point Patterns*

**Description**

Given two point patterns, find the distance between them based on optimal point matching.

**Usage**

```r
pppdist(X, Y, type = "spa", cutoff = 1, q = 1, matching = TRUE,
 ccode = TRUE, auction = TRUE, precision = NULL, approximation = 10,
 show.rprimal = FALSE, timelag = 0)
```

**Arguments**

- **X, Y**: Two point patterns (objects of class "ppp").
- **type**: A character string giving the type of distance to be computed. One of "spa" (default), "ace" or "mat", indicating whether the algorithm should find the optimal matching based on "subpattern assignment", "assignment only if cardinalities are equal" or "mass transfer". See Details.
- **cutoff**: The value > 0 at which interpoint distances are cut off.
- **q**: The order of the average that is applied to the interpoint distances. May be Inf, in which case the maximum of the interpoint distances is taken.
- **matching**: Logical. Whether to return the optimal matching or only the associated distance.
- **ccode**: Logical. If FALSE, R code is used which allows for higher precision, but is much slower.
- **auction**: Logical. By default a version of Bertsekas’ auction algorithm is used to compute an optimal point matching if type is either "spa" or "ace". If auction is FALSE (or type is "mat") a specialized primal-dual algorithm is used instead. This was the standard in earlier versions of spatstat, but is several orders of magnitudes slower.
- **precision**: Index controlling accuracy of algorithm. The q-th powers of interpoint distances will be rounded to the nearest multiple of 10^-precision. There is a sensible default which depends on ccode.
- **approximation**: If q = Inf, compute distance based on the optimal matching for the corresponding distance of order approximation. Can be Inf, but this makes computations extremely slow.
- **show.rprimal**: Logical. Whether to plot the progress of the primal-dual algorithm. If TRUE, slow primal-dual R code is used, regardless of the arguments ccode and auction.
- **timelag**: Time lag, in seconds, between successive displays of the iterative solution of the restricted primal problem.
Details

Computes the distance between point patterns \( X \) and \( Y \) based on finding the matching between them which minimizes the average of the distances between matched points (if \( q=1 \)), the maximum distance between matched points (if \( q=\infty \)), and in general the \( q \)-th order average (i.e. the \( 1/q \)th power of the sum of the \( q \)th powers) of the distances between matched points. Distances between matched points are Euclidean distances cut off at the value of \( \text{cutoff} \).

The parameter \( \text{type} \) controls the behaviour of the algorithm if the cardinalities of the point patterns are different. For the type "spa" (subpattern assignment) the subpattern of the point pattern with the larger cardinality \( n \) that is closest to the point pattern with the smaller cardinality \( m \) is determined; then the \( q \)-th order average is taken over \( n \) values: the \( m \) distances of matched points and \( n-m \) "penalty distances" of value \( \text{cutoff} \) for the unmatched points. For the type "ace" (assignment only if cardinalities equal) the matching is empty and the distance returned is equal to \( \text{cutoff} \) if the cardinalities differ. For the type "mat" (mass transfer) each point pattern is assumed to have total mass \( m \) (= the smaller cardinality) distributed evenly among its points; the algorithm finds then the "mass transfer plan" that minimizes the \( q \)-th order weighted average of the distances, where the weights are given by the transferred mass divided by \( m \). The result is a fractional matching (each match of two points has a weight in \((0,1]\) with the minimized quantity as the associated distance.

The central problem to be solved is the assignment problem (for types "spa" and "ace") or the more general transport problem (for type "mat"). Both are well-known problems in discrete optimization, see e.g. Luenberger (2003).

For the assignment problem \( \text{pppdist} \) uses by default the forward/backward version of Bertsekas’ auction algorithm with automated epsilon scaling; see Bertsekas (1992). The implemented version gives good overall performance and can handle point patterns with several thousand points.

For the transport problem a specialized primal-dual algorithm is employed; see Luenberger (2003), Section 5.9. The C implementation used by default can handle patterns with a few hundreds of points, but should not be used with thousands of points. By setting \( \text{showPrimal} = \text{TRUE} \), some insight in the working of the algorithm can be gained.

For a broader selection of optimal transport algorithms that are not restricted to spatial point patterns and allow for additional fine tuning, we recommend the \texttt{R} package \texttt{transport}.

For moderate and large values of \( q \) there can be numerical issues based on the fact that the \( q \)-th powers of distances are taken and some positive values enter the optimization algorithm as zeroes because they are too small in comparison with the larger values. In this case the number of zeroes introduced is given in a warning message, and it is possible then that the matching obtained is not optimal and the associated distance is only a strict upper bound of the true distance. As a general guideline (which can be very wrong in special situations) a small number of zeroes (up to about 50% of the smaller point pattern cardinality \( m \)) usually still results in the right matching, and the number can even be quite a bit higher and usually still provides a highly accurate upper bound for the distance. These numerical problems can be reduced by enforcing (much slower) \texttt{R} code via the argument \( \text{ccode} = \text{FALSE} \).

For \( q = \infty \) there is no fast algorithm available, which is why approximation is normally used: for finding the optimal matching, \( q \) is set to the value of \( \text{approximation} \). The resulting distance is still given as the maximum rather than the \( q \)-th order average in the corresponding distance computation. If \( \text{approximation} = \infty \), approximation is suppressed and a very inefficient exhaustive search for the best matching is performed.

The value of \( \text{precision} \) should normally not be supplied by the user. If \( \text{ccode} = \text{TRUE} \), this value is preset to the highest exponent of 10 that the C code still can handle (usually 9). If \( \text{ccode} = \text{FALSE} \),
the value is preset according to q (usually 15 if q is small), which can sometimes be changed to obtain less severe warning messages.

Value

Normally an object of class pppmatching that contains detailed information about the parameters used and the resulting distance. See `pppmatching.object` for details. If matching = FALSE, only the numerical value of the distance is returned.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>
http://www.dominic.schuhmacher.name

References


Schuhmacher, D. (2014). `transport`: optimal transport in various forms. R package version 0.6-2 (or later)


See Also

`pppmatching.object`, `matchingdist`

Examples

```r
equal cardinalities
set.seed(140627)
X <- runifpoint(500)
Y <- runifpoint(500)
m <- pppdist(X, Y)
m
Not run:
plot(m)
End(Not run)

differing cardinalities
X <- runifpoint(14)
Y <- runifpoint(10)
m1 <- pppdist(X, Y, type="spa")
m2 <- pppdist(X, Y, type="ace")
m3 <- pppdist(X, Y, type="mat", auction=FALSE)
summary(m1)
summary(m2)
```
pppmatching

Create a Point Matching

Description

Creates an object of class "pppmatching" representing a matching of two planar point patterns (objects of class "ppp").

Usage

pppmatching(X, Y, am, type = NULL, cutoff = NULL, q = NULL, mdist = NULL)

Arguments

X,Y  Two point patterns (objects of class "ppp").

am  An X$n by Y$n matrix with entries $\geq 0$ that specifies which points are matched and with what weight; alternatively, an object that can be coerced to this form by as.matrix.

type  A character string giving the type of the matching. One of "spa", "ace" or "mat", or NULL for a generic or unknown matching.

cutoff,q  Numerical values specifying the cutoff value $> 0$ for interpoint distances and the order $q \in [1,\infty)$ of the average that is applied to them. NULL if not applicable or unknown.

mdist  Numerical value for the distance to be associated with the matching.
Details

The argument `am` is interpreted as a "generalized adjacency matrix": if the \([i,j]\)-th entry is positive, then the \(i\)-th point of \(X\) and the \(j\)-th point of \(Y\) are matched and the value of the entry gives the corresponding weight of the match. For an unweighted matching all the weights should be set to 1.

The remaining arguments are optional and allow to save additional information about the matching. See the help files for `pppdist` and `matchingdist` for details on the meaning of these parameters.

Author(s)
Dominic Schuhmacher <dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.name

See Also
`pppmatching.object` `matchingdist`

Examples

```r
a random unweighted complete matching
X <- runifpoint(10)
Y <- runifpoint(10)
am <- r2dtable(1, rep(1,10), rep(1,10))[[1]]
 # generates a random permutation matrix
m <- pppmatching(X, Y, am)
summary(m)
m$matrix
Not run:
plot(m)

End(Not run)

a random weighted complete matching
X <- runifpoint(7)
Y <- runifpoint(7)
am <- r2dtable(1, rep(10,7), rep(10,7))[[1]]/10
 # generates a random doubly stochastic matrix
m2 <- pppmatching(X, Y, am)
summary(m2)
m2$matrix
Not run:
 # Note: plotting does currently not distinguish
 # between different weights
plot(m2)

End(Not run)
```
pppmatching.object

Class of Point Matchings

Description

A class "pppmatching" to represent a matching of two planar point patterns. Optionally includes information about the construction of the matching and its associated distance between the point patterns.

Details

This class represents a (possibly weighted and incomplete) matching between two planar point patterns (objects of class "ppp").

A matching can be thought of as a bipartite weighted graph where the vertices are given by the two point patterns and edges of positive weights are drawn each time a point of the first point pattern is "matched" with a point of the second point pattern.

If m is an object of type pppmatching, it contains the following elements:

- pp1, pp2: the two point patterns to be matched (vertices)
- matrix: a matrix specifying which points are matched and with what weights (edges)
- type: (optional) a character string for the type of the matching (one of "spa", "ace" or "mat")
- cutoff: (optional) cutoff value for interpoint distances
- q: (optional) the order for taking averages of interpoint distances
- distance: (optional) the distance associated with the matching

The element matrix is a "generalized adjacency matrix". The numbers of rows and columns match the cardinalities of the first and second point patterns, respectively. The $[i,j]$-th entry is positive if the $i$-th point of $X$ and the $j$-th point of $Y$ are matched (zero otherwise) and its value then gives the corresponding weight of the match. For an unweighted matching all the weights are set to 1.

The optional elements are for saving details about matchings in the context of optimal point matching techniques. type can be one of "spa" (for "subpattern assignment"), "ace" (for "assignment only if cardinalities differ") or "mat" (for "mass transfer"). cutoff is a positive numerical value that specifies the maximal interpoint distance and $q$ is a value in $[1, \infty]$ that gives the order of the average applied to the interpoint distances. See the help files for pppdist and matchingdist for detailed information about these elements.

Objects of class "pppmatching" may be created by the function pppmatching, and are most commonly obtained as output of the function pppdist. There are methods plot, print and summary for this class.

Author(s)

Dominic Schuhmacher<dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.name
ppx

Multidimensional Space-Time Point Pattern

Description

Creates a multidimensional space-time point pattern with any kind of coordinates and marks.

Usage

ppx(data, domain=NULL, coord.type=NULL, simplify=FALSE)

Arguments

data       The coordinates and marks of the points. A data.frame or hyperframe.
domain     Optional. The space-time domain containing the points. An object in some appropriate format, or NULL.
coord.type  Character vector specifying how each column of data should be interpreted: as a spatial coordinate, a temporal coordinate, a local coordinate or a mark. Entries are partially matched to the values "spatial", "temporal", "local" and "mark".
simplify

Logical value indicating whether to simplify the result in special cases. If
simplify=TRUE, a two-dimensional point pattern will be returned as an object
of class "ppp", and a three-dimensional point pattern will be returned as an ob-
ject of class "pp3". If simplify=FALSE (the default) then the result is always
an object of class "ppx".

Details

An object of class "ppx" represents a marked point pattern in multidimensional space and/or time.
There may be any number of spatial coordinates, any number of temporal coordinates, any number
of local coordinates, and any number of mark variables. The individual marks may be atomic
(numeric values, factor values, etc) or objects of any kind.

The argument data should contain the coordinates and marks of the points. It should be a data.frame
or more generally a hyperframe (see hyperframe) with one row of data for each point.

Each column of data is either a spatial coordinate, a temporal coordinate, a local coordinate, or a
mark variable. The argument coord.type determines how each column is interpreted. It should be
a character vector, of length equal to the number of columns of data. It should contain strings that
partially match the values "spatial", "temporal", "local" and "mark". (The first letters will be
sufficient.)

By default (if coord.type is missing or NULL), columns of numerical data are assumed to represent
spatial coordinates, while other columns are assumed to be marks.

Value

Usually an object of class "ppx". If simplify=TRUE the result may be an object of class "ppp" or
"pp3".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pp3, print.ppx

Examples

df <- data.frame(x=runif(4), y=runif(4), t=runif(4),
                 age=rep(c("old", "new"), 2),
                 size=runif(4))
X <- ppx(data=df, coord.type=c("s", "s", "t", "m", "m"))
X

val <- 20 * runif(4)
E <- lapply(val, function(s) { rpoispp(s) })
hf <- hyperframe(t=val, e=as.listof(E))
Z <- ppx(data=hf, domain=c(0,1))
Z
predict.kppm  

Prediction from a Fitted Cluster Point Process Model

Description

Given a fitted cluster point process model, these functions compute the fitted intensity.

Usage

```r
S3 method for class 'kppm'
fitted(object, ...)

S3 method for class 'kppm'
predict(object, ...)
```

Arguments

- `object`: Fitted cluster point process model. An object of class "kppm".
- `...`: Arguments passed to `fitted.ppm` or `predict.ppm` respectively.

Details

These functions are methods for the generic functions `fitted` and `predict`. The argument `object` should be a cluster point process model (object of class "kppm") obtained using the function `kppm`. The intensity of the fitted model is computed, using `fitted.ppm` or `predict.ppm` respectively.

Value

The value of `fitted.kppm` is a numeric vector giving the fitted values at the quadrature points.

The value of `predict.kppm` is usually a pixel image (object of class "im"), but see `predict.ppm` for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `kppm`, `plot.kppm`, `vcov.kppm`, `fitted.ppm`, `predict.ppm`

Examples

```r
data(redwood)
fit <- kppm(redwood, ~x, "Thomas")
predict(fit)
```
predict.lppm  Predict Point Process Model on Linear Network

Description

Given a fitted point process model on a linear network, compute the fitted intensity or conditional intensity of the model.

Usage

```r
S3 method for class 'lppm'
predict(object, ...,
 type = "trend", locations = NULL, new.coef=NULL)
```

Arguments

- `object`: The fitted model. An object of class "lppm", see `lppm`.
- `type`: Type of values to be computed. Either "trend", "cif" or "se".
- `locations`: Optional. Locations at which predictions should be computed. Either a data frame with two columns of coordinates, or a binary image mask.
- `new.coef`: Optional. Numeric vector of model coefficients, to be used instead of the fitted coefficients `coef(object)` when calculating the prediction.
- `...`: Optional arguments passed to `as.mask` to determine the pixel resolution (if `locations` is missing).

Details

This function computes the fitted point process intensity, fitted conditional intensity, or standard error of the fitted intensity, for a point process model on a linear network. It is a method for the generic `predict` for the class "lppm".

The argument `object` should be an object of class "lppm" (produced by `lppm`) representing a point process model on a linear network.

Predicted values are computed at the locations given by the argument `locations`. If this argument is missing, then predicted values are computed at a fine grid of points on the linear network.

- If `locations` is missing or NULL (the default), the return value is a pixel image (object of class "linim" which inherits class "im") corresponding to a discretisation of the linear network, with numeric pixel values giving the predicted values at each location on the linear network.
- If `locations` is a data frame, the result is a numeric vector of predicted values at the locations specified by the data frame.
- If `locations` is a binary mask, the result is a pixel image with predicted values computed at the pixels of the mask.
Value

A pixel image (object of class "linim" which inherits class "im") or a numeric vector, depending on the argument locations. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References


See Also

lpp, linim

Examples

example(lpp)
fit <- lppm(X, ~x)
v <- predict(fit, type="trend")
plot(v)

---

**predict.mppm**  
Prediction for Fitted Multiple Point Process Model

Description

Given a fitted multiple point process model obtained by `mppm`, evaluate the spatial trend and/or the conditional intensity of the model. By default, predictions are evaluated over a grid of locations, yielding pixel images of the trend and conditional intensity. Alternatively predictions may be evaluated at specified locations with specified values of the covariates.

Usage

```r
S3 method for class 'mppm'
predict(object, ..., newdata = NULL, type = c("trend", "cif"), ngrid = 40, locations=NULL, verbose=FALSE)
```
predict.mppm

Arguments

object

The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

newdata

New values of the covariates, for which the predictions should be computed. If newdata=NULL, predictions are computed for the original values of the covariates, to which the model was fitted. Otherwise newdata should be a hyperframe (see hyperframe) containing columns of covariates as required by the model. If type includes "cif", then newdata must also include a column of spatial point pattern responses, in order to compute the conditional intensity.

type

Type of predicted values required. A character string or vector of character strings. Options are "trend" for the spatial trend (first-order term) and "cif" or "lambda" for the conditional intensity.

ngrid

Dimensions of the grid of spatial locations at which prediction will be performed (if locations=NULL). An integer or a pair of integers.

locations

Optional. The locations at which predictions should be performed. A list of point patterns, with one entry for each row of newdata.

verbose

Logical flag indicating whether to print progress reports.

Details

This function computes the spatial trend and the conditional intensity of a fitted multiple spatial point process model. See Baddeley and Turner (2000) and Baddeley et al (2007) for explanation and examples.

Note that by “spatial trend” we mean the (exponentiated) first order potential and not the intensity of the process. [For example if we fit the stationary Strauss process with parameters $\beta$ and $\gamma$, then the spatial trend is constant and equal to $\beta$.] The conditional intensity $\lambda(u, X)$ of the fitted model is evaluated at each required spatial location $u$, with respect to the response point pattern $X$.

If locations=NULL, then predictions are performed at an ngrid by ngrid grid of locations in the window for each response point pattern. The result will be a hyperframe containing a column of images of the trend (if selected) and a column of images of the conditional intensity (if selected). The result can be plotted.

If locations is given, then it should be a list of point patterns (objects of class "ppp"). Predictions are performed at these points. The result is a hyperframe containing a column of marked point patterns where the locations each point.

Value

A hyperframe with columns named trend and cif.

If locations=NULL, the entries of the hyperframe are pixel images.

If locations is not null, the entries are marked point patterns constructed by attaching the predicted values to the locations point patterns.

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <rolf@math.unb.ca> http://www.math.unb.ca/~rolf
predict.ppm

Prediction from a Fitted Point Process Model

Description

Given a fitted point process model obtained by \texttt{ppm}, evaluate the spatial trend or the conditional intensity of the model at new locations.

Usage

```r
S3 method for class 'ppm'
predict(object, window=NULL, ngrid=NULL, locations=NULL,
covariates=NULL,
type=c("trend", "cif", "intensity", "count"),
se=FALSE,
interval=c("none", "confidence", "prediction"),
level = 0.95,
X=data.ppm(object), correction,
..., new.coef=NULL, check=TRUE, repair=TRUE)
```

Arguments

- \texttt{object}: A fitted point process model, typically obtained from the model-fitting algorithm \texttt{ppm}. An object of class "ppm" (see \texttt{ppm.object}).
window
Optional. A window (object of class "owin") delimiting the locations where predictions should be computed. Defaults to the window of the original data used to fit the model object.

ngrid
Optional. Dimensions of a rectangular grid of locations inside window where the predictions should be computed. An integer, or an integer vector of length 2, specifying the number of grid points in the y and x directions. (Incompatible with locations)

locations
Optional. Data giving the exact x,y coordinates (and marks, if required) of locations at which predictions should be computed. Either a point pattern, or a data frame with columns named x and y, or a binary image mask, or a pixel image. (Incompatible with ngrid)

covariates
Values of external covariates required by the model. Either a data frame or a list of images. See Details.

type
Character string. Indicates which property of the fitted model should be predicted. Options are "trend" for the spatial trend, "cif" or "lambda" for the conditional intensity, "intensity" for the intensity, and "count" for the total number of points in window.

se
Logical value indicating whether to calculate standard errors as well.

interval
String (partially matched) indicating whether to produce estimates (interval="none", the default) or a confidence interval (interval="confidence") or a prediction interval (interval="prediction").

level
Coverage probability for the confidence or prediction interval.

x
Optional. A point pattern (object of class "ppp") to be taken as the data point pattern when calculating the conditional intensity. The default is to use the original data to which the model was fitted.

correction
Name of the edge correction to be used in calculating the conditional intensity. Options include "border" and "none". Other options may include "periodic", "isotropic" and "translate" depending on the model. The default correction is the one that was used to fit object.

... - Ignored.

new.coef
Numeric vector of parameter values to replace the fitted model parameters coef(object).

check
Logical value indicating whether to check the internal format of object. If there is any possibility that this object has been restored from a dump file, or has otherwise lost track of the environment where it was originally computed, set check=TRUE.

repair
Logical value indicating whether to repair the internal format of object, if it is found to be damaged.

Details
This function computes properties of a fitted spatial point process model (object of class "ppm"). For a Poisson point process it can compute the fitted intensity function, or the expected number of points in a region. For a Gibbs point process it can compute the spatial trend (first order potential), conditional intensity, and approximate intensity of the process. Point estimates, standard errors, confidence intervals and prediction intervals are available.
Given a point pattern dataset, we may fit a point process model to the data using the model-fitting algorithm `ppm`. This returns an object of class "ppm" representing the fitted point process model (see `ppm.object`). The parameter estimates in this fitted model can be read off simply by printing the `ppm` object. The spatial trend, conditional intensity and intensity of the fitted model are evaluated using this function `predict.ppm`.

The default action is to create a rectangular grid of points in the observation window of the data point pattern, and evaluate the spatial trend at these locations.

The argument `type` specifies the values that are desired:

- **If** `type="trend"`: the “spatial trend” of the fitted model is evaluated at each required spatial location \( u \). See below.
- **If** `type="cif"`: the conditional intensity \( \lambda(u, X) \) of the fitted model is evaluated at each required spatial location \( u \), with respect to the data point pattern \( X \).
- **If** `type="intensity"`: the intensity \( \lambda(u) \) of the fitted model is evaluated at each required spatial location \( u \).
- **If** `type="count"`: the expected total number of points (or the expected number of points falling in window) is evaluated. If `window` is a tessellation, the expected number of points in each tile of the tessellation is evaluated.

The spatial trend, conditional intensity, and intensity are all equivalent if the fitted model is a Poisson point process. However, if the model is not a Poisson process, then they are all different. The “spatial trend” is the (exponentiated) first order potential, and not the intensity of the process. [For example if we fit the stationary Strauss process with parameters \( \beta \) and \( \gamma \), then the spatial trend is constant and equal to \( \beta \), while the intensity is a smaller value.]

The default is to compute an estimate of the desired quantity. If `interval="confidence"` or `interval="prediction"`, the estimate is replaced by a confidence interval or prediction interval. If `se=TRUE`, then a standard error is also calculated, and is returned together with the (point or interval) estimate.

The spatial locations where predictions are required, are determined by the (incompatible) arguments `ngrid` and `locations`.

- If the argument `ngrid` is present, then predictions are performed at a rectangular grid of locations in the window `window`. The result of prediction will be a pixel image or images.
- If `locations` is present, then predictions will be performed at the spatial locations given by this dataset. These may be an arbitrary list of spatial locations, or they may be a rectangular grid. The result of prediction will be either a numeric vector or a pixel image or images.
- If neither `ngrid` nor `locations` is given, then `ngrid` is assumed. The value of `ngrid` defaults to `spatstat.options("ngrid")`, which is initialised to 128 when `spatstat` is loaded.

The argument `locations` may be a point pattern, a data frame or a list specifying arbitrary locations; or it may be a binary image mask (an object of class "owin" with type "mask") or a pixel image (object of class "im") specifying (a subset of) a rectangular grid of locations.

- If `locations` is a point pattern (object of class "ppp"), then prediction will be performed at the points of the point pattern. The result of prediction will be a vector of predicted values, one value for each point. If the model is a marked point process, then `locations` should be a marked point pattern, with marks of the same kind as the model; prediction will be performed
at these marked points. The result of prediction will be a vector of predicted values, one value
for each (marked) point.

- If locations is a data frame or list, then it must contain vectors locations$x$ and locations$y$
specifying the $x$, $y$ coordinates of the prediction locations. Additionally, if the model is a
marked point process, then locations must also contain a factor locations$marks$ specifying
the marks of the prediction locations. These vectors must have equal length. The result of
prediction will be a vector of predicted values, of the same length.

- If locations is a binary image mask, then prediction will be performed at each pixel in this
binary image where the pixel value is TRUE (in other words, at each pixel that is inside the
window). If the fitted model is an unmarked point process, then the result of prediction will
be an image. If the fitted model is a marked point process, then prediction will be performed
for each possible value of the mark at each such location, and the result of prediction will be
a list of images, one for each mark value.

- If locations is a pixel image (object of class "im"), then prediction will be performed at each
pixel in this image where the pixel value is defined (i.e. where the pixel value is not NA).

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
$x$, $y$) then covariates is required. The format and use of covariates are analogous to those of
the argument of the same name in ppm. It is either a data frame or a list of images.

- If covariates is a list of images, then the names of the entries should correspond to the names
of covariates in the model formula trend. Each entry in the list must be an image object (of
class "im", see im.object). The software will look up the pixel values of each image at the
quadrature points.

- If covariates is a data frame, then the $i$th row of covariates is assumed to contain covariate
data for the $i$th location. When locations is a data frame, this just means that each row of
covariates contains the covariate data for the location specified in the corresponding row
of locations. When locations is a binary image mask, the row covariates$[i,]$ must
correspond to the location $x[i],y[i]$ where $x = \text{as.vector(raster.x(locations))}$ and
$y = \text{as.vector(raster.y(locations))}$.

Note that if you only want to use prediction in order to generate a plot of the predicted values, it
may be easier to use plot.ppm which calls this function and plots the results.

Value

If total is given: a numeric vector or matrix.

If locations is given and is a data frame: a vector of predicted values for the spatial locations
(and marks, if required) given in locations.

If ngrid is given, or if locations is given and is a binary image mask or a pixel image: If object
is an unmarked point process, the result is a pixel image object (of class "im", see im.object)
containing the predictions. If object is a multitype point process, the result is a list of pixel images,
containing the predictions for each type at the same grid of locations.

The “predicted values” are either values of the spatial trend (if type="trend"), values of the condi-
tional intensity (if type="cif" or type="lambda"), values of the intensity (if type="intensity")
or numbers of points (if type="count").
If se=TRUE, then the result is a list with two entries, the first being the predicted values in the format described above, and the second being the standard errors in the same format.

**Warnings**

The current implementation invokes `predict.glm` so that prediction is wrong if the trend formula in `object` involves terms in `ns()`, `bs()` or `poly()`. This is a weakness of `predict.glm` itself!

Error messages may be very opaque, as they tend to come from deep in the workings of `predict.glm`. If you are passing the covariates argument and the function crashes, it is advisable to start by checking that all the conditions listed above are satisfied.

**Author(s)**

Adrian Baddeley &lt;Adrian.Baddeley@uwa.edu.au&gt; [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner &lt;r.turner@auckland.ac.nz&gt;

**References**


**See Also**

`ppm`, `ppm.object`, `plot.ppm`, `print.ppm`, `fitted.ppm`, `spatstat.options`
predict.slrm

Predicted or Fitted Values from Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for each pixel, or the fitted point process intensity, or the values of the linear predictor in each pixel.

Usage

```r
S3 method for class 'slrm'
predict(object, ..., type = "intensity",
 newdata=NULL, window=NULL)
```

Arguments

- `object` a fitted spatial logistic regression model. An object of class "slrm".
- `...` Optional arguments passed to `pixellate` determining the pixel resolution for the discretisation of the point pattern.
- `type` Character string (partially) matching one of "probabilities", "intensity" or "link".
- `newdata` Optional. List containing new covariate values for the prediction. See Details.
- `window` Optional. New window in which to predict. An object of class "owin".

Details

This is a method for `predict` for spatial logistic regression models (objects of class "slrm", usually obtained from the function `slrm`).

The argument `type` determines which quantity is computed. If `type="intensity"`), the value of the point process intensity is computed at each pixel. If `type="probabilities"`) the probability of the presence of a random point in each pixel is computed. If `type="link"`, the value of the linear predictor is computed at each pixel.

If `newdata = NULL` (the default), the algorithm computes fitted values of the model (based on the data that was originally used to fit the model object).
If `newdata` is given, the algorithm computes predicted values of the model, using the new values of the covariates provided by `newdata`. The argument `newdata` should be a list; names of entries in the list should correspond to variables appearing in the model formula of the object. Each list entry may be a pixel image or a single numeric value.

**Value**

A pixel image (object of class "im") containing the predicted values for each pixel.

**Author(s)**

Adrian Baddeley <adrian@maths.uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

`slrm`

**Examples**

```r
X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(predict(fit))

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fitc <- slrm(X ~ Z)
pc <- predict(fitc)

Znew <- distmap(copper$Lines)[copper$SouthWindow]
pcnew <- predict(fitc, newdata=list(Z=Znew))
```

---

**print.im**

*Print Brief Details of an Image*

**Description**

Prints a very brief description of a pixel image object.

**Usage**

```r
S3 method for class 'im'
print(x, ...)
```

**Arguments**

- `x` Pixel image (object of class "im").
- `...` Ignored.
Details

A very brief description of the pixel image x is printed.
This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print, im.object, summary.im

Examples

data(letterR)
U <- as.im(letterR)
U

print.owin  Print Brief Details of a Spatial Window

Description

Prints a very brief description of a window object.

Usage

## S3 method for class 'owin'
print(x, ..., prefix="window: ")

Arguments

x Window (object of class "owin").
... Ignored.
prefix Character string to be printed at the start of the output.

Details

A very brief description of the window x is printed.
This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
print.ppm

See Also

print, print.ppp, summary.owin

Examples

owin()  # the unit square

data(demopat)
W <<- demopat$window
W  # just says it is polygonal
as.mask(W)  # just says it is a binary image

print.ppm  Print a Fitted Point Process Model

Description

Default print method for a fitted point process model.

Usage

## S3 method for class 'ppm'
print(x,...,
   what=c("all", "model", "trend", "interaction", "se", "errors"))

Arguments

x  A fitted point process model, typically obtained from the model-fitting algorithm ppm. An object of class "ppm".
what  Character vector (partially-matched) indicating what information should be printed.
...  Ignored.

Details

This is the print method for the class "ppm". It prints information about the fitted model in a sensible format.

The argument what makes it possible to print only some of the information.

If what is missing, then by default, standard errors for the estimated coefficients of the model will be printed only if the model is a Poisson point process. To print the standard errors for a non-Poisson model, call print.ppm with the argument what given explicitly, or reset the default rule by typing spatstat.options(print.ppm.SE="always").

Value

none.
Print Brief Details of a Point Pattern Dataset

Description

Prints a very brief description of a point pattern dataset.

Usage

```r
S3 method for class 'ppp'
print(x, ...)
```

Arguments

- `x` Point pattern (object of class "ppp").
- `...` Ignored.

Details

A very brief description of the point pattern `x` is printed.

This is a method for the generic function `print`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
print.psp

See Also

print.print.owin, summary.ppp

Examples

data(cells) # plain vanilla point pattern
cells

data(lansing) # multitype point pattern
lansing

data(longleaf) # numeric marks
longleaf

data(demopat) # weird polygonal window
demopat

print.psp

Print Brief Details of a Line Segment Pattern Dataset

Description

Prints a very brief description of a line segment pattern dataset.

Usage

## S3 method for class 'psp'
print(x, ...)

Arguments

x Line segment pattern (object of class "psp").
...
Ignored.

Details

A very brief description of the line segment pattern x is printed.
This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print.print.owin, summary.ppp
print.quad

Examples

```r
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
a

print.quad Print a Quadrature Scheme

Description

print method for a quadrature scheme.

Usage

```r
# S3 method for class 'quad'
print(x,...)
```

Arguments

x A quadrature scheme object, typically obtained from `quadscheme`. An object of class "quad".

... Ignored.

Details

This is the `print` method for the class "quad". It prints simple information about the quadrature scheme.

See `quad.object` for details of the class "quad".

Value

none.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`quadscheme, quad.object, plot.quad, summary.quad`

Examples

```r
data(cells)
Q <- quadscheme(cells)
Q
```
profilepl

Profile Maximum Pseudolikelihood or AIC

Description

Fits point process models by maximising the profile likelihood, profile pseudolikelihood, profile composite likelihood or AIC.

Usage

profilepl(s, f, ..., aic=FALSE, rbord=NULL, verbose = TRUE)

Arguments

- **s**: Data frame containing values of the irregular parameters over which the criterion will be computed.
- **f**: Function (such as Strauss) that generates an interpoint interaction object, given values of the irregular parameters.
- **...**: Data passed to ppm to fit the model.
- **aic**: Logical value indicating whether to find the parameter values which minimise the AIC (aic=TRUE) or maximise the profile likelihood (aic=FALSE, the default).
- **rbord**: Radius for border correction (same for all models). If omitted, this will be computed from the interactions.
- **verbose**: Logical flag indicating whether to print progress reports.

Details

The model-fitting function ppm fits point process models to point pattern data. However, only the ‘regular’ parameters of the model can be fitted by ppm. The model may also depend on ‘irregular’ parameters that must be fixed in any call to ppm.

This function profilepl is a wrapper which finds the values of the irregular parameters that give the best fit. If aic=FALSE (the default), the best fit is the model which maximises the likelihood (if the models are Poisson processes) or maximises the pseudolikelihood or logistic likelihood. If aic=TRUE then the best fit is the model which minimises the Akaike Information Criterion AIC.ppm.

The argument s must be a data frame whose columns contain values of the irregular parameters over which the maximisation is to be performed.

An irregular parameter may affect either the interpoint interaction or the spatial trend.

interaction parameters: in a call to ppm, the argument interaction determines the interaction between points. It is usually a call to a function such as Strauss. The arguments of this call are irregular parameters. For example, the interaction radius parameter r of the Strauss process, determined by the argument r to the function Strauss, is an irregular parameter.

trend parameters: in a call to ppm, the spatial trend may depend on covariates, which are supplied by the argument covariates. These covariates may be functions written by the user, of the form function(x,y,...), and the extra arguments ... are irregular parameters.
The argument \(f \) determines the interaction for each model to be fitted. It would typically be one of the functions \texttt{Poisson}, \texttt{AreaInter}, \texttt{BadGey}, \texttt{DiggleGatesStibbard}, \texttt{DiggleGratton}, \texttt{Fiksel}, \texttt{Geyer}, \texttt{Hardcore}, \texttt{LennardJones}, \texttt{OrdThresh}, \texttt{Softcore}, \texttt{Strauss} or \texttt{StraussHard}. Alternatively it could be a function written by the user.

Columns of \(s \) which match the names of arguments of \(f \) will be interpreted as interaction parameters. Other columns will be interpreted as trend parameters.

The data frame \(s \) must provide values for each argument of \(f \), except for the optional arguments, which are those arguments of \(f \) that have the default value \texttt{NA}.

To find the best fit, each row of \(s \) will be taken in turn. Interaction parameters in this row will be passed to \(f \), resulting in an interaction object. Then \texttt{ppm} will be applied to the data \ldots{} using this interaction. Any trend parameters will be passed to \texttt{ppm} through the argument \texttt{covfunargs}. This results in a fitted point process model. The value of the log pseudolikelihood or AIC from this model is stored. After all rows of \(s \) have been processed in this way, the row giving the maximum value of log pseudolikelihood will be found.

The object returned by \texttt{profilepl} contains the profile pseudolikelihood (or profile AIC) function, the best fitting model, and other data. It can be plotted (yielding a plot of the log pseudolikelihood or AIC values against the irregular parameters) or printed (yielding information about the best fitting values of the irregular parameters).

In general, \(f \) may be any function that will return an interaction object (object of class \texttt{BinteractB}) that can be used in a call to \texttt{ppm}. Each argument of \(f \) must be a single value.

Value

An object of class \"profilepl\". There are methods for \texttt{plot} and \texttt{print} for this class.

The components of the object include

- \texttt{fit}
 Best-fitting model
- \texttt{param}
 The data frame \(s \)
- \texttt{iplot}
 Row index of the best-fitting parameters in \(s \)

To extract the best fitting model you can also use \texttt{as.ppm}.

Author(s)

Adrian Baddeley \{Adrian.Baddeley@uwa.edu.au\} \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner \{r.turner@auckland.ac.nz\}

Examples

```r
# one irregular parameter
s <- data.frame(r=seq(0.05,0.15, by=0.01))

ps <- profilepl(s, Strauss, cells)
ps
if(interactive()) plot(ps)

# two irregular parameters
s <- expand.grid(r=seq(0.05,0.15, by=0.01), sat=1:3)
```
pg <- profilepl(s, Geyer, cells)

if(interactive()) {
 plot(pg)
 as.ppm(pg)
}

multitype pattern with a common interaction radius
Not run:
s <- data.frame(R=seq(0.03,0.05,by=0.01))
MS <- function(R) { MultiStrauss(radii=diag(c(R,R))) }
pm <- profilepl(s, MS, amacrine, ~marks)

End(Not run)

progressreport

Print Progress Reports

Description

Prints Progress Reports during a loop or iterative calculation.

Usage

```r
progressreport(i, n, 
  every = min(100, max(1, ceiling(n/100))),
  nperline = min(charsperline,
                 every * ceiling(charsperline/(every + 3))),
  charsperline = 60,
  style=spatstat.options("progress"))
```

Arguments

- **i** Integer. The current iteration number (from 1 to n).
- **n** Integer. The (maximum) number of iterations to be computed.
- **every** Optional integer. The number of iterations between successive reports.
- **nperline** Optional integer. The maximum number of reports to be printed per line of output.
- **charsperline** Optional integer. The number of characters in a line of output.
- **style** Character string determining the style of display. See Details.
Details

This is a convenient function for reporting progress during an iterative sequence of calculations or a suite of simulations.

If style="txtbar" then `txtProgressBar` is used to represent progress as a bar made of text characters in the R interpreter window.

If style="tty", then progress reports are printed using `cat`. This only seems to work well under Linux.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
for(i in 1:40) progressreport(i, 40)
```

Description

Ensures that a fitted point process model satisfies the integrability conditions for existence of the point process.

Usage

```r
project.ppm(object, ..., fatal=FALSE, trace=FALSE)
```

Arguments

- `object` Fitted point process model (object of class "ppm").
- `...` Ignored.
- `fatal` Logical value indicating whether to generate an error if the model cannot be projected to a valid model.
- `trace` Logical value indicating whether to print a trace of the decision process.
The model-fitting function `ppm` fits Gibbs point process models to point pattern data. By default, the fitted model returned by `ppm` may not actually exist as a point process.

First, some of the fitted coefficients of the model may be `NA` or infinite values. This usually occurs when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable or confounded.

Second, unlike a regression model, which is well-defined for any finite values of the fitted regression coefficients, a Gibbs point process model is only well-defined if the fitted interaction parameters satisfy some constraints. A famous example is the Strauss process (see `Strauss`) which exists only when the interaction parameter γ is less than or equal to 1. For values $\gamma > 1$, the probability density is not integrable and the process does not exist (and cannot be simulated).

By default, `ppm` does not enforce the constraint that a fitted Strauss process (for example) must satisfy $\gamma \leq 1$. This is because a fitted parameter value of $\gamma > 1$ could be useful information for data analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model should be fitted.

The function `project.ppm` modifies the model object so that the model is valid.

`project.ppm` identifies the terms in the model object that are associated with illegal parameter values (i.e. parameter values which are either `NA`, infinite, or outside their permitted range). It considers all possible sub-models of object obtained by deleting one or more of these terms. It identifies which of these submodels are valid, and chooses the valid submodel with the largest pseudolikelihood. The result of `project.ppm` is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in `project.ppm` may be time-consuming, because it takes time to compute all the sub-models. A faster, approximate algorithm can be applied by setting `spatstat.options(project.fast=TRUE)`. This produces a valid submodel, which may not be the maximum pseudolikelihood submodel.

Use the function `valid.ppm` to check whether a fitted model object specifies a well-defined point process.

Use the expression `all(is.finite(coef(object)))` to determine whether all parameters are identifiable.

Another point process model (object of class "ppm").

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppm, valid.ppm, spatstat.options`
Examples

```r
fit <- ppm(redwood, ~1, Strauss(0.1))
coef(fit)
fit2 <- project.ppm(fit)
coef(fit2)
```

project2segment

Move Point To Nearest Line

Description

Given a point pattern and a line segment pattern, this function moves each point to the closest location on a line segment.

Usage

```r
project2segment(X, Y)
```

Arguments

- `X` A point pattern (object of class "ppp").
- `Y` A line segment pattern (object of class "psp").

Details

For each point `x` in the point pattern `X`, this function finds the closest line segment `y` in the line segment pattern `Y`. It then 'projects' the point `x` onto the line segment `y` by finding the position `z` along `y` which is closest to `x`. This position `z` is returned, along with supplementary information.

Value

A list with the following components. Each component has length equal to the number of points in `X`, and its entries correspond to the points of `X`.

- `Xproj` Point pattern (object of class "ppp") containing the projected points.
- `mapXY` Integer vector identifying the nearest segment to each point.
- `d` Numeric vector of distances from each point of `X` to the corresponding projected point.
- `tp` Numeric vector giving the scaled parametric coordinate `0 \leq t_p \leq 1` of the position of the projected point along the segment.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
nearestsegment for a faster way to determine which segment is closest to each point.

Examples

```R
X <- rstrat(square(1), 5)
Y <- as.psp(matrix(runif(20), 5, 4), window=owin())
plot(Y, lwd=3, col="green")
plot(X, add=TRUE, col="red", pch=16)
v <- project2segment(X,Y)
Xproj <- v$Xproj
plot(Xproj, add=TRUE, pch=16)
arrows(X$x, X$y, Xproj$x, Xproj$y, angle=10, length=0.15, col="red")
```

Description

For each data point in a point pattern \(X\), find the nearest location in a given spatial region \(W\).

Usage

```R
project2set(X, W, ...)
```

Arguments

- \(X\) Point pattern (object of class "ppp").
- \(W\) Window (object of class "owin") or something acceptable to \texttt{as.owin}.
- \(\ldots\) Arguments passed to \texttt{as.mask} controlling the pixel resolution.

Details

The window \(W\) is first discretised as a binary mask using \texttt{as.mask}.
For each data point \(X[i]\) in the point pattern \(X\), the algorithm finds the nearest pixel in \(W\).
The result is a point pattern \(Y\) containing these nearest points, that is, \(Y[i]\) is the nearest point in \(W\)
to the point \(X[i]\).

Value

A point pattern (object of class "ppp") with the same number of points as \(X\) in the window \(W\).
psp

Create a Line Segment Pattern

Description

Creates an object of class "psp" representing a line segment pattern in the two-dimensional plane.

Usage

psp(x0,y0, x1, y1, window, marks=NULL, check=spatstat.options("checksegments"))

Arguments

x0 Vector of \(x \) coordinates of first endpoint of each segment
y0 Vector of \(y \) coordinates of first endpoint of each segment
x1 Vector of \(x \) coordinates of second endpoint of each segment
y1 Vector of \(y \) coordinates of second endpoint of each segment
window window of observation, an object of class "owin"
marks (optional) vector or data frame of mark values
check Logical value indicating whether to check that the line segments lie inside the window.
Details

In the spatstat library, a spatial pattern of line segments is described by an object of class "psp". This function creates such objects.

The vectors \(x_0, y_0, x_1, y_1\) must be numeric vectors of equal length. They are interpreted as the cartesian coordinates of the endpoints of the line segments.

A line segment pattern is assumed to have been observed within a specific region of the plane called the observation window. An object of class "psp" representing a point pattern contains information specifying the observation window. This window must always be specified when creating a point pattern dataset; there is intentionally no default action of "guessing" the window dimensions from the data points alone.

The argument window must be an object of class "owin". It is a full description of the window geometry, and could have been obtained from owin or as.owin, or by just extracting the observation window of another dataset, or by manipulating such windows. See owin or the Examples below.

The optional argument marks is given if the line segment pattern is marked, i.e. if each line segment carries additional information. For example, line segments which are classified into two or more different types, or colours, may be regarded as having a mark which identifies which colour they are.

The object marks must be a vector of the same length as \(x_0\), or a data frame with number of rows equal to the length of \(x_0\). The interpretation is that \(\text{marks}[i]\) or \(\text{marks}[i,]\) is the mark attached to the \(i\)th line segment. If the marks are real numbers then \(\text{marks}\) should be a numeric vector, while if the marks takes only a finite number of possible values (e.g. colours or types) then \(\text{marks}\) should be a factor.

See psp.object for a description of the class "psp".

Users would normally invoke psp to create a line segment pattern, and the function as.psp to convert data in another format into a line segment pattern.

Value

An object of class "psp" describing a line segment pattern in the two-dimensional plane (see psp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp.object, as.psp, owin.object, owin, as.owin, marks.psp

Examples

```
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
m <- data.frame(A=1:10, B=letters[1:10])
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin(), marks=m)
```
Description

A class "psp" to represent a spatial pattern of line segments in the plane. Includes information about the window in which the pattern was observed. Optionally includes marks.

Details

An object of this class represents a two-dimensional pattern of line segments. It specifies

- the locations of the line segments (both endpoints)
- the window in which the pattern was observed
- optionally, a “mark” attached to each line segment (extra information such as a type label).

If \(X \) is an object of type \(\text{psp} \), it contains the following elements:

- **ends**: data frame with entries \(x0, y0, x1, y1 \) giving coordinates of segment endpoints
- **window**: window of observation (an object of class \texttt{owin})
- **n**: number of line segments
- **marks**: optional vector or data frame of marks
- **markformat**: character string specifying the format of the marks; “none”, “vector”, or “dataframe”

Users are strongly advised not to manipulate these entries directly.

Objects of class "psp" may be created by the function \texttt{psp} and converted from other types of data by the function \texttt{as.psp}. Note that you must always specify the window of observation; there is intentionally no default action of “guessing” the window dimensions from the line segments alone.

Subsets of a line segment pattern may be obtained by the functions \[.psp\] and \texttt{clip.psp}.

Line segment pattern objects can be plotted just by typing \texttt{plot(X)} which invokes the \texttt{plot} method for line segment pattern objects, \texttt{plot.psp}. See \texttt{plot.psp} for further information.

There are also methods for \texttt{summary} and \texttt{print} for line segment patterns. Use \texttt{summary(X)} to see a useful description of the data.

Utilities for line segment patterns include \texttt{midpoints.psp} (to compute the midpoints of each segment), \texttt{lengths.psp}, (to compute the length of each segment), \texttt{angles.psp}, (to compute the angle of orientation of each segment), and \texttt{distmap.psp} to compute the distance map of a line segment pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
psst

See Also

psp, as.psp, [.pdp

Examples

creating
 a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
converting from other formats
 a <- as.psp(matrix(runif(80), ncol=4), window=owin())
 a <- as.psp(data.frame(x0=runif(20), y0=runif(20),
 x1=runif(20), y1=runif(20)), window=owin())
clipping
 w <- owin(c(0.1,0.7), c(0.2, 0.8))
 b <- clip.psp(a, w)
 b <- a[w]
the last two lines are equivalent.

psst

Pseudoscore Diagnostic For Fitted Model against General Alternative

Description

Given a point process model fitted to a point pattern dataset, and any choice of functional summary statistic, this function computes the pseudoscore test statistic of goodness-of-fit for the model.

Usage

psst(object, fun, r = NULL, breaks = NULL, ...,
 model=NULL, trend = ~1, interaction = Poisson(), rbord = reach(interaction),
 truecoef=NULL, hi.res=NULL, funargs = list(correction="best"),
 verbose=TRUE)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
 or a point pattern (object of class "ppp") or quadrature scheme (object of class
 "quad").
fun Summary function to be applied to each point pattern.
r Optional. Vector of values of the argument r at which the function S(r) should be computed. This argument is usually not specified. There is a sensible default.
breaks Optional alternative to r for advanced use.
... Ignored.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to the data using update.ppm, if object is a point pattern. Overrides the arguments trend, interaction, rbord.
trend, interaction, rbord
Optional. Arguments passed to `ppm` to fit a point process model to the data, if `object` is a point pattern. See `ppm` for details.

`truecoef` Optional. Numeric vector. If present, this will be treated as if it were the true coefficient vector of the point process model, in calculating the diagnostic. Incompatible with `hi.res`.

`hi.res` Optional. List of parameters passed to `quadscheme`. If this argument is present, the model will be re-fitted at high resolution as specified by these parameters. The coefficients of the resulting fitted model will be taken as the true coefficients. Then the diagnostic will be computed for the default quadrature scheme, but using the high resolution coefficients.

`funargs` List of additional arguments to be passed to `fun`.

`verbose` Logical value determining whether to print progress reports during the computation.

Details

Let x be a point pattern dataset consisting of points x_1, \ldots, x_n in a window W. Consider a point process model fitted to x, with conditional intensity $\lambda(u, x)$ at location u. For the purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. Given a functional summary statistic S, consider a family of alternative models obtained by exponential tilting of the null model by S. The pseudoscore for the null model is

$$ V(r) = \sum_i \Delta S(x_i, x, r) - \int_W \Delta S(u, x, r) \lambda(u, x) du $$

where the Δ operator is

$$ \Delta S(u, x, r) = S(x \cup \{u\}, r) - S(x \setminus u, r) $$

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, $V(r)$ should have mean zero if the model is correct (ignoring the fact that the parameters of the model have been estimated). Hence $V(r)$ can be used as a diagnostic for goodness-of-fit.

This algorithm computes $V(r)$ by direct evaluation of the sum and integral. It is computationally intensive, but it is available for any summary statistic $S(r)$.

The diagnostic $V(r)$ is also called the **pseudoresidual** of S. On the right hand side of the equation for $V(r)$ given above, the sum over points of x is called the **pseudosum** and the integral is called the **pseudocompensator**.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for the pseudoresidual.

There is a plot method for this class. See `fv.object`.
Author(s)

Ege Rubak and Jesper Møller.

References

See Also

Special cases: `psstA, psstG`.

Alternative functions: `Kres, Gres`.

Examples

```r
data(cells)
fit0 <- ppm(cells, ~1)  # uniform Poisson

G0 <- psst(fit0, Gest)
G0
if(interactive()) plot(G0)
```

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited alternatives of area-interaction type.

Usage

```r
psstA(object, r = NULL, breaks = NULL, ..., model = NULL,
      trend = ~1, interaction = Poisson(),
      rbord = reach(interaction), ppmcorrection = "border",
      correction = "all",
      truecoef = NULL, hi.res = NULL,
      nr=spatstat.options("psstA.nr"),
      ngrid=spatstat.options("psstA.ngrid"))
```
Arguments

- **object**: Object to be analysed. Either a fitted point process model (object of class "ppm") or a point pattern (object of class "ppp") or quadrature scheme (object of class "quad").
- **r**: Optional. Vector of values of the argument \(r\) at which the diagnostic should be computed. This argument is usually not specified. There is a sensible default.
- **breaks**: This argument is for internal use only.
- **model**: Optional. A fitted point process model (object of class "ppm") to be re-fitted to the data using **update.ppm**, if object is a point pattern. Overrides the arguments `trend, interaction, rbord, ppmcorrection`.
- **trend, interaction, rbord**: Optional. Arguments passed to ppm to fit a point process model to the data, if object is a point pattern. See ppm for details.
- **ppmcorrection**: Optional. Character string specifying the edge correction for the pseudolikelihood to be used in fitting the point process model. Passed to ppm.
- **correction**: Optional. Character string specifying which diagnostic quantities will be computed. Options are "all" and "best". The default is to compute all diagnostic quantities.
- **truecoef**: Optional. Numeric vector. If present, this will be treated as if it were the true coefficient vector of the point process model, in calculating the diagnostic. Incompatible with hi.res.
- **hi.res**: Optional. List of parameters passed to quadscheme. If this argument is present, the model will be re-fitted at high resolution as specified by these parameters. The coefficients of the resulting fitted model will be taken as the true coefficients. Then the diagnostic will be computed for the default quadrature scheme, but using the high resolution coefficients.
- **nr**: Optional. Number of \(r\) values to be used if \(r\) is not specified.
- **ngrid**: Integer. Number of points in the square grid used to compute the approximate area.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-of-fit of a fitted point process model.

Let \(x\) be a point pattern dataset consisting of points \(x_1, \ldots, x_n\) in a window \(W\). Consider a point process model fitted to \(x\), with conditional intensity \(\lambda(u, x)\) at location \(u\). For the purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative hypothesis is a family of hybrid models obtained by combining the fitted model with the area-interaction process (see AreaInter). The family of alternatives includes models that are slightly more regular than the fitted model, and others that are slightly more clustered than the fitted model.

The pseudoscore, evaluated at the null model, is

\[
V(r) = \sum_i A(x_i, x, r) - \int_W A(u, x, r)\lambda(u, x)du
\]
where

\[A(u, x, r) = B(x \cup \{u\}, r) - B(x \setminus u, r) \]

where \(B(x, r) \) is the area of the union of the discs of radius \(r \) centred at the points of \(x \) (i.e. \(B(x, r) \) is the area of the dilation of \(x \) by a distance \(r \)). Thus \(A(u, x, r) \) is the unclaimed area associated with \(u \), that is, the area of that part of the disc of radius \(r \) centred at the point \(u \) that is not covered by any of the discs of radius \(r \) centred at points of \(x \).

According to the Georgii-Nguyen-Zessin formula, \(V(r) \) should have mean zero if the model is correct (ignoring the fact that the parameters of the model have been estimated). Hence \(V(r) \) can be used as a diagnostic for goodness-of-fit.

The diagnostic \(V(r) \) is also called the pseudoresidual of \(S \). On the right hand side of the equation for \(V(r) \) given above, the sum over points of \(x \) is called the pseudosum and the integral is called the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for the pseudoresidual.

There is a plot method for this class. See \texttt{fv.object}.

Warning

This computation can take a very long time.

To shorten the computation time, choose smaller values of the arguments \(nr \) and \(ngrid \), or reduce the values of their defaults \texttt{spatstat.options("psstA.nr"}) and \texttt{spatstat.options("psstA.ngrid")}.

Computation time is roughly proportional to \(nr \cdot npoints \cdot ngrid^2 \) where \(npoints \) is the number of points in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
Ege Rubak and Jesper Møller.

References

See Also

Alternative functions: \texttt{psstG, psst, Gres, Kres}.

Point process models: \texttt{ppm}.

Options: \texttt{spatstat.options}
Examples

```r
pso <- spatstat.options(psstA.ngrid=16, psstA.nr=10)
X <- rStrauss(200, 0.1, 0.05)
plot(psstA(X))
plot(psstA(X, interaction=Strauss(0.05)))
spatstat.options(pso)
```

psstG
Pseudoscore Diagnostic For Fitted Model against Saturation Alternative

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited alternatives of saturation type.

Usage

```r
psstG(object, r = NULL, breaks = NULL, ..., model=NULL, 
      trend = ~1, interaction = Poisson(), rbord = reach(interaction), 
      truecoef = NULL, hi.res = NULL)
```

Arguments

- `object` Object to be analysed. Either a fitted point process model (object of class "ppm") or a point pattern (object of class "ppp") or quadrature scheme (object of class "quad").
- `r` Optional. Vector of values of the argument `r` at which the diagnostic should be computed. This argument is usually not specified. There is a sensible default.
- `breaks` Optional alternative to `r` for advanced use.
- `...` Ignored.
- `model` Optional. A fitted point process model (object of class "ppm") to be re-fitted to the data using `update.ppm`, if `object` is a point pattern. Overrides the arguments `trend`, `interaction`, `rbord`, `ppmcorrection`.
- `trend`, `interaction`, `rbord` Optional. Arguments passed to `ppm` to fit a point process model to the data, if `object` is a point pattern. See `ppm` for details.
- `truecoef` Optional. Numeric vector. If present, this will be treated as if it were the true coefficient vector of the point process model, in calculating the diagnostic. Incompatible with `hi.res`.
- `hi.res` Optional. List of parameters passed to `quadscheme`. If this argument is present, the model will be re-fitted at high resolution as specified by these parameters. The coefficients of the resulting fitted model will be taken as the true coefficients. Then the diagnostic will be computed for the default quadrature scheme, but using the high resolution coefficients.
Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-of-fit of a fitted point process model.

Consider a point process model fitted to \(x \), with conditional intensity \(\lambda(u,x) \) at location \(u \). For the purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative hypothesis is a family of hybrid models obtained by combining the fitted model with the Geyer saturation process (see \texttt{Geyer}) with saturation parameter 1. The family of alternatives includes models that are more regular than the fitted model, and others that are more clustered than the fitted model.

For any point pattern \(x \), and any \(r > 0 \), let \(S(x,r) \) be the number of points in \(x \) whose nearest neighbour (the nearest other point in \(x \)) is closer than \(r \) units. Then the pseudoscore for the null model is

\[
V(r) = \sum_i \Delta S(x_i,x,r) - \int_W \Delta S(u,x,r) \lambda(u,x) \, du
\]

where the \(\Delta \) operator is

\[
\Delta S(u,x,r) = S(x \cup \{u\},r) - S(x \setminus u,r)
\]

the difference between the values of \(S \) for the point pattern with and without the point \(u \).

According to the Georgii-Nguyen-Zessin formula, \(V(r) \) should have mean zero if the model is correct (ignoring the fact that the parameters of the model have been estimated). Hence \(V(r) \) can be used as a diagnostic for goodness-of-fit.

The diagnostic \(V(r) \) is also called the \textbf{pseudoresidual} of \(S \). On the right hand side of the equation for \(V(r) \) given above, the sum over points of \(x \) is called the \textbf{pseudosum} and the integral is called the \textbf{pseudocompensator}.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include \texttt{dat} for the pseudosum, \texttt{com} for the compensator and \texttt{res} for the pseudoresidual.

There is a plot method for this class. See \texttt{fv.object}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/}
Ege Rubak and Jesper Møller.

References

See Also

Alternative functions: \texttt{psstA}, \texttt{psst}, \texttt{Kres}, \texttt{Gres}.

Pyramidal Neurons in Cingulate Cortex

Description

Point patterns giving the locations of pyramidal neurons in micrographs from area 24, layer 2 of the cingulate cortex in the human brain. There is one point pattern from each of 31 human subjects. The subjects are divided into three groups: controls (12 subjects), schizoaffective (9 subjects) and schizophrenic (10 subjects).

Each point pattern is recorded in a unit square region; the unit of measurement is unknown.

These data were introduced and analysed by Diggle, Lange and Benes (1991).

Usage

data(pyramidal)

Format

pyramidal is a hyperframe with 31 rows, one row for each subject. It has a column named Neurons containing the point patterns of neuron locations, and a column named group which is a factor with levels "control", "schizoaffective", "schizophrenic" identifying the grouping of subjects.

Source

Peter Diggle’s website.

References

Examples

X <- rStrauss(200, 0.1, 0.05)
plot(psstG(X))
plot(psstG(X, interaction=Strauss(0.05)))

pyr <- pyramidal
pyr$grp <- abbreviate(pyramidal$group, minlength=7)
plot(pyr, quote(plot(Neurons, pch=16, main=grp)), main="Pyramidal Neurons")
Description

Given a point process model fitted to a point pattern, produce a Q-Q plot based on residuals from the model.

Usage

```r
diagnostics.ppm(fit, nsim=100, expr=NULL, ..., type="raw",
    style="mean", fast=TRUE, verbose=TRUE, plot.it=TRUE,
    dimyx=NULL, nrep=if(fast) 5e4 else 1e5,
    control=update(default.rmhcontrol(fit), nrep=nrep),
    saveall=FALSE,
    monochrome=FALSE,
    limcol=if(monochrome) "black" else "red",
    maxerr=max(100, ceiling(nsim/10)),
    check=TRUE, repair=TRUE)
```

Arguments

- `fit` The fitted point process model, which is to be assessed using the Q-Q plot. An object of class "ppm". Smoothed residuals obtained from this fitted model will provide the “data” quantiles for the Q-Q plot.
- `nsim` The number of simulations from the “reference” point process model.
- `expr` Determines the simulation mechanism which provides the “theoretical” quantiles for the Q-Q plot. See Details.
- `...` Arguments passed to `diagnose.ppm` influencing the computation of residuals.
- `type` String indicating the type of residuals or weights to be used. Current options are "eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the Pearson residuals. A partial match is adequate.
- `style` Character string controlling the type of Q-Q plot. Options are "classical" and "mean". See Details.
- `fast` Logical flag controlling the speed and accuracy of computation. Use `fast=TRUE` for interactive use and `fast=FALSE` for publication standard plots. See Details.
- `verbose` Logical flag controlling whether the algorithm prints progress reports during long computations.
- `plot.it` Logical flag controlling whether the function produces a plot or simply returns a value (silently).
- `dimyx` Dimensions of the pixel grid on which the smoothed residual field will be calculated. A vector of two integers.
nrep

If control is absent, then nrep gives the number of iterations of the Metropolis-
Hastings algorithm that should be used to generate one simulation of the fitted
point process.

control

List of parameters controlling the Metropolis-Hastings algorithm rmh which
generates each simulated realisation from the model (unless the model is Pois-
son). This list becomes the argument control of rmh.default. It overrides
nrep.

saveall

Logical flag indicating whether to save all the intermediate calculations.

monochrome

Logical flag indicating whether the plot should be in black and white (monochrome=TRUE),
or in colour (monochrome=FALSE).

limcol

String. The colour to be used when plotting the 95% limit curves.

maxerr

Maximum number of failures tolerated while generating simulated realisations.
See Details.

check

Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

repair

Logical value indicating whether to repair the internal format of fit, if it is
found to be damaged.

Details

This function generates a Q-Q plot of the residuals from a fitted point process model. It is an
addendum to the suite of diagnostic plots produced by the function diagnose.ppm, kept separate
because it is computationally intensive. The quantiles of the theoretical distribution are estimated
by simulation.

In classical statistics, a Q-Q plot of residuals is a useful diagnostic for checking the distributional
assumptions. Analogously, in spatial statistics, a Q-Q plot of the (smoothed) residuals from a fitted
point process model is a useful way to check the interpoint interaction part of the model (Baddeley
et al, 2005). The systematic part of the model (spatial trend, covariate effects, etc) is assessed using
other plots made by diagnose.ppm.

The argument fit represents the fitted point process model. It must be an object of class "ppm"
(typically produced by the maximum pseudolikelihood fitting algorithm ppm). Residuals will be
computed for this fitted model using residuals.ppm, and the residuals will be kernel-smoothed to
produce a “residual field”. The values of this residual field will provide the “data” quantiles for the
Q-Q plot.

The argument expr is not usually specified. It provides a way to modify the “theoretical” or “reference”
quantiles for the Q-Q plot.

In normal usage we set expr=NULL. The default is to generate nsim simulated realisations of the
fitted model fit, re-fit this model to each of the simulated patterns, evaluate the residuals from
these fitted models, and use the kernel-smoothed residual field from these fitted models as a sample
from the reference distribution for the Q-Q plot.

In advanced use, expr may be an expression. It will be re-evaluated nsim times, and should
include random computations so that the results are not identical each time. The result of evaluating
expr should be either a point pattern (object of class "ppp") or a fitted point process model (object
of class "ppm". If the value is a point pattern, then the original fitted model \texttt{fit} will be fitted to this new point pattern using \texttt{update.ppm}, to yield another fitted model. Smoothed residuals obtained from these \texttt{nsim} fitted models will yield the “theoretical” quantiles for the Q-Q plot.

Simulation is performed (if \texttt{expr=NULL}) using the Metropolis-Hastings algorithm \texttt{rmh}. Each simulated realisation is the result of running the Metropolis-Hastings algorithm from an independent random starting state each time. The iterative and termination behaviour of the Metropolis-Hastings algorithm are governed by the argument \texttt{control}. See \texttt{rmhcontrol} for information about this argument. As a shortcut, the argument \texttt{nrep} determines the number of Metropolis-Hastings iterations used to generate each simulated realisation, if \texttt{control} is absent.

By default, simulations are generated in an expanded window. Use the argument \texttt{control} to change this, as explained in the section on \texttt{Warning messages}.

The argument \texttt{type} selects the type of residual or weight that will be computed. For options, see \texttt{diagnose.ppm}.

The argument \texttt{style} determines the type of Q-Q plot. It is highly recommended to use the default, \texttt{style=mean}.

- \texttt{style=classical} The quantiles of the residual field for the data (on the \texttt{y} axis) are plotted against the quantiles of the pooled simulations (on the \texttt{x} axis). This plot is biased, and therefore difficult to interpret, because of strong autocorrelations in the residual field and the large differences in sample size.

- \texttt{style=mean} The order statistics of the residual field for the data are plotted against the sample means, over the \texttt{nsim} simulations, of the corresponding order statistics of the residual field for the simulated datasets. Dotted lines show the 2.5 and 97.5 percentiles, over the \texttt{nsim} simulations, of each order statistic.

The argument \texttt{fast} is a simple way to control the accuracy and speed of computation. If \texttt{fast=FALSE}, the residual field is computed on a fine grid of pixels (by default 100 by 100 pixels, see below) and the Q-Q plot is based on the complete set of order statistics (usually 10,000 quantiles). If \texttt{fast=TRUE}, the residual field is computed on a coarse grid (at most 40 by 40 pixels) and the Q-Q plot is based on the \texttt{percentiles} only. This is about 7 times faster. It is recommended to use \texttt{fast=TRUE} for interactive data analysis and \texttt{fast=FALSE} for definitive plots for publication.

The argument \texttt{dimyx} gives full control over the resolution of the pixel grid used to calculate the smoothed residuals. Its interpretation is the same as the argument \texttt{dimyx} to the function \texttt{as.mask}. Note that \texttt{dimyx[1]} is the number of pixels in the \texttt{y} direction, and \texttt{dimyx[2]} is the number in the \texttt{x} direction. If \texttt{dimyx} is not present, then the default pixel grid dimensions are controlled by \texttt{spatstat.options("npixel")}.

Since the computation is so time-consuming, \texttt{qqplot.ppm} returns a list containing all the data necessary to re-display the Q-Q plot. It is advisable to assign the result of \texttt{qqplot.ppm} to something (or use \texttt{.Last.value} if you forgot to.) The return value is an object of class "\texttt{qqppm}". There are methods for \texttt{plot.qqppm} and \texttt{print.qqppm}. See the Examples.

The argument \texttt{saveall} is usually set to \texttt{FALSE}. If \texttt{saveall=TRUE}, then the intermediate results of calculation for each simulated realisation are saved and returned. The return value includes a 3-dimensional array \texttt{sim} containing the smoothed residual field images for each of the \texttt{nsim} realisations. When \texttt{saveall=TRUE}, the return value is an object of very large size, and should not be saved on disk.

Errors may occur during the simulation process, because random data are generated. For example:
• one of the simulated patterns may be empty.
• one of the simulated patterns may cause an error in the code that fits the point process model.
• the user-supplied argument expr may have a bug.

Empty point patterns do not cause a problem for the code, but they are reported. Other problems that would lead to a crash are trapped: the offending simulated data are discarded, and the simulation is retried. The argument maxerr determines the maximum number of times that such errors will be tolerated (mainly as a safeguard against an infinite loop).

Value

An object of class "qqppm" containing the information needed to reproduce the Q-Q plot. Entries x and y are numeric vectors containing quantiles of the simulations and of the data, respectively.

Side Effects

Produces a Q-Q plot if plot.it is TRUE.

Warning messages

A warning message will be issued if any of the simulations trapped an error (a potential crash).
A warning message will be issued if all, or many, of the simulated point patterns are empty. This usually indicates a problem with the simulation procedure.
The default behaviour of qqplot.ppm is to simulate patterns on an expanded window (specified through the argument control) in order to avoid edge effects. The model’s trend is extrapolated over this expanded window. If the trend is strongly inhomogeneous, the extrapolated trend may have very large (or even infinite) values. This can cause the simulation algorithm to produce empty patterns.
The only way to suppress this problem entirely is to prohibit the expansion of the window, by setting the control argument to something like control=list(nrep=1e6, expand=1). Here expand=1 means there will be no expansion. See rmhcontrol for more information about the argument control.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also
diagnose.ppm, lurking, residuals.ppm, eem, ppm.object, ppm, rmh, rmhcontrol
Examples

data(cells)

 fit <- ppm(cells, ~1, Poisson())
diagnose.ppm(fit) # no suggestion of departure from stationarity
Not run: qqplot.ppm(fit, 80) # strong evidence of non-Poisson interaction

Not run:
diagnose.ppm(fit, type="pearson")
qqplot.ppm(fit, type="pearson")

End(Not run)

##
oops, I need the plot coordinates
mypreciousdata <- .Last.value
Not run: mypreciousdata <- qqplot.ppm(fit, type="pearson")

plot(mypreciousdata)

##
Q-Q plots based on fixed n
The above QQ plots used simulations from the (fitted) Poisson process.
But I want to simulate conditional on n, instead of Poisson
Do this by setting rmhcontrol(p=1)
fixit <- list(p=1)
Not run: qqplot.ppm(fit, 100, control=fixit)

##
Inhomogeneous Poisson data
X <- rpoispp(function(x,y){1000 * exp(-3*x)}, 1000)
plot(X)
Inhomogeneous Poisson model
fit <- ppm(X, ~x, Poisson())
Not run: qqplot.ppm(fit, 100)

conclusion: fitted inhomogeneous Poisson model looks OK

##
Advanced use of 'expr' argument
#
set the initial conditions in Metropolis-Hastings algorithm
#
expr <- expression(rmh(fit, start=list(n.start=42), verbose=FALSE))
Not run: qqplot.ppm(fit, 100, expr)
Class of Quadrature Schemes

Description

A class "quad" to represent a quadrature scheme.

Details

A (finite) quadrature scheme is a list of quadrature points u_j and associated weights w_j which is used to approximate an integral by a finite sum:

$$\int f(x)dx \approx \sum_j f(u_j)w_j$$

Given a point pattern dataset, a *Berman-Turner* quadrature scheme is one which includes all these data points, as well as a nonzero number of other ("dummy") points.

These quadrature schemes are used to approximate the pseudolikelihood of a point process, in the method of Baddeley and Turner (2000) (see Berman and Turner (1992)). Accuracy and computation time both increase with the number of points in the quadrature scheme.

An object of class "quad" represents a Berman-Turner quadrature scheme. It can be passed as an argument to the model-fitting function `ppm`, which requires a quadrature scheme.

An object of this class contains at least the following elements:

- `data`: an object of class "ppp" giving the locations (and marks) of the data points.
- `dummy`: an object of class "ppp" giving the locations (and marks) of the dummy points.
- `w`: vector of nonnegative weights for the quadrature points

Users are strongly advised not to manipulate these entries directly.

The domain of quadrature is specified by `dummy$window` while the observation window (if this needs to be specified separately) is taken to be `data$window`.

The weights vector `w` may also have an attribute `attr(w, "zeroes")` equivalent to the logical vector (`w == 0`). If this is absent then all points are known to have positive weights.

To create an object of class "quad", users would typically call the high level function `quadscheme`. (They are actually created by the low level function `quad`.)

Entries are extracted from a "quad" object by the functions `x.quad`, `y.quad`, `w.quad`, `quad` and `marks.quad`, which extract the x coordinates, y coordinates, weights, and marks, respectively. The function `n.quad` returns the total number of quadrature points (dummy plus data).

An object of class "quad" can be converted into an ordinary point pattern by the function `union.quad` which simply takes the union of the data and dummy points.

Quadrature schemes can be plotted using `plot.quad` (a method for the generic `plot`).
quad.ppm

Extract Quadrature Scheme Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the quadrature scheme used to fit the model.

Usage

quad.ppm(object, drop=FALSE, clip=FALSE)

Arguments

- **object**: fitted point process model (an object of class "ppm" or "kppm").
- **drop**: Logical value determining whether to delete quadrature points that were not used to fit the model.
- **clip**: Logical value determining whether to erode the window, if object was fitted using the border correction. See Details.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by a sum over a finite set of quadrature points, which is constructed by augmenting the original data point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete information about this quadrature scheme. See ppm or ppm.object for further information.

This function quad.ppm extracts the quadrature scheme. A typical use of this function would be to inspect the quadrature scheme (points and weights) to gauge the accuracy of the approximation to the exact pseudolikelihood.

Some quadrature points may not have been used in fitting the model. This happens if the border correction is used, and in other cases (e.g. when the value of a covariate is NA at these points). The argument drop specifies whether these unused quadrature points shall be deleted (drop=TRUE) or retained (drop=FALSE) in the return value.

The quadrature scheme has a window, which by default is set to equal the window of the original data. However this window may be larger than the actual domain of integration of the pseudolikelihood or composite likelihood that was used to fit the model. If clip=TRUE then the window of the
quadrature scheme is set to the actual domain of integration. This option only has an effect when the model was fitted using the border correction; then the window is obtained by eroding the original data window by the border correction distance.

See `ppm.object` for a list of all operations that can be performed on objects of class "ppm". See `quad.object` for a list of all operations that can be performed on objects of class "quad".

This function can also be applied to objects of class "kppm".

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppm.object`, `quad.object`, `ppm`

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(r=0.1))
Q <- quad.ppm(fit)
Not run: plot(Q)
Q$data
Q$dummy

quadrat.test

Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts. Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default performs chi-squared tests; can also perform Monte Carlo based tests.

Usage

```r
quadrat.test(X, ...)
```

```r
## S3 method for class 'ppp'
quadrat.test(X, nx=5, ny=nx, 
  alternative=c("two.sided", "regular", "clustered"), 
  method=c("Chisq", "MonteCarlo"), 
  conditional=TRUE, CR=1, 
  ...,
```
quadrat.test

xbreaks=NULL, ybreaks=NULL, tess=NULL, nsim=1999)

S3 method for class 'ppm'
quadrat.test(X, nx=5, ny=nx,
 alternative=c("two.sided", "regular", "clustered"),
 method=c("Chisq", "MonteCarlo"),
 conditional=TRUE, CR=1,
 ...,
 xbreaks=NULL, ybreaks=NULL, tess=NULL, nsim=1999)

S3 method for class 'quadratcount'
quadrat.test(X,
 alternative=c("two.sided", "regular", "clustered"),
 method=c("Chisq", "MonteCarlo"),
 conditional=TRUE, CR=1,
 ...,
 nsim=1999)

Arguments

X

A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test.
Alternatively a fitted point process model (object of class "ppm") to be tested.
Alternatively X can be the result of applying quadratcount to a point pattern.

nx, ny

Numbers of quadrats in the x and y directions. Incompatible with xbreaks and ybreaks.

alternative

Character string (partially matched) specifying the alternative hypothesis.

method

Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte Carlo test.

conditional

Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR

Optional. Numerical value of the index \(\lambda\) for the Cressie-Read test statistic.

... Ignored.

xbreaks

Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

ybreaks

Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

tess

Tessellation (object of class "tess") determining the quadrats. Incompatible
with nx, ny, xbreaks, ybreaks.

nsim

The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform \(\chi^2\) tests or Monte Carlo tests of goodness-of-fit for a point process model,
based on quadrat counts.
The function `quadrat.test` is generic, with methods for point patterns (class "ppp"), split point patterns (class "splitppp"), point process models (class "ppm") and quadrat count tables (class "quadratcount").

- if `x` is a point pattern, we test the null hypothesis that the data pattern is a realisation of Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern are ignored.
- if `x` is a split point pattern, then for each of the component point patterns (taken separately) we test the null hypotheses of Complete Spatial Randomness. See `quadrat.test.splitppp` for documentation.
- If `x` is a fitted point process model, then it should be a Poisson point process model. The data to which this model was fitted are extracted from the model object, and are treated as the data point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the (inhomogeneous) Poisson point process specified by `x`.

In all cases, the window of observation is divided into tiles, and the number of data points in each tile is counted, as described in `quadratcount`. The quadrats are rectangular by default, or may be regions of arbitrary shape specified by the argument `tess`. The expected number of points in each quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the second case). Then the Pearson X^2 statistic

$$X^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

is computed.

If `method="Chisq"` then a χ^2 test of goodness-of-fit is performed by comparing the test statistic to the χ^2 distribution with $m - k$ degrees of freedom, where m is the number of quadrats and k is the number of fitted parameters (equal to 1 for `quadrat.test.ppp`). The default is to compute the two-sided p-value, so that the test will be declared significant if X^2 is either very large or very small. One-sided p-values can be obtained by specifying the `alternative`. An important requirement of the χ^2 test is that the expected counts in each quadrat be greater than 5.

If `method="MonteCarlo"` then a Monte Carlo test is performed, obviating the need for all expected counts to be at least 5. In the Monte Carlo test, `nsim` random point patterns are generated from the null hypothesis (either CSR or the fitted point process model). The Pearson X^2 statistic is computed as above. The p-value is determined by comparing the X^2 statistic for the observed point pattern, with the values obtained from the simulations. Again the default is to compute the two-sided p-value.

If `conditional` is TRUE then the simulated samples are generated from the multinomial distribution with the number of “trials” equal to the number of observed points and the vector of probabilities equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated samples are independent Poisson counts, with means equal to the expected counts.

If the argument `CR` is given, then instead of the Pearson X^2 statistic, the Cressie-Read (1984) power divergence test statistic

$$2nI = \frac{2}{\lambda(\lambda+1)} \sum_i \left[\left(\frac{X_i}{E_i} \right)^\lambda - 1 \right]$$

is computed, where X_i is the ith observed count and E_i is the corresponding expected count, and the exponent λ is equal to `CR`. The value `CR=1` gives the Pearson X^2 statistic; `CR=0` gives the likelihood ratio test statistic G^2; `CR=-1/2` gives the Freeman-Tukey statistic T^2; `CR=-1` gives the modified
likelihood ratio test statistic GM^2; and $CR=-2$ gives Neyman’s modified statistic NM^2. In all cases the asymptotic distribution of this test statistic is the same χ^2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrat.test", and there is a plot method for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

quadrat.test.splitppp, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific alternative, use anova.ppm.

Examples

data(simdat)
quadrat.test(simdat)
quadrat.test(simdat, 4, 3)

quadrat.test(simdat, alternative="regular")
quadrat.test(simdat, alternative="clustered")

Using Monte Carlo p-values
quadrat.test(swedishpines) # Get warning, small expected values.
Not run:
quadrat.test(swedishpines, method="M", nsim=4999)
quadrat.test(swedishpines, method="M", nsim=4999, conditional=FALSE)

End(Not run)

quadrat counts
qS <- quadratcount(simdat, 4, 3)
quadrat.test(qS)
fitted model: inhomogeneous Poisson
fitx <- ppm(simdat, ~x, Poisson())
quadrat.test(fitx)

te <- quadrat.test(simdat, 4)
residuals(te) # Pearson residuals
plot(te)

plot(simdat, pch="+", cols="green", lwd=2)
plot(te, add=TRUE, col="red", cex=1.4, lty=2, lwd=3)

sublab <- eval(substitute(expression(p[chi^2]==z),
 list(z=signif(te$p.value,3))))
title(sub=sublab, cex.sub=3)

quadrats of irregular shape
B <- dirichlet(runifpoint(6, simdat$window))
qB <- quadrat.test(simdat, tess=B)
plot(simdat, main="quadrat.test(simdat, tess=B)", pch="+")
plot(qB, add=TRUE, col="red", lwd=2, cex=1.2)

quadrat.test.mppm *Chi-Squared Test for Multiple Point Process Model Based on Quadrat Counts*

Description
Performs a chi-squared goodness-of-fit test of a Poisson point process model fitted to multiple point patterns.

Usage
```r
## S3 method for class 'mppm'
quadrat.test(X, ...)
```

Arguments
- `X` An object of class "mppm" representing a point process model fitted to multiple point patterns. It should be a Poisson model.
- `...` Arguments passed to `quadrat.test.ppm` which determine the size of the quadrats.

Details
This function performs a χ^2 test of goodness-of-fit for a Poisson point process model, based on quadrat counts. It can also be used to perform a test of Complete Spatial Randomness for a list of point patterns.
The function `quadrat.test` is generic, with methods for point patterns (class "ppp"), point process models (class "ppm") and multiple point process models (class "mppm").

For this function, the argument `X` should be a multiple point process model (object of class "mppm") obtained by fitting a point process model to a list of point patterns using the function `mppm`.

To perform the test, the data point patterns are extracted from `X`. For each point pattern

- the window of observation is divided into rectangular tiles, and the number of data points in each tile is counted, as described in `quadratcount`.
- The expected number of points in each quadrat is calculated, as determined by the fitted model.

Then we perform a single χ^2 test of goodness-of-fit based on these observed and expected counts.

Value

An object of class "htest". Printing the object gives comprehensible output about the outcome of the test. The p-value of the test is stored in the component `p.value`.

The return value also belongs to the special class "quadrat.test". Plotting the object will display, for each window, the position of the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the examples.

The return value also has an attribute "components" which is a list containing the results of χ^2 tests of goodness-of-fit for each individual point pattern.

Testing Complete Spatial Randomness

If the intention is to test Complete Spatial Randomness (CSR) there are two options:

- CSR with the same intensity of points in each point pattern;
- CSR with a different, unrelated intensity of points in each point pattern.

In the first case, suppose `P` is a list of point patterns we want to test. Then fit the multiple model

```r
fit1 <- mppm(P, ~1) # which signifies a Poisson point process model with a constant intensity.
```

Then apply `quadrat.test(fit1)`.

In the second case, fit the model code

```r
fit2 <- mppm(P, ~id) # which signifies a Poisson point process with a different constant intensity for each point pattern.
```

Then apply `quadrat.test(fit2)`.

Author(s)

See Also

`mppm`, `quadrat.test`
Examples

```r
H <- hyperframe(X=waterstriders)
# Poisson with constant intensity for all patterns
fit1 <- ppm(X~1, H)
quadrat.test(fit1, nx=2)

# uniform Poisson with different intensity for each pattern
fit2 <- ppm(X~id, H)
quadrat.test(fit2, nx=2)
```

quadrat.test.splitppp
Dispersion Test of CSR for Split Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for each of the component patterns in a split point pattern, based on quadrat counts. By default performs chi-squared tests; can also perform Monte Carlo based tests.

Usage

```r
## S3 method for class 'splitppp'
quadrat.test(X, ..., df=NULL, df.est=NULL, Xname=NULL)
```

Arguments

- **X** A split point pattern (object of class "splitppp"), each component of which will be subjected to the goodness-of-fit test.
- **...** Arguments passed to `quadrat.test.ppp`.
- **df, df.est, Xname** Arguments passed to `pool.quadrattest`.

Details

The function `quadrat.test` is generic, with methods for point patterns (class "ppp"), split point patterns (class "splitppp") and point process models (class "ppm").

If `X` is a split point pattern, then for each of the component point patterns (taken separately) we test the null hypotheses of Complete Spatial Randomness, then combine the result into a single test.

The method `quadrat.test.ppp` is applied to each component point pattern. Then the results are pooled using `pool.quadrattest` to obtain a single test.

Value

An object of class "quadrat.test" which can be printed and plotted.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`quadrat.test`, `quadratcount`, `quadrats`, `quadratresample`, `chisq.test`, `cdf.test`.

To test a Poisson point process model against a specific Poisson alternative, use `anova.ppm`.

Examples

```r
  data(humberside)
  qH <- quadrat.test(split(humberside), 2, 3)
  plot(qH)
  qH
```

Description

Divides window into quadrats and counts the numbers of points in each quadrat.

Usage

```r
  quadratcount(X, ...)
```

  ```
  ## S3 method for class 'ppp'
  quadratcount(X, nx=5, ny=nx, ...,
               xbreaks=NULL, ybreaks=NULL, tess=NULL)
  
  ## S3 method for class 'splitppp'
  quadratcount(X, ...)
```

Arguments

- `X` A point pattern (object of class "ppp") or a split point pattern (object of class "splitppp").
- `nx, ny` Numbers of rectangular quadrats in the `x` and `y` directions. Incompatible with `xbreaks` and `ybreaks`.
- `...` Additional arguments passed to `quadratcount.ppp`.
- `xbreaks` Numeric vector giving the `x` coordinates of the boundaries of the rectangular quadrats. Incompatible with `nx`.
- `ybreaks` Numeric vector giving the `y` coordinates of the boundaries of the rectangular quadrats. Incompatible with `ny`.
- `tess` Tessellation (object of class "tess") determining the quadrats. Incompatible with `nx, ny, xbreaks, ybreaks`.
Details

Quadrat counting is an elementary technique for analysing spatial point patterns. See Diggle (2003).

If \(X \) is a point pattern, then by default, the window containing the point pattern \(X \) is divided into an \(nx \times ny \) grid of rectangular tiles or ‘quadrats’. (If the window is not a rectangle, then these tiles are intersected with the window.) The number of points of \(X \) falling in each quadrat is counted. These numbers are returned as a contingency table.

If \(\text{xbreaks} \) is given, it should be a numeric vector giving the \(x \) coordinates of the quadrat boundaries. If it is not given, it defaults to a sequence of \(nx+1 \) values equally spaced over the range of \(x \) coordinates in the window \(X$\text{window} \).

Similarly if \(\text{ybreaks} \) is given, it should be a numeric vector giving the \(y \) coordinates of the quadrat boundaries. It defaults to a vector of \(ny+1 \) values equally spaced over the range of \(y \) coordinates in the window. The lengths of \(\text{xbreaks} \) and \(\text{ybreaks} \) may be different.

Alternatively, quadrats of any shape may be used. The argument \(\text{tess} \) can be a tessellation (object of class “tess”) whose tiles will serve as the quadrats.

The algorithm counts the number of points of \(X \) falling in each quadrat, and returns these counts as a contingency table.

The return value is a table which can be printed neatly. The return value is also a member of the special class “quadratcount”. Plotting the object will display the quadrats, annotated by their counts. See the examples.

To perform a chi-squared test based on the quadrat counts, use \texttt{quadrat.test}.

To calculate an estimate of intensity based on the quadrat counts, use \texttt{intensity.quadratcount}.

To extract the quadrats used in a \texttt{quadratcount} object, use \texttt{as.tess}.

If \(X \) is a split point pattern (object of class "splitppp" then quadrat counting will be performed on each of the components point patterns, and the resulting contingency tables will be returned in a list. This list can be printed or plotted.

Marks attached to the points are ignored by \texttt{quadratcount.ppp}. To obtain a separate contingency table for each type of point in a multitype point pattern, first separate the different points using \texttt{split.ppp}, then apply \texttt{quadratcount.splitppp}. See the Examples.

Value

The value of \texttt{quadratcount.ppp} is a contingency table containing the number of points in each quadrat. The table is also an object of the special class "quadratcount" and there is a plot method for this class.

The value of \texttt{quadratcount.splitppp} is a list of such contingency tables, each containing the quadrat counts for one of the component point patterns in \(X \). This list also has the class "listof" which has print and plot methods.

Warning

If \(Q \) is the result of \texttt{quadratcount} using rectangular tiles, then \texttt{as.numeric(Q)} extracts the counts in the wrong order. To obtain the quadrat counts in the same order as the tiles of the corresponding tessellation would be listed, use \texttt{as.vector(t(Q))}, which works in all cases.
Note

To perform a chi-squared test based on the quadrat counts, use `quadrat.test`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`plot.quadratcount`, `intensity.quadratcount`, `quadrats`, `quadrat.test`, `tess`, `hextess`, `quadratresample`, `miplot`

Examples

```r
X <- runifpoint(50)
quadratcount(X)
quadratcount(X, 4, 5)
quadratcount(X, xbreaks=c(0, 0.3, 1), ybreaks=c(0, 0.4, 0.8, 1))
qX <- quadratcount(X, 4, 5)

# plotting:
plot(X, pch="+")
plot(qX, add=TRUE, col="red", cex=1.5, lty=2)

# irregular window
data(humberside)
plot(humberside)
qhH <- quadratcount(humberside, 2, 3)
plot(qhH, add=TRUE, col="blue", cex=1.5, lwd=2)

# multitype - split
plot(quadratcount(split(humberside), 2, 3))

# quadrats determined by tessellation:
B <- dirichlet(runifpoint(6))
qX <- quadratcount(X, tess=B)
plot(X, pch="+")
plot(qX, add=TRUE, col="red", cex=1.5, lty=2)
```
quadratresample

Resample a Point Pattern by Resampling Quadrats

Description

Given a point pattern dataset, create a resampled point pattern by dividing the window into rectangular quadrats and randomly resampling the list of quadrats.

Usage

quadratresample(x, nx, ny=nx, ...,
 replace = FALSE, nsamples = 1,
 verbose = (nsamples > 1))

Arguments

x A point pattern dataset (object of class "ppp").
nx, ny Numbers of quadrats in the x and y directions.
... Ignored.
replace Logical value. Specifies whether quadrats should be sampled with or without replacement.
nsamples Number of randomised point patterns to be generated.
verbose Logical value indicating whether to print progress reports.

Details

This command implements a very simple bootstrap resampling procedure for spatial point patterns x.

The dataset x must be a point pattern (object of class "ppp") and its observation window must be a rectangle.

The window is first divided into \(N = nx \times ny \) rectangular tiles (quadrats) of equal size and shape. To generate one resampled point pattern, a random sample of N quadrats is selected from the list of N quadrats, with replacement (if replace=TRUE) or without replacement (if replace=FALSE). The ith quadrat in the original dataset is then replaced by the ith sampled quadrat, after the latter is shifted so that it occupies the correct spatial position. The quadrats are then reconstituted into a point pattern inside the same window as x.

If replace=FALSE, this procedure effectively involves a random permutation of the quadrats. The resulting resampled point pattern has the same number of points as x. If replace=TRUE, the number of points in the resampled point pattern is random.

Value

A point pattern (if nsamples = 1) or a list of point patterns (if nsamples > 1).
quadrats

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
quadrats, quadratcount.

See varblock to estimate the variance of a summary statistic by block resampling.

Examples

data(bei)
quadratresample(bei, 6, 3)

quadrats

Divide Region into Quadrats

Description
Divides window into rectangular quadrats and returns the quadrats as a tessellation.

Usage
quadrats(X, nx = 5, ny = nx, xbreaks = NULL, ybreaks = NULL, keepempty=FALSE)

Arguments

- **X**
 A window (object of class "owin") or anything that can be coerced to a window using as.owin, such as a point pattern.

- **nx, ny**
 Numbers of quadrats in the x and y directions. Incompatible with xbreaks and ybreaks.

- **xbreaks**
 Numeric vector giving the x coordinates of the boundaries of the quadrats. Incompatible with nx.

- **ybreaks**
 Numeric vector giving the y coordinates of the boundaries of the quadrats. Incompatible with ny.

- **keepempty**
 Logical value indicating whether to delete or retain empty quadrats. See Details.

Details
If the window X is a rectangle, it is divided into an nx * ny grid of rectangular tiles or ‘quadrats’. If X is not a rectangle, then the bounding rectangle of X is first divided into an nx * ny grid of rectangular tiles, and these tiles are then intersected with the window X.

The resulting tiles are returned as a tessellation (object of class "tess") which can be plotted and used in other analyses.
If \texttt{xbreaks} is given, it should be a numeric vector giving the \(x\) coordinates of the quadrat boundaries. If it is not given, it defaults to a sequence of \(nx+1\) values equally spaced over the range of \(x\) coordinates in the window \(x \text{window}\).

Similarly if \texttt{ybreaks} is given, it should be a numeric vector giving the \(y\) coordinates of the quadrat boundaries. It defaults to a vector of \(ny+1\) values equally spaced over the range of \(y\) coordinates in the window. The lengths of \texttt{xbreaks} and \texttt{ybreaks} may be different.

By default (if \texttt{keepempty=FALSE}), any rectangular tile which does not intersect the window \(X\) is ignored, and only the non-empty intersections are treated as quadrats, so the tessellation may consist of fewer than \(nx \times ny\) tiles. If \texttt{keepempty=TRUE}, empty intersections are retained, and the tessellation always contains exactly \(nx \times ny\) tiles, some of which may be empty.

Value

A tessellation (object of class "tess") as described under \texttt{tess}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{tess, quadratcount, quadrat.test, quadratresample}

Examples

\begin{verbatim}
W <- square(10)
Z <- quadrats(W, 4, 5)
plot(Z)

data(letterR)
plot(quadrats(letterR, 5, 7))
\end{verbatim}
Arguments

- **data**: The observed data point pattern. An object of class "ppp" or in a format recognised by `as.ppp()`.
- **dummy**: The pattern of dummy points for the quadrature. An object of class "ppp" or in a format recognised by `as.ppp()`. Defaults to `default.dummy(data, ...)`. The name of the method for calculating quadrature weights: either "grid" or "dirichlet".
- **...**: Parameters of the weighting method (see below) and parameters for constructing the dummy points if necessary.

Details

This is the primary method for producing a quadrature schemes for use by `ppm`.

The function `ppm` fits a point process model to an observed point pattern using the Berman-Turner quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern, an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such quadrature schemes are represented by objects of class "quad". See `quad.object` for a description of this class.

Quadrature schemes are created by the function `quadscheme`. The arguments `data` and `dummy` specify the data and dummy points, respectively. There is a sensible default for the dummy points (provided by `default.dummy`). Alternatively, the dummy points may be specified arbitrarily and given in any format recognised by `as.ppp`. There are also functions for creating dummy patterns including `corners`, `gridcentres`, `stratrand` and `spokes`.

The quadrature region is the region over which we are integrating, and approximating integrals by finite sums. If `dummy` is a point pattern object (class "ppp") then the quadrature region is taken to be `dummy$window`. If `dummy` is just a list of x, y coordinates then the quadrature region defaults to the observation window of the data pattern, `data$window`.

If `dummy` is missing, then a pattern of dummy points will be generated using `default.dummy`, taking account of the optional arguments By default, the dummy points are arranged in a rectangular grid; recognised arguments include `nd` (the number of grid points in the horizontal and vertical directions) and `eps` (the spacing between dummy points). If `random=TRUE`, a systematic random pattern of dummy points is generated instead. See `default.dummy` for details.

If `method = "grid"` then the optional arguments (for ...) are (nd, ntile, eps). The quadrature region (defined above) is divided into an `ntile[1]` by `ntile[2]` grid of rectangular tiles. The weight for each quadrature point is the area of a tile divided by the number of quadrature points in that tile.

If `method="dirichlet"` then the optional arguments are (exact=TRUE, nd, eps). The quadrature points (both data and dummy) are used to construct the Dirichlet tessellation. The quadrature weight of each point is the area of its Dirichlet tile inside the quadrature region. If `exact == TRUE` then this area is computed exactly using the package `deldir`; otherwise it is computed approximately by discretisation.
Value

An object of class "quad" describing the quadrature scheme (data points, dummy points, and quadrature weights) suitable as the argument \(q \) of the function `ppm()` for fitting a point process model.

The quadrature scheme can be inspected using the `print` and `plot` methods for objects of class "quad".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm`, `as.ppp`, `quad.object`, `gridweights`, `dirichlet.weights`, `corners`, `gridcentres`, `stratrand`, `spokes`

Examples

data(simdat)

grid weights
Q <- quadscheme(simdat)
Q <- quadscheme(simdat, method="grid")
Q <- quadscheme(simdat, eps=0.5) # dummy point spacing 0.5 units

Q <- quadscheme(simdat, nd=50) # 1 dummy point per tile
Q <- quadscheme(simdat, ntile=25, nd=50) # 4 dummy points per tile

Dirichlet weights
Q <- quadscheme(simdat, method="dirichlet", exact=FALSE)

random dummy pattern
Not run:
D <- runifpoint(250, simdat$window)
Q <- quadscheme(simdat, D, method="dirichlet", exact=FALSE)

End(Not run)

polygonal window
data(demopat)
X <- unmark(demopat)
Q <- quadscheme(X)
Generate a Logistic Regression Quadrature Scheme from a Point Pattern

Description

Generates a logistic regression quadrature scheme (an object of class "logiquad" inheriting from "quad") from point patterns of data and dummy points.

Usage

quadscheme.logi(data, dummy, dummytype = "stratrand",
 nd = NULL, mark.repeat = FALSE, ...)

Arguments

data

The observed data point pattern. An object of class "ppp" or in a format recognised by as.ppp().

dummy

The pattern of dummy points for the quadrature. An object of class "ppp" or in a format recognised by as.ppp(). If missing a sensible default is generated.

dummytype

The name of the type of dummy points to use when "dummy" is missing. Currently available options are: "stratrand" (default), "binomial", "poisson", "grid" and "transgrid".

nd

Integer, or integer vector of length 2 controlling the intensity of dummy points when "dummy" is missing.

mark.repeat

Repeating the dummy points for each level of a marked data pattern when "dummy" is missing. (See details.)

...

Ignored.

Details

This is the primary method for producing a quadrature schemes for use by ppm when the logistic regression approximation (Baddeley et al. 2013) to the pseudolikelihood of the model is applied (i.e. when method="logi" in ppm).

The function ppm fits a point process model to an observed point pattern. When used with the option method="logi" it requires a quadrature scheme consisting of the original data point pattern and an additional pattern of dummy points. Such quadrature schemes are represented by objects of class "logiquad".

Quadrature schemes are created by the function quadscheme.logi. The arguments data and dummy specify the data and dummy points, respectively. There is a sensible default for the dummy points.
Alternatively the dummy points may be specified arbitrarily and given in any format recognised by `as.ppp`.

The quadrature region is the region over which we are integrating, and approximating integrals by finite sums. If `dummy` is a point pattern object (class "ppp") then the quadrature region is taken to be `dummy$window`. If `dummy` is just a list of \(x, y\) coordinates then the quadrature region defaults to the observation window of the data pattern, `data$window`.

If `dummy` is missing, then a pattern of dummy points will be generated, taking account of the optional arguments `dummytype`, `nd`, and `mark.repeat`.

The currently accepted values for `dummytype` are:

- "grid" where the frame of the window is divided into a \(nd \times nd[1] \times nd[2]\) regular grid of tiles and the centers constitutes the dummy points.
- "transgrid" where a regular grid as above is translated by a random vector.
- "stratrand" where each point of a regular grid as above is randomly translated within its tile.
- "binomial" where \(nd \times nd[1] \times nd[2]\) points are generated uniformly in the frame of the window. "poisson" where a homogeneous Poisson point process with intensity \(nd \times nd[1] \times nd[2]\) is generated within the frame of observation window.

Then if the window is not rectangular, any dummy points lying outside it are deleted.

If `data` is a multitype point pattern the dummy points should also be marked (with the same levels of the marks as `data`). If `dummy` is missing and the dummy pattern is generated by `quadscheme.logi` the default behaviour is to attach a uniformly distributed mark (from the levels of the marks) to each dummy point. Alternatively, if `mark.repeat=TRUE` each dummy point is repeated as many times as there are levels of the marks with a distinct mark value attached to it.

Finally, each point (data and dummy) is assigned the weight 1. The weights are never used and only appear to be compatible with the class "quad" from which the "logiquad" object inherits.

Value

An object of class "logiquad" inheriting from "quad" describing the quadrature scheme (data points, dummy points, and quadrature weights) suitable as the argument `Q` of the function `ppm()` for fitting a point process model.

The quadrature scheme can be inspected using the `print` and `plot` methods for objects of class "quad".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

quantess

See Also

ppm, as.ppp

Examples

data(simdat)
Q <- quadscheme.logi(simdat)

 quantess Quantile Tessellation

Description

Divide space into tiles which contain equal amounts of stuff.

Usage

quantess(M, Z, n, ...)

S3 method for class 'owin'
quantess(M, Z, n, ...)

S3 method for class 'ppp'
quantess(M, Z, n, ...)

S3 method for class 'im'
quantess(M, Z, n, ...)

Arguments

M A spatial object (such as a window, point pattern or pixel image) determining
the weight or amount of stuff at each location.

Z A spatial covariate (a pixel image or a function(x,y)) or one of the strings "x"
or "y" indicating the x or y coordinate. The range of values of Z will be broken
into n bands containing equal amounts of stuff.

n Number of bands. A positive integer.

... Ignored. Additional arguments passed to quadrats or tess defining another
tessellation which should be intersected with the quantile tessellation.
Details

A quantile tessellation is a division of space into pieces which contain equal amounts of stuff.

The function `quantess` computes a quantile tessellation and returns the tessellation itself. The function `quantess` is generic, with methods for windows (class "owin"), point patterns ("ppp") and pixel images ("im").

The first argument `M` (for mass) specifies the spatial distribution of stuff that is to be divided. If `M` is a window, the area of the window is to be divided into `n` equal pieces. If `M` is a point pattern, the number of points in the pattern is to be divided into `n` equal parts, as far as possible. If `M` is a pixel image, the pixel values are interpreted as weights, and the total weight is to be divided into `n` equal parts.

The second argument `Z` is a spatial covariate. The range of values of `Z` will be divided into `n` bands, each containing the same total weight. That is, we determine the quantiles of `Z` with weights given by `M`.

For convenience, additional arguments ... can be given, to further subdivide the tiles of the tessellation.

The result of `quantess` is a tessellation of as.owin(M) determined by the quantiles of `Z`.

Value

A tessellation (object of class "tess").

Author(s)

Original idea by Ute Hahn. Implemented in spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, quadrats, quantile, tilenames

Examples

```r
plot(quantess(letterR, "x", 5))
plot(quantess(bronzefilter, "x", 6))
points(unmark(bronzefilter))
opa <- par(mar=c(0,0,2,5))
A <- quantess(Window(bei), bei.extra$elev, 4)
plot(A, ribargs=list(las=1))
B <- quantess(bei, bei.extra$elev, 4)
tilenames(B) <- paste(ordinal(1:4), "quartile")
plot(B, ribargs=list(las=1))
points(bei, pch=".", cex=2, col="white")
par(opa)
```
quantile.ewcdf

Quantiles of Weighted Empirical Cumulative Distribution Function

Description

Compute quantiles of a weighted empirical cumulative distribution function.

Usage

```r
## S3 method for class 'ewcdf'
quantile(x, probs = seq(0, 1, 0.25), names = TRUE, ...)
```

Arguments

- `x`: A weighted empirical cumulative distribution function (object of class "ewcdf", produced by `ewcdf`) for which the quantiles are desired.
- `probs`: probabilities for which the quantiles are desired. A numeric vector of values between 0 and 1.
- `names`: Logical. If TRUE, the resulting vector of quantiles is annotated with names corresponding to `probs`.
- `...`: Ignored.

Details

This is a method for the generic `quantile` function for the class `ewcdf` of empirical weighted cumulative distribution functions.

The quantile for a probability `p` is computed as the right-continuous inverse of the cumulative distribution function.

Value

Numeric vector of quantiles, of the same length as `probs`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/], Rolf Turner <r.turner@auckland.ac.nz> and Kevin Ummel.

See Also

`ewcdf`, `quantile`

Examples

```r
z <- rnorm(50)
w <- runif(50)
Fun <- ewcdf(z, w)
quantile(Fun, c(0.95, 0.99))
```
Sample Quantiles of Pixel Image

Description

Compute the sample quantiles of the pixel values of a given pixel image.

Usage

S3 method for class 'im'
quantile(x, ...)

Arguments

- `x`
 A pixel image. An object of class "im".
- `...`
 Optional arguments passed to `quantile.default`. They determine the probabilities for which quantiles should be computed. See `quantile.default`.

Details

This simple function applies the generic `quantile` operation to the pixel values of the image `x`. This function is a convenient way to inspect an image and to obtain summary statistics. See the examples.

Value

A vector of quantiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`quantile`, `cut.im`, `im.object`

Examples

```r
# artificial image data
Z <- setcov(square(1))

# find the quartiles
quantile(Z)

# find the deciles
quantile(Z, probs=(0:10)/10)
```
Quasirandom Patterns

Description
Generates quasirandom sequences of numbers and quasirandom spatial patterns of points in any dimension.

Usage
- `vdCorput(n, base)`
- `Halton(n, bases = c(2, 3), raw = FALSE, simplify = TRUE)`
- `Hammersley(n, bases = 2, raw = FALSE, simplify = TRUE)`

Arguments
- `n`: Number of points to generate.
- `base`: A prime number giving the base of the sequence.
- `bases`: Vector of prime numbers giving the bases of the sequences for each coordinate axis.
- `raw`: Logical value indicating whether to return the coordinates as a matrix (`raw=TRUE`) or as a spatial point pattern (`raw=FALSE`, the default).
- `simplify`: Argument passed to `ppx` indicating whether point patterns of dimension 2 or 3 should be returned as objects of class "ppp" or "pp3" respectively (`simplify=TRUE`, the default) or as objects of class "ppx" (`simplify=FALSE`).

Details
The function `vdCorput` generates the quasirandom sequence of Van der Corput (1935) of length n with the given base. These are numbers between 0 and 1 which are in some sense uniformly distributed over the interval.

The function `Halton` generates the Halton quasirandom sequence of points in d-dimensional space, where $d = \text{length}(\text{bases})$. The values of the i-th coordinate of the points are generated using the van der Corput sequence with base equal to $\text{bases}[i]$.

The function `Hammersley` generates the Hammersley set of points in $d+1$-dimensional space, where $d = \text{length}(\text{bases})$. The first d coordinates of the points are generated using the van der Corput sequence with base equal to $\text{bases}[i]$. The $d+1$-th coordinate is the sequence $1/n, 2/n, \ldots, 1$.

If `raw=FALSE` (the default) then the Halton and Hammersley sets are interpreted as spatial point patterns of the appropriate dimension. They are returned as objects of class "ppx" (multidimensional point patterns) unless `simplify=TRUE` and $d=2$ or $d=3$ when they are returned as objects of class "ppp" or "pp3". If `raw=TRUE`, the coordinates are returned as a matrix with n rows and D columns where D is the spatial dimension.
Range of Function Values

Compute the range, maximum, or minimum of the function values in a summary function.

Usage

```r
## S3 method for class 'fv'
range(..., na.rm = TRUE, finite = na.rm)

## S3 method for class 'fv'
max(..., na.rm = TRUE, finite = na.rm)

## S3 method for class 'fv'
min(..., na.rm = TRUE, finite = na.rm)
```
Arguments

... One or more function value tables (objects of class "fv" representing summary functions) or other data.

na.rm Logical. Whether to ignore NA values.

finite Logical. Whether to ignore values that are infinite, NaN or NA.

Details

These are methods for the generic range, max and min. They compute the range, maximum, and minimum of the function values that would be plotted on the y axis by default.

For more complicated calculations, use with.fv.

Value

Numeric vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/,
Rolf Turner and Ege Rubak.

See Also

with.fv

Examples

G <- Gest(cells)
range(G)
max(G)
min(G)

raster.x Cartesian Coordinates for a Pixel Raster

Description

Return the x and y coordinates of each pixel in a pixel image or binary mask.

Usage

raster.x(w, drop=FALSE)
raster.y(w, drop=FALSE)
raster.xy(w, drop=FALSE)
Arguments

w A pixel image (object of class "im") or a mask window (object of class "owin" of type "mask").
drop Logical. If TRUE, then coordinates of pixels that lie outside the window are removed. If FALSE (the default) then the coordinates of every pixel in the containing rectangle are retained.

Details

The argument w should be either a pixel image (object of class "im") or a mask window (an object of class "owin" of type "mask").

If drop=FALSE (the default), the functions raster.x and raster.y return a matrix of the same dimensions as the pixel image or mask itself, with entries giving the x coordinate (for raster.x) or y coordinate (for raster.y) of each pixel in the pixel grid.

If drop=TRUE, pixels that lie outside the window w (or outside the domain of the image w) are removed, and raster.x and raster.y return numeric vectors containing the coordinates of the pixels that are inside the window w.

The function raster.xy returns a list with components x and y which are numeric vectors of equal length containing the pixel coordinates.

Value

raster.xy returns a list with components x and y which are numeric vectors of equal length containing the pixel coordinates.

If drop=FALSE, raster.x and raster.y return a matrix of the same dimensions as the pixel grid in w, and giving the value of the x (or y) coordinate of each pixel in the raster.

If drop=TRUE, raster.x and raster.y return numeric vectors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`owin, as.mask, pixelcentres`

Examples

```r
u <- owin(c(-1,1),c(-1,1)) # square of side 2
w <- as.mask(u, eps=0.01) # 200 x 200 grid
X <- raster.x(w)
Y <- raster.y(w)
disc <- owin(c(-1,1), c(-1,1), mask=(X^2 + Y^2 <= 1))
## Not run: plot(disc)
# approximation to the unit disc
```
Description

Stores the numerator, denominator, and value of a ratio as a single object.

Usage

\[\text{rat}(\text{ratio}, \text{numerator}, \text{denominator}, \text{check} = \text{TRUE}) \]

Arguments

- `ratio, numerator, denominator`

 Three objects belonging to the same class.

- `check`

 Logical. Whether to check that the objects are compatible.

Details

The class "rat" is a simple mechanism for keeping track of the numerator and denominator when calculating a ratio. Its main purpose is simply to signal that the object is a ratio.

The function `rat` creates an object of class "rat" given the numerator, the denominator and the ratio. No calculation is performed; the three objects are simply stored together.

The arguments `ratio, numerator, denominator` can be objects of any kind. They should belong to the same class. It is assumed that the relationship

\[\text{ratio} = \frac{\text{numerator}}{\text{denominator}} \]

holds in some version of arithmetic. However, no calculation is performed.

By default the algorithm checks whether the three arguments `ratio, numerator, denominator` are compatible objects, according to compatible.

The result is equivalent to `ratio` except for the addition of extra information.

Value

An object equivalent to the object `ratio` except that it also belongs to the class "rat" and has additional attributes `numerator` and `denominator`.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

compatible, pool
rCauchy

Simulate Neyman-Scott Point Process with Cauchy cluster kernel

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Cauchy cluster kernel.

Usage

```r
crcauchy(kappa, scale, mu, win = owin(), thresh = 0.001, 
nsim = 1, drop = TRUE, 
savelambda = FALSE, expand = NULL, ...)
```

Arguments

- **kappa**: Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
- **scale**: Scale parameter for cluster kernel. Determines the size of clusters. A positive number, in the same units as the spatial coordinates.
- **mu**: Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
- **win**: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **thresh**: Threshold relative to the cluster kernel value at the origin (parent location) determining when the cluster kernel will be treated as zero for simulation purposes. Will be overridden by argument `expand` if that is given.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If `nsim` = 1 and `drop` = `TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.
- **savelambda**: Logical. If `TRUE` then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
- **expand**: Numeric. Size of window expansion for generation of parent points. By default determined by calling `clusterradius` with the numeric threshold value given in `thresh`.
- **...**: Passed to `clusterfield` to control the image resolution when `savelambda` = `TRUE` and to `clusterradius` when `expand` is missing or NULL.

Details

This algorithm generates a realisation of the Neyman-Scott process with Cauchy cluster kernel, inside the window `win`.
The process is constructed by first generating a Poisson point process of “parent” points with intensity \(\kappa \). Then each parent point is replaced by a random cluster of points, the number of points in each cluster being random with a Poisson (\(\mu \)) distribution, and the points being placed independently and uniformly according to a Cauchy kernel.

In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.

This model can be fitted to data by the method of minimum contrast, maximum composite likelihood or Palm likelihood using \texttt{kppm}.

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

- The parent points can be spatially inhomogeneous. If the argument \(\kappa \) is a function \(H(x, y) \) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument \(\mu \) is a function \(H(x, y) \) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (\(\kappa \) is a single number) and the offspring are inhomogeneous (\(\mu \) is a function or pixel image), the model can be fitted to data using \texttt{kppm}.

Value

A point pattern (an object of class "ppp") if \(nsim = 1 \), or a list of point patterns if \(nsim > 1 \).

Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see \texttt{rNeymanScott}). Furthermore, the simulated intensity function is returned as an attribute "\text{Lambda}" if \texttt{saveLambda=TRUE}.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for \texttt{spatstat} by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

\texttt{rpoispp}, \texttt{rMatClust}, \texttt{rThomas}, \texttt{rVarGamma}, \texttt{rNeymanScott}, \texttt{rGaussPoisson}, \texttt{kppm}, \texttt{clusterfit}.
Examples

homogeneous
X <- rCauchy(30, 0.01, 5)
inhomogeneous
Z <- as.im(function(x,y){ exp(2 - 3 * x) }, W= owin())
Y <- rCauchy(50, 0.01, Z)

rcell

Simulate Baddeley-Silverman Cell Process

Description

Generates a random point pattern, a simulated realisation of the Baddeley-Silverman cell process model.

Usage

rcell(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
N=10, nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of columns of cells in the window. Incompatible with dx.
ny Number of rows of cells in the window. Incompatible with dy.
... Ignored.
dx Width of the cells. Incompatible with nx.
dy Height of the cells. Incompatible with ny.
N Integer. Distributional parameter: the maximum number of random points in each cell. Passed to rcellnumber.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a simulated realisation of the “cell process” (Baddeley and Silverman, 1984), a random point process with the same second-order properties as the uniform Poisson process. In particular, the K function of this process is identical to the K function of the uniform Poisson process (aka Complete Spatial Randomness). The same holds for the pair correlation function and all other second-order properties. The cell process is a counterexample to the claim that the K function completely characterises a point pattern.

A cell process is generated by dividing space into equal rectangular tiles. In each tile, a random number of random points is placed. By default, there are either 0, 1 or 10 points, with probabilities...
1/10, 8/9 and 1/90 respectively. The points within a tile are independent and uniformly distributed in that tile, and the numbers of points in different tiles are independent random integers.

The tile width is determined either by the number of columns n_x or by the horizontal spacing dx. The tile height is determined either by the number of rows n_y or by the vertical spacing dy. The cell process is then generated in these tiles. The random numbers of points are generated by `rcellnumber`.

Some of the resulting random points may lie outside the window win: if they do, they are deleted. The result is a point pattern inside the window win.

Value

A point pattern (an object of class "ppp") if $nsim=1$, or a list of point patterns if $nsim > 1$.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`rcellnumber, rstrat, rsyst, runifpoint, Kest`

Examples

```r
X <- rcell(nx=15)
plot(X)
plot(Kest(X))
```

rcellnumber

Generate Random Numbers of Points for Cell Process

Description

Generates random integers for the Baddeley-Silverman counterexample.

Usage

```r
rcellnumber(n, N = 10)
```

Arguments

- **n**: Number of random integers to be generated.
- **N**: Distributional parameter: the largest possible value. An integer greater than 1.
Details

This function generates random integers which have mean and variance equal to 1, but which do not have a Poisson distribution. The random integers take the values 0, 1 and \(N \) with probabilities \(1/N, (N-2)/(N-1) \) and \(1/(N(N-1)) \) respectively. See Baddeley and Silverman (1984).

Value

An integer vector of length \(n \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rcell

Examples

rcellnumber(30, 3)
expand Logical. If FALSE, simulation is performed in the window \(W \), which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window \(W \). Alternatively expand can be an object of class "rmhexpand" (see \texttt{rmhexpand}) determining the expansion method.

\texttt{nsim} Number of simulated realisations to be generated.

Details

This function generates a realisation of the Diggle-Gates-Stibbard point process in the window \(W \) using a ‘perfect simulation’ algorithm.

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair of points separated by a distance \(d \) contributes a factor \(e(d) \) to the probability density, where

\[
e(d) = \sin^2 \left(\frac{\pi d}{2 \rho} \right)
\]

for \(d < \rho \), and \(e(d) \) is equal to 1 for \(d \geq \rho \).

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’ as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in \texttt{rmh}, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If \(\texttt{nsim} = 1 \), a point pattern (object of class "ppp"). If \(\texttt{nsim} > 1 \), a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian} based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

See Also

rmh, DiggleGatesStibbard, rStrauss, rHardcore, rDiggleGratton.

Examples

X <- rDGS(50, 0.05)

rDiggleGratton

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gratton process, using a
perfect simulation algorithm.

Usage

rDiggleGratton(beta, delta, rho, kappa=1, W = owin(), expand=TRUE, nsim=1)

Arguments

beta intensity parameter (a positive number).
delta hard core distance (a non-negative number).
rho interaction range (a number greater than delta).
kappa interaction exponent (a non-negative number).
W window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
expand Logical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see rmhexpand) determining the expansion method.
nsim Number of simulated realisations to be generated.

Details

This function generates a realisation of the Diggle-Gratton point process in the window W using a
'perfect simulation' algorithm.

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with pair potential \(h(t) \) of the form

\[
h(t) = \left(\frac{t - \delta}{\rho - \delta} \right)^\kappa \quad \text{if } \delta \leq t \leq \rho
\]

with \(h(t) = 0 \) for \(t < \delta \) and \(h(t) = 1 \) for \(t > \rho \). Here \(\delta, \rho \) and \(\kappa \) are parameters.
Note that we use the symbol \(\kappa \) where Diggle and Gratton (1984) use \(\beta \), since in \texttt{spatstat} we reserve the symbol \(\beta \) for an intensity parameter.

The parameters must all be nonnegative, and must satisfy \(\delta \leq \rho \).

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’ as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in \texttt{rmh}, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

\textbf{Value}

If \(\texttt{nsim} = 1 \), a point pattern (object of class "ppp"). If \(\texttt{nsim} > 1 \), a list of point patterns.

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

\textbf{References}

\textbf{See Also}

\texttt{rmh, DiggleGratton, rStrauss, rHardcore}.

\textbf{Examples}

\begin{verbatim}
X <- rDiggleGratton(50, 0.02, 0.07)
\end{verbatim}
Interaction Distance of a Point Process

Description
Computes the interaction distance of a point process.

Usage

reach(x, ...)

```r
# S3 method for class 'ppm'
reach(x, ..., epsilon=0)

# S3 method for class 'interact'
reach(x, ...)

# S3 method for class 'rmhmodel'
reach(x, ...)

# S3 method for class 'fii'
reach(x, ..., epsilon)
```

Arguments

- `x` Either a fitted point process model (object of class "ppm"), an interpoint interaction (object of class "interact"), a fitted interpoint interaction (object of class "fii") or a point process model for simulation (object of class "rmhmodel").
- `epsilon` Numerical threshold below which interaction is treated as zero. See details.
- `...` Other arguments are ignored.

Details
The ‘interaction distance’ or ‘interaction range’ of a point process model is the smallest distance \(D \) such that any two points in the process which are separated by a distance greater than \(D \) do not interact with each other.

For example, the interaction range of a Strauss process (see **Strauss**) with parameters \(\beta, \gamma, r \) is equal to \(r \), unless \(\gamma = 1 \) in which case the model is Poisson and the interaction range is 0. The interaction range of a Poisson process is zero. The interaction range of the Ord threshold process (see **OrdThresh**) is infinite, since two points may interact at any distance apart.

The function `reach(x)` is generic, with methods for the case where `x` is

- a fitted point process model (object of class "ppm", usually obtained from the model-fitting function `ppm`);
- an interpoint interaction structure (object of class "interact"), created by one of the functions `Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton, Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh or Ord;
reach

- a fitted interpoint interaction (object of class "fii") extracted from a fitted point process model by the command fitin;
- a point process model for simulation (object of class "rmhmodel"), usually obtained from rmhmodel.

When \(x \) is an "interact" object, \(\text{reach}(x) \) returns the maximum possible interaction range for any point process model with interaction structure given by \(x \). For example, \(\text{reach}((\text{Strauss}(0.2)) \) returns 0.2.

When \(x \) is a "ppm" object, \(\text{reach}(x) \) returns the interaction range for the point process model represented by \(x \). For example, a fitted Strauss process model with parameters \(\beta, \gamma, r \) will return either \(\beta \) or \(r \), depending on whether the fitted interaction parameter \(\gamma \) is equal or not equal to 1.

For some point process models, such as the soft core process (see Softcore), the interaction distance is infinite, because the interaction terms are positive for all pairs of points. A practical solution is to compute the distance at which the interaction contribution from a pair of points falls below a threshold \(\epsilon \), on the scale of the log conditional intensity. This is done by setting the argument \(\epsilon \) to a positive value.

Value

The interaction distance, or NA if this cannot be computed from the information given.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton, Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh, Ord, rmhmodel

Examples

\begin{verbatim}
reach(Poisson())
returns 0

reach(Strauss(r=7))
returns 7
fit <- ppm(swedishpines ~ 1, Strauss(r=7))
reach(fit)
returns 7

reach(OrdThresh(42))
returns Inf

reach(MultiStrauss(matrix(c(1,3,3,1),2,2)))
returns 3
\end{verbatim}
Reduced Sample Estimator using Histogram Data

Description

Compute the Reduced Sample estimator of a survival time distribution function, from histogram data.

Usage

reduced.sample(nco, cen, ncc, show=FALSE, uppercen=0)

Arguments

nco vector of counts giving the histogram of uncensored observations (those survival times that are less than or equal to the censoring time)

cen vector of counts giving the histogram of censoring times

ncc vector of counts giving the histogram of censoring times for the uncensored observations only

uppercen number of censoring times greater than the rightmost histogram breakpoint (if there are any)

show Logical value controlling the amount of detail returned by the function value (see below)

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications where you want to form the reduced sample estimator from a huge dataset.

Suppose \(T_i \) are the survival times of individuals \(i = 1, \ldots, M \) with unknown distribution function \(F(t) \) which we wish to estimate. Suppose these times are right-censored by random censoring times \(C_i \). Thus the observations consist of right-censored survival times \(\tilde{T}_i = \min(T_i, C_i) \) and non-censoring indicators \(D_i = 1 \{ T_i \leq C_i \} \) for each \(i \).

If the number of observations \(M \) is large, it is efficient to use histograms. Form the histogram cen of all censoring times \(C_i \). That is, obs[k] counts the number of values \(C_i \) in the interval \([b[k], b[k+1]]) for \(k > 1 \) and \([b[1], b[2]]) for \(k = 1 \). Also form the histogram nco of all uncensored times, i.e. those \(\tilde{T}_i \) such that \(D_i = 1 \), and the histogram of all censoring times for which the survival time is uncensored, i.e. those \(C_i \) such that \(D_i = 1 \). These three histograms are the arguments passed to kaplan.meier.

The return value rs is the reduced-sample estimator of the distribution function \(F(t) \). Specifically, rs[k] is the reduced sample estimate of \(\mathbb{P}(b[k],b[k+1]) \). The value is exact, i.e. the use of histograms does not introduce any approximation error.

Note that, for the results to be valid, either the histogram breaks must span the censoring times, or the number of censoring times that do not fall in a histogram cell must have been counted in uppercen.
Value

If `show = FALSE`, a numeric vector giving the values of the reduced sample estimator. If `show=TRUE`, a list with three components which are vectors of equal length,

- `rs` Reduced sample estimate of the survival time c.d.f. $F(t)$
- `numerator` numerator of the reduced sample estimator
- `denominator` denominator of the reduced sample estimator

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`kaplan.meier`, `km.rs`

redwood

California Redwoods Point Pattern (Ripley’s Subset)

Description

Locations of 62 seedlings and saplings of California redwood trees.
The data represent the locations of 62 seedlings and saplings of California redwood trees in a square sampling region. They originate from Strauss (1975); the present data are a subset extracted by Ripley (1977) in a subregion that has been rescaled to a unit square.
The coordinates are rounded to the nearest 0.01 units, except for one point which has an x coordinate of 0.999, presumably to ensure that it is properly inside the window.
There are many further analyses of this dataset. It is often used as a canonical example of a clustered point pattern (see e.g. Diggle, 1983).
The original, full redwood dataset is supplied in the spatstat library as `redwoodfull`.

Usage

```r
data(redwood)
```

Format

An object of class “ppp” representing the point pattern of tree locations. The window has been rescaled to the unit square.
See `ppp.object` for details of the format of a point pattern object.

Source

Strauss (1975), subset extracted by Ripley (1977)
References

See Also

redwoodfull

redwoodfull California Redwoods Point Pattern (Entire Dataset)

Description

These data represent the locations of 195 seedlings and saplings of California redwood trees in a square sampling region. They were described and analysed by Strauss (1975). This is the “full” dataset; most writers have analysed a subset extracted by Ripley (1977) which is available as redwood.

Strauss (1975) divided the sampling region into two subregions I and II demarcated by a diagonal line. The spatial pattern appears to be slightly regular in region I and strongly clustered in region II.

Strauss (1975) writes: “It was felt that the seedlings would be scattered fairly randomly, except that a number of tight clusters would form around some of the redwood tree stumps present in the plot. A discontinuity in the soil, very roughly demarked by the diagonal line in the figure, was expected to cause a difference in clustering behaviour between regions I and II. Moreover, almost all the redwood stumps were situated in region II.”

The dataset redwoodfull contains the full point pattern of 195 trees. The window has been rescaled to the unit square. Its physical size is approximately 130 feet across.

The auxiliary information about the subregions is contained in redwoodfull.extra, which is a list with entries

```
rdiag  The coordinates of the diagonal boundary between regions I and II
regionI  Region I as a window object
regionII  Region II as a window object
regionR  Ripley’s subrectangle (approximate)
plotit  Function to plot the full data and auxiliary markings
```

Ripley (1977) extracted a subset of these data, containing 62 points, lying within a square subregion which overlaps regions I and II. He rescaled that subset to the unit square. This subset has been re-analysed many times, and is the dataset usually known as “the redwood data” in the spatial statistics literature. The exact dataset used by Ripley is supplied in the spatstat library as redwood.

The approximate position of the square chosen by Ripley within the redwoodfull pattern is indicated by the window redwoodfull.extra$regionR. There are some minor inconsistencies with
redwood full

redwood since it originates from a different digitisation.

Usage

data(redwoodfull)

Format

The dataset redwood full is an object of class "ppp" representing the point pattern of tree locations. See ppp.object for details of the format of a point pattern object. The window has been rescaled to the unit square. Its physical size is approximately 128 feet across.

The dataset redwoodfull.extra is a list with entries

- rdiag coordinates of endpoints of a line, in format list(x=numeric(2),y=numeric(2))
- regionI a window object
- regionII a window object
- regionR a window object
- plotit Function with no arguments

Source

Strauss (1975). The plot of the data published by Strauss (1975) was scanned and digitised by Sandra Pereira, University of Western Australia, 2002.

References

See Also

redwood

Examples

data(redwoodfull)
plot(redwoodfull)
redwoodfull.extra$plotit()
extract the pattern in region II
redwoodII <- redwoodfull[, redwoodfull.extra$regionII]
reflect

Reflect In Origin

Description
Reflects a geometrical object through the origin.

Usage

```r
reflect(X)
```

```r
## S3 method for class 'im'
reflect(X)
```

```r
## Default S3 method:
reflect(X)
```

Arguments

- `X` Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), or a window (object of class "owin").

Details
The object `X` is reflected through the origin. That is, each point in `X` with coordinates `(x, y)` is mapped to the position `(-x, -y)`.

This is equivalent to applying the affine transformation with matrix `diag(c(-1,-1))`. It is also equivalent to rotation about the origin by 180 degrees.

The command `reflect` is generic, with a method for pixel images and a default method.

Value
Another object of the same type, representing the result of reflection.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `affine`
- `flipxy`

Examples

```r
plot(reflect(as.im(letterR)))
plot(reflect(letterR), add=TRUE)
```
reload.or.compute
Compute Unless Previously Saved

Description

If the designated file does not yet exist, evaluate the expression and save the results in the file. If the file already exists, re-load the results from the file.

Usage

```
reload.or.compute(filename, expr, objects = NULL, destination = parent.frame())
```

Arguments

- `filename` Name of data file. A character string.
- `expr` R language expression to be evaluated.
- `objects` Optional character vector of names of objects to be saved in `filename` after evaluating `expr`, or names of objects that should be present in `filename` when loaded.
- `destination` Environment in which the resulting objects should be assigned.

Details

This facility is useful for saving, and later re-loading, the results of time-consuming computations. It would typically be used in an R script file or an Sweave document.

If the file called `filename` does not yet exist, then `expr` will be evaluated and the results will be saved in `filename`. The optional argument `objects` specifies which results should be saved to the file: the default is to save all objects that were created by evaluating the expression.

If the file called `filename` already exists, then it will be loaded. The optional argument `objects` specifies the names of objects that should be present in the file; a warning is issued if any of them are missing.

The resulting objects can be assigned into any desired `destination`. The default behaviour is equivalent to evaluating `expr` in the current environment.

Value

Character vector (invisible) giving the names of the objects computed or loaded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
Examples

Not run:

```r
reload.or.compute("mydata.rda", {
  x <- very.long.computation()
  y <- 42
})
```

End(Not run)

relrisk

Estimate of Spatially-Varying Relative Risk

Description

Generic command to estimate the spatially-varying probability of each type of point, or the ratios of such probabilities.

Usage

```r
relrisk(X, ...)
```

Arguments

- `X`: Either a point pattern (class "ppp") or a fitted point process model (class "ppm") from which the probabilities will be estimated.
- `...`: Additional arguments appropriate to the method.

Details

In a point pattern containing several different types of points, we may be interested in the spatially-varying probability of each possible type, or the relative risks which are the ratios of such probabilities.

The command `relrisk` is generic and can be used to estimate relative risk in different ways.

The function `relrisk.ppp` is the method for point pattern datasets. It computes *nonparametric* estimates of relative risk by kernel smoothing.

The function `relrisk.ppm` is the method for fitted point process models (class "ppm"). It computes *parametric* estimates of relative risk, using the fitted model.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`relrisk.ppp`, `relrisk.ppm`
Parametric Estimate of Spatially-Varying Relative Risk

Description

Given a point process model fitted to a multitype point pattern, this function computes the fitted spatially-varying probability of each type of point, or the ratios of such probabilities, according to the fitted model. Optionally the standard errors of the estimates are also computed.

Usage

```r
## S3 method for class 'ppm'
relrisk(X, ..., 
  at = c("pixels", "points"),
  relative = FALSE, se = FALSE,
  casecontrol = TRUE, control = 1, case,
  ngrid = NULL, window = NULL)
```

Arguments

- `X`: A fitted point process model (object of class "ppm").
- `...`: Ignored.
- `at`: String specifying whether to compute the probability values at a grid of pixel locations (at="pixels") or only at the points of `X` (at="points").
- `relative`: Logical. If `FALSE` (the default) the algorithm computes the probabilities of each type of point. If `TRUE`, it computes the relative risk, the ratio of probabilities of each type relative to the probability of a control.
- `se`: Logical value indicating whether to compute standard errors as well.
- `casecontrol`: Logical. Whether to treat a bivariate point pattern as consisting of cases and controls, and return only the probability or relative risk of a case. Ignored if there are more than 2 types of points. See Details.
- `control`: Integer, or character string, identifying which mark value corresponds to a control.
- `case`: Integer, or character string, identifying which mark value corresponds to a case (rather than a control) in a bivariate point pattern. This is an alternative to the argument `control` in a bivariate point pattern. Ignored if there are more than 2 types of points.
- `ngrid`: Optional. Dimensions of a rectangular grid of locations inside `window` where the predictions should be computed. An integer, or an integer vector of length 2, specifying the number of grid points in the `y` and `x` directions. (Applies only when `at="pixels"`.)
- `window`: Optional. A window (object of class "owin") delimiting the locations where predictions should be computed. Defaults to the window of the original data used to fit the model object. (Applies only when `at="pixels"`.)
The command `relrisk` is generic and can be used to estimate relative risk in different ways. This function `relrisk.ppm` is the method for fitted point process models (class "ppm"). It computes parametric estimates of relative risk, using the fitted model.

If \(X \) is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by default, the points of the first type (the first level of `marks(X)`) are treated as controls or non-events, and points of the second type are treated as cases or events. Then by default this command computes the spatially-varying probability of a case, i.e. the probability \(p(u) \) that a point at spatial location \(u \) will be a case. If `relative=TRUE`, it computes the spatially-varying relative risk of a case relative to a control, \(r(u) = p(u)/(1 - p(u)) \).

If \(X \) is a multitype point pattern with \(m > 2 \) types, or if \(X \) is a bivariate point pattern and `casecontrol=FALSE`, then by default this command computes, for each type \(j \), a nonparametric estimate of the spatially-varying probability of an event of type \(j \). This is the probability \(p_j(u) \) that a point at spatial location \(u \) will belong to type \(j \). If `relative=TRUE`, the command computes the relative risk of an event of type \(j \) relative to a control, \(r_j(u) = p_j(u)/p_k(u) \), where events of type \(k \) are treated as controls.

The argument `control` determines which type \(k \) is treated as a control.

If `at="pixels"` the calculation is performed for every spatial location \(u \) on a fine pixel grid, and the result is a pixel image representing the function \(p(u) \) or a list of pixel images representing the functions \(p_j(u) \) or \(r_j(u) \) for \(j = 1, \ldots, m \). An infinite value of relative risk (arising because the probability of a control is zero) will be returned as `NA`.

If `at="points"` the calculation is performed only at the data points \(x_i \). By default the result is a vector of values \(p(x_i) \) giving the estimated probability of a case at each data point, or a matrix of values \(p_j(x_i) \) giving the estimated probability of each possible type \(j \) at each data point. If `relative=TRUE` then the relative risks \(r(x_i) \) or \(r_j(x_i) \) are returned. An infinite value of relative risk (arising because the probability of a control is zero) will be returned as `Inf`.

Probabilities and risks are computed from the fitted intensity of the model, using `predict.ppm`. If `se=TRUE` then standard errors will also be computed, based on asymptotic theory, using `vcov.ppm`.

Value

If `se=FALSE` (the default), the format is described below. If `se=TRUE`, the result is a list of two entries, `estimate` and `SE`, each having the format described below.

If \(X \) consists of only two types of points, and if `casecontrol=TRUE`, the result is a pixel image (if `at="pixels"`) or a vector (if `at="points"`). The pixel values or vector values are the probabilities of a case if `relative=FALSE`, or the relative risk of a case (probability of a case divided by the probability of a control) if `relative=TRUE`.

If \(X \) consists of more than two types of points, or if `casecontrol=FALSE`, the result is:

- (if `at="pixels"`) a list of pixel images, with one image for each possible type of point. The result also belongs to the class "listof" so that it can be printed and plotted.
- (if `at="points"`) a matrix of probabilities, with rows corresponding to data points \(x_i \), and columns corresponding to types \(j \).

The pixel values or matrix entries are the probabilities of each type of point if `relative=FALSE`, or the relative risk of each type (probability of each type divided by the probability of a control) if `relative=TRUE`.

Details

The function `relriskNppm` is the method for fitted point process models (class "BppmB"). It computes parametric estimates of relative risk, using the fitted model.
If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results are either non-negative numbers, or the values Inf or NA.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
There is another method relrisk.ppp for point pattern datasets which computes nonparametric estimates of relative risk by kernel smoothing.
See also relrisk, relrisk.ppp, ppm

Examples
```
fit <- ppm(chorley ~ marks * (x+y))
rr <- relrisk(fit, relative=TRUE, control="lung", se=TRUE)
plot(rr$estimate)
plot(rr$SE)
```

relrisk.ppp Nonparametric Estimate of Spatially-Varying Relative Risk

Description
Given a multitype point pattern, this function estimates the spatially-varying probability of each type of point, or the ratios of such probabilities, using kernel smoothing. The default smoothing bandwidth is selected by cross-validation.

Usage
```
## S3 method for class 'ppp'
relrisk(X, sigma = NULL, ..., varcov = NULL, at = "pixels",
  relative=FALSE,
  se=FALSE,
  casecontrol=TRUE, control=1, case)
```

Arguments
- **X** A multitype point pattern (object of class "ppp" which has factor valued marks).
- **sigma** Optional. The numeric value of the smoothing bandwidth (the standard deviation of isotropic Gaussian smoothing kernel). Alternatively sigma may be a function which can be used to select a different bandwidth for each type of point. See Details.

... Arguments passed to bw.relrisk to select the bandwidth, or passed to density.ppp to control the pixel resolution.

at String specifying whether to compute the probability values at a grid of pixel locations (at=""pixels") or only at the points of X (at=""points").

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each type of point. If TRUE, it computes the relative risk, the ratio of probabilities of each type relative to the probability of a control.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and controls, and return only the probability or relative risk of a case. Ignored if there are more than 2 types of points. See Details.

case Integer, or character string, identifying which mark value corresponds to a case (rather than a control) in a bivariate point pattern. This is an alternative to the argument control in a bivariate point pattern. Ignored if there are more than 2 types of points.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and controls, and return only the probability or relative risk of a case. Ignored if there are more than 2 types of points. See Details.

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppp is the method for point pattern datasets. It computes nonparametric estimates of relative risk by kernel smoothing.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by default, the points of the first type (the first level of marks(X)) are treated as controls or non-events, and points of the second type are treated as cases or events. Then by default this command computes the spatially-varying probability of a case, i.e. the probability \(p(u) \) that a point at spatial location \(u \) will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative to a control, \(r(u) = p(u)/(1 - p(u)) \).

If X is a multitype point pattern with \(m > 2 \) types, or if X is a bivariate point pattern and casecontrol=FALSE, then by default this command computes, for each type \(j \), a nonparametric estimate of the spatially-varying probability of an event of type \(j \). This is the probability \(p_j(u) \) that a point at spatial location \(u \) will belong to type \(j \). If relative=TRUE, the command computes the relative risk of an event of type \(j \) relative to a control, \(r_j(u) = p_j(u)/p_k(u) \), where events of type \(k \) are treated as controls. The argument control determines which type \(k \) is treated as a control.

If at = "pixels" the calculation is performed for every spatial location \(u \) on a fine pixel grid, and the result is a pixel image representing the function \(p(u) \) or a list of pixel images representing the functions \(p_j(u) \) or \(r_j(u) \) for \(j = 1, \ldots, m \). An infinite value of relative risk (arising because the probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points \(x_i \). By default the result is a vector of values \(p(x_i) \) giving the estimated probability of a case at each data point, or a matrix of values \(p_j(x_i) \) giving the estimated probability of each possible type \(j \) at each data point. If relative=TRUE then the relative risks \(r(x_i) \) or \(r_j(x_i) \) are returned. An infinite value of relative risk (arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a simple Nadaraja-Watson type kernel smoother (Diggle, 2003). The smoothing bandwidth can be specified in any of the following ways:
• sigma is a single numeric value, giving the standard deviation of the isotropic Gaussian kernel.
• sigma is a numeric vector of length 2, giving the standard deviations in the \(x\) and \(y\) directions of a Gaussian kernel.
• varcov is a 2 by 2 matrix giving the variance-covariance matrix of the Gaussian kernel.
• sigma is a function which selects the bandwidth. Bandwidth selection will be applied separately to each type of point. An example of such a function is \texttt{bw.diggle}.
• sigma and varcov are both missing or null. Then a common smoothing bandwidth sigma will be selected by cross-validation using \texttt{bw.relrisk}.

If \texttt{se=TRUE} then standard errors will also be computed, based on asymptotic theory, assuming a Poisson process.

Value

If \texttt{se=FALSE} (the default), the format is described below. If \texttt{se=TRUE}, the result is a list of two entries, \texttt{estimate} and \texttt{SE}, each having the format described below.

If \(X\) consists of only two types of points, and if \texttt{casecontrol=TRUE}, the result is a pixel image (if \texttt{at=\"pixels\") or a vector (if \texttt{at=\"points\}). The pixel values or vector values are the probabilities of a case if \texttt{relative=FALSE}, or the relative risk of a case (probability of a case divided by the probability of a control) if \texttt{relative=TRUE}.

If \(X\) consists of more than two types of points, or if \texttt{casecontrol=FALSE}, the result is:

• (if \texttt{at=\"pixels\") a list of pixel images, with one image for each possible type of point. The result also belongs to the class \"listof\" so that it can be printed and plotted.
• (if \texttt{at=\"points\") a matrix of probabilities, with rows corresponding to data points \(x_i\), and columns corresponding to types \(j\).

The pixel values or matrix entries are the probabilities of each type of point if \texttt{relative=FALSE}, or the relative risk of each type (probability of each type divided by the probability of a control) if \texttt{relative=TRUE}.

If \texttt{relative=FALSE}, the resulting values always lie between 0 and 1. If \texttt{relative=TRUE}, the results are either non-negative numbers, or the values \texttt{Inf} or \texttt{NA}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

There is another method \texttt{relrisk.ppm} for point process models which computes parametric estimates of relative risk, using the fitted model.

See also \texttt{bw.relrisk}, \texttt{density.ppp}, \texttt{Smooth.ppp.eval.im}
Examples

p.oak <- relrisk(urkiola, 20)
if(interactive()) {
 plot(p.oak, main="proportion of oak")
 plot(eval.im(p.oak > 0.3), main="More than 30 percent oak")
 plot(split(lansing), main="Lansing Woods")
 p.lan <- relrisk(lansing, 0.05, se=TRUE)
 plot(p.lan$estimate, main="Lansing Woods species probability")
 plot(p.lan$SE, main="Lansing Woods standard error")
 wh <- im.apply(p.lan$estimate, which.max)
 types <- levels(marks(lansing))
 wh <- eval.im(types[wh])
 plot(wh, main="Most common species")
}

Replace.im Reset Values in Subset of Image

Description

Reset the values in a subset of a pixel image.

Usage

S3 replacement method for class 'im'
x[i, j] <- value

Arguments

x A two-dimensional pixel image. An object of class "im".

i Object defining the subregion or subset to be replaced. Either a spatial window (an object of class "owin"), or a pixel image with logical values, or a point pattern (an object of class "ppp"), or any type of index that applies to a matrix, or something that can be converted to a point pattern by as.ppp (using the window of x).

j An integer or logical vector serving as the column index if matrix indexing is being used. Ignored if i is appropriate to some sort of replacement other than matrix indexing.

value Vector, matrix, factor or pixel image containing the replacement values. Short vectors will be recycled.

Details

This function changes some of the pixel values in a pixel image. The image x must be an object of class "im" representing a pixel image defined inside a rectangle in two-dimensional space (see im.object).

The subset to be changed is determined by the arguments i,j according to the following rules (which are checked in this order):
1. i is a spatial object such as a window, a pixel image with logical values, or a point pattern; or
2. i, j are indices for the matrix as.matrix(x); or
3. i can be converted to a point pattern by as.ppp(i, W=Window(x)), and i is not a matrix.

If i is a spatial window (an object of class "owin"), the values of the image inside this window are changed.

If i is a point pattern (an object of class "ppp"), then the values of the pixel image at the points of this pattern are changed.

If i does not satisfy any of the conditions above, then the algorithm tries to interpret i, j as indices for the matrix as.matrix(x). Either i or j may be missing or blank.

If none of the conditions above are met, and if i is not a matrix, then i is converted into a point pattern by as.ppp(i, W=Window(x)). Again the values of the pixel image at the points of this pattern are changed.

Value
The image x with the values replaced.

Warning
If you have a 2-column matrix containing the x, y coordinates of point locations, then to prevent this being interpreted as an array index, you should convert it to a data.frame or to a point pattern.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
im.object, [.im, [ppp.object, as.ppp, owin.object

Examples
make up an image
X <- setcov(unit.square())
plot(X)

a rectangular subset
W <- owin(c(0,0.5),c(0.2,0.8))
X[W] <- 2
plot(X)

a polygonal subset
data(letterR)
R <- affine(letterR, diag(c(1,1)/2), c(-2,-0.7))
X[R] <- 3
plot(X)

a point pattern
rescale

Convert dataset to another unit of length

Description

Converts between different units of length in a spatial dataset, such as a point pattern or a window.

Usage

rescale(X, s, unitname)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), or a window (object of class "owin").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is generic. Methods are provided for many spatial objects.

The spatial coordinates in the dataset X will be re-expressed in terms of a new unit of length that is s times the current unit of length given in X.

If unitname is given, it will be taken as the new name of the unit of length. It should be a valid name for the unit of length, as described in the help for unitname.

For example if X is a dataset giving coordinates in metres, then rescale(X, 1000) will divide the coordinate values by 1000 to obtain coordinates in kilometres, and the unit name will be changed from "metres" to "1000 metres". Similarly rescale(X, 1000, "km") will divide the coordinate values by 1000 to obtain coordinates in kilometres, and the unit name will be changed to "km".
Value

Another object of the same type, representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original dataset. If you want to actually change the coordinates by a linear transformation, producing a dataset that is not equivalent to the original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Available methods: rescale.im, rescale.layered, rescale.linnet, rescale.lpp, rescale.owin, rescale.ppp, rescale.psp and rescale.units.
Other generics: unitname, affine, rotate, shift.

rescale.im Convert Pixel Image to Another Unit of Length

Description

Converts a pixel image to another unit of length.

Usage

```r
## S3 method for class 'im'
rescale(X, s, unitname)
```

Arguments

- `X` Pixel image (object of class "im").
- `s` Conversion factor: the new units are s times the old units.
- `unitname` Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.

The spatial coordinates of the pixels in X will be re-expressed in terms of a new unit of length that is s times the current unit of length given in X. (Thus, the coordinate values are divided by s, while the unit value is multiplied by s).

If s is missing, then the coordinates will be re-expressed in 'native' units; for example if the current unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.
The result is a pixel image representing the same data but re-expressed in a different unit. Pixel values are unchanged. This may not be what you intended!

Value

Another pixel image (of class "im"), containing the same pixel values, but with pixel coordinates expressed in the new units.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im, rescale, unitname, eval.im

Examples

```r
# Bramble Canes data: 1 unit = 9 metres
data(bramblecanes)
# distance transform
Z <- distmap(bramblecanes)
# convert to metres
# first alter the pixel values
Zm <- eval.im(9 * Z)
# now rescale the pixel coordinates
Z <- rescale(Zm, 1/9)
# or equivalently
Z <- rescale(Zm)
```
Details

This is a method for the generic function `rescale`.

The spatial coordinates in the window \(X \) (and its window) will be re-expressed in terms of a new unit of length that is \(s \) times the current unit of length given in \(X \). (Thus, the coordinate values are divided by \(s \), while the unit value is multiplied by \(s \)).

The result is a window representing the same region of space, but re-expressed in a different unit.

If \(s \) is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another window object (of class "owin") representing the same window, but expressed in the new units.

Note

The result of this operation is equivalent to the original window. If you want to actually change the coordinates by a linear transformation, producing a window that is larger or smaller than the original one, use `affine`.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`unitname`, `rescale`, `rescale.owin`, `affine`, `rotate`, `shift`

Examples

data(swedishpines)
W <- swedishpines$window
W
coordinates are in decimetres (0.1 metre)
convert to metres:
rescale(W, 10)
or equivalently
rescale(W)
Convert Point Pattern to Another Unit of Length

Description

Converts a point pattern dataset to another unit of length.

Usage

```r
## S3 method for class 'ppp'
rescale(X, s, unitname)
```

Arguments

- `X`: Point pattern (object of class "ppp").
- `s`: Conversion factor: the new units are `s` times the old units.
- `unitname`: Optional. New name for the unit of length. See `unitname`.

Details

This is a method for the generic function `rescale`. The spatial coordinates in the point pattern `X` (and its window) will be re-expressed in terms of a new unit of length that is `s` times the current unit of length given in `X`. (Thus, the coordinate values are divided by `s`, while the unit value is multiplied by `s`). The result is a point pattern representing the same data but re-expressed in a different unit. Mark values are unchanged. If `s` is missing, then the coordinates will be re-expressed in 'native' units; for example if the current unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another point pattern (of class "ppp"), representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original point pattern. If you want to actually change the coordinates by a linear transformation, producing a point pattern that is not equivalent to the original one, use `affine`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`unitname`, `rescale`, `rescale.owin`, `affine`, `rotate`, `shift`
Examples

Bramble Canes data: 1 unit = 9 metres
data(bramblecanes)
convert to metres
bram <- rescale(bramblecanes, 1/9)
or equivalently
bram <- rescale(bramblecanes)

Convert Line Segment Pattern to Another Unit of Length

Description

Converts a line segment pattern dataset to another unit of length.

Usage

S3 method for class 'psp'
rescale(X, s, unitname)

Arguments

X Line segment pattern (object of class "psp").
s Conversion factor: the new units are s times the old units.
unitname Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.
The spatial coordinates in the line segment pattern X (and its window) will be re-expressed in terms of a new unit of length that is s times the current unit of length given in X. (Thus, the coordinate values are divided by s, while the unit value is multiplied by s).
The result is a line segment pattern representing the same data but re-expressed in a different unit.
Mark values are unchanged.
If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another line segment pattern (of class "psp"), representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original segment pattern. If you want to actually change the coordinates by a linear transformation, producing a segment pattern that is not equivalent to the original one, use affine.
rescue.rectangle

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

units, affine, rotate, shift

Examples

data(copper)
X <- copper$Lines
X
data are in km
convert to metres
rescale(X, 1/1000)

convert data and rename unit
rescale(X, 1/1000, c("metre", "metres"))

rescue.rectangle

Convert Window Back To Rectangle

Description

Determines whether the given window is really a rectangle aligned with the coordinate axes, and if so, converts it to a rectangle object.

Usage

rescue.rectangle(W)

Arguments

W

A window (object of class "owin").

Details

This function decides whether the window \(W \) is actually a rectangle aligned with the coordinate axes. This will be true if \(W \) is

- a rectangle (window object of type "rectangle");
- a polygon (window object of type "polygonal" with a single polygonal boundary) that is a rectangle aligned with the coordinate axes;
- a binary mask (window object of type "mask") in which all the pixel entries are TRUE.

If so, the function returns this rectangle, a window object of type "rectangle". If not, the function returns \(W \).
residuals.mppm

Value

Another object of class "owin" representing the same window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.owin.owin.object

Examples

w <- owin(poly=list(x=c(0,1,1,0),y=c(0,0,1,1)))
rw <- rescue.rectangle(w)

w <- as.mask(unit.square())
rw <- rescue.rectangle(w)

residuals.mppm Residuals for Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to multiple point patterns, compute residuals for each pattern.

Usage

S3 method for class 'mppm'
residuals(object, type = "raw", ...,
 fittedvalues = fitted.mppm(object))

Arguments

 object Fitted point process model (object of class "mppm").
 ... Ignored.
 type Type of residuals: either "raw", "pearson" or "inverse". Partially matched.
 fittedvalues Advanced use only. Fitted values of the model to be used in the calculation.
Details

Baddeley et al (2005) defined residuals for the fit of a point process model to spatial point pattern data. For an explanation of these residuals, see the help file for `residuals.ppm`.

This function computes the residuals for a point process model fitted to multiple point patterns. The object should be an object of class "mppm" obtained from `mppm`.

The return value is a list. The number of entries in the list equals the number of point patterns in the original data. Each entry in the list has the same format as the output of `residuals.ppm`. That is, each entry in the list is a signed measure (object of class "msr") giving the residual measure for the corresponding point pattern.

Value

A list of signed measures (objects of class "msr") giving the residual measure for each of the original point patterns. See Details.

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <rolf@math.unb.ca> \url{http://www.math.unb.ca/~rolf}

References

See Also

`mppm, residuals.mppm, mppm`

Examples

```r
fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
r <- residuals(fit)
# compute total residual for each point pattern
rtot <- sapply(r, integral.msr)
# standardise the total residuals
areas <- sapply(owin.mppm(fit), area.owin)
rtot/sqrt(areas)
```

residuals.ppm Residuals for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, compute residuals.
Usage

```r
## S3 method for class 'ppm'
residuals(object, type="raw", ..., check=TRUE, drop=FALSE,
          fittedvalues=fitted.ppm(object, check=check, drop=drop),
          new.coef=NULL, quad=NULL)
```

Arguments

- `object`: The fitted point process model (an object of class "ppm") for which residuals should be calculated.
- `type`: String indicating the type of residuals to be calculated. Current options are "raw", "inverse", "pearson" and "score". A partial match is adequate.
- `...`: Ignored.
- `check`: Logical value indicating whether to check the internal format of `object`. If there is any possibility that this object has been restored from a dump file, or has otherwise lost track of the environment where it was originally computed, set `check=TRUE`.
- `drop`: Logical value determining whether to delete quadrature points that were not used to fit the model. See `quad.ppm` for explanation.
- `fittedvalues`: Vector of fitted values for the conditional intensity at the quadrature points, from which the residuals will be computed. For expert use only.
- `new.coef`: Optional. Numeric vector of coefficients for the model, replacing `coef(object)`.
 See the section on Modified Residuals below.
- `quad`: Optional. Data specifying how to re-fit the model. A list of arguments passed to `quadscheme`. See the section on Modified Residuals below.

Details

This function computes several kinds of residuals for the fit of a point process model to a spatial point pattern dataset (Baddeley et al, 2005). Use `plot.msr` to plot the residuals directly, or `diagnose.ppm` to produce diagnostic plots based on these residuals.

The argument `object` must be a fitted point process model (object of class "ppm"). Such objects are produced by the maximum pseudolikelihood fitting algorithm `ppm`. This fitted model object contains complete information about the original data pattern.

Residuals are attached both to the data points and to some other points in the window of observation (namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model is correct, then the sum of the residuals over all (data and dummy) points in a spatial region \(B \) has mean zero. For further explanation, see Baddeley et al (2005).

The type of residual is chosen by the argument `type`. Current options are

- "raw": the raw residuals
 \[
 r_j = z_j - w_j \lambda_j
 \]
 at the quadrature points \(u_j \), where \(z_j \) is the indicator equal to 1 if \(u_j \) is a data point and 0 if \(u_j \) is a dummy point; \(w_j \) is the quadrature weight attached to \(u_j \); and
 \[
 \lambda_j = \hat{\lambda}(u_j, x)
 \]
is the conditional intensity of the fitted model at u_j. These are the spatial analogue of the martingale residuals of a one-dimensional counting process.

"inverse": the ‘inverse-lambda’ residuals (Baddeley et al, 2005)

$$r^{(I)}_j = \frac{r_j}{\lambda_j} = \frac{z_j}{\lambda_j} - w_j$$

obtained by dividing the raw residuals by the fitted conditional intensity. These are a counterpart of the exponential energy marks (see eem).

"pearson": the Pearson residuals (Baddeley et al, 2005)

$$r^{(P)}_j = \frac{r_j}{\sqrt{\lambda_j}} = \frac{z_j}{\sqrt{\lambda_j}} - w_j \sqrt{\lambda_j}$$

obtained by dividing the raw residuals by the square root of the fitted conditional intensity. The Pearson residuals are standardised, in the sense that if the model (true and fitted) is Poisson, then the sum of the Pearson residuals in a spatial region B has variance equal to the area of B.

"score": the score residuals (Baddeley et al, 2005)

$$r_j = (z_j - w_j \lambda_j)x_j$$

obtained by multiplying the raw residuals r_j by the covariates x_j for quadrature point j. The score residuals always sum to zero.

The result of residuals.ppm is a measure (object of class "msr"). Use plot.msr to plot the residuals directly, or diagnose.ppm to produce diagnostic plots based on these residuals. Use integral.msr to compute the total residual.

By default, the window of the measure is the same as the original window of the data. If drop=TRUE then the window is the domain of integration of the pseudolikelihood or composite likelihood. This only matters when the model object was fitted using the border correction: in that case, if drop=TRUE the window of the residuals is the erosion of the original data window by the border correction distance rbord.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This object can be plotted.

Modified Residuals

Sometimes we want to modify the calculation of residuals by using different values for the model parameters. This capability is provided by the arguments new.coef and quad.

If new.coef is given, then the residuals will be computed by taking the model parameters to be new.coef. This should be a numeric vector of the same length as the vector of fitted model parameters coef(object).

If new.coef is missing and quad is given, then the model parameters will be determined by re-fitting the model using a new quadrature scheme specified by quad. Residuals will be computed for the original model object using these new parameter values.

The argument quad should normally be a list of arguments in name=value format that will be passed to quadscheme (together with the original data points) to determine the new quadrature scheme. It may also be a quadrature scheme (object of class "quad") to which the model should be fitted, or a point pattern (object of class "ppp") specifying the dummy points in a new quadrature scheme.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

msr, diagnose.ppm, ppm.object.ppm

Examples

fit <- ppm(cells, ~x, Strauss(r=0.15))

Pearson residuals
rp <- residuals(fit, type="pe")

simulated data
X <- rStrauss(100,0.7,0.05)
fit Strauss model
fit <- ppm(X, ~1, Strauss(0.05))
res.fit <- residuals(fit)

check that total residual is 0
integral.msr(residuals(fit, drop=TRUE))

true model parameters
truecoef <- c(log(100), log(0.7))
res.true <- residuals(fit, new.coef=truecoef)

Description

This dataset contains the point patterns used as examples in the paper of Baddeley et al (2005). [Figure 2 is already available in spatstat as the copper dataset.]

R code is also provided to reproduce all the Figures displayed in Baddeley et al (2005). The component plotfig is a function, which can be called with a numeric or character argument specifying the Figure or Figures that should be plotted. See the Examples.
Usage

data(residualspaper)

Format

residualspaper is a list with the following components:

Fig1 The locations of Japanese pine seedlings and saplings from Figure 1 of the paper. A point pattern (object of class "ppp").

Fig3 The Chorley-Ribble data from Figure 3 of the paper. A list with three components, lung, larynx and incin. Each is a matrix with 2 columns giving the coordinates of the lung cancer cases, larynx cancer cases, and the incinerator, respectively. Coordinates are Eastings and Northings in km.

Fig4a The synthetic dataset in Figure 4 (a) of the paper.

Fig4b The synthetic dataset in Figure 4 (b) of the paper.

Fig4c The synthetic dataset in Figure 4 (c) of the paper.

Fig11 The covariate displayed in Figure 11. A pixel image (object of class "im") whose pixel values are distances to the nearest line segment in the copper data.

plotfig A function which will compute and plot any of the Figures from the paper. The argument of plotfig is either a numeric vector or a character vector, specifying the Figure or Figures to be plotted. See the Examples.

Source

Figure 1: Prof M. Numata. Data kindly supplied by Professor Y. Ogata with kind permission of Prof M. Tanemura.

Figure 3: Professor P.J. Diggle (rescaled by Adrian Baddeley)

Figure 4 (a,b,c): Adrian Baddeley

References

Examples

```r
## Not run:
data(residualspaper)

X <- residualspaper$Fig4a
summary(X)
plot(X)

# reproduce all Figures
residualspaper$plotfig()

# reproduce Figures 1 to 10
```
rGaussPoisson

residualspaper$plotfig(1:10)

reproduce Figure 7 (a)
residualspaper$plotfig("7a")

End(Not run)

rGaussPoisson

Simulate Gauss-Poisson Process

Description

Generate a random point pattern, a simulated realisation of the Gauss-Poisson Process.

Usage

```
rgausspoisson(kappa, r, p2, win = owin(c(0,1),c(0,1)),
        ..., nsim=1, drop=TRUE)
```

Arguments

- **kappa**: Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
- **r**: Diameter of each cluster that consists of exactly 2 points.
- **p2**: Probability that a cluster contains exactly 2 points.
- **win**: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **...**: Ignored.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This algorithm generates a realisation of the Gauss-Poisson point process inside the window `win`. The process is constructed by first generating a Poisson point process of parent points with intensity `kappa`. Then each parent point is either retained (with probability `1 - p2`) or replaced by a pair of points at a fixed distance `r` apart (with probability `p2`). In the case of clusters of 2 points, the line joining the two points has uniform random orientation.

In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.

Value

A point pattern (an object of class "ppp") if `nsim=1`, or a list of point patterns if `nsim > 1`. Additionally, some intermediate results of the simulation are returned as attributes of the point pattern. See `rNeymanScott`.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
rpoispp, rThomas, rMatClust, rNeymanScott

Examples

pp <- rGaussPoisson(30, 0.07, 0.5)

rgbin Create Colour-Valued Pixel Image

Description
Creates an object of class "im" representing a two-dimensional pixel image whose pixel values are colours.

Usage
rgbin(R, G, B, maxColorValue=255, autoscale=FALSE)
hsvim(H, S, V, autoscale=FALSE)

Arguments
R, G, B Pixel images (objects of class "im") or constants giving the red, green, and blue components of a colour, respectively.
maxColorValue Maximum colour channel value for R, G, B.
H, S, V Pixel images (objects of class "im") or constants giving the hue, saturation, and value components of a colour, respectively.
autoscale Logical. If TRUE, input values are automatically rescaled to fit the permitted range. RGB values are scaled to lie between 0 and maxColorValue. HSV values are scaled to lie between 0 and 1.

Details
These functions take three pixel images, with real or integer pixel values, and create a single pixel image whose pixel values are colours recognisable to R.

Some of the arguments may be constant numeric values, but at least one of the arguments must be a pixel image. The image arguments should be compatible (in array dimension and in spatial position).

rgbin calls rgb to compute the colours, while hsvim calls hsv. See the help for the relevant function for more information about the meaning of the colour channels.
rHardcore

Perfect Simulation of the Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Hardcore process, using a perfect simulation algorithm.

Usage

```r
rHardcore(beta, R = 0, W = owin(), expand=TRUE, nsim=1)
```

Arguments

- `beta` intensity parameter (a positive number).
- `R` hard core distance (a non-negative number).
- `W` window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
- `expand` Logical. If FALSE, simulation is performed in the window `W`, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window `W`. Alternatively `expand` can be an object of class "rmhexpand" (see `rmhexpand`) determining the expansion method.
- `nsim` Number of simulated realisations to be generated.

Examples

```r
# create three images with values in [0,1]
X <- setcov(owin())
X <- eval.im(pmin(1,X))
M <- Window(X)
Y <- as.im(function(x,y)((x+1)/2), W=M)
Z <- as.im(function(x,y)((y+1)/2), W=M)
RGB <- rgbim(X, Y, Z, 1)
HSV <- hsvim(X, Y, Z)
plot(RGB, valuesAreColours=TRUE)
plot(HSV, valuesAreColours=TRUE)
```
Details

This function generates a realisation of the Hardcore point process in the window \(\mathcal{W} \) using a ‘perfect simulation’ algorithm.

The Hardcore process is a model for strong spatial inhibition. Two points of the process are forbidden to lie closer than \(r \) units apart. The Hardcore process is the special case of the Strauss process (see \texttt{rStrauss}) with interaction parameter \(\gamma \) equal to zero.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’ as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in \texttt{rmh}, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If \(\texttt{nsim} = 1 \), a point pattern (object of class "\texttt{ppp}"). If \(\texttt{nsim} > 1 \), a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

See Also

\texttt{rmh, Hardcore, rStrauss, rDiggleGatton}.

Examples

```r
X <- rHardcore(0.05, 1.5, square(141.4))
Z <- rHardcore(100, 0.05)
```
rho2hat

Smoothed Relative Density of Pairs of Covariate Values

Description

Given a point pattern and two spatial covariates \(Z_1 \) and \(Z_2 \), construct a smooth estimate of the relative risk of the pair \((Z_1, Z_2)\).

Usage

\[
\text{rho2hat}(\text{object, covQ, covR, ..., method=c("ratio", "reweight"))}
\]

Arguments

- **object**: A point pattern (object of class "ppp"), a quadrature scheme (object of class "quad") or a fitted point process model (object of class "ppm").
- **covQ, covR**: The two covariates. Each argument is either a function \((x, y)\) or a pixel image (object of class "im") providing the values of the covariate at any location, or one of the strings "x" or "y" signifying the Cartesian coordinates.
- **...**: Additional arguments passed to \(\text{density.ppp} \) to smooth the scatterplots.
- **method**: Character string determining the smoothing method. See Details.

Details

This is a bivariate version of \(\text{rhohat} \).

If \text{object} is a point pattern, this command produces a smoothed version of the scatterplot of the values of the covariates \(\text{covQ} \) and \(\text{covR} \) observed at the points of the point pattern.

The covariates \(\text{covQ}, \text{covR} \) must have continuous values.

If \text{object} is a fitted point process model, suppose \(\lambda \) is the original data point pattern to which the model was fitted. Then this command assumes \(\lambda \) is a realisation of a Poisson point process with intensity function of the form

\[
\lambda(u) = \rho(Z_1(u), Z_2(u))\kappa(u)
\]

where \(\kappa(u) \) is the intensity of the fitted model \text{object}, and \(\rho(z_1, z_2) \) is a function to be estimated. The algorithm computes a smooth estimate of the function \(\rho \).

The method determines how the density estimates will be combined to obtain an estimate of \(\rho(z_1, z_2) \):

- If \text{method}="ratio", then \(\rho(z_1, z_2) \) is estimated by the ratio of two density estimates. The numerator is a (rescaled) density estimate obtained by smoothing the points \((Z_1(y_i), Z_2(y_i))\) obtained by evaluating the two covariate \(Z_1, Z_2 \) at the data points \(y_i \). The denominator is a density estimate of the reference distribution of \((Z_1, Z_2)\).
- If \text{method}="reweight", then \(\rho(z_1, z_2) \) is estimated by applying density estimation to the points \((Z_1(y_i), Z_2(y_i))\) obtained by evaluating the two covariate \(Z_1, Z_2 \) at the data points \(y_i \), with weights inversely proportional to the reference density of \((Z_1, Z_2)\).
Value

A pixel image (object of class "im"). Also belongs to the special class "rho2hat" which has a plot method.

Author(s)

Adrian Baddeley

References

See Also

rhohat, methods.rhohat

Examples

data(bei)
attach(bei.extra)
plot(rho2hat(bei, elev, grad))
fit <- ppm(bei, ~elev, covariates=bei.extra)
Not run:
plot(rho2hat(fit, elev, grad))

End(Not run)
plot(rho2hat(fit, elev, grad, method="reweight"))

rhohat
Smoothing Estimate of Covariate Transformation

Description

Computes a smoothing estimate of the intensity of a point process, as a function of a (continuous) spatial covariate.

Usage

```r
rhohat(object, covariate, ...)
```

S3 method for class 'ppp'
```r
rhohat(object, covariate, ...,
  baseline=NULL, weights=NULL,
  method=c("ratio", "reweight", "transform"),
  horvitz=FALSE,
  smoother=c("kernel", "local"),
  dimyx=NULL, eps=NULL,
```

```r
```
rhohat

n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, bwref=bw,
covname, confidence=0.95)

S3 method for class 'quad'

rhohat(object, covariate, ..., baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local"),
dimy=dimx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, bwref=bw,
covname, confidence=0.95)

S3 method for class 'ppm'

rhohat(object, covariate, ..., weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local"),
dimy=dimx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, bwref=bw,
covname, confidence=0.95)

S3 method for class 'lpp'

rhohat(object, covariate, ..., weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local"),
nd=1000, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, bwref=bw,
covname, confidence=0.95)

S3 method for class 'lppm'

rhohat(object, covariate, ..., weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local"),
nd=1000, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL, bwref=bw,
covname, confidence=0.95)
Arguments

- **object**: A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of class "quad") or a fitted point process model (object of class "ppm" or "lppm").
- **covariate**: Either a function\((x,y)\) or a pixel image (object of class "im") providing the values of the covariate at any location. Alternatively one of the strings "x" or "y" signifying the Cartesian coordinates.
- **weights**: Optional weights attached to the data points. Either a numeric vector of weights for each data point, or a pixel image (object of class "im") or a function\((x,y)\) providing the weights.
- **baseline**: Optional baseline for intensity function. A function\((x,y)\) or a pixel image (object of class "im") providing the values of the baseline at any location.
- **method**: Character string determining the smoothing method. See Details.
- **horvitz**: Logical value indicating whether to use Horvitz-Thompson weights. See Details.
- **smoother**: Character string determining the smoothing algorithm. See Details.
- **dimyx,eps,nd**: Arguments controlling the pixel resolution at which the covariate will be evaluated. See Details.
- **bw**: Smoothing bandwidth or bandwidth rule (passed to `density.default`).
- **adjust**: Smoothing bandwidth adjustment factor (passed to `density.default`).
- **n, from, to**: Arguments passed to `density.default` to control the number and range of values at which the function will be estimated.
- **bwref**: Optional. An alternative value of bw to use when smoothing the reference density (the density of the covariate values observed at all locations in the window).
- **...**: Additional arguments passed to `density.default` or `locfit`.
- **covname**: Optional. Character string to use as the name of the covariate.
- **confidence**: Confidence level for confidence intervals. A number between 0 and 1.

Details

If object is a point pattern, and baseline is missing or null, this command assumes that object is a realisation of a Poisson point process with intensity function \(\lambda(u)\) of the form

\[\lambda(u) = \rho(Z(u)) \]

where \(Z\) is the spatial covariate function given by covariate, and \(\rho(z)\) is a function to be estimated. This command computes estimators of \(\rho(z)\) proposed by Baddeley and Turner (2005) and Baddeley et al (2012).

The covariate \(Z\) must have continuous values.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

\[\lambda(u) = \rho(Z(u))B(u) \]

where \(B(u)\) is the baseline intensity at location \(u\). A smoothing estimator of the relative intensity \(\rho(z)\) is computed.
If object is a fitted point process model, suppose \(X\) is the original data point pattern to which the model was fitted. Then this command assumes \(X\) is a realisation of a Poisson point process with intensity function of the form

\[
\lambda(u) = \rho(Z(u))\kappa(u)
\]

where \(\kappa(u)\) is the intensity of the fitted model object. A smoothing estimator of \(\rho(z)\) is computed. The estimation procedure is determined by the character strings method and smoother and the argument horvitz. The estimation procedure involves computing several density estimates and combining them. The algorithm used to compute density estimates is determined by smoother:

- If smoother="kernel", each the smoothing procedure is based on fixed-bandwidth kernel density estimation, performed by \texttt{density.default}.
- If smoother="local", the smoothing procedure is based on local likelihood density estimation, performed by \texttt{locfit}.

The method determines how the density estimates will be combined to obtain an estimate of \(\rho(z)\):

- If method="ratio", then \(\rho(z)\) is estimated by the ratio of two density estimates. The numerator is a (rescaled) density estimate obtained by smoothing the values \(Z(y_i)\) of the covariate \(Z\) observed at the data points \(y_i\). The denominator is a density estimate of the reference distribution of \(Z\).
- If method="reweight", then \(\rho(z)\) is estimated by applying density estimation to the values \(Z(y_i)\) of the covariate \(Z\) observed at the data points \(y_i\), with weights inversely proportional to the reference density of \(Z\).
- If method="transform", the smoothing method is variable-bandwidth kernel smoothing, implemented by applying the Probability Integral Transform to the covariate values, yielding values in the range 0 to 1, then applying edge-corrected density estimation on the interval \([0, 1]\), and back-transforming.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson weighting. The contribution to the numerator from each data point is weighted by the reciprocal of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is made to the denominator.

The covariate will be evaluated on a fine grid of locations, with spatial resolution controlled by the arguments \texttt{dimyx,eps,nd}. In two dimensions (i.e. if object is of class "ppp", "ppm" or "quad") the arguments \texttt{dimyx, eps} are passed to \texttt{as.mask} to control the pixel resolution. On a linear network (i.e. if object is of class "lpp" or "lppm") the argument \texttt{nd} specifies the total number of test locations on the linear network, and \texttt{eps} specifies the linear separation between test locations.

If the argument \texttt{weights} is present, then the contribution from each data point \(X[i]\) to the estimate of \(\rho\) is multiplied by \texttt{weights[i]}.

Value

A function value table (object of class "fv") containing the estimated values of \(\rho\) for a sequence of values of \(Z\). Also belongs to the class "rhohat" which has special methods for \texttt{print, plot and predict}.
Categorical and discrete covariates

This technique assumes that the covariate has continuous values. It is not applicable to covariates with categorical (factor) values or discrete values such as small integers. For a categorical covariate, use `intensity.quadratcount` applied to the result of `quadratcount(X, tess=covariate)`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`rho2hat, methods.rhohat, parres`

Examples

```r
X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, "x")
rho <- rhohat(X, function(x,y){x})
plot(rho)
curve(exp(3+3*x), lty=3, col=2, add=TRUE)

rhoB <- rhohat(X, "x", method="reweight")
rhoC <- rhohat(X, "x", method="transform")

fit <- ppm(X, ~x)
rr <- rhohat(fit, "y")

# linear network
Y <- runiflpp(30, simplenet)
rhoY <- rhohat(Y, "y")
```
ripras

Estimate window from points alone

Description
Given an observed pattern of points, computes the Ripley-Rasson estimate of the spatial domain from which they came.

Usage
ripras(x, y=NULL, shape=“convex”, f)

Arguments
- **x**: vector of \(x\) coordinates of observed points, or a 2-column matrix giving \(x, y\) coordinates, or a list with components \(x, y\) giving coordinates (such as a point pattern object of class “ppp”).
- **y**: (optional) vector of \(y\) coordinates of observed points, if \(x\) is a vector.
- **shape**: String indicating the type of window to be estimated: either "convex" or "rectangle".
- **f**: (optional) scaling factor. See Details.

Details
Given an observed pattern of points with coordinates given by \(x\) and \(y\), this function computes an estimate due to Ripley and Rasson (1977) of the spatial domain from which the points came.

The points are assumed to have been generated independently and uniformly distributed inside an unknown domain \(D\).

If \(shape=\text{"convex"}\) (the default), the domain \(D\) is assumed to be a convex set. The maximum likelihood estimate of \(D\) is the convex hull of the points (computed by \texttt{convexhull.xy}). Analogously to the problems of estimating the endpoint of a uniform distribution, the MLE is not optimal. Ripley and Rasson’s estimator is a rescaled copy of the convex hull, centred at the centroid of the convex hull. The scaling factor is \(1/\sqrt{1-m/n}\) where \(n\) is the number of data points and \(m\) the number of vertices of the convex hull. The scaling factor may be overridden using the argument \(f\).

If \(shape=\text{"rectangle"}\), the domain \(D\) is assumed to be a rectangle with sides parallel to the coordinate axes. The maximum likelihood estimate of \(D\) is the bounding box of the points (computed by \texttt{bounding.box.xy}). The Ripley-Rasson estimator is a rescaled copy of the bounding box, with scaling factor \((n+1)/(n-1)\) where \(n\) is the number of data points, centred at the centroid of the bounding box. The scaling factor may be overridden using the argument \(f\).

Value
A window (an object of class "owin").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also

`owin`, `as.owin`, `bounding.box.xy`, `convexhull.xy`

Examples

```r
x <- runif(30)
y <- runif(30)
w <- ripras(x, y)
plot(owin(), main="ripras(x, y)")
points(x, y)

X <- rpoispp(15)
plot(X, main="ripras(X)")
plot(ripras(X), add=TRUE)

# two points insufficient
ripras(c(0,1), c(0,0))
# triangle
ripras(c(0,1,0.5), c(0,0,1))
# three collinear points
ripras(c(0,0,0), c(0,1,2))
```

rjitter

Random Perturbation of a Point Pattern

Description

Applies independent random displacements to each point in a point pattern.

Usage

```r
rjitter(X, radius, retry=TRUE, giveup = 10000, ..., nsim=1, drop=TRUE)
```

Arguments

- `X` A point pattern (object of class "ppp").
- `radius` Scale of perturbations. A positive numerical value. The displacement vectors will be uniformly distributed in a circle of this radius. There is a sensible default.
- `retry` What to do when a perturbed point lies outside the window of the original point pattern. If `retry=FALSE`, the point will be lost; if `retry=TRUE`, the algorithm will try again.
- `giveup` Maximum number of unsuccessful attempts.
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

Each of the points in the point pattern \(X \) is subjected to an independent random displacement. The displacement vectors are uniformly distributed in a circle of radius \(\text{radius} \).

If a displaced point lies outside the window, then if \(\text{retry}=\text{FALSE} \) the point will be lost.

However if \(\text{retry}=\text{TRUE} \), the algorithm will try again: each time a perturbed point lies outside the window, the algorithm will reject it and generate another proposed perturbation of the original point, until one lies inside the window, or until \(\text{giveup} \) unsuccessful attempts have been made. In the latter case, any unresolved points will be included without any perturbation. The return value will always be a point pattern with the same number of points as \(X \).

Value

A point pattern (an object of class "ppp") if \(\text{nsim}=1 \), or a list of point patterns if \(\text{nsim} > 1 \), in the same window as \(X \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

\[
X \leftarrow \text{ryst(owin(), 10, 10)} \\
Y \leftarrow \text{rjitter(X, 0.02)} \\
\text{plot(Y)} \\
Z \leftarrow \text{rjitter(X)}
\]

\(\text{rknn} \) \(\text{Theoretical Distribution of Nearest Neighbour Distance} \)

Description

Density, distribution function, quantile function and random generation for the random distance to the \(k \)th nearest neighbour in a Poisson point process in \(d \) dimensions.

Usage

\[
dknn(x, k = 1, d = 2, \lambda = 1) \\
pknn(q, k = 1, d = 2, \lambda = 1) \\
qknn(p, k = 1, d = 2, \lambda = 1) \\
rknn(n, k = 1, d = 2, \lambda = 1)
\]
Arguments

- **x, q**: vector of quantiles.
- **p**: vector of probabilities.
- **n**: number of observations to be generated.
- **k**: order of neighbour.
- **d**: dimension of space.
- **lambda**: intensity of Poisson point process.

Details

In a Poisson point process in d-dimensional space, let the random variable R be the distance from a fixed point to the k-th nearest random point, or the distance from a random point to the k-th nearest other random point.

Then R^d has a Gamma distribution with shape parameter k and rate $\lambda \times \alpha$ where α is a constant (equal to the volume of the unit ball in d-dimensional space). See e.g. Cressie (1991, page 61).

These functions support calculation and simulation for the distribution of R.

Value

A numeric vector: **dknn** returns the probability density, **pknn** returns cumulative probabilities (distribution function), **qknn** returns quantiles, and **rknn** generates random deviates.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

References

Examples

```r
x <- seq(0, 5, length=20)
densities <- dknn(x, k=3, d=2)
cdfvalues <- pknn(x, k=3, d=2)
randomvalues <- rknn(100, k=3, d=2)
deciles <- qknn(1:9)/10, k=3, d=2)
```
Description

Randomly allocates marks to a point pattern, or permutes the existing marks, or resamples from the existing marks.

Usage

```r
rlabel(X, labels=marks(X), permute=TRUE)
```

Arguments

- **X**: Point pattern (object of class "ppp", "lpp", "pp3" or "ppx").
- **labels**: Vector of values from which the new marks will be drawn at random. Defaults to the vector of existing marks.
- **permute**: Logical value indicating whether to generate new marks by randomly permuting `labels` or by drawing a random sample with replacement.

Details

This very simple function allocates random marks to an existing point pattern `X`. It is useful for hypothesis testing purposes.

In the simplest case, the command `rlabel(X)` yields a point pattern obtained from `X` by randomly permuting the marks of the points.

If `permute=TRUE`, then `labels` should be a vector of length equal to the number of points in `X`. The result of `rlabel` will be a point pattern with locations given by `X` and marks given by a random permutation of `labels` (i.e. a random sample without replacement).

If `permute=FALSE`, then `labels` may be a vector of any length. The result of `rlabel` will be a point pattern with locations given by `X` and marks given by a random sample from `labels` (with replacement).

Value

A marked point pattern (of the same class as `X`).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`marks<-` to assign arbitrary marks.
Examples

```r
data(amacrine)

# Randomly permute the marks "on" and "off"
# Result always has 142 "off" and 152 "on"
Y <- rlabel(amacrine)

# randomly allocate marks "on" and "off"
# with probabilities p(off) = 0.48, p(on) = 0.52
Y <- rlabel(amacrine, permute=FALSE)

# randomly allocate marks "A" and "B" with equal probability
data(cells)
Y <- rlabel(cells, labels=factor(c("A", "B")), permute=FALSE)
```

rLGCP
Simulate Log-Gaussian Cox Process

Description
Generate a random point pattern, a realisation of the log-Gaussian Cox process.

Usage

```r
rLGCP(model="exp", mu = 0, param = NULL, ..., win=NULL, saveLambda=TRUE)
```

Arguments

- `model` character string: the short name of a covariance model for the Gaussian random field. After adding the prefix "RM", the code will search for a function of this name in the `RandomFields` package.
- `mu` mean function of the Gaussian random field. Either a single number, a function(`x,y,...`) or a pixel image (object of class "im").
- `param` List of parameters for the covariance. Standard arguments are `var` and `scale`.
- `...` Additional parameters for the covariance, or arguments passed to `as.mask` to determine the pixel resolution.
- `win` Window in which to simulate the pattern. An object of class "owin".
- `saveLambda` Logical. If TRUE (the default) then the simulated random intensity will also be saved, and returns as an attribute of the point pattern.

Details
This function generates a realisation of a log-Gaussian Cox process (LGCP). This is a Cox point process in which the logarithm of the random intensity is a Gaussian random field with mean function \(\mu \) and covariance function \(c(r) \). Conditional on the random intensity, the point process is a Poisson process with this intensity.
The string model specifies the covariance function of the Gaussian random field, and the parameters of the covariance are determined by param and ...

To determine the covariance model, the string model is prefixed by "RM", and a function of this name is sought in the RandomFields package. For a list of available models see RMmodel in the RandomFields package. For example the Matérn covariance is specified by model="matern", corresponding to the function Rmmatern in the RandomFields package.

Standard variance parameters (for all functions beginning with "RM" in the RandomFields package) are var for the variance at distance zero, and scale for the scale parameter. Other parameters are specified in the help files for the individual functions beginning with "RM". For example the help file for Rmmatern states that nu is a parameter for this model.

This algorithm uses the function RFsimulate in the RandomFields package to generate values of a Gaussian random field, with the specified mean function mu and the covariance specified by the arguments model and param, on the points of a regular grid. The exponential of this random field is taken as the intensity of a Poisson point process, and a realisation of the Poisson process is then generated by the function rpoispp in the spatstat package.

If the simulation window win is missing or NULL, then it defaults to Window(mu) if mu is a pixel image, and it defaults to the unit square otherwise.

The LGCP model can be fitted to data using kppm.

Value

The simulated point pattern (an object of class "ppp"). Additionally, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Modified by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rpoispp, rMatClust, rGaussPoisson, rNeymanScott, lgcp.estK, kppm

Examples

if(require(RandomFields)) {
 # homogeneous LGCP with exponential covariance function
 X <- rLGCP("exp", 3, var=0.2, scale=.1)

 # inhomogeneous LGCP with Gaussian covariance function
 m <- as.im(function(x, y)(5 - 1.5 * (x - 0.5)^2 + 2 * (y - 0.5)^2), W=owin())
 X <- rLGCP("gauss", m, var=0.15, scale =0.5)
 plot(attr(X, "Lambda"))
}
inhomogeneous LGCP with Matern covariance function
X <- rLGCP("matern", function(x, y){ 1 - 0.4 * x},
 var=2, scale=0.7, nu=0.5,
 win = owin(c(0, 10), c(0, 10)))
plot(X)
}
} else message("Simulation requires the RandomFields package")

rlinegrid

Generate grid of parallel lines with random displacement

Description
Generates a grid of parallel lines, equally spaced, inside the specified window.

Usage
rlinegrid(angle = 45, spacing = 0.1, win = owin())

Arguments
angle Common orientation of the lines, in degrees anticlockwise from the x axis.
spacing Spacing between successive lines.
win Window in which to generate the lines. An object of class "owin" or something acceptable to as.owin.

Details
The grid is randomly displaced from the origin.

Value
A line segment pattern (object of class "psp").

Author(s)
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
psp, rpoisline

Examples
plot(rlinegrid(30, 0.05))
rMatClust
Simulate Matérn Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Matérn Cluster Process.

Usage

```r
rMatClust(kappa, scale, mu, win = owin(c(0,1),c(0,1)), nsim=1, drop=TRUE, saveLambda=FALSE, expand = scale, ...)
```

Arguments

- **kappa**: Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
- **scale**: Radius parameter of the clusters.
- **mu**: Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
- **win**: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.
- **saveLambda**: Logical. If `TRUE` then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
- **expand**: Numeric. Size of window expansion for generation of parent points. Defaults to `scale` which is the cluster radius.
- **...**: Passed to `clusterfield` to control the image resolution when `saveLambda=TRUE`.

Details

This algorithm generates a realisation of Matérn’s cluster process, a special case of the Neyman-Scott process, inside the window `win`.

In the simplest case, where `kappa` and `mu` are single numbers, the algorithm generates a uniform Poisson point process of “parent” points with intensity `kappa`. Then each parent point is replaced by a random cluster of “offspring” points, the number of points per cluster being Poisson (`mu`) distributed, and their positions being placed and uniformly inside a disc of radius `scale` centred on the parent point. The resulting point pattern is a realisation of the classical “stationary Matern cluster process” generated inside the window `win`. This point process has intensity `kappa * mu`.

The algorithm can also generate spatially inhomogeneous versions of the Matérn cluster process:
• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to \(\mu/(\pi \times \text{scale}^2) \) inside the disc of radius scale centred on the parent point, and zero intensity outside this disc. Equivalently we first generate, for each parent point, a Poisson (\(M \)) random number of offspring (where \(M \) is the maximum value of \(\mu \)) placed independently and uniformly in the disc of radius scale centred on the parent location, and then randomly thin the offspring points, with retention probability \(\mu/M \).

• Both the parent points and the offspring points can be inhomogeneous, as described above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because an offspring point inside win could have its parent point lying outside win. In order to allow this, the simulation algorithm first expands the original window win by a distance expand and generates the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain must contain this larger window.

The intensity of the Matérn cluster process is kappa * mu if either kappa or mu is a single number. In the general case the intensity is an integral involving kappa, mu and scale.

The Matérn cluster process model with homogeneous parents (i.e. where kappa is a single number) can be fitted to data using kppm. Currently it is not possible to fit the Matérn cluster process model with inhomogeneous parents.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rpoispp, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson, kppm, clusterfit.
Examples

```
# homogeneous
X <- rMatClust(10, 0.05, 4)
# inhomogeneous
Z <- as.im(function(x,y)( 4 * exp(2 * x - 1 ) ), owin())
Y <- rMatClust(10, 0.05, Z)
```

rMaternI

Simulate Matern Model I

Description

Generate a random point pattern, a simulated realisation of the Matérn Model I inhibition process model.

Usage

```
rMaternI(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ..., nsim=1, drop=TRUE)
```

Arguments

- `kappa`: Intensity of the Poisson process of proposal points. A single positive number.
- `r`: Inhibition distance.
- `win`: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- `stationary`: Logical. Whether to start with a stationary process of proposal points (`stationary=TRUE`) or to generate the proposal points only inside the window (`stationary=FALSE`).
- ...: Ignored.
- `nsim`: Number of simulated realisations to be generated.
- `drop`: Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn’s Model I inhibition process inside the window `win`.

The process is constructed by first generating a uniform Poisson point process of “proposal” points with intensity `kappa`. If `stationary = TRUE` (the default), the proposal points are generated in a window larger than `win` that effectively means the proposals are stationary. If `stationary=FALSE` then the proposal points are only generated inside the window `win`.

A proposal point is then deleted if it lies within `r` units’ distance of another proposal point. Otherwise it is retained.

The retained points constitute Matérn’s Model I.
rMaternII

Description
Generate a random point pattern, a simulated realisation of the Matérn Model II inhibition process.

Usage
rMaternII(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ..., nsim=1, drop=TRUE)

Arguments
- kappa: Intensity of the Poisson process of proposal points. A single positive number.
- r: Inhibition distance.
- win: Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin.
- stationary: Logical. Whether to start with a stationary process of proposal points (stationary=TRUE) or to generate the proposal points only inside the window (stationary=FALSE).
- ...: Ignored.
- nsim: Number of simulated realisations to be generated.
- drop: Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
Details

This algorithm generates one or more realisations of Matérn’s Model II inhibition process inside the window \(\text{win} \).

The process is constructed by first generating a uniform Poisson point process of “proposal” points with intensity \(\kappa \). If \(\text{stationary} = \text{TRUE} \) (the default), the proposal points are generated in a window larger than \(\text{win} \) that effectively means the proposals are stationary. If \(\text{stationary} = \text{FALSE} \) then the proposal points are only generated inside the window \(\text{win} \).

Then each proposal point is marked by an “arrival time”, a number uniformly distributed in \([0, 1]\) independently of other variables.

A proposal point is deleted if it lies within \(r \) units’ distance of another proposal point that has an earlier arrival time. Otherwise it is retained. The retained points constitute Matérn’s Model II.

The difference between Matérn’s Model I and II is the italicised statement above. Model II has a higher intensity for the same parameter values.

Value

A point pattern (an object of class "ppp") if \(\text{nsim} = 1 \), or a list of point patterns if \(\text{nsim} > 1 \).

Author(s)

Adrian Baddeley \(<\text{Adrian.Baddeley@uwa.edu.au}>\) http://www.maths.uwa.edu.au/~adrian/, Ute Hahn, and Rolf Turner \(<\text{r.turner@auckland.ac.nz}>\)

See Also

rpoispp, rMatClust, rMaternI

Examples

\[
X \leftarrow \text{rMaternII}(20, 0.05) \\
Y \leftarrow \text{rMaternII}(20, 0.05, \text{stationary} = \text{FALSE})
\]

rmh

Simulate point patterns using the Metropolis-Hastings algorithm.

Description

Generic function for running the Metropolis-Hastings algorithm to produce simulated realisations of a point process model.

Usage

\(\text{rmh(model, \ldots)} \)
Arguments

model The point process model to be simulated.

Further arguments controlling the simulation.

Details

The Metropolis-Hastings algorithm can be used to generate simulated realisations from a wide range of spatial point processes. For caveats, see below.

The function \texttt{rmh} is generic; it has methods \texttt{rmh.ppm} (for objects of class "ppm") and \texttt{rmh.default} (the default). The actual implementation of the Metropolis-Hastings algorithm is contained in \texttt{rmh.default}. For details of its use, see \texttt{rmh.ppm} or \texttt{rmh.default}.

[If the model is a Poisson process, then Metropolis-Hastings is not used; the Poisson model is generated directly using \texttt{rpoispp} or \texttt{rmpoispp}.]

In brief, the Metropolis-Hastings algorithm is a Markov Chain, whose states are spatial point patterns, and whose limiting distribution is the desired point process. After running the algorithm for a very large number of iterations, we may regard the state of the algorithm as a realisation from the desired point process.

However, there are difficulties in deciding whether the algorithm has run for “long enough”. The convergence of the algorithm may indeed be extremely slow. No guarantees of convergence are given!

While it is fashionable to decry the Metropolis-Hastings algorithm for its poor convergence and other properties, it has the advantage of being easy to implement for a wide range of models.

Value

A point pattern, in the form of an object of class "ppp". See \texttt{rmh.default} for details.

Warning

As of version 1.22-1 of spatstat a subtle change was made to \texttt{rmh.default()}. We had noticed that the results produced were sometimes not “scalable” in that two models, differing in effect only by the units in which distances are measured and starting from the same seed, gave different results. This was traced to an idiosyncracy of floating point arithmetic. The code of \texttt{rmh.default()} has been changed so that the results produced by \texttt{rmh} are now scalable. The downside of this is that code which users previously ran may now give results which are different from what they formerly were.

In order to recover former behaviour (so that previous results can be reproduced) set \texttt{spatstat.options(scalable=FALSE)}. See the last example in the help for \texttt{rmh.default}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \texttt{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{rmh.default}
Examples

See examples in rmh.default and rmh.ppm

Description

Generates a random point pattern, simulated from a chosen point process model, using the Metropolis-Hastings algorithm.

Usage

```r
## Default S3 method:
rmh(model, start=NULL,
    control=default.rmhcontrol(model),
    ...,
    verbose=TRUE, snoop=FALSE)
```

Arguments

- `model` Data specifying the point process model that is to be simulated.
- `start` Data determining the initial state of the algorithm.
- `control` Data controlling the iterative behaviour and termination of the algorithm.
- `...` Further arguments passed to `rmhcontrol` or to trend functions in `model`.
- `verbose` Logical flag indicating whether to print progress reports.
- `snoop` Logical. If TRUE, activate the visual debugger.

Details

This function generates simulated realisations from any of a range of spatial point processes, using the Metropolis-Hastings algorithm. It is the default method for the generic function `rmh`.

This function executes a Metropolis-Hastings algorithm with birth, death and shift proposals as described in Geyer and Møller (1994).

The argument `model` specifies the point process model to be simulated. It is either a list, or an object of class "rmhmodel", with the following components:

- `cif` A character string specifying the choice of interpoint interaction for the point process.
- `par` Parameter values for the conditional intensity function.
- `w` (Optional) window in which the pattern is to be generated. An object of class "owin", or data acceptable to `as.owin`.

trend Data specifying the spatial trend in the model, if it has a trend. This may be a function, a pixel image (of class "im"), or a list of functions or images if the model is multitype.

If the trend is a function or functions, any auxiliary arguments ... to rmh.default will be passed to these functions, which should be of the form function(x, y, ...).

types List of possible types, for a multitype point process.

For full details of these parameters, see rmhmodel.default.

The argument start determines the initial state of the Metropolis-Hastings algorithm. It is either NULL, or an object of class "rmhstart", or a list with the following components:

n.start Number of points in the initial point pattern. A single integer, or a vector of integers giving the numbers of points of each type in a multitype point pattern. Incompatible with x.start.

x.start Initial point pattern configuration. Incompatible with n.start.

x.start may be a point pattern (an object of class "ppp"), or data which can be coerced to this class by as.ppp, or an object with components x and y, or a two-column matrix. In the last two cases, the window for the pattern is determined by model$w. In the first two cases, if model$w is also present, then the final simulated pattern will be clipped to the window model$w.

For full details of these parameters, see rmhstart.

The third argument control controls the simulation procedure (including conditional simulation), iterative behaviour, and termination of the Metropolis-Hastings algorithm. It is either NULL, or a list, or an object of class "rmhcontrol", with components:

p The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings algorithm.

q The conditional probability of proposing a death (rather than a birth) given that birth/death has been chosen over shift.

nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It should be large.

expand Either a numerical expansion factor, or a window (object of class "owin"). Indicates that the process is to be simulated on a larger domain than the original data window w, then clipped to w when the algorithm has finished.

The default is to expand the simulation window if the model is stationary and non-Poisson (i.e. it has no trend and the interaction is not Poisson) and not to expand in all other cases.

If the model has a trend, then in order for expansion to be feasible, the trend must be given either as a function, or an image whose bounding box is large enough to contain the expanded window.

periodic A logical scalar; if periodic is TRUE we simulate a process on the torus formed by identifying opposite edges of a rectangular window.

ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new point.

fixall A logical scalar specifying whether to condition on the number of points of each type.

nverb An integer specifying how often “progress reports” (which consist simply of the number of repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation proceeds silently.
x.cond If this argument is present, then conditional simulation will be performed, and x.cond specifies the conditioning points and the type of conditioning.

nsave,nburn If these values are specified, then intermediate states of the simulation algorithm will be saved every nsave iterations, after an initial burn-in period of nburn iterations.

track Logical flag indicating whether to save the transition history of the simulations.

For full details of these parameters, see rmhcontrol. The control parameters can also be given in the ... arguments.

Value

A point pattern (an object of class "ppp", see ppp.object).

The returned value has an attribute info containing modified versions of the arguments model, start, and control which together specify the exact simulation procedure. The info attribute can be printed (and is printed automatically by summary.ppp).

The value of .Random.seed at the start of the simulations is also saved and returned as an attribute seed.

If the argument track=True was given (see rmhcontrol), the transition history of the algorithm is saved, and returned as an attribute history. The transition history is a data frame containing a factor proposaltype identifying the proposal type (Birth, Death or Shift) and a logical vector accepted indicating whether the proposal was accepted. The data frame also has columns numerator, denominator which give the numerator and denominator of the Hastings ratio for the proposal.

If the argument nsave was given (see rmhcontrol), the return value has an attribute saved which is a list of point patterns, containing the intermediate states of the algorithm.

Conditional Simulation

There are several kinds of conditional simulation.

- Simulation conditional upon the number of points, that is, holding the number of points fixed. To do this, set control$P (the probability of a shift) equal to 1. The number of points is then determined by the starting state, which may be specified either by setting start$n.start to be a scalar, or by setting the initial pattern start$x.start.

- In the case of multitype processes, it is possible to simulate the model conditionally upon the number of points of each type, i.e. holding the number of points of each type to be fixed. To do this, set control$P equal to 1 and control$fixall to be TRUE. The number of points is then determined by the starting state, which may be specified either by setting start$n.start to be an integer vector, or by setting the initial pattern start$x.start.

- Simulation conditional on the configuration observed in a sub-window, that is, requiring that, inside a specified sub-window V, the simulated pattern should agree with a specified point pattern y. To do this, set control$x.cond to equal the specified point pattern y, making sure that it is an object of class "ppp" and that the window Window(control$x.cond) is the conditioning window V.

- Simulation conditional on the presence of specified points, that is, requiring that the simulated pattern should include a specified set of points. This is simulation from the Palm distribution of the point process given a pattern y. To do this, set control$x.cond to be a data.frame containing the coordinates (and marks, if appropriate) of the specified points.
For further information, see \texttt{rmhcontrol}.

Note that, when we simulate conditionally on the number of points, or conditionally on the number of points of each type, no expansion of the window is possible.

\textbf{Visual Debugger}

If \texttt{snoop = TRUE}, an interactive debugger is activated. On the current plot device, the debugger displays the current state of the Metropolis-Hastings algorithm together with the proposed transition to the next state. Clicking on this graphical display (using the left mouse button) will re-centre the display at the clicked location. Surrounding this graphical display is an array of boxes representing different actions. Clicking on one of the action boxes (using the left mouse button) will cause the action to be performed. Debugger actions include:

- Zooming in or out
- Panning (shifting the field of view) left, right, up or down
- Jumping to the next iteration
- Skipping 10, 100, 1000, 10000 or 100000 iterations
- Jumping to the next Birth proposal (etc)
- Changing the fate of the proposal (i.e. changing whether the proposal is accepted or rejected)
- Dumping the current state and proposal to a file
- Printing detailed information at the terminal
- Exiting the debugger (so that the simulation algorithm continues without further interruption).

Right-clicking the mouse will also cause the debugger to exit.

\textbf{Warnings}

There is never a guarantee that the Metropolis-Hastings algorithm has converged to its limiting distribution.

If \texttt{x.start} is specified then \texttt{expand} is set equal to 1 and simulation takes place in \texttt{x.start$window}. Any specified value for \texttt{expand} is simply ignored.

The presence of both a component \texttt{w} of \texttt{model} and a non-null value for \texttt{x.start$window} makes sense ONLY if \texttt{w} is contained in \texttt{x.start$window}.

For multitype processes make sure that, even if there is to be no trend corresponding to a particular type, there is still a component (a NULL component) for that type, in the list.

\textbf{Other models}

In theory, any finite point process model can be simulated using the Metropolis-Hastings algorithm, provided the conditional intensity is uniformly bounded.

In practice, the list of point process models that can be simulated using \texttt{rmh.default} is limited to those that have been implemented in the package's internal C code. More options will be added in the future.

Note that the \texttt{lookup} conditional intensity function permits the simulation (in theory, to any desired degree of approximation) of any pairwise interaction process for which the interaction depends only on the distance between the pair of points.
Reproducible simulations

If the user wants the simulation to be exactly reproducible (e.g., for a figure in a journal article, where it is useful to have the figure consistent from draft to draft) then the state of the random number generator should be set before calling \texttt{rmh.default}. This can be done either by calling \texttt{set.seed} or by assigning a value to \texttt{.Random.seed}. In the examples below, we use \texttt{set.seed}.

If a simulation has been performed and the user now wants to repeat it exactly, the random seed should be extracted from the simulated point pattern \(X\) by seed \(\leftarrow\) attr(\(X\), "seed"), then assigned to the system random number state by \(\texttt{.Random.seed} \leftarrow\) seed before calling \texttt{rmh.default}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

\texttt{rmh}, \texttt{rmh.ppm}, \texttt{rStrauss}, \texttt{ppp}, \texttt{ppm}, \texttt{AreaInter}, \texttt{BadGey}, \texttt{DiggleGatesStibbard}, \texttt{DiggleGratton}, \texttt{Fiksel}, \texttt{Geyer}, \texttt{Hardcore}, \texttt{LennardJones}, \texttt{MultiHard}, \texttt{MultiStrauss}, \texttt{MultiStraussHard}, \texttt{PairPiece}, \texttt{Poisson}, \texttt{Softcore}, \texttt{Strauss}, \texttt{StraussHard}, \texttt{Triplets}

Examples

\begin{verbatim}
if(interactive()) {
 nr <- 1e5
 nv <- 5000
 ns <- 200
} else {
 nr <- 10
 nv <- 5
 ns <- 20
 oldopt <- spatstat.options()
 spatstat.options(expand=1.1)
\end{verbatim}
set.seed(961018)

Strauss process.
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
w=c(0,10,0,10))
X1.strauss <- rmh(model=mod01,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X1.strauss)

Strauss process, conditioning on n = 42:
X2.strauss <- rmh(model=mod01,start=list(n.start=42),
control=list(nrep=nr,nverb=nv))

Tracking algorithm progress:
X <- rmh(model=mod01,start=list(n.start=ns),
control=list(nrep=nr,nsave=nr/5,nburn=nr/2,track=TRUE))
History <- attr(X, "history")
Saved <- attr(X, "saved")
head(History)
plot(Saved)

Hard core process:
mod02 <- list(cif="hardcore",par=list(beta=2,hc=0.7),w=c(0,10,0,10))
X3.hardcore <- rmh(model=mod02,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X3.hardcore)

Strauss process equal to pure hardcore:
mod02s <- list(cif="strauss",par=list(beta=2,gamma=0,r=0.7),w=c(0,10,0,10))
X3.strauss <- rmh(model=mod02s,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

Strauss process in a polygonal window.
x <- c(0.55,0.68,0.75,0.58,0.39,0.37,0.19,0.26,0.42)
y <- c(0.20,0.27,0.68,0.99,0.80,0.61,0.45,0.28,0.33)
mod03 <- list(cif="strauss",par=list(beta=2000,gamma=0.6,r=0.07),
w=owin(poly=list(x=x,y=y)))
X4.strauss <- rmh(model=mod03,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X4.strauss)

Strauss process in a polygonal window, conditioning on n = 80.
X5.strauss <- rmh(model=mod03,start=list(n.start=ns),
control=list(p=1,nrep=nr,nverb=nv))

Strauss process, starting off from X4.strauss, but with the
polygonal window replace by a rectangular one. At the end,
the generated pattern is clipped to the original polygonal window.
xxx <- X4.strauss
xxx$window <- as.owin(c(0,1,0,1))
X6.strauss <- rmh(model=mod03, start=list(x.start=xxx),
control=list(nrep=nr, nverb=nv))

Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2, gamma=0.2, r=0.7, hc=0.3),
w=c(0,10,0,10))
X1.strauss <- rmh(model=mod04, start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))

Another Strauss with hardcore (with a perhaps surprising result):
mod05 <- list(cif="straush",par=list(beta=80, gamma=0.36, r=45, hc=2.5),
w=c(0,250,0,250))
X2.strauss <- rmh(model=mod05, start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))

Pure hardcore (identical to X3.strauss).
mod06 <- list(cif="straush",par=list(beta=2, gamma=1, r=1, hc=0.7),
w=c(0,10,0,10))
X3.strauss <- rmh(model=mod06, start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))

Soft core:
W <- c(0,10,0,10)
mod07 <- list(cif="sftcr", par=list(beta=0.8, sigma=0.1, kappa=0.5),
w=c(0,10,0,10))
X.sftcr <- rmh(model=mod07, start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))
if(interactive()) plot(X.sftcr)

Area-interaction process:
mod42 <- rmhmodel(cif="areaint", par=list(beta=2, eta=1.6, r=0.7),
w=c(0,10,0,10))
X.area <- rmh(model=mod42, start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))
if(interactive()) plot(X.area)

Triplets process
modtrip <- list(cif="triplets", par=list(beta=2, gamma=0.2, r=0.7),
w=c(0,10,0,10))
X.triplets <- rmh(model=modtrip,
start=list(n.start=ns),
control=list(nrep=nr, nverb=nv))
if(interactive()) plot(X.triplets)

Multitype Strauss:
beta <- c(0.027, 0.008)
gamma <- matrix(c(0.04, 0.98, 0.98, 0.36), 2, 2)
r <- matrix(c(45, 45, 45, 45), 2, 2)
mod08 <- list(cif="straussm", par=list(beta=beta, gamma=gamma, radii=r),
w=c(0,250,0,250))
X1.straussm <- rmh(model=mod08, start=list(n.start=ns),
control=list(ptypes=c(0.75, 0.25), nrep=nr, nverb=nv))
if(interactive()) plot(X1.straussm)
Multitype Strauss conditioning upon the total number # of points being 80:
X2.straussm <- rmh(model=mod08,start=list(n.start=ns),
 control=list(p=1,ptypes=c(0.75,0.25),nrep=nr,
 nverb=nv))

Conditioning upon the number of points of type 1 being 60 # and the number of points of type 2 being 20:
X3.straussm <- rmh(model=mod08,start=list(n.start=c(60,20)),
 control=list(fixall=TRUE,p=1,ptypes=c(0.75,0.25),
 nrep=nr,nverb=nv))

Multitype Strauss hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod09 <- list(cif="straushm",par=list(beta=beta,gamma=gamma,
 iradii=r,hradii=rhc),w=c(0,250,0,250))
X.straussm <- rmh(model=mod09,start=list(n.start=ns),
 control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
tr3 <- function(x,y)(x <- x/250; y <- y/250;
 exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6))
 # log quadratic trend
tr4 <- function(x,y)(x <- x/250; y <- y/250;
 exp(-0.6*x+0.5*y))
 # log linear trend
mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gamma,
 iradii=r,hradii=rhc),w=c(0,250,0,250),
 trend=list(tr3,tr4))
X1.straussm.trend <- rmh(model=mod10,start=list(n.start=ns),
 control=list(ptypes=c(0.75,0.25),
 nrep=nr,nverb=nv))
if(interactive()) plot(X1.straussm.trend)

Multitype Strauss hardcore with trends for each type, given as images:
bigwin <- square(250)
i1 <- as.im(tr3, bigwin)
i2 <- as.im(tr4, bigwin)
mod11 <- list(cif="straushm",par=list(beta=beta,gamma=gamma,
 iradii=r,hradii=rhc),w=bigwin,
 trend=list(i1,i2))
X2.straussm.trend <- rmh(model=mod11,start=list(n.start=ns),
 control=list(ptypes=c(0.75,0.25),expand=1,
 nrep=nr,nverb=nv))

Diggle, Gates, and Stibbard:
mod12 <- list(cif="dgs",par=list(beta=3600,rho=0.08),w=c(0,1,0,1))
X.dgs <- rmh(model=mod12,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.dgs)
Diggle-Gratton:
mod13 <- list(cif="diggra",
 par=list(beta=1800,kappa=3,delta=0.02,rho=0.04),
 w=square(1))
X.diggra <- rmh(model=mod13,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.diggra)

Fiksel:
modFik <- list(cif="fiksel",
 par=list(beta=180, r=0.15, hc=0.07, kappa=2, a=-1.0),
 w=square(1))
X.fiksel <- rmh(model=modFik,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.fiksel)

Geyer:
mod14 <- list(cif="geyer",par=list(beta=1.25,gamma=1.6,r=0.2,sat=4.5),
 w=c(0,10,0,10))
X1.geyer <- rmh(model=mod14,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X1.geyer)

Geyer; same as a Strauss process with parameters
(beta=2.25,gamma=0.16,r=0.7):
mod15 <- list(cif="geyer",par=list(beta=2.25,gamma=0.4,r=0.7,sat=10000),
 w=c(0,10,0,10))
X2.geyer <- rmh(model=mod15,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))

mod16 <- list(cif="geyer",par=list(beta=8.1,gamma=2.2,r=0.08,sat=3))
data(redwood)
X3.geyer <- rmh(model=mod16,start=list(x.start=redwood),
 control=list(periodic=TRUE,nrep=nr,nverb=nv))

Geyer, starting from the redwood data set, simulating
on a torus, and conditioning on n:
X4.geyer <- rmh(model=mod16,start=list(x.start=redwood),
 control=list(p=1,periodic=TRUE,nrep=nr,nverb=nv))

Lookup (interaction function h_R from page 76, Diggle (2003)):
 r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
 h <- 20*r*(r-0.05)
 h[r<0.05] <- 0
 h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=r,r),w=c(0,1,0,1))
X.lookup <- rmh(model=mod17,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.lookup)

Strauss with trend
rmh.default

tr <- function(x,y){x <- x/250; y <- y/250;
 exp((5*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}

beta <- 0.3
gamma <- 0.5
r <- 45
modStr <- list(cif="strauss",par=list(beta=beta,gamma=gamma,r=r),
 w=square(250), trend=tr)
X1.strauss.trend <- rmh(model=modStr,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
Baddeley-Geyer
r <- seq(0.0,2,length=8)[-1]
gamma <- c(0.5,0.6,0.7,0.8,0.7,0.6,0.5)
mod18 <- list(cif="badgey",par=list(beta=4000, gamma=gamma,r=r,sat=5),
 w=square(1))
X1.badgey <- rmh(model=mod18,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
mod19 <- list(cif="badgey",
 par=list(beta=4000, gamma=gamma,r=r,sat=1e4),
 w=square(1))
set.seed(1329)
X2.badgey <- rmh(model=mod18,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
Check:
hs <- stepfun(r,c(h,1))
mod20 <- list(cif="lookup",par=list(beta=4000,h=hs),w=square(1))
set.seed(1329)
X.check <- rmh(model=mod20,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
X2.badgey and X.check will be identical.
mod21 <- list(cif="badgey",par=list(beta=300,gamma=c(1,0.4,1),
 r=c(0.035,0.07,0.14),sat=5), w=square(1))
X3.badgey <- rmh(model=mod21,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
Same result as Geyer model with beta=300, gamma=0.4, r=0.07,
sat = 5 (if seeds and control parameters are the same)
Or more simply:
mod22 <- list(cif="badgey",
 par=list(beta=300,gamma=0.4,r=0.07, sat=5),
 w=square(1))
X4.badgey <- rmh(model=mod22,start=list(n.start=ns),
 control=list(nrep=nr,nverb=nv))
Same again --- i.e. the Badgey model includes the Geyer model.

Illustrating scalability.
Not run:
M1 <- rmhmodel(cif="strauss",par=list(beta=60,gamma=0.5,r=0.04),w=owin())
set.seed(496)
rmh.ppm

Simulate from a Fitted Point Process Model

Description

Given a point process model fitted to data, generate a random simulation of the model, using the Metropolis-Hastings algorithm.

Usage

```r
## S3 method for class 'ppm'
rmh(model, start=NULL,
    control=default.rmhcontrol(model),
    ...,
    w = NULL,
    project=TRUE, verbose=TRUE, new.coef=NULL)
```

Arguments

model

A fitted point process model (object of class "ppm", see ppm.object) which it is desired to simulate. This fitted model is usually the result of a call to ppm. See Details below.

start

Data determining the initial state of the Metropolis-Hastings algorithm. See rmhstart for description of these arguments. Defaults to list(x.start=data.ppm(model))

control

Data controlling the iterative behaviour of the Metropolis-Hastings algorithm. See rmhcontrol for description of these arguments.

...

Further arguments passed to rmhcontrol, or to rmh.default, or to covariate functions in the model.

w

Optional. Window in which the simulations should be generated. Default is the window of the original data.
Logical flag indicating what to do if the fitted model is invalid (in the sense that the values of the fitted coefficients do not specify a valid point process). If `project=TRUE` the closest valid model will be simulated; if `project=FALSE` an error will occur.

Logical flag indicating whether to print progress reports.

New values for the canonical parameters of the model. A numeric vector of the same length as `coef(model)`.

This function generates simulated realisations from a point process model that has been fitted to point pattern data. It is a method for the generic function `rmh` for the class "ppm" of fitted point process models. To simulate other kinds of point process models, see `rmh` or `rmh.default`.

The argument `model` describes the fitted model. It must be an object of class "ppm" (see `ppm.object`), and will typically be the result of a call to the point process model fitting function `ppm`.

The current implementation enables simulation from any fitted model involving the interactions `AreaInter`, `DiggleGratton`, `DiggleGatesStibbard`, `Geyer`, `Hardcore`, `MultiStrauss`, `MultiStraussHard`, `PairPiece`, `Poisson`, `Strauss`, `StraussHard` and `Softcore`, including nonstationary models. See the examples.

It is also possible to simulate hybrids of several such models. See `Hybrid` and the examples.

It is possible that the fitted coefficients of a point process model may be "illegal", i.e. that there may not exist a mathematically well-defined point process with the given parameter values. For example, a Strauss process with interaction parameter $\gamma > 1$ does not exist, but the model-fitting procedure used in `ppm` will sometimes produce values of γ greater than 1. In such cases, if `project=FALSE` then an error will occur, while if `project=TRUE` then `rmh.ppm` will find the nearest legal model and simulate this model instead. (The nearest legal model is obtained by projecting the vector of coefficients onto the set of valid coefficient vectors. The result is usually the Poisson process with the same fitted intensity.)

The arguments `start` and `control` are lists of parameters determining the initial state and the iterative behaviour, respectively, of the Metropolis-Hastings algorithm.

The argument `start` is passed directly to `rmhstart`. See `rmhstart` for details of the parameters of the initial state, and their default values.

The argument `control` is first passed to `rmhcontrol`. Then if any additional arguments ... are given, `update.rmhcontrol` is called to update the parameter values. See `rmhcontrol` for details of the iterative behaviour parameters, and `default.rmhcontrol` for their default values.

Note that if you specify expansion of the simulation window using the parameter `expand` (so that the model will be simulated on a window larger than the original data window) then the model must be capable of extrapolation to this larger window. This is usually not possible for models which depend on external covariates, because the domain of a covariate image is usually the same as the domain of the fitted model.

After extracting the relevant information from the fitted model object `model`, `rmh.ppm` invokes the default `rmh` algorithm `rmh.default`, unless the model is Poisson. If the model is Poisson then the Metropolis-Hastings algorithm is not needed, and the model is simulated directly, using one of `rpoispp`, `rmpoispp`, `rpoint` or `rmppoint`.

See `rmh.default` for further information about the implementation, or about the Metropolis-Hastings algorithm.
rmh.ppm

Value

A point pattern (an object of class "ppp": see ppp.object).

Warnings

See Warnings in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

simulate.ppm, rmh, rmhmodel, rmhcontrol.default, update.rmhcontrol, rmhstart, rmh.default, ppp.object, ppm.

Interactions: AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, Hybrid, MultiStrauss, MultiStraussHard, PairPiece, Poisson, Strauss, StraussHard, Softcore

Examples

```r
live <- interactive()
op <- spatstat.options()
spatstat.options(rmh.nrep=1e5)
Nrep <- 1e5

X <- swedishpines
if(live) plot(X, main="Swedish Pines data")

# Poisson process
fit <- ppm(X, ~1, Poisson())
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Poisson model")

# Strauss process
fit <- ppm(X, ~1, Strauss(r=7))
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Strauss model")

## Not run:
# Strauss process simulated on a larger window
# then clipped to original window
Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE))
Xsim <- rmh(fit, nrep=Nrep, expand=2, periodic=TRUE)

## End(Not run)

## Not run:
X <- rSSI(0.05, 100)
# piecewise-constant pairwise interaction function
fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
```
Xsim <- rmh(fit)

End(Not run)

marked point pattern
Y <- amacrine

End(Not run):

marked Poisson models
fit <- ppm(Y)
fit <- ppm(Y ~ marks)
fit <- ppm(Y ~ polynom(x,2))
fit <- ppm(Y ~ marks+polynom(x,2))
fit <- ppm(Y ~ marks*polynom(x,y,2))
Ysim <- rmh(fit)

End(Not run)

multitype Strauss models
MS <- MultiStrauss(radii=matrix(0.07, ncol=2, nrow=2),
 types = levels(Y$marks))
Not run:
fit <- ppm(Y ~ marks, MS)
Ysim <- rmh(fit)

End(Not run)

fit <- ppm(Y ~ marks*polynom(x,y,2), MS)
Ysim <- rmh(fit)
if(live) plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")

spatstat.options(op)

Not run:

Hybrid model
fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
Y <- rmh(fit)

End(Not run)

rmhcontrol

Set Control Parameters for Metropolis-Hastings Algorithm.

Description

Sets up a list of parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

rmhcontrol(...)
Arguments

... Arguments passed to methods.

p Probability of proposing a shift (as against a birth/death).

q Conditional probability of proposing a death given that a birth or death will be proposed.

nrep Total number of steps (proposals) of Metropolis-Hastings algorithm that should be run.

expand Simulation window or expansion rule. Either a window (object of class "owin") or a numerical expansion factor, specifying that simulations are to be performed in a domain other than the original data window, then clipped to the original data window. This argument is passed to \texttt{rmhexpand}. A numerical expansion factor can be in several formats: see \texttt{rmhexpand}.

periodic Logical value (or \texttt{NULL}) indicating whether to simulate “periodically”, i.e. identifying opposite edges of the rectangular simulation window. A \texttt{NULL} value means “undecided.”

ptypes For multitype point processes, the distribution of the mark attached to a new random point (when a birth is proposed)

x.cond Conditioning points for conditional simulation.

fixall (Logical) for multitype point processes, whether to fix the number of points of each type.

nverb Progress reports will be printed every \texttt{nverb} iterations

nsave, nburn If these values are specified, then intermediate states of the simulation algorithm will be saved every \texttt{nsave} iterations, after an initial burn-in period of \texttt{nburn} iterations.

track Logical flag indicating whether to save the transition history of the simulations.

Details

The Metropolis-Hastings algorithm, implemented as \texttt{rmh}, generates simulated realisations of point process models. The function \texttt{rmhcontrol} sets up a list of parameters which control the iterative behaviour and termination of the Metropolis-Hastings algorithm, for use in a subsequent call to \texttt{rmh}. It also checks that the parameters are valid.

(A separate function \texttt{rmhstart} determines the initial state of the algorithm, and \texttt{rmhmodel} determines the model to be simulated.)

The parameters are as follows:

Default S3 method:
\begin{verbatim}
rmhcontrol(..., p=0.9, q=0.5, nrep=5e5,
 expand=NULL, periodic=NULL, ptypes=NULL,
 x.cond=NULL, fixall=FALSE, nverb=0,
 nsave=NULL, nburn=nsave, track=FALSE)
\end{verbatim}
The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings algorithm.

If \(p = 1 \) then the algorithm only alters existing points, so the number of points never changes, i.e. we are simulating conditionally upon the number of points. The number of points is determined by the initial state (specified by \texttt{rmhstart}).

If \(p = 1 \) and \texttt{fixall}=TRUE and the model is a multitype point process model, then the algorithm only shifts the locations of existing points and does not alter their marks (types). This is equivalent to simulating conditionally upon the number of points of each type. These numbers are again specified by the initial state.

If \(p = 1 \) then no expansion of the simulation window is allowed (see \texttt{expand} below).

The default value of \(p \) can be changed by setting the parameter \texttt{rmh.p} in \texttt{spatstat.options}.

The conditional probability of proposing a death (rather than a birth) given that a shift is not proposed. This is of course ignored if \(p \) is equal to 1.

The default value of \(q \) can be changed by setting the parameter \texttt{rmh.q} in \texttt{spatstat.options}.

The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It should be large.

The default value of \(nrep \) can be changed by setting the parameter \texttt{rmh.nrep} in \texttt{spatstat.options}.

Either a number or a window (object of class "owin"). Indicates that the process is to be simulated on a domain other than the original data window \(w \), then clipped to \(w \) when the algorithm has finished. This would often be done in order to approximate the simulation of a stationary process (Geyer, 1999) or more generally a process existing in the whole plane, rather than just in the window \(w \).

If \(\texttt{expand} \) is a window object, it is taken as the larger domain in which simulation is performed. If \(\texttt{expand} \) is numeric, it is interpreted as an expansion factor or expansion distance for determining the simulation domain from the data window. It should be a named scalar, such as \(\texttt{expand=c(area=2)} \), \(\texttt{expand=c(distance=0.1)} \), \(\texttt{expand=c(length=1.2)} \). See \texttt{rmhexpand()} for more details. If the name is omitted, it defaults to area.

Expansion is not permitted if the number of points has been fixed by setting \(p = 1 \) or if the starting configuration has been specified via the argument \(x \).start in \texttt{rmhstart}.

If \(\texttt{expand} \) is \(\texttt{NULL} \), this is interpreted to mean “not yet decided”. An expansion rule will be determined at a later stage, using appropriate defaults. See \texttt{rmhexpand}.

A logical value (or \(\texttt{NULL} \)) determining whether to simulate “periodically”. If \(\texttt{periodic} \) is \(\text{TRUE} \), and if the simulation window is a rectangle, then the simulation algorithm effectively identifies opposite edges of the rectangle. Points near the right-hand edge of the rectangle are deemed to be close to points near the left-hand edge. Periodic simulation usually gives a better approximation to a stationary point process. For periodic simulation, the simulation window must be a rectangle. (The simulation window is determined by \texttt{expand} as described above.)

The value \(\texttt{NULL} \) means ‘undecided’. The decision is postponed until \texttt{rmh} is called. Depending on the point process model to be simulated, \texttt{rmh} will then set \(\texttt{periodic=TRUE} \) if the simulation window is expanded \textit{and} the expanded simulation window is rectangular; otherwise \(\texttt{periodic=FALSE} \).

Note that \(\texttt{periodic=TRUE} \) is only permitted when the simulation window (i.e. the expanded window) is rectangular.

A vector of probabilities (summing to 1) to be used in assigning a random type to a new point. Defaults to a vector each of whose entries is \(1/nt \) where \(nt \) is the number of types for
the process. Convergence of the simulation algorithm should be improved if \(p \) types is close to the relative frequencies of the types which will result from the simulation.

x.cond If this argument is given, then *conditional simulation* will be performed, and \(x \). cond specifies the location of the fixed points as well as the type of conditioning. It should be either a point pattern (object of class "ppp") or a \(\text{list}(x,y) \) or a \(\text{data.frame} \). See the section on Conditional Simulation.

fixall A logical scalar specifying whether to condition on the number of points of each type. Meaningful only if a marked process is being simulated, and if \(p = 1 \). A warning message is given if \(\text{fixall} \) is set equal to \text{TRUE} when it is not meaningful.

nverb An integer specifying how often “progress reports” (which consist simply of the number of repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation proceeds silently.

nsave, nburn If these integers are given, then the current state of the simulation algorithm (i.e. the current random point pattern) will be saved every \(\text{nsave} \) iterations, starting from iteration \(\text{nburn} \).

track Logical flag indicating whether to save the transition history of the simulations (i.e. information specifying what type of proposal was made, and whether it was accepted or rejected, for each iteration).

Value

An object of class "rmhcontrol", which is essentially a list of parameter values for the algorithm. There is a \text{print} method for this class, which prints a sensible description of the parameters chosen.

Conditional Simulation

For a Gibbs point process \(X \), the Metropolis-Hastings algorithm easily accommodates several kinds of conditional simulation:

conditioning on the total number of points: We fix the total number of points \(N(X) \) to be equal to \(n \). We simulate from the conditional distribution of \(X \) given \(N(X) = n \).

conditioning on the number of points of each type: In a multitype point process, where \(Y_j \) denotes the process of points of type \(j \), we fix the number \(N(Y_j) \) of points of type \(j \) to be equal to \(n_j \), for \(j = 1,2,\ldots,m \). We simulate from the conditional distribution of \(X \) given \(N(Y_j) = n_j \) for \(j = 1,2,\ldots,m \).

conditioning on the realisation in a subwindow: We require that the point process \(X \) should, within a specified sub-window \(V \), coincide with a specified point pattern \(y \). We simulate from the conditional distribution of \(X \) given \(X \cap V = y \).

Palm conditioning: We require that the point process \(X \) include a specified list of points \(y \). We simulate from the point process with probability density \(g(x) = cf(x \cup y) \) where \(f \) is the probability density of the original process \(X \), and \(c \) is a normalising constant.

To achieve each of these types of conditioning we do as follows:

conditioning on the total number of points: Set \(p=1 \). The number of points is determined by the initial state of the simulation: see \text{rmhstart}.
conditioning on the number of points of each type: Set p=1 and fixall=TRUE. The number of points of each type is determined by the initial state of the simulation: see `rmhstart`.

conditioning on the realisation in a subwindow: Set x.cond to be a point pattern (object of class "ppp"). Its window V=x.cond$window becomes the conditioning subwindow V.

Palm conditioning: Set x.cond to be a list(x,y) or data.frame with two columns containing the coordinates of the points, or a list(x,y,marks) or data.frame with three columns containing the coordinates and marks of the points.

The arguments x.cond, p and fixall can be combined.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`rmh`, `rmhmodel`, `rmhstart`, `rmhexpand`, `spatstat.options`

Examples

```r
# parameters given as named arguments
c1 <- rmhcontrol(p=0.3,periodic=TRUE,nrep=1e6,nverb=1e5)

# parameters given as a list
liz <- list(p=0.9, nrep=1e4)
c2 <- rmhcontrol(liz)

# parameters given in rmhcontrol object
c3 <- rmhcontrol(c1)
```

Description

Specify a spatial domain in which point process simulations will be performed. Alternatively, specify a rule which will be used to determine the simulation window.

Usage

```r
rmhexpand(x = NULL, ..., area = NULL, length = NULL, distance = NULL)
```
Arguments

x Any kind of data determining the simulation window or the expansion rule. A window (object of class "owin") specifying the simulation window, a numerical value specifying an expansion factor or expansion distance, a list containing one numerical value, an object of class "rmhexpand", or NULL.

area Area expansion factor. Incompatible with other arguments.

length Length expansion factor. Incompatible with other arguments.

distance Expansion distance (buffer width). Incompatible with other arguments.

Details

In the Metropolis-Hastings algorithm `rmh` for simulating spatial point processes, simulations are usually carried out on a spatial domain that is larger than the original window of the point process model, then subsequently clipped to the original window.

The command `rmhexpand` can be used to specify the simulation window, or to specify a rule which will later be used to determine the simulation window from data.

The arguments are all incompatible: at most one of them should be given.

If the first argument `x` is given, it may be any of the following:

- a window (object of class "owin") specifying the simulation window.
- an object of class "rmhexpand" specifying the expansion rule.
- a single numerical value, without attributes. This will be interpreted as the value of the argument `area`.
- either `c(area=v)` or `list(area=v)`, where `v` is a single numeric value. This will be interpreted as the value of the argument `area`.
- either `c(length=v)` or `list(length=v)`, where `v` is a single numeric value. This will be interpreted as the value of the argument `length`.
- either `c(distance=v)` or `list(distance=v)`, where `v` is a single numeric value. This will be interpreted as the value of the argument `distance`.
- `NULL`, meaning that the expansion rule is not yet determined.

If one of the arguments `area`, `length` or `distance` is given, then the simulation window is determined from the original data window as follows.

`area` The bounding box of the original data window will be extracted, and the simulation window will be a scalar dilation of this rectangle. The argument `area` should be a numerical value, greater than or equal to 1. It specifies the area expansion factor, i.e. the ratio of the area of the simulation window to the area of the original point process window’s bounding box.

`length` The bounding box of the original data window will be extracted, and the simulation window will be a scalar dilation of this rectangle. The argument `length` should be a numerical value, greater than or equal to 1. It specifies the length expansion factor, i.e. the ratio of the width (height) of the simulation window to the width (height) of the original point process window’s bounding box.
distance The argument `distance` should be a numerical value, greater than or equal to 0. It specifies the width of a buffer region around the original data window. If the original data window is a rectangle, then this window is extended by a margin of width equal to `distance` around all sides of the original rectangle. The result is a rectangle. If the original data window is not a rectangle, then morphological dilation is applied using `dilation.owin` so that a margin or buffer of width equal to `distance` is created around all sides of the original window. The result is a non-rectangular window, typically of a different shape.

Value

An object of class "`rmhexpand" specifying the expansion rule. There is a `print` method for this class.

Undetermined expansion

If `expand=NULL`, this is interpreted to mean that the expansion rule is “not yet decided”. Expansion will be decided later, by the simulation algorithm `rmh`. If the model cannot be expanded (for example if the covariate data in the model are not available on a larger domain) then expansion will not occur. If the model can be expanded, then if the point process model has a finite interaction range `r`, the default is `rmhexpand(distance=2*r)`, and otherwise `rmhexpand(area=2)`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`expand.owin` to apply the rule to a window.

`will.expand` to test whether expansion will occur.

`rmh, rmhcontrol` for background details.

Examples

`rmhexpand()`
`rmhexpand(2)`
`rmhexpand(1)`
`rmhexpand(length=1.5)`
`rmhexpand(distance=0.1)`
`rmhexpand(letterR)`
Define Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-Hastings algorithm.

Usage

rmhmodel(...)

Arguments

... Arguments specifying the point process model in some format.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings algorithm \texttt{rmh}. The algorithm requires the model to be specified in a particular format: an object of class "\texttt{rmhmodel}".

The function \texttt{rmhmodel} takes a description of a point process model in some other format, and converts it into an object of class "\texttt{rmhmodel}". It also checks that the parameters of the model are valid.

The function \texttt{rmhmodel} is generic, with methods for

- \textbf{fitted point process models}: an object of class "\texttt{ppm}", obtained by a call to the model-fitting function \texttt{ppm}. See \texttt{rmhmodel.ppm}.
- \textbf{lists}: a list of parameter values in a certain format. See \texttt{rmhmodel.list}.
- \textbf{default}: parameter values specified as separate arguments to \texttt{...}. See \texttt{rmhmodel.default}.

Value

An object of class "\texttt{rmhmodel}". which is essentially a list of parameter values for the model.

There is a \texttt{print} method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also

`rmhmodel.ppm`, `rmhmodel.default`, `rmhmodel.list`, `rmh`, `rmhcontrol`, `rmhstart`, `ppm`, `Strauss`, `Softcore`, `StraussHard`, `Triplets`, `MultiStrauss`, `MultiStraussHard`, `DiggleGratton`, `PairPiece`

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-Hastings algorithm.

Usage

```r
## Default S3 method:
rmhmodel(...,
cif=NULL, par=NULL, w=NULL, trend=NULL, types=NULL)
```

Arguments

- `...`: Ignored.
- `cif`: Character string specifying the choice of model.
- `par`: Parameters of the model.
- `w`: Spatial window in which to simulate.
- `trend`: Specification of the trend in the model.
- `types`: A vector of factor levels defining the possible marks, for a multitype process.
Details

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.default is the default method. It builds a description of the point process model from the simple arguments listed.

The argument cif is a character string specifying the choice of interpoint interaction for the point process. The current options are

‘areaint’ Area-interaction process.
‘badgey’ Baddeley-Geyer (hybrid Geyer) process.
‘dgs’ Diggle, Gates and Stibbard (1987) process
‘diggra’ Diggle and Gratton (1984) process
‘fiksel’ Fiksel double exponential process (Fiksel, 1984).
‘geyer’ Saturation process (Geyer, 1999).
‘hardcore’ Hard core process
‘lennard’ Lennard-Jones process
‘lookup’ General isotropic pairwise interaction process, with the interaction function specified via a “lookup table”.
‘multihard’ Multitype hardcore process
‘strauss’ The Strauss process
‘straush’ The Strauss process with hard core
‘sftcr’ The Softcore process
‘straussm’ The multitype Strauss process
‘straushm’ Multitype Strauss process with hard core
‘triplets’ Triplets process (Geyer, 1999).

It is also possible to specify a hybrid of these interactions in the sense of Baddeley et al (2013). In this case, cif is a character vector containing names from the list above. For example, cif=c(‘strauss’, ‘geyer’) would specify a hybrid of the Strauss and Geyer models.

The argument par supplies parameter values appropriate to the conditional intensity function being invoked. For the interactions listed above, these parameters are:

areaint: (Area-interaction process.) A named list with components beta, eta, r which are respectively the “base” intensity, the scaled interaction parameter and the interaction radius.
badgey: (Baddeley-Geyer process.) A named list with components beta (the “base” intensity), gamma (a vector of non-negative interaction parameters), r (a vector of interaction radii, of the same length as gamma, in increasing order), and sat (the saturation parameter(s); this may be a scalar, or a vector of the same length as gamma and r; all values should be at least 1). Note that because of the presence of “saturation” the gamma values are permitted to be larger than 1.
dgs: (Diggle, Gates, and Stibbard process. See Diggle, Gates, and Stibbard (1987)) A named list with components beta and rho. This process has pairwise interaction function equal to

\[e(t) = \sin^2 \left(\frac{\pi t}{2\rho} \right) \]

for \(t < \rho \), and equal to 1 for \(t \geq \rho \).

diggra: (Diggle-Gratton process. See Diggle and Gratton (1984) and Diggle, Gates and Stibbard (1987).) A named list with components beta, kappa, delta and rho. This process has pairwise interaction function \(e(t) \) equal to 0 for \(t < \delta \), equal to \(\left(\frac{t - \delta}{\rho - \delta} \right)^\kappa \) for \(\delta \leq t < \rho \), and equal to 1 for \(t \geq \rho \). Note that here we use the symbol \(\kappa \) where Diggle, Gates, and Stibbard use \(\beta \) since we reserve the symbol \(\beta \) for an intensity parameter.

fiksel: (Fiksel double exponential process, see Fiksel (1984)) A named list with components beta, r, hc, kappa and a. This process has pairwise interaction function \(e(t) \) equal to 0 for \(t < \text{hc} \), equal to \(\exp(a \exp(-\kappa t)) \) for \(\text{hc} \leq t < r \), and equal to 1 for \(t \geq r \).

geyer: (Geyer’s saturation process. See Geyer (1999).) A named list with components beta, gamma, r, and sat. The components beta, gamma, r are as for the Strauss model, and sat is the “saturation” parameter. The model is Geyer’s “saturation” point process model, a modification of the Strauss process in which we effectively impose an upper limit (sat) on the number of neighbours which will be counted as close to a given point.

Explicitly, a saturation point process with interaction radius \(r \), saturation threshold \(s \), and parameters \(\beta \) and \(\gamma \), is the point process in which each point \(x_i \) in the pattern \(X \) contributes a factor

\[\beta \gamma \min(s, t(x_i, X)) \]

to the probability density of the point pattern, where \(t(x_i, X) \) denotes the number of “r-close neighbours” of \(x_i \) in the pattern \(X \).

If the saturation threshold \(s \) is infinite, the Geyer process reduces to a Strauss process with interaction parameter \(\gamma^2 \) rather than \(\gamma \).

hardcore: (Hard core process.) A named list with components beta and hc where beta is the base intensity and hc is the hard core distance. This process has pairwise interaction function \(e(t) \) equal to 1 if \(t > \text{hc} \) and 0 if \(t \leq \text{hc} \).

lennard: (Lennard-Jones process.) A named list with components sigma and epsilon, where sigma is the characteristic diameter and epsilon is the well depth. See LennardJones for explanation.

multihard: (Multitype hard core process.) A named list with components beta and hradii, where beta is a vector of base intensities for each type of point, and hradii is a matrix of hard core radii between each pair of types.

strauss: (Strauss process.) A named list with components beta, gamma, r which are respectively the “base” intensity, the pairwise interaction parameter and the interaction radius. Note that gamma must be less than or equal to 1. (Note that there is also an algorithm for perfect simulation of the Strauss process, rStrauss)
straush: (Strauss process with hardcore.) A named list with entries beta, gamma, r, hc where beta, gamma, and r are as for the Strauss process, and hc is the hardcore radius. Of course hc must be less than r.

sftcr: (Softcore process.) A named list with components beta, sigma, kappa. Again beta is a “base” intensity. The pairwise interaction between two points \(u \neq v \) is

\[
\exp \left\{ -\left(\frac{\sigma}{||u - v||} \right)^{2/\kappa} \right\}
\]

Note that it is necessary that \(0 < \kappa < 1 \).

straussm: (Multitype Strauss process.) A named list with components

- beta: A vector of “base” intensities, one for each possible type.
- gamma: A symmetric matrix of interaction parameters, with \(\gamma_{ij} \) pertaining to the interaction between type \(i \) and type \(j \).
- radii: A symmetric matrix of interaction radii, with entries \(r_{ij} \) pertaining to the interaction between type \(i \) and type \(j \).

straushm: (Multitype Strauss process with hardcore.) A named list with components beta and gamma as for straussm and two “radii” components:

- iradii: the interaction radii
- hradii: the hardcore radii

which are both symmetric matrices of nonnegative numbers. The entries of hradii must be less than the corresponding entries of iradii.

triplets: (Triplets process.) A named list with components beta, gamma, r which are respectively the “base” intensity, the triplet interaction parameter and the interaction radius. Note that gamma must be less than or equal to 1.

lookup: (Arbitrary pairwise interaction process with isotropic interaction.) A named list with components beta, r, and h, or just with components beta and h. This model is the pairwise interaction process with an isotropic interaction given by any chosen function \(H \). Each pair of points \(x_i, x_j \) in the point pattern contributes a factor \(H(d(x_i, x_j)) \) to the probability density, where \(d \) denotes distance and \(H \) is the pair interaction function. The component beta is a (positive) scalar which determines the “base” intensity of the process.

In this implementation, \(H \) must be a step function. It is specified by the user in one of two ways.

- **as a vector of values:** If \(r \) is present, then \(r \) is assumed to give the locations of jumps in the function \(H \), while the vector \(h \) gives the corresponding values of the function. Specifically, the interaction function \(H(t) \) takes the value \(h[1] \) for distances \(t \) in the interval \([0, r[1]] \); takes the value \(h[i] \) for distances \(t \) in the interval \([r[i-1], r[i]] \) where \(i = 2, \ldots, n \); and takes the value 1 for \(t \geq r[n] \). Here \(n \) denotes the length of \(r \). The components \(r \) and \(h \) must be numeric vectors of equal length. The \(r \) values must be strictly positive, and sorted in increasing order. The entries of \(h \) must be non-negative. If any entry of \(h \) is greater than 1, then the entry \(h[1] \) must be 0 (otherwise the specified process is non-existent).

Greatest efficiency is achieved if the values of \(r \) are equally spaced.

[Note: The usage of \(r \) and \(h \) has changed from the previous usage in spatstat versions 1.4-7 to 1.5-1, in which ascending order was not required, and in which the first entry of \(r \) had to be 0.]
- **as a stepfun object:** If \(r \) is absent, then \(h \) must be an object of class "stepfun" specifying a step function. Such objects are created by \texttt{stepfun}.

The stepfun object \(h \) must be right-continuous (which is the default using \texttt{stepfun}).

The values of the step function must all be nonnegative. The values must all be less than 1 unless the function is identically zero on some initial interval \([0, r)\). The rightmost value (the value of \(h(t) \) for large \(t \)) must be equal to 1.

 Greatest efficiency is achieved if the jumps (the "knots" of the step function) are equally spaced.

For a hybrid model, the argument \(\text{par} \) should be a list, of the same length as \(\text{cif} \), such that \(\text{par[i]} \) is a list of the parameters required for the interaction \(\text{cif[i]} \). See the Examples.

The optional argument \(\text{trend} \) determines the spatial trend in the model, if it has one. It should be a function or image (or a list of such, if the model is multitype) to provide the value of the trend at an arbitrary point.

trend given as a function: A trend function may be a function of any number of arguments, but the first two must be the \(x,y \) coordinates of a point. Auxiliary arguments may be passed to the \(\text{trend} \) function at the time of simulation, via the \(\ldots \) argument to \texttt{rmh}.

 The function must be **vectorized**. That is, it must be capable of accepting vector valued \(x \) and \(y \) arguments. Put another way, it must be capable of calculating the trend value at a number of points, simultaneously, and should return the vector of corresponding trend values.

trend given as an image: An image (see \texttt{im.object}) provides the trend values at a grid of points in the observation window and determines the trend value at other points as the value at the nearest grid point.

Note that the trend or trends must be **non-negative**; no checking is done for this.

The optional argument \(\text{w} \) specifies the window in which the pattern is to be generated. If specified, it must be in a form which can be coerced to an object of class \texttt{owin} by \texttt{as.owin}.

The optional argument \(\text{types} \) specifies the possible types in a multitype point process. If the model being simulated is multitype, and \(\text{types} \) is not specified, then this vector defaults to \(1: \text{ntypes} \) where \(\text{ntypes} \) is the number of types.

Value

An object of class "\texttt{rmhmodel}\"*, which is essentially a list of parameter values for the model.

There is a \texttt{print} method for this class, which prints a sensible description of the model chosen.

Warnings in Respect of “lookup”

For the \texttt{lookup} \texttt{cif}, the entries of the \(r \) component of \texttt{par} must be **strictly positive** and sorted into ascending order.

Note that if you specify the \texttt{lookup} pairwise interaction function via \texttt{stepfun()} the arguments \(x \) and \(y \) which are passed to \texttt{stepfun()} are slightly different from \(r \) and \(h \). \texttt{length(y)} is equal to \(1+\text{length(x)} \); the final entry of \(y \) must be equal to 1 — i.e. this value is explicitly supplied by the user rather than getting tacked on internally.

The step function returned by \texttt{stepfun()} must be right continuous (this is the default behaviour of \texttt{stepfun()} otherwise an error is given.
rmhmodel.default

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also
rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, LennardJones, MultiHard, MultiStrauss, MultiStraussHard, PairPiece, Poisson, Softcore, Strauss, StraussHard, Triplets

Examples
Strauss process:
mod01 <- rmhmodel(cif="strauss",par=list(beta=2, gamma=0.2, r=0.7),
 w=owin(c(0,10),c(0,10)))
The above could also be simulated using 'rStrauss'

Strauss with hardcore:
mod04 <- rmhmodel(cif="straush",par=list(beta=2, gamma=0.2, r=0.7, hc=0.3),
 w=owin(c(0,10),c(0,5)))

Hard core:
mod05 <- rmhmodel(cif="hardcore",par=list(beta=2, hc=0.3),
 w=square(5))

Soft core:
w <- square(10)
mod07 <- rmhmodel(cif="sftcr",
 par=list(beta=0.8, sigma=0.1, kappa=0.5),
 w=w)

Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7), w=c(0,10,0,10))

Baddeley-Geyer process:
mod99 <- rmhmodel(cif="badgey",par=list(beta=0.3, gamma=c(0.2,1.8,2.4),r=c(0.035,0.07,0.14),sat=5), w=unit.square())

Multitype Strauss:
beta <- c(0.027,0.008)
gamma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- rmhmodel(cif="straussm", par=list(beta=beta,gamma=gamma,radii=r), w=square(250))

specify types
mod09 <- rmhmodel(cif="straussm", par=list(beta=beta,gamma=gamma,radii=r), w=square(250), types=c("A", "B"))

Multitype Hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod08hard <- rmhmodel(cif="multihard", par=list(beta=beta,hradii=rhc), w=square(250), types=c("A", "B"))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;
 exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
} # log quadratic trend
tr4 <- function(x,y){x <- x/250; y <- y/250;
 exp(-0.6*x+0.5*y)) # log linear trend
mod10 <- rmhmodel(cif="straushm",par=list(beta=beta,gamma=gamma, iradii=ri,hradii=rhc),w=c(0,250,0,250),
 trend=list(tr3,tr4))

Triplets process:
mod11 <- rmhmodel(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7), w=c(0,10,0,10))

Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- rmhmodel(cif="lookup", par=list(beta=4000, h=r), w=c(0,1,0,1))

hybrid model
modhy <- rmhmodel(cif=c('strauss', 'geyer'),
 par=list(list(beta=100, gamma=0.5, r=0.05),
 list(beta=1, gamma=0.7, r=0.1, sat=2)),
 w=square(1))

rmhmodel.list Define Point Process Model for Metropolis-Hastings Simulation.

Description
Given a list of parameters, builds a description of a point process model for use in simulating the model by the Metropolis-Hastings algorithm.

Usage
S3 method for class 'list'
rmhmodel(model, ...)

Arguments
model A list of parameters. See Details.
...
Optional list of additional named parameters.

Details
The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.list is the method for lists. The argument model should be a named list of parameters of the form

list(cif, par, w, trend, types)

where cif and par are required and the others are optional. For details about these components, see rmhmodel.default.

The subsequent arguments ... (if any) may also have these names, and they will take precedence over elements of the list model.

Value
An object of class "rmhmodel", which is essentially a validated list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rmhmodel, rmhmodel.default, rmhmodel.ppm, rmh, rmhcontrol, rmhstart, ppm, Strauss, Softcore, StraussHard, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece

Examples

Strauss process:
mod01 <- list(cif="strauss", par=list(beta=2, gamma=0.2, r=0.7),
 w=c(0,10,0,10))
mod01 <- rmhmodel(mod01)

Strauss with hardcore:
mod04 <- list(cif="straush", par=list(beta=2, gamma=0.2, r=0.7, hc=0.3),
 w=owin(c(0,10), c(0,5)))
mod04 <- rmhmodel(mod04)

Soft core:
w <- square(10)
mod07 <- list(cif="sftcr",
 par=list(beta=0.8, sigma=0.1, kappa=0.5),
 w=w)
mod07 <- rmhmodel(mod07)

Multitype Strauss:
beta <- c(0.027, 0.008)
gamma <- matrix(c(0.43, 0.98, 0.98, 0.36), 2, 2)
r <- matrix(c(45, 45, 45, 45), 2, 2)
mod08 <- list(cif="strauussm",
 par=list(beta=beta, gamma=gamma, radii=r),
 w=square(250))
mod08 <- rmhmodel(mod08)

specify types
mod09 <- rmhmodel(list(cif="straussm",
 par=list(beta=beta,gamma=gamma,radii=r),
 w=square(250),
 types=c("A", "B")))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27, 0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1, 5.0, 5.0, 2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;
 exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
 }
log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
 exp(-0.6*x+0.5*y))
 # log linear trend

mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gamma,
 iradii=ri,hradii=rhc),w=c(0,250,0,250),
 trend=list(tr3,tr4))
mod10 <- rmhmodel(mod10)

Lookup (interaction function h_2 from page 76, Diggle (2003)):
 r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
 h <- 20*(r-0.05)
 h[r<0.05] <- 0
 h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
mod17 <- rmhmodel(mod17)

rmhmodel.ppm

Interpret Fitted Model for Metropolis-Hastings Simulation.

Description

Converts a fitted point process model into a format that can be used to simulate the model by the Metropolis-Hastings algorithm.

Usage

S3 method for class 'ppm'
rmhmodel(model, w, ..., verbose=TRUE, project=TRUE,
 control=rmhcontrol(),
 new.coef=NULL)

Arguments

model Fitted point process model (object of class "ppm").
w Optional. Window in which the simulations should be generated.
... Ignored.
verbose Logical flag indicating whether to print progress reports while the model is being converted.

project Logical flag indicating what to do if the fitted model does not correspond to a valid point process. See Details.

control Parameters determining the iterative behaviour of the simulation algorithm. Passed to rmhcontrol.

new.coeff New values for the canonical parameters of the model. A numeric vector of the same length as coef(model).

Details

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models. The argument model should be a fitted point process model (object of class "ppm") typically obtained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".

The optional argument w specifies the window in which the pattern is to be generated. If specified, it must be in a form which can be coerced to an object of class owin by as.owin.

Not all fitted point process models obtained from ppm can be simulated. We have not yet implemented simulation code for the LennardJones and OrdThresh models.

It is also possible that a fitted point process model obtained from ppm may not correspond to a valid point process. For example a fitted model with the Strauss interpoint interaction may have any value of the interaction parameter \(\gamma \); however the Strauss process is not well-defined for \(\gamma > 1 \) (Kelly and Ripley, 1976).

The argument project determines what to do in such cases. If project=FALSE, a fatal error will occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which do correspond to a valid point process. For example a Strauss process with \(\gamma > 1 \) will be projected to a Strauss process with \(\gamma = 1 \), equivalent to a Poisson process.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rmhmodel, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Poisson, Softcore, Strauss, StraussHard, Triplets

Examples

data(cells)
fit1 <- ppm(cells, ~1, Strauss(0.07))
mod1 <- rmhmodel(fit1)

fit2 <- ppm(cells, ~x, Geyer(0.07, 2))
mod2 <- rmhmodel(fit2)

fit3 <- ppm(cells, ~x, Hardcore(0.07))
mod3 <- rmhmodel(fit3)

Then rmh(mod1), etc

rmhstart

Determine Initial State for Metropolis-Hastings Simulation.

Description

Builds a description of the initial state for the Metropolis-Hastings algorithm.

Usage

rmhstart(start, ...)
Default S3 method:
rmhstart(start=NULL, ..., n.start=NULL, x.start=NULL)

Arguments

start

An existing description of the initial state in some format. Incompatible with
the arguments listed below.

... There should be no other arguments.

n.start Number of initial points (to be randomly generated). Incompatible with x.start.

x.start Initial point pattern configuration. Incompatible with n.start.
Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings algorithm implemented in \texttt{rmh}.

This function \texttt{rmhstart} creates a full description of the initial state of the Metropolis-Hastings algorithm, \textit{including possibly the initial state of the random number generator}, for use in a subsequent call to \texttt{rmh}. It also checks that the initial state is valid.

The initial state should be specified \textbf{either} by the first argument \texttt{start} or \textbf{or} by the other arguments \texttt{n.start}, \texttt{x.start} etc.

If \texttt{start} is a list, then it should have components named \texttt{n.start} or \texttt{x.start}, with the same interpretation as described below.

The arguments are:

\texttt{n.start} The number of “initial” points to be randomly (uniformly) generated in the simulation window \texttt{w}. Incompatible with \texttt{x.start}.

For a multitype point process, \texttt{n.start} may be a vector (of length equal to the number of types) giving the number of points of each type to be generated.

If expansion of the simulation window is selected (see the argument \texttt{expand} to \texttt{rmhcontrol}), then the actual number of starting points in the simulation will be \texttt{n.start} multiplied by the expansion factor (ratio of the areas of the expanded window and original window).

For faster convergence of the Metropolis-Hastings algorithm, the value of \texttt{n.start} should be roughly equal to (an educated guess at) the expected number of points for the point process inside the window.

\texttt{x.start} Initial point pattern configuration. Incompatible with \texttt{n.start}.

\texttt{x.start} may be a point pattern (an object of class \texttt{ppp}), or an object which can be coerced to this class by \texttt{as.ppp}, or a dataset containing vectors \texttt{x} and \texttt{y}.

If \texttt{x.start} is specified, then expansion of the simulation window (the argument \texttt{expand} of \texttt{rmhcontrol}) is not permitted.

The parameters \texttt{n.start} and \texttt{x.start} are \textit{incompatible}.

Value

An object of class ”\texttt{rmhstart}”, which is essentially a list of parameters describing the initial point pattern and (optionally) the initial state of the random number generator.

There is a print method for this class, which prints a sensible description of the initial state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{rmh}, \texttt{rmhcontrol}, \texttt{rmhmodel}
rMosaicField

Examples

```r
e # 30 random points
a <- rmhstart(n.start=30)

# a particular point pattern
data(cells)
b <- rmhstart(x.start=cells)
```

rMosaicField

Mosaic Random Field

Description

Generate a realisation of a random field which is piecewise constant on the tiles of a given tessellation.

Usage

```r
rMosaicField(X, rgen = function(n) { sample(0:1, n, replace = TRUE)}, ..., rgenargs=NULL)
```

Arguments

- `X` A tessellation (object of class "tess").
- `...` Arguments passed to `as.mask` determining the pixel resolution.
- `rgen` Function that generates random values for the tiles of the tessellation.
- `rgenargs` List containing extra arguments that should be passed to `rgen` (typically specifying parameters of the distribution of the values).

Details

This function generates a realisation of a random field which is piecewise constant on the tiles of the given tessellation `X`. The values in each tile are independent and identically distributed.

Value

A pixel image (object of class "im").

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`rpoislinetess`, `rMosaicSet`
Examples

```r
X <- rpoislinetess(3)
plot(rMosaicField(X, runif))
plot(rMosaicField(X, runif, dimyx=256))
plot(rMosaicField(X, rnorm, rgenargs=list(mean=10, sd=2)))
plot(rMosaicField(dirichlet(runifpoint(30)), rnorm))
```

Description

Generate a random set by taking a random selection of tiles of a given tessellation.

Usage

```r
rMosaicSet(X, p=0.5)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>X</code></td>
<td>A tessellation (object of class "tess").</td>
</tr>
<tr>
<td><code>p</code></td>
<td>Probability of including a given tile. A number strictly between 0 and 1.</td>
</tr>
</tbody>
</table>

Details

Given a tessellation `X`, this function randomly selects some of the tiles of `X`, including each tile with probability `p` independently of the other tiles. The selected tiles are then combined to form a set in the plane.

One application of this is Switzer's (1965) example of a random set which has a Markov property. It is constructed by generating `X` according to a Poisson line tessellation (see `rpoislinetess`).

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley (Adrian.Baddeley@uwa.edu.au) http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner (r.turner@auckland.ac.nz)

References

See Also

rpoislinetess, rMosaicField

Examples

Switzer's random set
X <- rpoislinetess(3)
plot(rMosaicSet(X, 0.5), col="green", border=NA)

another example
plot(rMosaicSet(dirichlet(runifpoint(30)), 0.4))

rmpoint

Generate N Random Multitype Points

Description

Generate a random multitype point pattern with a fixed number of points, or a fixed number of
points of each type.

Usage

rmpoint(n, f=1, fmax=NULL, win=unit.square(),
 types, ptypes,
 ..., giveup=1000, verbose=FALSE,
 nsim=1, drop=TRUE)

Arguments

n Number of marked points to generate. Either a single number specifying the
total number of points, or a vector specifying the number of points of each type.

f The probability density of the multitype points, usually un-normalised. Either a
constant, a vector, a function f(x,y,m, ...), a pixel image, a list of functions
f(x,y,...) or a list of pixel images.

fmax An upper bound on the values of f. If missing, this number will be estimated.

win Window in which to simulate the pattern. Ignored if f is a pixel image or list of
pixel images.

types All the possible types for the multitype pattern.

ptypes Optional vector of probabilities for each type.

... Arguments passed to f if it is a function.

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.

verbose Flag indicating whether to report details of performance of the simulation algo-

rithm.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.
Details

This function generates random multitype point patterns consisting of a fixed number of points.

Three different models are available:

I. Random location and type: If \(n \) is a single number and the argument \(\text{ptypes} \) is missing, then \(n \) independent, identically distributed random multitype points are generated. Their locations \((x[i], y[i]) \) and types \(m[i] \) have joint probability density proportional to \(f(x, y, m) \).

II. Random type, and random location given type: If \(n \) is a single number and \(\text{ptypes} \) is given, then \(n \) independent, identically distributed random multitype points are generated. Their types \(m[i] \) have probability distribution \(\text{ptypes} \). Given the types, the locations \((x[i], y[i]) \) have conditional probability density proportional to \(f(x, y, m) \).

III. Fixed types, and random location given type: If \(n \) is a vector, then we generate \(n[i] \) independent, identically distributed random points of type \(\text{types[i]} \). For points of type \(m \) the conditional probability density of location \((x, y) \) is proportional to \(f(x, y, m) \).

Note that the density \(f \) is normalised in different ways in Model I and Models II and III. In Model I the normalised joint density is \(g(x, y, m) = f(x, y, m)/Z \) where

\[
Z = \sum_{m} \int \int \lambda(x, y, m)dx
dy
\]

while in Models II and III the normalised conditional density is \(g(x, y \mid m) = f(x, y, m)/Z_m \) where

\[
Z_m = \int \int \lambda(x, y, m)dx
dy.
\]

In Model I, the marginal distribution of types is \(p_m = Z_m/Z \).

The unnormalised density \(f \) may be specified in any of the following ways.

- **single number**: If \(f \) is a single number, the conditional density of location given type is uniform. That is, the points of each type are uniformly distributed. In Model I, the marginal distribution of types is also uniform (all possible types have equal probability).

- **vector**: If \(f \) is a numeric vector, the conditional density of location given type is uniform. That is, the points of each type are uniformly distributed. In Model I, the marginal distribution of types is proportional to the vector \(\text{ptypes} \). In Model II, the marginal distribution of types is \(\text{ptypes} \), that is, the values in \(f \) are ignored. The argument types defaults to \(\text{names}(f) \), or if that is null, \(1:length(f) \).

- **function**: If \(f \) is a function, it will be called in the form \(f(x, y, m, \ldots) \) at spatial location \((x, y) \) for points of type \(m \). In Model I, the joint probability density of location and type is proportional to \(f(x, y, m, \ldots) \). In Models II and III, the conditional probability density of location \((x, y) \) given type \(m \) is proportional to \(f(x, y, m, \ldots) \). The function \(f \) must work correctly with vectors \(x, y \) and \(m \), returning a vector of function values. (Note that \(m \) will be a factor with levels \(\text{types} \).) The value \(\text{fmax} \) must be given and must be an upper bound on the values of \(f(x, y, m, \ldots) \) for all locations \((x, y) \) inside the window \(\text{win} \) and all types \(m \). The argument types must be given.

- **list of functions**: If \(f \) is a list of functions, then the functions will be called in the form \(f[[i]](x, y, \ldots) \) at spatial location \((x, y) \) for points of type \(\text{types[i]} \). In Model I, the joint probability density
of location and type is proportional to $f^{[m]}(x,y,...)$. In Models II and III, the conditional probability density of location (x,y) given type m is proportional to $f^{[m]}(x,y,...)$. The function $f^{[[i]]}$ must work correctly with vectors x and y, returning a vector of function values. The value f_{max} must be given and must be an upper bound on the values of $f^{[[i]]}(x,y,...)$ for all locations (x, y) inside the window win. The argument types defaults to names(f), or if that is null, 1:length(f).

pixel image: If f is a pixel image object of class "im" (see im.object), the unnormalised density at a location (x,y) for points of any type is equal to the pixel value of f for the pixel nearest to (x,y). In Model I, the marginal distribution of types is uniform. The argument win is ignored; the window of the pixel image is used instead. The argument types must be given.

list of pixel images: If f is a list of pixel images, then the image $f^{[[i]]}$ determines the density values of points of type types$[i]$. The argument win is ignored; the window of the pixel image is used instead. The argument types defaults to names(f), or if that is null, 1:length(f).

The implementation uses the rejection method. For Model I, rmpoispp is called repeatedly until n points have been generated. It gives up after giveup calls if there are still fewer than n points. For Model II, the types are first generated according to ptypes, then the locations of the points of each type are generated using rpoint. For Model III, the locations of the points of each type are generated using rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object

Examples

```r
abc <- c("a","b","c")

#### Model I

rmpoint(25, types=abc)
rmpoint(25, 1, types=abc)
# 25 points, equal probability for each type, uniformly distributed locations

rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc)
# same as above

rmpoint(25, list(function(x,y){rep(1, length(x))},
                function(x,y){rep(1, length(x))},
                function(x,y){rep(1, length(x))}),
                types=abc)
```
same as above

```r
rmpoint(25, function(x,y,m) { x }, types=abc)
# 25 points, equal probability for each type,
# locations nonuniform with density proportional to x
```

```r
rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc)
rmpoint(25, list(function(x,y) { rep(1, length(x)) }, 
    function(x,y) { x },
    function(x,y) { x })),
    types=abc)
# 25 points, UNEQUAL probabilities for each type,
# type "a" points uniformly distributed,
# type "b" and "c" points nonuniformly distributed.
```

Model II

```r
rmpoint(25, 1, types=abc, ptypes=rep(1,3)/3)
rmpoint(25, 1, types=abc, ptypes=rep(1,3))
# 25 points, equal probability for each type,
# uniformly distributed locations
```

```r
rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc, ptypes=rep(1,3))
# same as above
```

```r
rmpoint(25, list(function(x,y) {rep(1, length(x))},
    function(x,y) {rep(1, length(x))},
    function(x,y) {rep(1, length(x))}),
    types=abc, ptypes=rep(1,3))
# same as above
```

```r
rmpoint(25, function(x,y,m) { x }, types=abc, ptypes=rep(1,3))
# 25 points, equal probability for each type,
# locations nonuniform with density proportional to x
```

```r
rmpoint(25, function(x,y,m) {ifelse(m == "a", 1, x) }, types=abc, ptypes=rep(1,3))
# 25 points, EQUAL probabilities for each type,
# type "a" points uniformly distributed,
# type "b" and "c" points nonuniformly distributed.
```

Model III

```r
rmpoint(c(12, 8, 4), 1, types=abc)
# 12 points of type "a",
# 8 points of type "b",
# 4 points of type "c",
# each uniformly distributed
```

```r
rmpoint(c(12, 8, 4), function(x,y,m) { ifelse(m=="a", 1, x) }, types=abc)
rmpoint(c(12, 8, 4), list(function(x,y) { rep(1, length(x)) },
    function(x,y) { x },
    function(x,y) { x })),
    types=abc)
```
Generate Multitype Poisson Point Pattern

Description

Generate a random point pattern, a realisation of the (homogeneous or inhomogeneous) multitype Poisson process.

Usage

rmpoispp(lambda, lmax=NULL, win, types, ..., nsim=1, drop=TRUE)

Arguments

lambda Intensity of the multitype Poisson process. Either a single positive number, a vector, a function(x,y,m,...), a pixel image, a list of functions function(x,y,...), or a list of pixel images.

lmax An upper bound for the value of lambda. May be omitted

win Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Ignored if lambda is a pixel image or list of images.

types All the possible types for the multitype pattern.

... Arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
Details

This function generates a realisation of the marked Poisson point process with intensity λ. Note that the intensity function $\lambda(x, y, m)$ is the average number of points of type m per unit area near the location (x, y). Thus a marked point process with a constant intensity of 10 and three possible types will have an average of 30 points per unit area, with 10 points of each type on average.

The intensity function may be specified in any of the following ways.

single number: If λ is a single number, then this algorithm generates a realisation of the uniform marked Poisson process inside the window win with intensity λ for each type. The total intensity of points of all types is $\lambda \times \text{length}(types)$. The argument types must be given and determines the possible types in the multitype pattern.

vector: If λ is a numeric vector, then this algorithm generates a realisation of the stationary marked Poisson process inside the window win with intensity $\lambda[i]$ for points of type $\text{types}[i]$. The total intensity of points of all types is $\sum(\lambda)$. The argument types defaults to $\text{names}(\lambda)$, or if that is null, $\text{1:length}(\lambda)$.

function: If λ is a function, the process has intensity $\lambda(x, y, m, \ldots)$ at spatial location (x, y) for points of type m. The function λ must work correctly with vectors x, y and m, returning a vector of function values. (Note that m will be a factor with levels equal to types.) The value $lmax$, if present, must be an upper bound on the values of $\lambda(x, y, m, \ldots)$ for all locations (x, y) inside the window win and all types m. The argument types must be given.

list of functions: If λ is a list of functions, the process has intensity $\lambda[i](x, y, \ldots)$ at spatial location (x, y) for points of type $\text{types}[i]$. The function $\lambda[i]$ must work correctly with vectors x and y, returning a vector of function values. The value $lmax$, if given, must be an upper bound on the values of $\lambda(x, y, \ldots)$ for all locations (x, y) inside the window win. The argument types defaults to $\text{names}(\lambda)$, or if that is null, $\text{1:length}(\lambda)$.

pixel image: If λ is a pixel image object of class "im" (see im.object), the intensity at a location (x, y) for points of any type is equal to the pixel value of λ for the pixel nearest to (x, y). The argument win is ignored; the window of the pixel image is used instead. The argument types must be given.

list of pixel images: If λ is a list of pixel images, then the image $\lambda[i]$ determines the intensity of points of type $\text{types}[i]$. The argument win is ignored; the window of the pixel image is used instead. The argument types defaults to $\text{names}(\lambda)$, or if that is null, $\text{1:length}(\lambda)$.

If $lmax$ is missing, an approximate upper bound will be calculated.

To generate an inhomogeneous Poisson process the algorithm uses “thinning”: it first generates a uniform Poisson process of intensity $lmax$ for points of each type m, then randomly deletes or retains each point independently, with retention probability $p(x, y, m) = \lambda(x, y, m)/lmax$.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is multitype (it carries a vector of marks which is a factor).
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
rpoispp for unmarked Poisson point process; rpoint for a fixed number of random marked points; ppp.object, owin.object.

Examples

uniform bivariate Poisson process with total intensity 100 in unit square
pp <- rmpoispp(100, types=c("a","b"))

stationary bivariate Poisson process with intensity A = 30, B = 70
pp <- rmpoispp(c(30,70), types=c("A","B"))
pp <- rmpoispp(c(30,70))

works in any window
data(letterR)
pp <- rmpoispp(c(30,70), win=letterR, types=c("A","B"))

inhomogeneous lambda(x,y,m)
note argument 'm' is a factor
lam <- function(x,y,m) { 50 * (x^2 + y^2) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"))
extra arguments
lam <- function(x,y,m,scal) { scal * (x^2 + y^2) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"), scal=50)

list of functions lambda[ii](x,y)
lams <- list(function(x,y)(50 * x^2), function(x,y)(20 * abs(y)))
pp <- rmpoispp(lams, win=letterR, types=c("A","B"))
pp <- rmpoispp(lams, win=letterR)
functions with extra arguments
lams <- list(function(x,y,scal)(5 * scal * x^2),
 function(x,y,scal)(2 * scal * abs(y)))
pp <- rmpoispp(lams, win=letterR, types=c("A","B"), scal=10)
pp <- rmpoispp(lams, win=letterR, scal=10)

florid example
lams <- list(function(x,y){
 100*exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}) # log quadratic trend

lams <- list(function(x,y){
 100*exp(-0.6*x+0.5*y)
}) # log linear trend
X <- rmpoispp(lams, win=unit.square(), types=c("on", "off"))
pixel image
Z <- as.im(function(x,y){30 * (x^2 + y^3)}, letterR)
pp <- rmpoispp(Z, types=c("A","B"))

list of pixel images
ZZ <- list(
 as.im(function(x,y){20 * (x^2 + y^3)}, letterR),
 as.im(function(x,y){40 * (x^3 + y^2)}, letterR))
pp <- rmpoispp(ZZ, types=c("A","B"))
pp <- rmpoispp(ZZ)

randomising an existing point pattern
rmpoispp(intensity(amacrine), win=Window(amacrine))

rNeymanScott

Simulate Neyman-Scott Process

Description

Generate a random point pattern, a realisation of the Neyman-Scott cluster process.

Usage

```r
rNeymanScott(kappa, expand, rcluster, win = owin(c(0,1),c(0,1)),
    ..., lmax=NULL, nsim=1, drop=TRUE)
```

Arguments

- **kappa**
 - Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
- **expand**
 - Size of the expansion of the simulation window for generating parent points. A single non-negative number.
- **rcluster**
 - A function which generates random clusters, or other data specifying the random cluster mechanism. See Details.
- **win**
 - Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **...**
 - Arguments passed to rcluster.
- **lmax**
 - Optional. Upper bound on the values of kappa when kappa is a function or pixel image.
- **nsim**
 - Number of simulated realisations to be generated.
- **drop**
 - Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.
Details

This algorithm generates a realisation of the general Neyman-Scott process, with the cluster mechanism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in an expanded window as explained below. Here kappa may be a single positive number, a function kappa(x,y), or a pixel image object of class "im" (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points. These clusters are combined together to yield a single point pattern, and the restriction of this pattern to the window win is then returned as the result of rNeymanScott.

The expanded window consists of as.rectangle(win) extended by the amount expand in each direction. The size of the expansion is saved in the attribute "expand" and may be extracted by attr(X, "expand") where X is the generated point pattern.

The argument rcluster specifies the cluster mechanism. It may be either:

- A function which will be called to generate each random cluster (the offspring points of each parent point). The function should expect to be called in the form rcluster(x0,y0,...) for a parent point at a location (x0,y0). The return value of rcluster should specify the coordinates of the points in the cluster; it may be a list containing elements x, y, or a point pattern (object of class "ppp"). If it is a marked point pattern then the result of rNeymanScott will be a marked point pattern.

- A list(Hmu L fI) where mu specifies the mean number of offspring points in each cluster, and f generates the random displacements (vectors pointing from the parent to the offspring). In this case, the number of offspring in a cluster is assumed to have a Poisson distribution, implying that the Neyman-Scott process is also a Cox process. The first element mu should be either a single nonnegative number (interpreted as the mean of the Poisson distribution of cluster size) or a pixel image or a function(x,y) giving a spatially varying mean cluster size (interpreted in the sense of Waagepetersen, 2007). The second element f should be a function that will be called once in the form f(n) to generate n independent and identically distributed displacement vectors (i.e. as if there were a cluster of size n with a parent at the origin (0,0)). The function should return a point pattern (object of class "ppp") or something acceptable to xy.coords that specifies the coordinates of n points.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can also be extracted from the return value of rNeymanScott through the attributes "parents" and "parentid". The attribute "parents" is the point pattern of parent points. The attribute "parentid" is an integer vector specifying the parent for each of the points in the simulated pattern.

Neyman-Scott models where kappa is a single number and rcluster = list(mu,f) can be fitted to data using the function kppm.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pattern: see Details.
Inhomogeneous Neyman-Scott Processes

There are several different ways of specifying a spatially inhomogeneous Neyman-Scott process:

- The point process of parent points can be inhomogeneous. If the argument kappa is a function(x, y) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process according to which the parent points are generated.

- The number of points in a typical cluster can be spatially varying. If the argument rcluster is a list of two elements mu, f and the first entry mu is a function(x, y) or a pixel image (object of class "im"), then mu is interpreted as the reference intensity for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to mu(x, y) * g(x-x0, y-y0) where g is the probability density of the offspring displacements generated by the function f.

 Equivalently, clusters are first generated with a constant expected number of points per cluster: the constant is mu_max, the maximum of mu. Then the offspring are randomly thinned (see rthin) with spatially-varying retention probabilities given by mu/mu_max.

- The entire mechanism for generating a cluster can be dependent on the location of the parent point. If the argument rcluster is a function, then the cluster associated with a parent point at location (x0, y0) will be generated by calling rcluster(x0, y0, ...). The behaviour of this function could depend on the location (x0, y0) in any fashion.

Note that if kappa is an image, the spatial domain covered by this image must be large enough to include the expanded window in which the parent points are to be generated. This requirement means that win must be small enough so that the expansion of as.rectangle(win) is contained in the spatial domain of kappa. As a result, one may wind up having to simulate the process in a window smaller than what is really desired.

In the first two cases, the intensity of the Neyman-Scott process is equal to kappa * mu if at least one of kappa or mu is a single number, and is otherwise equal to an integral involving kappa, mu and f.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

rpoispp, rThomas, rGaussPoisson, rMatClust, rCauchy, rVarGamma
Examples

each cluster consist of 10 points in a disc of radius 0.2
nclust <- function(x0, y0, radius, n) {
 return(runifdisc(n, radius, centre=c(x0, y0)))
}
plot(rNeymanScott(10, 0.2, nclust, radius=0.2, n=5))

multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {
 X <- runifdisc(n, radius, centre=c(x0, y0))
 M <- sample(types, n, replace=TRUE)
 marks(X) <- M
 return(X)
}
plot(rNeymanScott(15,0.1,nclust2, radius=0.1, n=5))

rose

Rose Diagram

Description

Plots a rose diagram (rose of directions), the analogue of a histogram for angular data.

Usage

rose(x, ...)

Default S3 method:
rose(x, breaks = NULL, ..., nclass = NULL,
 unit = c("degree", "radian"), main)

S3 method for class 'histogram'
rose(x, ...,
 unit = c("degree", "radian"), main,
 do.plot = TRUE)

S3 method for class 'density'
rose(x, ...,
 unit = c("degree", "radian"), main,
 do.plot = TRUE)

S3 method for class 'fv'
rose(x, ...,
 unit = c("degree", "radian"), main,
 do.plot = TRUE)
Arguments

x Data to be plotted. A numeric vector containing angles, or a histogram object containing a histogram of angular values, or a density object containing a smooth density estimate for angular data, or an fv object giving a function of an angular argument.

breaks, nclass Arguments passed to hist to determine the histogram breakpoints.

... Additional arguments passed to polygon controlling the appearance of the plot (or passed from rose.default to hist to control the calculation of the histogram).

unit The unit in which the angles are expressed.

main Optional main title for the plot.

do.plot Logical value indicating whether to really perform the plot.

Details

A rose diagram or rose of directions is the analogue of a histogram or bar chart for data which represent angles in two dimensions. The bars of the bar chart are replaced by circular sectors in the rose diagram.

The function rose is generic, with a default method for numeric data, and methods for histograms and function tables.

If x is a numeric vector, it must contain angular values in the range 0 to 360 (if unit="degree") or in the range 0 to 2 * pi (if unit="radian"). A histogram of the data will first be computed using hist. Then the rose diagram of this histogram will be plotted by rose.histogram.

If x is an object of class "histogram" produced by the function hist, representing the histogram of angular data, then the rose diagram of the densities (rather than the counts) in this histogram object will be plotted.

If x is an object of class "density" produced by circdensity or density.default, representing a kernel smoothed density estimate of angular data, then the rose diagram of the density estimate will be plotted.

If x is a function value table (object of class "fv") then the argument of the function will be interpreted as an angle, and the value of the function will be interpreted as the radius.

Value

A window (class "owin") containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

fv, hist, circdensity, density.default.
Examples

ang <- runif(1000, max=360)
rose(ang, col="grey")

Description

Applies a rotation to any two-dimensional object, such as a point pattern or a window.

Usage

rotate(X, ...)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), or a window (object of class "owin").
...

Details

This is generic. Methods are provided for point patterns (rotate.ppp) and windows (rotate.owin).

Value

Another object of the same type, representing the result of rotating X through the specified angle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rotate.ppp, rotate.owin
Description

Rotates a pixel image

Usage

```r
## S3 method for class 'im'
rotate(X, angle=pi/2, ..., centre=NULL)
```

Arguments

- `X`: A pixel image (object of class "im").
- `angle`: Angle of rotation, in radians.
- `...`: Ignored.
- `centre`: Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0,0).

Details

The image is rotated by the angle specified. Angles are measured in radians, anticlockwise. The default is to rotate the image 90 degrees anticlockwise.

Value

Another object of class "im" representing the rotated pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`affine.im`, `shift.im`, `rotate`

Examples

```r
Z <- distmap(letterR)
X <- rotate(Z)
## Not run:
plot(X)

## End(Not run)
Y <- rotate(X, centre="midpoint")
```
Description

Rotates a window

Usage

```r
## S3 method for class 'owin'
rotate(X, angle=pi/2, ..., rescue=TRUE, centre=NULL)
```

Arguments

- `X` A window (object of class "owin").
- `angle` Angle of rotation.
- `rescue` Logical. If TRUE, the rotated window will be processed by `rescue.rectangle`.
- `...` Optional arguments passed to `as.mask` controlling the resolution of the rotated window, if `X` is a binary pixel mask. Ignored if `X` is not a binary mask.
- `centre` Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin `c(0,0)`.

Details

Rotates the window by the specified angle. Angles are measured in radians, anticlockwise. The default is to rotate the window 90 degrees anticlockwise. The centre of rotation is the origin, by default, unless `centre` is specified.

Value

Another object of class "owin" representing the rotated window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`owin.object`
Examples

```r
w <- owin(c(0,1),c(0,1))
v <- rotate(w, pi/3)
e <- rotate(w, pi/2, centre="midpoint")
## Not run:
plot(v)

## End(Not run)
w <- as.mask(letterR)
v <- rotate(w, pi/5)
```

Description

Rotates a point pattern

Usage

```r
## S3 method for class 'ppp'
rotate(X, angle=pi/2, ..., centre=NULL)
```

Arguments

- `X`: A point pattern (object of class "ppp").
- `angle`: Angle of rotation.
- `...`: Arguments passed to `rotate.owin` affecting the handling of the observation window, if it is a binary pixel mask.
- `centre`: Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0,0).

Details

The points of the pattern, and the window of observation, are rotated about the origin by the angle specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern 90 degrees anticlockwise. If the points carry marks, these are preserved.

Value

Another object of class "ppp" representing the rotated point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
rotate.psp

See Also

ppp.object, rotate.owin

Examples

```r
data(cells)
X <- rotate(cells, pi/3)
## Not run:
plot(X)

## End(Not run)
```

rotate.psp
Rotate a Line Segment Pattern

Description

Rotates a line segment pattern

Usage

```r
## S3 method for class 'psp'
rotate(X, angle=pi/2, ..., centre=NULL)
```

Arguments

- `X`
 A line segment pattern (object of class "psp").
- `angle`
 Angle of rotation.
- `...`
 Arguments passed to `rotate.owin` affecting the handling of the observation window, if it is a binary pixel mask.
- `centre`
 Centre of rotation. Either a vector of length 2, or a character string (partially matched to "centroid", "midpoint" or "bottomleft"). The default is the coordinate origin c(0,0).

Details

The line segments of the pattern, and the window of observation, are rotated about the origin by the angle specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern 90 degrees anticlockwise. If the line segments carry marks, these are preserved.

Value

Another object of class "psp" representing the rotated line segment pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
rotmean

Rotational Average of a Pixel Image

Description
Compute the average pixel value over all rotations of the image about the origin, as a function of distance from the origin.

Usage
rotmean(X, ..., origin, Xname, result=c("fv", "im"))

Arguments
X
A pixel image.

... Ignored.

origin Optional. Origin about which the rotations should be performed. Either a numeric vector or a character string as described in the help for shift.owin.

Xname Optional name for X to be used in the function labels.

result Character string specifying the kind of result required.

Details
This command computes, for each possible distance \(r \), the average pixel value of the pixels lying at distance \(r \) from the origin. Kernel smoothing is used to obtain a smooth function of \(r \).

If result="fv" (the default) the result is a function object of class "fv" giving the mean pixel value of X as a function of distance from the origin.

If result="im" the result is a pixel image, with the same dimensions as X, giving the mean value of X over all pixels lying at the same distance from the origin as the current pixel.

Value
An object of class "fv" or "im".

Examples
oldpar <- par(mfrow=c(2,1))
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")
Y <- rotate(X, pi/4)
plot(Y, main="rotated")
par(oldpar)
round.ppp

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

Examples

```r
if(interactive()) {
  Z <- setcov(square(1))
  plot(rotmean(Z))
  plot(rotmean(Z, result="im"))
} else {
  Z <- setcov(square(1), dimyx=32)
  f <- rotmean(Z)
}
```

Description

Apply numerical rounding to the spatial coordinates of a point pattern.

Usage

```r
## S3 method for class 'ppp'
round(x, digits = 0)

## S3 method for class 'pp3'
round(x, digits = 0)

## S3 method for class 'ppx'
round(x, digits = 0)
```

Arguments

- `x` A spatial point pattern in any dimension (object of class "ppp", "pp3" or "ppx").
- `digits` integer indicating the number of decimal places.

Details

These functions are methods for the generic function `round`. They apply numerical rounding to the spatial coordinates of the point pattern `x`.

Value

A point pattern object, of the same class as `x`.
Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `rounding()` to determine whether numbers have been rounded.
- `round()` in the Base package.

Examples

```r
round(cells, 1)
```

rounding

Detect Numerical Rounding

Description

Given a numeric vector, or an object containing numeric spatial coordinates, determine whether the values have been rounded to a certain number of decimal places.

Usage

```r
rounding(x)
```

Default S3 method:
`rounding(x)`

S3 method for class 'ppp'
`rounding(x)`

S3 method for class 'pp3'
`rounding(x)`

S3 method for class 'ppx'
`rounding(x)`

Arguments

- `x`
 A numeric vector, or an object containing numeric spatial coordinates.
Details
For a numeric vector \(x \), this function determines whether the values have been rounded to a certain number of decimal places.

- If the entries of \(x \) are not all integers, then \(\text{rounding}(x) \) returns the smallest number of digits \(d \) after the decimal point such that \(\text{round}(x, \text{digits}=d) \) is identical to \(x \). For example if \(\text{rounding}(x) = 2 \) then the entries of \(x \) are rounded to 2 decimal places, and are multiples of 0.01.
- If all the entries of \(x \) are integers, then \(\text{rounding}(x) \) returns \(-d \), where \(d \) is the smallest number of digits \textit{before} the decimal point such that \(\text{round}(x, \text{digits}=-d) \) is identical to \(x \). For example if \(\text{rounding}(x) = -3 \) then the entries of \(x \) are multiples of 1000. If \(\text{rounding}(x) = 0 \) then the entries of \(x \) are integers but not multiples of 10.
- If all entries of \(x \) are equal to 0, the rounding is not determined, and a value of NULL is returned.

For a point pattern (object of class "ppp") or similar object \(x \) containing numeric spatial coordinates, this procedure is applied to the spatial coordinates.

Value
An integer.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
\texttt{round.ppp}

Examples
\begin{verbatim}
rounding(c(0.1, 0.3, 1.2)) rounding(c(1940, 1880, 2010)) rounding(0) rounding(cells)
\end{verbatim}

\textbf{rpoint}

\textit{Generate N Random Points}

\textbf{Description}
Generate a random point pattern containing \(n \) independent, identically distributed random points with any specified distribution.
rpoint

Usage

\[
\text{rpoint}(n, f, fmax=NULL, \text{win}=\text{unit.square}(), \ldots, \text{giveup}=1000, \text{verbose}=\text{FALSE}, \text{nsim}=1, \text{drop}=\text{TRUE})
\]

Arguments

- **n**
 Number of points to generate.
- **f**
 The probability density of the points, possibly un-normalised. Either a constant, a function \(f(x, y, \ldots)\), or a pixel image object.
- **fmax**
 An upper bound on the values of \(f\). If missing, this number will be estimated.
- **win**
 Window in which to simulate the pattern. Ignored if \(f\) is a pixel image.
- **\ldots**
 Arguments passed to the function \(f\).
- **giveup**
 Number of attempts in the rejection method after which the algorithm should stop trying to generate new points.
- **verbose**
 Flag indicating whether to report details of performance of the simulation algorithm.
- **nsim**
 Number of simulated realisations to be generated.
- **drop**
 Logical. If \(\text{nsim}=1\) and \(\text{drop}=\text{TRUE}\) (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates \(n\) independent, identically distributed random points with common probability density proportional to \(f\).

The argument \(f\) may be

- **a numerical constant**: uniformly distributed random points will be generated.
- **a function**: random points will be generated in the window \(\text{win}\) with probability density proportional to \(f(x, y, \ldots)\) where \(x\) and \(y\) are the cartesian coordinates. The function \(f\) must accept two vectors of coordinates \(x, y\) and return the corresponding vector of function values. Additional arguments \(\ldots\) of any kind may be passed to the function.
- **a pixel image**: if \(f\) is a pixel image object of class "im" (see \texttt{im.object}) then random points will be generated in the window of this pixel image, with probability density proportional to the pixel values of \(f\).

The algorithm is as follows:

- If \(f\) is a constant, we invoke \texttt{runifpoint}.
- If \(f\) is a function, then we use the rejection method. Proposal points are generated from the uniform distribution. A proposal point \((x, y)\) is accepted with probability \(f(x, y, \ldots)/fmax\) and otherwise rejected. The algorithm continues until \(n\) points have been accepted. It gives up after \(\text{giveup} \times n\) proposals if there are still fewer than \(n\) points.
- If \(f\) is a pixel image, then a random sequence of pixels is selected (using \texttt{sample}) with probabilities proportional to the pixel values of \(f\). Then for each pixel in the sequence we generate a uniformly distributed random point in that pixel.

The algorithm for pixel images is more efficient than that for functions.
rpoisline

Generate Poisson Random Line Process

Description

Generate a random pattern of line segments obtained from the Poisson line process.

Usage

```r
rpoisline(lambda, win=owin())
```

Arguments

- `lambda`
 Intensity of the Poisson line process. A positive number.

- `win`
 Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.

Value

A point pattern (an object of class "ppp") if `nsim`=1, or a list of point patterns if `nsim` > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppp.object`, `owin.object`, `runifpoint`

Examples

```r
# 100 uniform random points in the unit square
X <- rpoint(100)

# 100 random points with probability density proportional to x^2 + y^2
X <- rpoint(100, function(x,y) { x^2 + y^2}, 1)

# 'fmax' may be omitted
X <- rpoint(100, function(x,y) { x^2 + y^2})

# irregular window
data(letterR)
X <- rpoint(100, function(x,y) { x^2 + y^2}, win=letterR)

# make a pixel image
Z <- setcov(letterR)
# 100 points with density proportional to pixel values
X <- rpoint(100, Z)
```
Details

This algorithm generates a realisation of the uniform Poisson line process, and clips it to the window `win`.

The argument `lambda` must be a positive number. It controls the intensity of the process. The expected number of lines intersecting a convex region of the plane is equal to `lambda` times the perimeter length of the region. The expected total length of the lines crossing a region of the plane is equal to `lambda` * pi times the area of the region.

Value

A line segment pattern (an object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp

Examples

```r
# uniform Poisson line process with intensity 10,
# clipped to the unit square
rpoisline(10)
```

rpoislinetess
Poisson Line Tessellation

Description

Generate a tessellation delineated by the lines of the Poisson line process.

Usage

```r
rpoislinetess(lambda, win = owin())
```

Arguments

- `lambda`: Intensity of the Poisson line process. A positive number.
- `win`: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`. Currently, the window must be a rectangle.
Details

This algorithm generates a realisation of the uniform Poisson line process, and divides the window \(\text{win} \) into tiles separated by these lines.

The argument \(\lambda \) must be a positive number. It controls the intensity of the process. The expected number of lines intersecting a convex region of the plane is equal to \(\lambda \) times the perimeter length of the region. The expected total length of the lines crossing a region of the plane is equal to \(\lambda \pi \) times the area of the region.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- rpoisline to generate the lines only.

Examples

```r
X <- rpoislinetess(3)
plot(as.im(X), main="rpoislinetess(3)")
plot(X, add=TRUE)
```

rpoislpp

Poisson Point Process on a Linear Network

Description

Generates a realisation of the Poisson point process with specified intensity on the given linear network.

Usage

```r
rpoislpp(lambda, L, ..., nsim=1)
```

Arguments

- `lambda`
 Intensity of the Poisson process. A single number, a function \((x, y)\), a pixel image (object of class "im"), or a vector of numbers, a list of functions, or a list of images.

- `L`
 A linear network (object of class "linnet", see linnet). Can be omitted in some cases: see Details.

- `...`
 Arguments passed to `rpoisppOnLines`.

- `nsim`
 Number of simulated realisations to generate.
rpoispp

Generate Poisson Point Pattern

Description
Generate a random point pattern using the (homogeneous or inhomogeneous) Poisson process. Includes CSR (complete spatial randomness).

Usage
rpoispp(lambda, lmax=NULL, win=owin(), ..., nsim=1, drop=TRUE)

Arguments
lambda
Intensity of the Poisson process. Either a single positive number, a function(x,y,...), or a pixel image.
lmax
An upper bound for the value of lambda(x,y), if lambda is a function.
win
Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Ignored if lambda is a pixel image.
...
Arguments passed to lambda if it is a function.

Details
This function uses rpoisppOnLines to generate the random points.
Argument l can be omitted, and defaults to as.linnet(lambda), when lambda is a function on a linear network (class "linfun") or a pixel image on a linear network ("linim").

Value
If nsim = 1, a point pattern on the linear network, i.e. an object of class "lpp". If nsim > 1, a list of such point patterns.

Author(s)
Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

See Also
runiflpp, lpp, linnet

Examples
X <- rpoislpp(5, simplenet)
plot(X)
multitype
X <- rpoislpp(c(a=5, b=5), simplenet)

rpoispp
Generate Poisson Point Pattern

Description
Generate a random point pattern using the (homogeneous or inhomogeneous) Poisson process. Includes CSR (complete spatial randomness).

Usage
rpoispp(lambda, lmax=NULL, win=owin(), ..., nsim=1, drop=TRUE)

Arguments
lambda
Intensity of the Poisson process. Either a single positive number, a function(x,y,...), or a pixel image.
lmax
An upper bound for the value of lambda(x,y), if lambda is a function.
win
Window in which to simulate the pattern. An object of class "owin" or something acceptable to as.owin. Ignored if lambda is a pixel image.
...
Arguments passed to lambda if it is a function.
number of simulated realisations to be generated.

(drop logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

If lambda is a single number, then this algorithm generates a realisation of the uniform Poisson process (also known as Complete Spatial Randomness, CSR) inside the window win with intensity lambda (points per unit area).

If lambda is a function, then this algorithm generates a realisation of the inhomogeneous Poisson process with intensity function lambda(x,y,...) at spatial location (x,y) inside the window win. The function lambda must work correctly with vectors x and y.

If lmax is given, it must be an upper bound on the values of lambda(x,y,...) for all locations (x, y) inside the window win.

If lmax is missing or NULL, an approximate upper bound is computed by finding the maximum value of lambda(x,y,...) on a grid of locations (x,y) inside the window win, and adding a safety margin equal to 5 percent of the range of lambda values. This can be computationally intensive, so it is advisable to specify lmax if possible.

If lambda is a pixel image object of class "im" (see im.object), this algorithm generates a realisation of the inhomogeneous Poisson process with intensity equal to the pixel values of the image. (The value of the intensity function at an arbitrary location is the pixel value of the nearest pixel.) The argument win is ignored; the window of the pixel image is used instead.

To generate an inhomogeneous Poisson process the algorithm uses "thinning": it first generates a uniform Poisson process of intensity lmax, then randomly deletes or retains each point, independently of other points, with retention probability p(x,y) = lambda(x,y)/lmax.

For marked point patterns, use rmpoispp.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Warning

Note that lambda is the intensity, that is, the expected number of points per unit area. The total number of points in the simulated pattern will be random with expected value mu = lambda * a where a is the area of the window win.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

rmpoispp for Poisson marked point patterns, runifpoint for a fixed number of independent uniform random points; rpoint, rmpoint for a fixed number of independent random points with any
distribution: \texttt{rMaternI, rMaternII, rSSI, rStrauss, rstrat} for random point processes with spatial inhibition or regularity; \texttt{rThomas, rGaussPoisson, rMatClust, rcell} for random point processes exhibiting clustering; \texttt{rmh.default} for Gibbs processes. See also \texttt{ppp.object, owin.object}.

Examples

```r
# uniform Poisson process with intensity 100 in the unit square
pp <- rpoispp(100)

# uniform Poisson process with intensity 1 in a 10 x 10 square
pp <- rpoispp(1, win=owin(c(0,10),c(0,10)))
# plots should look similar!

# inhomogeneous Poisson process in unit square
# with intensity \(\lambda(x,y) = 100 \times \exp(-3x)\)
# Intensity is bounded by 100
pp <- rpoispp(function(x,y) {100 * exp(-3*x)}, 100)

# How to tune the coefficient of x
lamb <- function(x,y,a) (100 * exp(-a * x))
pp <- rpoispp(lamb, 100, a=3)

# pixel image
Z <- as.im(function(x,y){100 * sqrt(x+y)}, unit.square())
pp <- rpoispp(Z)

# randomising an existing point pattern
rpoispp(intensity(cells), win=Window(cells))
```

rpoispp3

Generate Poisson Point Pattern in Three Dimensions

Description

Generate a random three-dimensional point pattern using the homogeneous Poisson process.

Usage

```r
rpoispp3(lambda, domain = box3(), nsim=1)
```

Arguments

- **lambda**: Intensity of the Poisson process. A single positive number.
- **domain**: Three-dimensional box in which the process should be generated. An object of class "box3".
- **nsim**: Number of simulated realisations to be generated.
rpoisppOnLines

Details

This function generates a realisation of the homogeneous Poisson process in three dimensions, with intensity \(\lambda \) (points per unit volume).

The realisation is generated inside the three-dimensional region domain which currently must be a rectangular box (object of class "box3").

Value

If \(nsim = 1 \), a point pattern in three dimensions (an object of class "pp3"). If \(nsim > 1 \), a list of such point patterns.

Note

The intensity \(\lambda \) is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

runifpoint3, pp3, box3

Examples

\[
X <- rpoispp(50)
\]

rpoisppOnLines Generate Poisson Point Pattern on Line Segments

Description

Given a line segment pattern, generate a Poisson random point pattern on the line segments.

Usage

\[
rpoisppOnLines(lambda, L, lmax = NULL, ..., nsim=1)
\]

Arguments

- **lambda**: Intensity of the Poisson process. A single number, a function \((x, y)\), a pixel image (object of class "im"), or a vector of numbers, a list of functions, or a list of images.
- **L**: Line segment pattern (object of class "psp") on which the points should be generated.
- **lmax**: Maximum possible value of \(\lambda \) if it is a function or a pixel image.
Additional arguments passed to \texttt{lambda} if it is a function.

\textcode{nsim} Number of simulated realisations to be generated.

Details

This command generates a Poisson point process on the one-dimensional system of line segments in \texttt{L}. The result is a point pattern consisting of points lying on the line segments in \texttt{L}. The number of random points falling on any given line segment follows a Poisson distribution. The patterns of points on different segments are independent.

The intensity \texttt{lambda} is the expected number of points per unit \textbf{length} of line segment. It may be constant, or it may depend on spatial location.

In order to generate an unmarked Poisson process, the argument \texttt{lambda} may be a single number, or a function \((x,y)\), or a pixel image (object of class "im").

In order to generate a \textit{marked} Poisson process, \texttt{lambda} may be a numeric vector, a list of functions, or a list of images, each entry giving the intensity for a different mark value.

If \texttt{lambda} is not numeric, then the (Lewis-Shedler) rejection method is used. The rejection method requires knowledge of \texttt{lmax}, the maximum possible value of \texttt{lambda}. This should be either a single number, or a numeric vector of the same length as \texttt{lambda}. If \texttt{lmax} is not given, it will be computed approximately, by sampling many values of \texttt{lambda}.

Value

If \texttt{nsim} = 1, a point pattern (object of class "ppp") in the same window as \texttt{L}. If \texttt{nsim} > 1, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{psp, ppp, runifpointOnLines, rpoispp}

Examples

```
live <- interactive()
L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
if(live) plot(L, main="")

# uniform intensity
Y <- rpoisppOnLines(4, L)
if(live) plot(Y, add=TRUE, pch="+)

# uniform MARKED process with types 'a' and 'b'
Y <- rpoisppOnLines(c(a=4, b=5), L)
if(live) {
  plot(L, main="")
  plot(Y, add=TRUE, pch="+")
```
rpoisppx

Generate Poisson Point Pattern in Any Dimensions

Description
Generate a random multi-dimensional point pattern using the homogeneous Poisson process.

Usage
rpoisppx(lambda, domain, nsim=1)

Arguments
lambda
Intensity of the Poisson process. A single positive number.
domain
Multi-dimensional box in which the process should be generated. An object of class "boxx".
nsim
Number of simulated realisations to be generated.

Details
This function generates a realisation of the homogeneous Poisson process in multi dimensions, with intensity lambda (points per unit volume).
The realisation is generated inside the multi-dimensional region domain which currently must be a rectangular box (object of class "boxx").

Value
If nsim = 1, a point pattern (an object of class "ppx"). If nsim > 1, a list of such point patterns.

Note
The intensity lambda is the expected number of points per unit volume.
rPoissonCluster

Simulate Poisson Cluster Process

Description

Generate a random point pattern, a realisation of the general Poisson cluster process.

Usage

rPoissonCluster(kappa, expand, rcluster, win = owin(c(0,1),c(0,1)),
 ..., lmax=NULL, nsim=1, drop=TRUE)

Arguments

kappa
 Intensity of the Poisson process of cluster centres. A single positive number, a
 function, or a pixel image.
expand
 Size of the expansion of the simulation window for generating parent points. A
 single non-negative number.
rcluster
 A function which generates random clusters.
win
 Window in which to simulate the pattern. An object of class "owin" or some-
 thing acceptable to as.owin.
...
 Arguments passed to rcluster
lmax
 Optional. Upper bound on the values of kappa when kappa is a function or pixel
 image.
nsim
 Number of simulated realisations to be generated.
drop
 Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
 tern, rather than a list containing a point pattern.

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- rpoispp(10, w)
Details

This algorithm generates a realisation of the general Poisson cluster process, with the cluster mechanism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in an expanded window as explained below. Here kappa may be a single positive number, a function kappa(x, y), or a pixel image object of class “im” (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points, created by calling the function rcluster. These clusters are combined together to yield a single point pattern, and the restriction of this pattern to the window win is then returned as the result of rPoissonCluster.

The expanded window consists of as.rectangle(win) extended by the amount expand in each direction. The size of the expansion is saved in the attribute “expand” and may be extracted by attr(X, "expand") where X is the generated point pattern.

The function rcluster should expect to be called as rcluster(xp[i],yp[i],...) for each parent point at a location (xp[i],yp[i]). The return value of rcluster should be a list with elements x,y which are vectors of equal length giving the absolute x and y coordinates of the points in the cluster.

If the return value of rcluster is a point pattern (object of class “ppp”) then it may have marks. The result of rPoissonCluster will then be a marked point pattern.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can also be extracted from the return value of rPoissonCluster through the attributes “parents” and “parentid”. The attribute “parents” is the point pattern of parent points. The attribute “parentid” is an integer vector specifying the parent for each of the points in the simulated pattern.

Value

A point pattern (an object of class “ppp”) if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of the point pattern: see Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

Examples

```r
nclust <- function(x0, y0, radius, n) {
  return(runifdisc(n, radius, centre=c(x0, y0)))
}
plot(rPoissonCluster(10, 0.2, nclust, radius=0.2, n=5))

# multitype Neyman-Scott process (each cluster is a multitype process)
```
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {
 X <- runifdisc(n, radius, centre=c(x0, y0))
 M <- sample(types, n, replace=TRUE)
 marks(X) <- M
 return(X)
}

plot(rPoissonCluster(15,0.1,nclust2, radius=0.1, n=5))

rQuasi

Generate Quasirandom Point Pattern in Given Window

Description

Generates a quasirandom pattern of points in any two-dimensional window.

Usage

```r
rQuasi(n, W, type = c("Halton", "Hammersley"), ...)
```

Arguments

- `n` Maximum number of points to be generated.
- `W` Window (object of class "owin") in which to generate the points.
- `type` String identifying the quasirandom generator.
- `...` Arguments passed to the quasirandom generator.

Details

This function generates a quasirandom point pattern, using the quasirandom sequence generator `Halton` or `Hammersley` as specified.

If `W` is a rectangle, exactly `n` points will be generated.

If `W` is not a rectangle, `n` points will be generated in the containing rectangle as `rectangle(W)`, and only the points lying inside `W` will be retained.

Value

Point pattern (object of class "ppp") inside the window `W`.

Author(s)

See Also

- `Halton`
Examples

plot(rQuasi(256, letterR))

Description

Randomly shifts the points of a point pattern or line segment pattern. Generic.

Usage

rshift(X, ...)

Arguments

X Pattern to be subjected to a random shift. A point pattern (class "ppp"), a line segment pattern (class "psp") or an object of class "splitppp". ...

Arguments controlling the generation of the random shift vector, or specifying which parts of the pattern will be shifted.

Details

This operation applies a random shift (vector displacement) to the points in a point pattern, or to the segments in a line segment pattern.

The argument X may be

- a point pattern (an object of class "ppp")
- a line segment pattern (an object of class "psp")
- an object of class "splitppp" (basically a list of point patterns, obtained from split.ppp).

The function rshift is generic, with methods for the three classes "ppp", "psp" and "splitppp". See the help pages for these methods, rshift.ppp, rshift.psp and rshift.splitppp, for further information.

Value

An object of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift.ppp, rshift.psp, rshift.splitppp
Randomly Shift a Point Pattern

Description

Randomly shifts the points of a point pattern.

Usage

```r
# S3 method for class 'ppp'
rshift(X, ..., which=NULL, group)
```

Arguments

- `X`: Point pattern to be subjected to a random shift. An object of class "ppp"
- `...`: Arguments that determine the random shift. See Details.
- `group`: Optional. Factor specifying a grouping of the points of `X`, or NULL indicating that all points belong to the same group. Each group will be shifted together, and separately from other groups. By default, points in a marked point pattern are grouped according to their mark values, while points in an unmarked point pattern are treated as a single group.
- `which`: Optional. Identifies which groups of the pattern will be shifted, while other groups are not shifted. A vector of levels of `group`.

Details

This operation randomly shifts the locations of the points in a point pattern.

The function `rshift` is generic. This function `rshift.ppp` is the method for point patterns.

The most common use of this function is to shift the points in a multitype point pattern. By default, points of the same type are shifted in parallel (i.e. points of a common type are shifted by a common displacement vector), and independently of other types. This is useful for testing the hypothesis of independence of types (the null hypothesis that the sub-patterns of points of each type are independent point processes).

In general the points of `X` are divided into groups, then the points within a group are shifted by a common random displacement vector. Different groups of points are shifted independently. The grouping is determined as follows:

- If the argument `group` is present, then this determines the grouping.
- Otherwise, if `X` is a multitype point pattern, the marks determine the grouping.
- Otherwise, all points belong to a single group.

The argument `group` should be a factor, of length equal to the number of points in `X`. Alternatively `group` may be NULL, which specifies that all points of `X` belong to a single group.

By default, every group of points will be shifted. The argument `which` indicates that only some of the groups should be shifted, while other groups should be left unchanged. `which` must be a vector
of levels of group (for example, a vector of types in a multitype pattern) indicating which groups
are to be shifted.

The displacement vector, i.e. the vector by which the data points are shifted, is generated at random.
Parameters that control the randomisation and the handling of edge effects are passed through the
dot argument. They are

radius, width, height Parameters of the random shift vector.

edge String indicating how to deal with edges of the pattern. Options are "torus", "erode" and
"none".

clip Optional. Window to which the final point pattern should be clipped.

If the window is a rectangle, the default behaviour is to generate a displacement vector at random
with equal probability for all possible displacements. This means that the x and y coordinates of
the displacement vector are independent random variables, uniformly distributed over the range of
possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled
by the arguments radius, width and height.

rectangular: if width and height are given, then the displacement vector is uniformly distributed
in a rectangle of these dimensions, centred at the origin. The maximum possible displacement
in the x direction is width/2. The maximum possible displacement in the y direction is
height/2. The x and y displacements are independent. (If width and height are actually
equal to the dimensions of the observation window, then this is equivalent to the default.)

radial: if radius is given, then the displacement vector is generated by choosing a random point
inside a disc of the given radius, centred at the origin, with uniform probability density over
the disc. Thus the argument radius determines the maximum possible displacement distance.
The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted point lies outside the window of X. Op-
tions are:

"none": Points shifted outside the window of X simply disappear.

"torus": Toroidal or periodic boundary. Treat opposite edges of the window as identical, so that
a point which disappears off the right-hand edge will re-appear at the left-hand edge. This is
called a “toroidal shift” because it makes the rectangle topologically equivalent to the surface
of a torus (doughnut).

The window must be a rectangle. Toroidal shifts are undefined if the window is non-rectangular.

"erode": Clip the point pattern to a smaller window.

If the random displacements are generated by a radial mechanism (see above), then the win-
dow of X is eroded by a distance equal to the value of the argument radius, using erosion.
If the random displacements are generated by a rectangular mechanism, then the window of X
is (if it is not rectangular) eroded by a distance max(height, width) using erosion; or (if it
is rectangular) trimmed by a margin of width width at the left and right sides and trimmed by
a margin of height height at the top and bottom.

The rationale for this is that the clipping window is the largest window for which edge effects
can be ignored.

The optional argument clip specifies a smaller window to which the pattern should be restricted.
Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift, rshift.psp

Examples

data(amacrine)

random toroidal shift
shift "on" and "off" points separately
X <- rshift(amacrine)

shift "on" points and leave "off" points fixed
X <- rshift(amacrine, which="on")

shift all points simultaneously
X <- rshift(amacrine, group=NULL)

maximum displacement distance 0.1 units
X <- rshift(amacrine, radius=0.1)

shift with erosion
X <- rshift(amacrine, radius=0.1, edge="erode")

rshift.psp Randomly Shift a Line Segment Pattern

Description

Randomly shifts the segments in a line segment pattern.

Usage

S3 method for class 'psp'
rshift(X, ..., group=NULL, which=NULL)
Arguments

- **X**: Line segment pattern to be subjected to a random shift. An object of class "psp".
- **...**: Arguments controlling the randomisation and the handling of edge effects. See `rshift.ppp`.
- **group**: Optional. Factor specifying a grouping of the line segments of X, or NULL indicating that all line segments belong to the same group. Each group will be shifted together, and separately from other groups.
- **which**: Optional. Identifies which groups of the pattern will be shifted, while other groups are not shifted. A vector of levels of group.

Details

This operation randomly shifts the locations of the line segments in a line segment pattern.

The function `rshift` is generic. This function `rshift.psp` is the method for line segment patterns.

The line segments of X are first divided into groups, then the line segments within a group are shifted by a common random displacement vector. Different groups of line segments are shifted independently. If the argument `group` is present, then this determines the grouping. Otherwise, all line segments belong to a single group.

The argument `group` should be a factor, of length equal to the number of line segments in X. Alternatively `group` may be NULL, which specifies that all line segments of X belong to a single group.

By default, every group of line segments will be shifted. The argument `which` indicates that only some of the groups should be shifted, while other groups should be left unchanged, which must be a vector of levels of group indicating which groups are to be shifted.

The displacement vector, i.e. the vector by which the data line segments are shifted, is generated at random. The default behaviour is to generate a displacement vector at random with equal probability for all possible displacements. This means that the x and y coordinates of the displacement vector are independent random variables, uniformly distributed over the range of possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled by the arguments `radius`, `width` and `height`.

- **rectangular**: if `width` and `height` are given, then the displacement vector is uniformly distributed in a rectangle of these dimensions, centred at the origin. The maximum possible displacement in the x direction is `width/2`. The maximum possible displacement in the y direction is `height/2`. The x and y displacements are independent. (If `width` and `height` are actually equal to the dimensions of the observation window, then this is equivalent to the default.)

- **radial**: if `radius` is given, then the displacement vector is generated by choosing a random line segment inside a disc of the given radius, centred at the origin, with uniform probability density over the disc. Thus the argument `radius` determines the maximum possible displacement distance. The argument `radius` is incompatible with the arguments `width` and `height`.

The argument `edge` controls what happens when a shifted line segment lies partially or completely outside the window of X. Currently the only option is "erode" which specifies that the segments will be clipped to a smaller window.

The optional argument `clip` specifies a smaller window to which the pattern should be restricted.
Randomly shifts each point pattern in a list of point patterns.

Usage

S3 method for class 'splitppp'

```r
rshift(X, ..., which=seq_along(X))
```

Arguments

- `X`
 An object of class "splitppp". Basically a list of point patterns.

- `...`
 Parameters controlling the generation of the random shift vector and the handling of edge effects. See `rshift.ppp`.

- `which`
 Optional. Identifies which patterns will be shifted, while other patterns are not shifted. Any valid subset index for `X`.

Details

This operation applies a random shift to each of the point patterns in the list `X`.

The function `rshift` is generic. This function `rshift.splitppp` is the method for objects of class "splitppp", which are essentially lists of point patterns, created by the function `split.ppp`.

By default, every pattern in the list `X` will be shifted. The argument `which` indicates that only some of the patterns should be shifted, while other groups should be left unchanged. `which` can be any valid subset index for `X`.

Each point pattern in the list `X` (or each pattern in `X[which]`) is shifted by a random displacement vector. The shifting is performed by `rshift.ppp`.

See the help page for `rshift.ppp` for details of the other arguments.
Value

Another object of class "splitppp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift, rshift.ppp

Examples

data(amacrine)
Y <- split(amacrine)

random toroidal shift
shift "on" and "off" points separately
X <- rshift(Y)

shift "on" points and leave "off" points fixed
X <- rshift(Y, which="on")

maximum displacement distance 0.1 units
X <- rshift(Y, radius=0.1)

shift with erosion
X <- rshift(Y, radius=0.1, edge="erode")

rSSI

Simulate Simple Sequential Inhibition

Description

Generate a random point pattern, a realisation of the Simple Sequential Inhibition (SSI) process.

Usage

rSSI(r, n=Inf, win = square(1), giveup = 1000, x.init=NULL, ..., nsim=1, drop=TRUE)

Arguments

r
Inhibition distance.

n
Maximum number of points allowed. If n is finite, stop when the total number of points in the point pattern reaches n. If n is infinite (the default), stop only when it is apparently impossible to add any more points. See Details.
Window in which to simulate the pattern. An object of class "owin" or something acceptable to \texttt{as.owin}. The default window is the unit square, unless \texttt{x.init} is specified, when the default window is the window of \texttt{x.init}.

giveup

Number of rejected proposals after which the algorithm should terminate.

\texttt{x.init}

Optional. Initial configuration of points. A point pattern (object of class "ppp"). The pattern returned by \texttt{rSSI} consists of this pattern together with the points added via simple sequential inhibition. See \texttt{Details}.

\texttt{...}

Ignored.

\texttt{nsim}

Number of simulated realisations to be generated.

\texttt{drop}

Logical. If \texttt{nsim}=1 and \texttt{drop=TRUE} (the default), the result will be a point pattern, rather than a list containing a point pattern.

\textbf{Details}

This algorithm generates one or more realisations of the Simple Sequential Inhibition point process inside the window \texttt{win}.

Starting with an empty window (or with the point pattern \texttt{x.init} if specified), the algorithm adds points one-by-one. Each new point is generated uniformly in the window and independently of preceding points. If the new point lies closer than \(r \) units from an existing point, then it is rejected and another random point is generated. The algorithm terminates when either

(a) the desired number \(n \) of points is reached, or

(b) the current point configuration has not changed for \texttt{giveup} iterations, suggesting that it is no longer possible to add new points.

If \(n \) is infinite (the default) then the algorithm terminates only when (b) occurs. The result is sometimes called a \textit{Random Sequential Packing}.

Note that argument \(n \) specifies the maximum permitted \textbf{total} number of points in the pattern returned by \texttt{rSSI()}. If \texttt{x.init} is not NULL then the number of points that are \textit{added} is at most \(n = \text{npoints(x.init)} \) if \(n \) is finite.

Thus if \texttt{x.init} is not NULL then argument \(n \) must be at least as large as \texttt{npoints(x.init)}, otherwise an error is given. If \(n = \text{npoints(x.init)} \) then a warning is given and the call to \texttt{rSSI()} has no real effect; \texttt{x.init} is returned.

There is no requirement that the points of \texttt{x.init} be at a distance at least \(r \) from each other. All of the \textit{added} points will be at a distance at least \(r \) from each other and from any point of \texttt{x.init}.

The points will be generated inside the window \texttt{win} and the result will be a point pattern in the same window.

The default window is the unit square, \texttt{win = square(1)}, unless \texttt{x.init} is specified, when the default is \texttt{win=Window(x.init)}, the window of \texttt{x.init}.

If both \texttt{win} and \texttt{x.init} are specified, and if the two windows are different, then a warning will be issued. Any points of \texttt{x.init} lying outside \texttt{win} will be removed, with a warning.

\textbf{Value}

A point pattern (an object of class "ppp") if \texttt{nsim}=1, or a list of point patterns if \texttt{nsim} \(> 1 \).
rstrat

Simulate Stratified Random Point Pattern

Description

Generates a “stratified random” pattern of points in a window, by dividing the window into rectangular tiles and placing k random points independently in each tile.

Usage

```
rstrat(win=square(1), nx, ny=nx, k = 1, nsim=1, drop=TRUE)
```

Arguments

- **win**: A window. An object of class `owin`, or data in any format acceptable to `as.owin()`.
- **nx**: Number of tiles in each column.
- **ny**: Number of tiles in each row.
- **k**: Number of random points to generate in each tile.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Examples

```r
Vinf <- rSSI(0.05)
V100 <- rSSI(0.05, 100)
X <- runifpoint(100)
Y <- rSSI(0.03,142,x.init=X) # Y consists of X together with # 42 added points.
## Not run:
plot(Y)
plot(X,add=TRUE,chars=20 cols="red")
## End(Not run)
```
Details

This function generates a random pattern of points in a “stratified random” sampling design. It can be useful for generating random spatial sampling points.

The bounding rectangle of win is divided into a regular $nx \times ny$ grid of rectangular tiles. In each tile, k random points are generated independently with a uniform distribution in that tile.

Some of these grid points may lie outside the window win: if they do, they are deleted.

The result is a point pattern inside the window win.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rsyst, runifpoint, quadscheme

Examples

```r
X <- rstrat(nx=10)
plot(X)

# polygonal boundary
data(letterR)
X <- rstrat(letterR, 5, 10, k=3)
plot(X)
```

Description

Generate a random pattern of points, a simulated realisation of the Strauss process, using a perfect simulation algorithm.

Usage

```r
rStrauss(beta, gamma = 1, R = 0, W = owin(), expand=TRUE, nsim=1)
```
Arguments

- **beta**: intensity parameter (a positive number).
- **gamma**: interaction parameter (a number between 0 and 1, inclusive).
- **R**: interaction radius (a non-negative number).
- **W**: window (object of class "owin") in which to generate the random pattern.
- **expand**: Logical. If FALSE, simulation is performed in the window W, which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window W. Alternatively expand can be an object of class "rmhexpand" (see `rmhexpand`) determining the expansion method.
- **nsim**: Number of simulated realisations to be generated.

Details

This function generates a realisation of the Strauss point process in the window W using a 'perfect simulation' algorithm.

The Strauss process (Strauss, 1975; Kelly and Ripley, 1976) is a model for spatial inhibition, ranging from a strong 'hard core' inhibition to a completely random pattern according to the value of gamma.

The Strauss process with interaction radius R and parameters beta and gamma is the pairwise interaction point process with probability density

\[f(x_1, \ldots, x_n) = \alpha \beta^n(x) \gamma^s(x) \]

where \(x_1, \ldots, x_n \) represent the points of the pattern, \(n(x) \) is the number of points in the pattern, \(s(x) \) is the number of distinct unordered pairs of points that are closer than \(R \) units apart, and \(\alpha \) is the normalising constant. Intuitively, each point of the pattern contributes a factor beta to the probability density, and each pair of points closer than r units apart contributes a factor gamma to the density.

The interaction parameter gamma must be less than or equal to 1 in order that the process be well-defined (Kelly and Ripley, 1976). This model describes an "ordered" or "inhibitive" pattern. If gamma = 1 it reduces to a Poisson process (complete spatial randomness) with intensity beta. If gamma = 0 it is called a "hard core process" with hard core radius \(R/2 \), since no pair of points is permitted to lie closer than \(R \) units apart.

The simulation algorithm used to generate the point pattern is 'dominated coupling from the past' as implemented by Berthelsen and Møller (2002, 2003). This is a 'perfect simulation' or 'exact simulation' algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in `rmh`, whose output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.
Author(s)
Kasper Klitgaard Berthelsen, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References

See Also
rmh, Strauss, rHardcore, rStraussHard, rDiggleGratton, rDGS.

Examples
X <- rStrauss(0.05, 0.2, 1.5, square(141.4))
Z <- rStrauss(100, 0.7, 0.05)

rStraussHard
Perfect Simulation of the Strauss-Hardcore Process

Description
Generate a random pattern of points, a simulated realisation of the Strauss-Hardcore process, using a perfect simulation algorithm.

Usage
rStraussHard(beta, gamma = 1, R = 0, H = 0, W = owin(), expand=TRUE, nsim=1)

Arguments
beta intensity parameter (a positive number).
gamma interaction parameter (a number between 0 and 1, inclusive).
R interaction radius (a non-negative number).
H hard core distance (a non-negative number smaller than R).
W window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
rStraussHard

expand Logical. If FALSE, simulation is performed in the window \(W \), which must be rectangular. If TRUE (the default), simulation is performed on a larger window, and the result is clipped to the original window \(W \). Alternatively expand can be an object of class "rmhexpand" (see \texttt{rmhexpand}) determining the expansion method.

nsim Number of simulated realisations to be generated.

Details

This function generates a realisation of the Strauss-Hardcore point process in the window \(W \) using a ‘perfect simulation’ algorithm.

The Strauss-Hardcore process is described in \texttt{StraussHard}.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’ as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in \texttt{rmh}, whose output is only approximately correct).

A limitation of the perfect simulation algorithm is that the interaction parameter \(\gamma \) must be less than or equal to 1. To simulate a Strauss-hardcore process with \(\gamma > 1 \), use \texttt{rmh}.

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.

Value

If \(\text{nsim} = 1 \), a point pattern (object of class "ppp"). If \(\text{nsim} > 1 \), a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

References

See Also

\texttt{rmh, rStrauss, StraussHard}.

Examples

\begin{verbatim}
Z <- rStraussHard(100,0.7,0.05,0.02)
\end{verbatim}
rsyst

Simulate systematic random point pattern

Description

Generates a “systematic random” pattern of points in a window, consisting of a grid of equally-spaced points with a random common displacement.

Usage

`rsyst(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx, nsim=1, drop=TRUE)`

Arguments

- `win`: A window. An object of class `owin`, or data in any format acceptable to `as.owin()`.
- `nx`: Number of columns of grid points in the window. Incompatible with `dx`.
- `ny`: Number of rows of grid points in the window. Incompatible with `dy`.
- `...`: Ignored.
- `dx`: Spacing of grid points in `x` direction. Incompatible with `nx`.
- `dy`: Spacing of grid points in `y` direction. Incompatible with `ny`.
- `nsim`: Number of simulated realisations to be generated.
- `drop`: Logical. If `nsim`=1 and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates a “systematic random” pattern of points in the window `win`. The pattern consists of a rectangular grid of points with a random common displacement.

The grid spacing in the `x` direction is determined either by the number of columns `nx` or by the horizontal spacing `dx`. The grid spacing in the `y` direction is determined either by the number of rows `ny` or by the vertical spacing `dy`.

The grid is then given a random displacement (the common displacement of the grid points is a uniformly distributed random vector in the tile of dimensions `dx`, `dy`).

Some of the resulting grid points may lie outside the window `win`: if they do, they are deleted. The result is a point pattern inside the window `win`.

This function is useful in creating dummy points for quadrature schemes (see `quadscheme`) as well as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if `nsim`=1, or a list of point patterns if `nsim` > 1.
rthin

Random Thinning

Description

Applies independent random thinning to a point pattern.

Usage

```r
rthin(X, P, ..., nsim=1, drop=TRUE)
```

Arguments

- **X** A point pattern (object of class "ppp") that will be thinned.
- **P** Data giving the retention probabilities, i.e. the probability that each point in X will be retained. Either a single number, or a vector of numbers, or a function(x,y), or a pixel image (object of class "im").
- **...** Additional arguments passed to P, if it is a function.
- **nsim** Number of simulated realisations to be generated.
- **drop** Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pattern, rather than a list containing a point pattern.

See Also

`rstrat`, `runifpoint`, `quadscheme`
Details

In a random thinning operation, each point of the pattern \(X \) is randomly either deleted or retained (i.e. not deleted). The result is a point pattern, consisting of those points of \(X \) that were retained.

Independent random thinning means that the retention/deletion of each point is independent of other points.

The argument \(P \) determines the probability of retaining each point. It may be

- a single number, so that each point will be retained with the same probability \(P \);
- a vector of numbers, so that the \(i \)th point of \(X \) will be retained with probability \(P[i] \);
- a function \(P(x,y) \), so that a point at a location \((x,y)\) will be retained with probability \(P(x,y) \);
- a pixel image, containing values of the retention probability for all locations in a region encompassing the point pattern.

If \(P \) is a function, it should be ‘vectorised’, that is, it should accept vector arguments \(x, y \) and should yield a numeric vector of the same length. The function may have extra arguments which are passed through the \(... \) argument.

Value

A point pattern (an object of class "ppp") if \(nsim=1 \), or a list of point patterns if \(nsim > 1 \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(redwood)
plot(redwood, main="thinning")

delete 20% of points
Y <- rthin(redwood, 0.8)
points(Y, col="green", cex=1.4)

function
f <- function(x,y) { ifelse(x < 0.4, 1, 0.5) }
Y <- rthin(redwood, f)

pixel image
Z <- as.im(f, redwood$window)
Y <- rthin(redwood, Z)
rThomas
Simulate Thomas Process

Description
Generate a random point pattern, a realisation of the Thomas cluster process.

Usage
```
rThomas(kappa, scale, mu, win = owin(c(0,1),c(0,1)),  
    nsim=1, drop=TRUE, 
    saveLambda=FALSE, expand = 4*scale, ...)
```

Arguments
- **kappa**: Intensity of the Poisson process of cluster centres. A single positive number, a function, or a pixel image.
- **scale**: Standard deviation of random displacement (along each coordinate axis) of a point from its cluster centre.
- **mu**: Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image).
- **win**: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.
- **saveLambda**: Logical. If TRUE then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.
- **expand**: Numeric. Size of window expansion for generation of parent points. Has a sensible default.
- **...**: Passed to `clusterfield` to control the image resolution when `saveLambda=TRUE` and to `clusterradius` when `expand` is missing.

Details
This algorithm generates a realisation of the ('modified') Thomas process, a special case of the Neyman-Scott process, inside the window `win`.

In the simplest case, where `kappa` and `mu` are single numbers, the algorithm generates a uniform Poisson point process of “parent” points with intensity `kappa`. Then each parent point is replaced by a random cluster of “offspring” points, the number of points per cluster being Poisson (`mu`) distributed, and their positions being isotropic Gaussian displacements from the cluster parent location. The resulting point pattern is a realisation of the classical “stationary Thomas process” generated inside the window `win`. This point process has intensity `kappa * mu`.

The algorithm can also generate spatially inhomogeneous versions of the Thomas process:
• The parent points can be spatially inhomogeneous. If the argument \(\kappa \) is a function \((x, y) \) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument \(\mu \) is a function \((x, y) \) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process with intensity function equal to \(\mu \ast f \), where \(f \) is the Gaussian probability density centred at the parent point. Equivalently we first generate, for each parent point, a Poisson \((\mu_{\text{max}}) \) random number of offspring (where \(M \) is the maximum value of \(\mu \)) with independent Gaussian displacements from the parent location, and then randomly thin the offspring points, with retention probability \(\mu / M \).

• Both the parent points and the offspring points can be spatially inhomogeneous, as described above.

Note that if \(\kappa \) is a pixel image, its domain must be larger than the window \(\text{win} \). This is because an offspring point inside \(\text{win} \) could have its parent point lying outside \(\text{win} \). In order to allow this, the simulation algorithm first expands the original window \(\text{win} \) by a distance \(\text{expand} \) and generates the Poisson process of parent points on this larger window. If \(\kappa \) is a pixel image, its domain must contain this larger window.

The intensity of the Thomas process is \(\kappa \ast \mu \) if either \(\kappa \) or \(\mu \) is a single number. In the general case the intensity is an integral involving \(\kappa \), \(\mu \) and \(f \).

The Thomas process with homogeneous parents (i.e. where \(\kappa \) is a single number) can be fitted to data using \text{kppm}. Currently it is not possible to fit the Thomas model with inhomogeneous parents.

Value

A point pattern (an object of class "ppp") if \(\text{nsim}=1 \), or a list of point patterns if \(\text{nsim} > 1 \).

Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see \text{rNeymanScott}). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if \text{saveLambda}=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

\text{rpoispp}, \text{rMatClust}, \text{rCauchy}, \text{rVarGamma}, \text{rNeymanScott}, \text{rGaussPoisson}, \text{kppm}, \text{clusterfit}.
run.simplepanel

Examples

homogeneous
X <- rThomas(10, 0.2, 5)

inhomogeneous
Z <- as.im(function(x,y)(5 * exp(2 * x - 1)), owin())
Y <- rThomas(10, 0.2, Z)

run.simplepanel

Run Point-and-Click Interface

Description

Execute various operations in a simple point-and-click user interface.

Usage

run.simplepanel(P, popup=TRUE, verbose = FALSE)
clear.simplepanel(P)
redraw.simplepanel(P, verbose = FALSE)

Arguments

P
An interaction panel (object of class "simplepanel", created by simplepanel or grow.simplepanel).

popup
Logical. If popup=TRUE (the default), the panel will be displayed in a new popup window. If popup=FALSE, the panel will be displayed on the current graphics window if it already exists, and on a new window otherwise.

verbose
Logical. If TRUE, debugging information will be printed.

Details

These commands enable the user to run a simple, robust, point-and-click interface to any R code. The interface is implemented using only the basic graphics package in R.

The argument P is an object of class "simplepanel", created by simplepanel or grow.simplepanel, which specifies the graphics to be displayed and the actions to be performed when the user interacts with the panel.

The command run.simplepanel(P) activates the panel: the display is initialised and the graphics system waits for the user to click the panel. While the panel is active, the user can only interact with the panel; the R command line interface and the R GUI cannot be used. When the panel terminates (typically because the user clicked a button labelled Exit), control returns to the R command line interface and the R GUI.

The command clear.simplepanel(P) clears all the display elements in the panel, resulting in a blank display except for the title of the panel.

The command redraw.simplepanel(P) redraws all the buttons of the panel, according to the redraw functions contained in the panel.
If popup=TRUE (the default), run.simplepanel begins by calling dev.new so that a new popup window is created; this window is closed using dev.off when run.simplepanel terminates. If popup=FALSE, the panel will be displayed on the current graphics window if it already exists, and on a new window otherwise; this window is not closed when run.simplepanel terminates.

For more sophisticated control of the graphics focus (for example, to use the panel to control the display on another window), initialise the graphics devices yourself using dev.new or similar commands; save these devices in the shared environment env of the panel P; and write the click/redraw functions of P in such a way that they access these devices using dev.set. Then use run.simplepanel with popup=FALSE.

Value

The return value of run.simplepanel(P) is the value returned by the exit function of P. See simplepanel.

The functions clear.simplepanel and redraw.simplepanel return NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

simplepanel

Examples

if(interactive()) {
 example(simplepanel)
 run.simplepanel(P)
}

runifdisc

Generate N Uniform Random Points in a Disc

Description

Generate a random point pattern containing n independent uniform random points in a circular disc.

Usage

runifdisc(n, radius=1, centre=c(0,0), ..., nsim=1, drop=TRUE)
Arguments

- **n**
 Number of points.

- **radius**
 Radius of the circle.

- **centre**
 Coordinates of the centre of the circle.

- **...**
 Arguments passed to `disc` controlling the accuracy of approximation to the circle.

- **nsim**
 Number of simulated realisations to be generated.

- **drop**
 Logical. If `nsim=1` and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates `n` independent random points, uniformly distributed in a circular disc.

It is faster (for a circular window) than the general code used in `runifpoint`.

To generate random points in an ellipse, first generate points in a circle using `runifdisc`, then transform to an ellipse using `affine`, as shown in the examples.

To generate random points in other windows, use `runifpoint`. To generate non-uniform random points, use `rpoint`.

Value

A point pattern (an object of class "ppp") if `nsim=1`, or a list of point patterns if `nsim > 1`.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

disc, runifpoint, rpoint

Examples

```r
# 100 random points in the unit disc
plot(runifdisc(100))
# 42 random points in the ellipse with major axis 3 and minor axis 1
X <- runifdisc(42)
Y <- affine(X, mat=diag(c(3,1)))
plot(Y)
```
runiflpp

Uniform Random Points on a Linear Network

Description

Generates \(n \) random points, independently and uniformly distributed, on a linear network.

Usage

```r
runiflpp(n, L, nsim=1)
```

Arguments

- **n**: Number of random points to generate. A nonnegative integer, or a vector of integers specifying the number of points of each type.
- **L**: A linear network (object of class "linnet", see `linnet`).
- **nsim**: Number of simulated realisations to generate.

Details

This function uses `runifpointonlines` to generate the random points.

Value

If \(nsim = 1 \), a point pattern on the linear network, i.e. an object of class "lpp". If \(nsim > 1 \), a list of such point patterns.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>

http://www.maths.uwa.edu.au/~adrian/

See Also

- `rpoislpp`, `lpp`, `linnet`

Examples

```r
data(simplenet)
X <- runiflpp(10, simplenet)
plot(X)
# marked
Z <- runiflpp(c(a=10, b=3), simplenet)
```
runifpoint

Generate N Uniform Random Points

Description

Generate a random point pattern containing \(n \) independent uniform random points.

Usage

```r
unifpoint(n, win=owin(c(0,1),c(0,1)), giveup=1000, warn=TRUE, ..., nsim=1, drop=TRUE)
```

Arguments

- **n**: Number of points.
- **win**: Window in which to simulate the pattern. An object of class "owin" or something acceptable to `as.owin`.
- **giveup**: Number of attempts in the rejection method after which the algorithm should stop trying to generate new points.
- **warn**: Logical. Whether to issue a warning if \(n \) is very large. See Details.
- **nsim**: Number of simulated realisations to be generated.
- **drop**: Logical. If \(nsim = 1 \) and `drop=TRUE` (the default), the result will be a point pattern, rather than a list containing a point pattern.

Details

This function generates \(n \) independent random points, uniformly distributed in the window \(\text{win} \).

(For nonuniform distributions, see `rpoint`.)

The algorithm depends on the type of window, as follows:

- If \(\text{win} \) is a rectangle then \(n \) independent random points, uniformly distributed in the rectangle, are generated by assigning uniform random values to their cartesian coordinates.
- If \(\text{win} \) is a binary image mask, then a random sequence of pixels is selected (using `sample`) with equal probabilities. Then for each pixel in the sequence we generate a uniformly distributed random point in that pixel.
- If \(\text{win} \) is a polygonal window, the algorithm uses the rejection method. It finds a rectangle enclosing the window, generates points in this rectangle, and tests whether they fall in the desired window. It gives up when `giveup * n` tests have been performed without yielding \(n \) successes.

The algorithm for binary image masks is faster than the rejection method but involves discretisation.

If `warn=TRUE`, then a warning will be issued if \(n \) is very large. The threshold is `spatstat.options("huge.npoints")`. This warning has no consequences, but it helps to trap a number of common errors.
runifpoint3

Generate N Uniform Random Points in Three Dimensions

Description

Generate a random point pattern containing \(n \) independent, uniform random points in three dimensions.

Usage

runifpoint3(n, domain = box3(), nsim=1)

Arguments

- \(n \) Number of points to be generated.
- domain Three-dimensional box in which the process should be generated. An object of class "box3".
- nsim Number of simulated realisations to be generated.

Details

This function generates \(n \) independent random points, uniformly distributed in the three-dimensional box domain.
runifpointOnLines

Value

If nsim = 1, a point pattern in three dimensions (an object of class "pp3"). If nsim > 1, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp3, pp3, box3

Examples

X <- runifpoint3(50)

runifpointOnLines Generate N Uniform Random Points On Line Segments

Description

Given a line segment pattern, generate a random point pattern consisting of n points uniformly distributed on the line segments.

Usage

runifpointOnLines(n, L, nsim=1)

Arguments

n
Number of points to generate.

L
Line segment pattern (object of class "psp") on which the points should lie.

nsim
Number of simulated realisations to be generated.

Details

This command generates a point pattern consisting of n independent random points, each point uniformly distributed on the line segment pattern. This means that, for each random point,

- the probability of falling on a particular segment is proportional to the length of the segment;
- given that the point falls on a particular segment, it has uniform probability density along that segment.

If n is a single integer, the result is an unmarked point pattern containing n points. If n is a vector of integers, the result is a marked point pattern, with m different types of points, where m = length(n), in which there are n[j] points of type j.
runifpointx

Generate N Uniform Random Points in Any Dimensions

Description

Generate a random point pattern containing \(n \) independent, uniform random points in any number of spatial dimensions.

Usage

\[
\text{runifpointx}(n, \text{domain}, \text{nsim}=1)
\]

Arguments

- \(n \): Number of points to be generated.
- \(\text{domain} \): Multi-dimensional box in which the process should be generated. An object of class "boxx".
- \(\text{nsim} \): Number of simulated realisations to be generated.

Details

This function generates a pattern of \(n \) independent random points, uniformly distributed in the multi-dimensional box domain.

Value

If \(\text{nsim} = 1 \), a point pattern (an object of class "ppx"). If \(\text{nsim} > 1 \), a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `psp`, `ppp`, `pointsOnLines`, `runifpoint`

Examples

\[
\begin{align*}
X & \leftarrow \text{psp}(\text{runif}(10), \text{runif}(10), \text{runif}(10), \text{runif}(10), \text{window}=\text{owin}()) \\
Y & \leftarrow \text{runifpointOnLines}(Z, X) \\
\text{plot}(X, \text{main}="") \\
\text{plot}(Y, \text{add}=\text{TRUE}) \\
Z & \leftarrow \text{runifpointOnLines}(c(5,5), X)
\end{align*}
\]
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
rpoisppx, ppx, boxx

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- runifpointx(50, w)

rVarGamma
Simulate Neyman-Scott Point Process with Variance Gamma cluster kernel

Description
Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Variance Gamma (Bessel) cluster kernel.

Usage

rVarGamma(kappa, nu, scale, mu, win = owin(),
 thresh = 0.001, nsim=1, drop=TRUE,
 saveLambda=FALSE, expand = NULL, ...)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
 function, or a pixel image.
nu Shape parameter for the cluster kernel. A number greater than -1.
scale Scale parameter for cluster kernel. Determines the size of clusters. A positive
 number in the same units as the spatial coordinates.
mu Mean number of points per cluster (a single positive number) or reference inten-
 sity for the cluster points (a function or a pixel image).
win Window in which to simulate the pattern. An object of class "owin" or some-
 thing acceptable to as.owin.
thresh Threshold relative to the cluster kernel value at the origin (parent location) deter-
 mining when the cluster kernel will be treated as zero for simulation purposes.
 Will be overridden by argument expand if that is given.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
 tern, rather than a list containing a point pattern.
saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent points will also be calculated and saved, and returns as an attribute of the point pattern.

expand Numeric. Size of window expansion for generation of parent points. By default determined by calling clusterradius with the numeric threshold value given in thresh.

Passed to clusterfield to control the image resolution when saveLambda=TRUE and to clusterradius when expand is missing or NULL.

Details

This algorithm generates a realisation of the Neyman-Scott process with Variance Gamma (Bessel) cluster kernel, inside the window win.

The process is constructed by first generating a Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of points, the number of points in each cluster being random with a Poisson (mu) distribution, and the points being placed independently and uniformly according to a Variance Gamma kernel.

The shape of the kernel is determined by the dimensionless index nu. This is the parameter \(\nu' = \alpha/2 - 1 \) appearing in equation (12) on page 126 of Jalilian et al (2013).

The scale of the kernel is determined by the argument scale, which is the parameter \(\eta \) appearing in equations (12) and (13) of Jalilian et al (2013). It is expressed in units of length (the same as the unit of length for the window win).

In this implementation, parent points are not restricted to lie in the window; the parent process is effectively the uniform Poisson process on the infinite plane.

This model can be fitted to data by the method of minimum contrast, maximum composite likelihood or Palm likelihood using kppm.

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

- The parent points can be spatially inhomogeneous. If the argument kappa is a function\((x,y)\) or a pixel image (object of class "im"), then it is taken as specifying the intensity function of an inhomogeneous Poisson process that generates the parent points.
- The offspring points can be inhomogeneous. If the argument mu is a function\((x,y)\) or a pixel image (object of class "im"), then it is interpreted as the reference density for offspring points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomogeneous (mu is a function or pixel image), the model can be fitted to data using kppm, or using vargamma.estK or vargamma.estpcf applied to the inhomogeneous \(K\) function.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pattern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute "Lambda", if saveLambda=TRUE.
Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

References

See Also

rpoispp.rNeymanScott,kppm.

vargamma.estK,vargamma.estpcf.

Examples

homogeneous
X <- rVarGamma(30, 2, 0.02, 5)
inhomogeneous
Z <- as.im(function(x,y){ exp(2 - 3 * x) }, W= owin())
Y <- rVarGamma(30, 2, 0.02, Z)

SatPiece

Piecewise Constant Saturated Pairwise Interaction Point Process Model

Description

Creates an instance of a saturated pairwise interaction point process model with piecewise constant potential function. The model can then be fitted to point pattern data.

Usage

SatPiece(r, sat)

Arguments

r

vector of jump points for the potential function

sat

vector of saturation values, or a single saturation value
Details

This is a generalisation of the Geyer saturation point process model, described in Geyer, to the case of multiple interaction distances. It can also be described as the saturated analogue of a pairwise interaction process with piecewise-constant pair potential, described in PairPiece.

The saturated point process with interaction radii \(r_1, \ldots, r_k \), saturation thresholds \(s_1, \ldots, s_k \), intensity parameter \(\beta \) and interaction parameters \(\gamma_1, \ldots, \gamma_k \), is the point process in which each point \(x_i \) in the pattern \(X \) contributes a factor

\[
\beta \gamma_1 v_1(x_i, X) \cdots \gamma_k v_k(x_i, X)
\]

to the probability density of the point pattern, where

\[
v_j(x_i, X) = \min(s_j, t_j(x_i, X))
\]

where \(t_j(x_i, X) \) denotes the number of points in the pattern \(X \) which lie at a distance between \(r_{j-1} \) and \(r_j \) from the point \(x_i \). We take \(r_0 = 0 \) so that \(t_1(x_i, X) \) is the number of points of \(X \) that lie within a distance \(r_1 \) of the point \(x_i \).

SatPiece is used to fit this model to data. The function \(\text{ppm}() \), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the piecewise constant Saturated pairwise interaction is yielded by the function \(\text{satpiece}() \). See the examples below.

Simulation of this point process model is not yet implemented. This model is not locally stable (the conditional intensity is unbounded).

The argument \(r \) specifies the vector of interaction distances. The entries of \(r \) must be strictly increasing, positive numbers.

The argument \(\text{sat} \) specifies the vector of saturation parameters. It should be a vector of the same length as \(r \), and its entries should be nonnegative numbers. Thus \(\text{sat}[1] \) corresponds to the distance range from \(0 \) to \(r[1] \), and \(\text{sat}[2] \) to the distance range from \(r[1] \) to \(r[2] \), etc. Alternatively \(\text{sat} \) may be a single number, and this saturation value will be applied to every distance range.

Infinite values of the saturation parameters are also permitted; in this case \(v_j(x_i, X) = t_j(x_i, X) \) and there is effectively no ‘saturation’ for the distance range in question. If all the saturation parameters are set to \(\text{Inf} \) then the model is effectively a pairwise interaction process, equivalent to PairPiece (however the interaction parameters \(\gamma \) obtained from SatPiece are the square roots of the parameters \(\gamma \) obtained from PairPiece).

If \(r \) is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz> in collaboration with Hao Wang and Jeff Picka

See Also

ppm, pairsat.family, Geyer, PairPiece, BadGey.
Examples

SatPiece(c(0.1, 0.2), c(1, 1))
prints a sensible description of itself
SatPiece(c(0.1, 0.2), 1)
data(cells)
ppm(cells, ~1, SatPiece(c(0.07, 0.1, 0.13), 2))
fit a stationary piecewise constant Saturated pairwise interaction process

Not run:
ppm(cells, ~polynom(x, y, 3), SatPiece(c(0.07, 0.1, 0.13), 2))
nonstationary process with log-cubic polynomial trend

End(Not run)

Saturated Saturated Pairwise Interaction model

Description

Experimental.

Usage

Saturated(pot, name)

Arguments

pot An S language function giving the user-supplied pairwise interaction potential.
name Character string.

Details

This is experimental. It constructs a member of the “saturated pairwise” family `pairsat.family`.

Value

An object of class “interact” describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppm`, `pairsat.family`, `Geyer`, `SatPiece`, `ppm.object`
scalardilate

Apply Scalar Dilation

Description

Applies scalar dilation to a plane geometrical object, such as a point pattern or a window, relative to a specified origin.

Usage

```r
scalardilate(X, f, ...)
```

S3 method for class 'im'

```r
scalardilate(X, f, ..., origin=NULL)
```

S3 method for class 'owin'

```r
scalardilate(X, f, ..., origin=NULL)
```

S3 method for class 'ppp'

```r
scalardilate(X, f, ..., origin=NULL)
```

S3 method for class 'psp'

```r
scalardilate(X, f, ..., origin=NULL)
```

Default S3 method:

```r
scalardilate(X, f, ...)
```

Arguments

- **X**: Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), a window (object of class "owin"), a pixel image (class "im") and so on.
- **f**: Scalar dilation factor. A finite number greater than zero.
- **...**: Ignored by the methods.
- **origin**: Origin for the scalar dilation. Either a vector of 2 numbers, or one of the character strings "centroid", "midpoint" or "bottomleft" (partially matched).

Details

This command performs scalar dilation of the object X by the factor f relative to the origin specified by origin.

The function scalardilate is generic, with methods for windows (class "owin"), point patterns (class "ppp"), pixel images (class "im"), line segment patterns (class "psp") and a default method. If the argument origin is not given, then every spatial coordinate is multiplied by the factor f.
If origin is given, then scalar dilation is performed relative to the specified origin. Effectively, \(X\) is shifted so that origin is moved to \(c(0,0)\), then scalar dilation is performed, then the result is shifted so that \(c(0,0)\) is moved to origin.

This command is a special case of an affine transformation: see affine.

Value

Another object of the same type, representing the result of applying the scalar dilation.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, shift

Examples

```r
plot(letterR)
plot(scalardilate(letterR, 0.7, origin="bot"), col="red", add=TRUE)
```

scaletointerval

Rescale Data to Lie Between Specified Limits

Description

Rescales a dataset so that the values range exactly between the specified limits.

Usage

```r
scaletointerval(x, from=0, to=1, xrange=range(x))
```

Arguments

- `x`: Data to be rescaled.
- `from`: Lower and upper endpoints of the interval to which the values of \(x\) should be rescaled.
- `to`: Optional range of values of \(x\) that should be mapped to the new interval.
Details

These functions rescale a dataset \(x \) so that its values range exactly between the limits from and to.
The method for pixel images (objects of class "im") applies this scaling to the pixel values of \(x \).
Rescaling cannot be performed if the values in \(x \) are not interpretable as numeric, or if the values in \(x \) are all equal.

Value

An object of the same type as \(x \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

scale

Examples

```r
x <- as.im(function(x,y) {x+y+3}, unit.square())
summary(x)
Y <- scaletointerval(x)
summary(Y)
```

scan.test

Spatial Scan Test

Description

Performs the Spatial Scan Test for clustering in a spatial point pattern, or for clustering of one type of point in a bivariate spatial point pattern.

Usage

```r
scan.test(X, r, ..., 
  method = c("poisson", "binomial"), 
  nsim = 19, 
  baseline = NULL, 
  case = 2, 
  alternative = c("greater", "less", "two.sided"), 
  verbose = TRUE)
```
scan.test

Arguments

- **X**: A point pattern (object of class "ppp").
- **r**: Radius of circle to use. A single number or a numeric vector.
- **...**: Optional. Arguments passed to `as.mask` to determine the spatial resolution of the computations.
- **method**: Either "poisson" or "binomial" specifying the type of likelihood.
- **nsim**: Number of simulations for computing Monte Carlo p-value.
- **baseline**: Baseline for the Poisson intensity, if `method="poisson"`. A pixel image or a function.
- **case**: Which type of point should be interpreted as a case, if `method="binomial"`. Integer or character string.
- **alternative**: Alternative hypothesis: "greater" if the alternative postulates that the mean number of points inside the circle will be greater than expected under the null.
- **verbose**: Logical. Whether to print progress reports.

Details

The spatial scan test (Kulldorf, 1997) is applied to the point pattern X.

In a nutshell,

- If `method="poisson"` then a significant result would mean that there is a circle of radius r, located somewhere in the spatial domain of the data, which contains a significantly higher than expected number of points of X. That is, the pattern X exhibits spatial clustering.

- If `method="binomial"` then X must be a bivariate (two-type) point pattern. By default, the first type of point is interpreted as a control (non-event) and the second type of point as a case (event). A significant result would mean that there is a circle of radius r which contains a significantly higher than expected number of cases. That is, the cases are clustered together, conditional on the locations of all points.

Following is a more detailed explanation.

- If `method="poisson"` then the scan test based on Poisson likelihood is performed (Kulldorf, 1997). The dataset X is treated as an unmarked point pattern. By default (if `baseline` is not specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). The alternative hypothesis is a Poisson process with one intensity β_1 inside some circle of radius r and another intensity β_0 outside the circle. If `baseline` is given, then it should be a pixel image or a function(x,y). The null hypothesis is an inhomogeneous Poisson process with intensity proportional to `baseline`. The alternative hypothesis is an inhomogeneous Poisson process with intensity $\beta_1 $ \times `baseline` inside some circle of radius r, and $\beta_0 $ \times `baseline` outside the circle.

- If `method="binomial"` then the scan test based on binomial likelihood is performed (Kulldorf, 1997). The dataset X must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hypothesis is that all permutations of the type labels are equally likely. The alternative hypothesis is that some circle of radius r has a higher proportion of points of the second type, than expected under the null hypothesis.
The result of `scan.test` is a hypothesis test (object of class "htest") which can be plotted to report the results. The component `p.value` contains the p-value.

The result of `scan.test` can also be plotted (using the plot method for the class "scan.test"). The plot is a pixel image of the Likelihood Ratio Test Statistic (2 times the log likelihood ratio) as a function of the location of the centre of the circle. This pixel image can be extracted from the object using `as.im.scan.test`. The Likelihood Ratio Test Statistic is computed by `scanLRTS`.

Value

An object of class "htest" (hypothesis test) which also belongs to the class "scan.test". Printing this object gives the result of the test. Plotting this object displays the Likelihood Ratio Test Statistic as a function of the location of the centre of the circle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`plot.scan.test, as.im.scan.test, relrisk, scanLRTS`

Examples

```r
nsim <- if(interactive()) 19 else 2
r <- if(interactive()) seq(0.5, 1, by=0.1) else c(0.5, 1)
scan.test(redwood, 0.1 * r, method="poisson", nsim=nsim)
scan.test(chorley, r, method="binomial", case="larynx", nsim=nsim)
```

Description

Calculate the Likelihood Ratio Test Statistic for the Scan Test, at each spatial location.

Usage

```r
scanLRTS(X, r, ..., 
  method = c("poisson", "binomial"),
  baseline = NULL, case = 2,
  alternative = c("greater", "less", "two.sided"),
  saveopt = FALSE,
  Xmask = NULL)
```
Arguments

- **X**: A point pattern (object of class "ppp").
- **r**: Radius of circle to use. A single number or a numeric vector.
- **...**: Optional. Arguments passed to `as.mask` to determine the spatial resolution of the computations.
- **method**: Either "poisson" or "binomial" specifying the type of likelihood.
- **baseline**: Baseline for the Poisson intensity, if `method="poisson"`. A pixel image or a function.
- **case**: Which type of point should be interpreted as a case, if `method="binomial"`. Integer or character string.
- **alternative**: Alternative hypothesis: "greater" if the alternative postulates that the mean number of points inside the circle will be greater than expected under the null.
- **saveopt**: Logical value indicating to save the optimal value of `r` at each location.
- **Xmask**: Internal use only.

Details

This command computes, for all spatial locations `u`, the Likelihood Ratio Test Statistic `Λ(u)` for a test of homogeneity at the location `u`, as described below. The result is a pixel image giving the values of `Λ(u)` at each pixel.

The **maximum** value of `Λ(u)` over all locations `u` is the scan statistic, which is the basis of the scan test performed by `scan.test`.

- If `method="poisson"` then the test statistic is based on Poisson likelihood. The dataset `X` is treated as an unmarked point pattern. By default (if `baseline` is not specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). At the spatial location `u`, the alternative hypothesis is a Poisson process with one intensity `β_1` inside the circle of radius `r` centred at `u`, and another intensity `β_0` outside the circle. If `baseline` is given, then it should be a pixel image or a function(`x,y`). The null hypothesis is an inhomogeneous Poisson process with intensity proportional to `baseline`. The alternative hypothesis is an inhomogeneous Poisson process with intensity `beta1 * baseline` inside the circle, and `beta0 * baseline` outside the circle.

- If `method="binomial"` then the test statistic is based on binomial likelihood. The dataset `X` must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hypothesis is that all permutations of the type labels are equally likely. The alternative hypothesis is that the circle of radius `r` centred at `u` has a higher proportion of points of the second type, than expected under the null hypothesis.

If `r` is a vector of more than one value for the radius, then the calculations described above are performed for every value of `r`. Then the maximum over `r` is taken for each spatial location `u`. The resulting pixel value of `scanLRTS` at a location `u` is the profile maximum of the Likelihood Ratio Test Statistic, that is, the maximum of the Likelihood Ratio Test Statistic for circles of all radii, centred at the same location `u`.

If you have already performed a scan test using `scan.test`, the Likelihood Ratio Test Statistic can be extracted from the test result using the function `as.im.scan.test`.
Value

A pixel image (object of class "im") whose pixel values are the values of the (profile) Likelihood Ratio Test Statistic at each spatial location.

Warning: window size

Note that the result of scanLRTS is a pixel image on a larger window than the original window of X. The expanded window contains the centre of any circle of radius r that has nonempty intersection with the original window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

scan.test, as.im.scan.test

Examples

plot(scanLRTS(redwood, 0.1, method="poisson"))
sc <- scanLRTS(chorley, 1, method="binomial", case="larynx")
plot(sc)
scanstatchorley <- max(sc)

Description

Reads a point pattern dataset from a text file.

Usage

scanpp(filename, window, header=TRUE, dir="", factor.marks=NULL, ...)
scanpp

Arguments

filename String name of the file containing the coordinates of the points in the point pattern, and their marks if any.
window Window for the point pattern. An object of class "owin".
header Logical flag indicating whether the first line of the file contains headings for the columns. Passed to read.table.
dir String containing the path name of the directory in which filename is to be found. Default is the current directory.
factor.marks Logical vector (or NULL) indicating whether marks are to be interpreted as factors. Defaults to NULL which means that strings will be interpreted as factors while numeric variables will not. See details.
... Ignored.

Details

This simple function reads a point pattern dataset from a file containing the cartesian coordinates of its points, and optionally the mark values for these points.

The file identified by filename in directory dir should be a text file that can be read using read.table. Thus, each line of the file (except possibly the first line) contains data for one point in the point pattern. Data are arranged in columns. There should be either two columns (for an unmarked point pattern) or more columns (for a marked point pattern).

If header=FALSE then the first two columns of data will be interpreted as the x and y coordinates of points. Remaining columns, if present, will be interpreted as containing the marks for these points.

If header=TRUE then the first line of the file should contain string names for each of the columns of data. If there are columns named x and y then these will be taken as the cartesian coordinates, and any remaining columns will be taken as the marks. If there are no columns named x and y then the first and second columns will be taken as the cartesian coordinates.

If a logical vector is provided for factor.marks the length should equal the number of mark columns (a shorter factor.marks is recycled to this length). This vector is then used to determine which mark columns should be interpreted as factors. Note: Strings will not be interpreted as factors if the corresponding entry in factor.marks is FALSE.

Note that there is intentionally no default for window. The window of observation should be specified. If you really need to estimate the window, use the Ripley-Rasson estimator ripras.

Value

A point pattern (an object of class "ppp", see ppp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, ppp, as.ppp, ripras
segregation.test Test of Spatial Segregation of Types

Description
Performs a Monte Carlo test of spatial segregation of the types in a multitype point pattern.

Usage
segregation.test(X, ...)

S3 method for class 'ppp'
segregation.test(X, ..., nsim = 19,
 permute = TRUE, verbose = TRUE, Xname)

Arguments
X Multitype point pattern (object of class "ppp" with factor-valued marks).
...
Additional arguments passed to relrisk.ppp to control the smoothing parameter or bandwidth selection.
nsim Number of simulations for the Monte Carlo test.
permute Argument passed to rlabel. If TRUE (the default), randomisation is performed by randomly permuting the labels of X. If FALSE, randomisation is performing by resampling the labels with replacement.
verbose Logical value indicating whether to print progress reports.
Xname Optional character string giving the name of the dataset X.

Details
The Monte Carlo test of spatial segregation of types, proposed by Kelsall and Diggle (1995) and Diggle et al (2005), is applied to the point pattern X. The test statistic is

\[T = \sum_i \sum_m (\hat{p}(m \mid x_i) - \bar{p}_m)^2 \]

where \(\hat{p}(m \mid x_i) \) is the leave-one-out kernel smoothing estimate of the probability that the i-th data point has type m, and \(\bar{p}_m \) is the average fraction of data points which are of type m. The statistic T is evaluated for the data and for nsim randomised versions of X, generated by randomly permuting or resampling the marks.

Note that, by default, automatic bandwidth selection will be performed separately for each randomised pattern. This computation can be very time-consuming but is necessary for the test to be valid in most conditions. A short-cut is to specify the value of the smoothing bandwidth sigma as shown in the examples.

Value
An object of class "htest" representing the result of the test.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References

See Also
relrisk

Examples
segregation.test(hyytiala, 5)
if(interactive()) segregation.test(hyytiala, hmin=0.05)

desc(selfcrossing.psp) Crossing Points in a Line Segment Pattern

Description
Finds any crossing points between the line segments in a line segment pattern.

Usage
selfcrossing.psp(A)

Arguments
A Line segment pattern (object of class "psp").

Details
This function finds any crossing points between different line segments in the line segment pattern A.
A crossing point occurs whenever one of the line segments in A intersects another line segment in A, at a nonzero angle of intersection.

Value
Point pattern (object of class "ppp").
selfcut.psp

Cut Line Segments Where They Intersect

Description
Find any crossing points between the line segments in a line segment pattern, and cuts the segments into pieces at these crossing-points.

Usage
selfcut.psp(A, ..., eps)

Arguments
- A: Line segment pattern (object of class "psp").
- eps: Optional. Smallest permissible length of the resulting line segments. There is a sensible default.
- ...: Ignored.

Details
This function finds any crossing points between different line segments in the line segment pattern A, and cuts the line segments into pieces at these intersection points.

A crossing point occurs whenever one of the line segments in A intersects another line segment in A, at a nonzero angle of intersection.

Value
Another line segment pattern (object of class "psp") in the same window as A with the same kind of marks as A.
sessionLibs

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
selfcrossing.psp

Examples
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- selfcut.psp(X)
n <- nsegments(Y)
plot(Y %mark% factor(sample(seq_len(n), n, replace=TRUE)))

sessionLibs: Print Names and Version Numbers of Libraries Loaded

Description
Prints the names and version numbers of libraries currently loaded by the user.

Usage
sessionLibs()

Details
This function prints a list of the libraries loaded by the user in the current session, giving just their
name and version number. It obtains this information from sessionInfo.
This function is not needed in an interactive R session because the package startup messages will
usually provide this information.
Its main use is in an Sweave script, where it is needed because the package startup messages are not
printed.

Value
Null.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
sessionInfo
setcov

Set Covariance of a Window

Description

Computes the set covariance function of a window.

Usage

```r
setcov(W, V=W, ...)  
```

Arguments

- `W`
 A window (object of class "owin").

- `V`
 Optional. Another window.

- `...`
 Optional arguments passed to `as.mask` to control the pixel resolution.

Details

The set covariance function of a region W in the plane is the function $C(v)$ defined for each vector v as the area of the intersection between W and $W + v$, where $W + v$ is the set obtained by shifting (translating) W by v.

We may interpret $C(v)$ as the area of the set of all points x in W such that $x + v$ also lies in W.

This command computes a discretised approximation to the set covariance function of any plane region W represented as a window object (of class "owin", see `owin.object`). The return value is a pixel image (object of class "im") whose greyscale values are values of the set covariance function.

The set covariance is computed using the Fast Fourier Transform, unless W is a rectangle, when an exact formula is used.

If the argument V is present, then `setcov(W, V)` computes the set cross-covariance function $C(x)$ defined for each vector x as the area of the intersection between W and $V + x$.

Value

A pixel image (an object of class "im") representing the set covariance function of W, or the cross-covariance of W and V.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `imcov`, `owin`, `as.owin`, `erosion`
shapley

Examples

```r
w <- owin(c(0,1),c(0,1))
v <- setcov(w)
plot(v)
```

Description

A point pattern recording the sky positions of 4215 galaxies in the Shapley Supercluster.

Usage

`data(shapley)`

Format

`shapley` is an object of class "ppp" representing the point pattern of galaxy locations (see `ppp.object`).

`shapley.extra` is a list containing additional data described under Notes.

Notes

This dataset comes from a survey by Drinkwater et al (2004) of the Shapley Supercluster, one of the most massive concentrations of galaxies in the local universe. The data give the sky positions of 4215 galaxies observed using the FLAIR-II spectrograph on the UK Schmidt Telescope (UKST). They were kindly provided by Dr Michael Drinkwater through the Centre for Astrostatistics at Penn State University.

Sky positions are given using the coordinates Right Ascension (degrees from 0 to 360) and Declination (degrees from -90 to 90).

The point pattern has three mark variables:

- **Mag** Galaxy magnitude (a negative logarithmic measure of visible brightness).
- **V** Recession velocity (km/sec) inferred from redshift, with corrections applied.
- **SigV** Estimated standard error for V.

The region covered by the survey was approximately the UKST’s standard quadrilateral survey fields 382 to 384 and 443 to 446. However, a few of the galaxy positions lie outside these fields.

The point pattern dataset `shapley` consists of all 4215 galaxy locations. The observation window for this pattern is a dilated copy of the convex hull of the galaxy positions, constructed so that all galaxies lie within the window.

Note that the data contain duplicated points (two points at the same location). To determine which points are duplicates, use `duplicated.ppp`. To remove the duplication, use `unique.ppp`.

The auxiliary dataset `shapley.extra` contains the following components:
UKSTfields a list of seven windows (objects of class "owin") giving the UKST standard survey fields.

UKSTdomain the union of these seven fields, an object of class "owin".

plotit a function (called without arguments) that will plot the data and the survey fields in the conventional astronomical presentation, in which Right Ascension is converted to hours and minutes (1 hour equals 15 degrees) and Right Ascension decreases as we move to the right of the plot.

Source

M.J. Drinkwater, Department of Physics, University of Queensland

References

Examples

```r
data(shapley)
shapley.extra$plotit(main="Shapley Supercluster")
```

sharpen

Data Sharpening of Point Pattern

Description

Performs Choi-Hall data sharpening of a spatial point pattern.

Usage

```r
sharpen(X, ...)
## S3 method for class 'ppp'
sharpen(X, sigma=NULL, ..., varcov=NULL,
       edgecorrect=FALSE)
```

Arguments

- **X** A marked point pattern (object of class "ppp").
- **sigma** Standard deviation of isotropic Gaussian smoothing kernel.
- **varcov** Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with sigma.
- **edgecorrect** Logical value indicating whether to apply edge effect bias correction.
- **...** Arguments passed to `density.ppp` to control the pixel resolution of the result.
Details

Choi and Hall (2001) proposed a procedure for data sharpening of spatial point patterns. This procedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit strong concentrations of points along a curve. Data sharpening causes such points to concentrate more tightly along the curve.

If the original data points are X_1, \ldots, X_n then the sharpened points are

$$\hat{X}_i = \frac{\sum_j X_j k(X_j - X_i)}{\sum_j k(X_j - X_i)}$$

where k is a smoothing kernel in two dimensions. Thus, the new point \hat{X}_i is a vector average of the nearby points $X[j]$.

The function sharpen is generic. It currently has only one method, for two-dimensional point patterns (objects of class "ppp").

If sigma is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with standard deviation sigma in each axis. If varcov is given, the smoothing kernel is the Gaussian density with variance-covariance matrix varcov.

The data sharpening procedure tends to cause the point pattern to contract away from the boundary of the window. That is, points X_i that lie 'quite close to the edge of the window of the point pattern tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct this vector bias.

Value

A point pattern (object of class "ppp") in the same window as the original pattern X, and with the same marks as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

density.ppp, Smooth.ppp.

Examples

data(shapley)
X <- unmark(shapley)

Y <- sharpen(X, sigma=0.5)
shift

Apply Vector Translation

Description

Applies a vector shift of the plane to a geometrical object, such as a point pattern or a window.

Usage

```r
shift(X, ...)
```

Arguments

- `X`: Any suitable dataset representing a two-dimensional object, such as a point pattern (object of class "ppp"), or a window (object of class "owin").
- `...`: Arguments determining the shift vector.

Details

This is generic. Methods are provided for point patterns (`shift.ppp`) and windows (`shift.owin`). The object is translated by the vector `vec`.

Value

Another object of the same type, representing the result of applying the shift.

Author(s)

and Rolf Turner \(<r.turner@auckland.ac.nz>\)

See Also

`shift.ppp`, `shift.owin`, `rotate`, `affine`, `periodify`

shift.im

Apply Vector Translation To Pixel Image

Description

Applies a vector shift to a pixel image

Usage

```r
## S3 method for class 'im'
shift(X, vec=c(0,0), ..., origin=NULL)
```
Arguments

X Pixel image (object of class "im").
vec Vector of length 2 representing a translation.
... Ignored
origin Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.

Details

The spatial location of each pixel in the image is translated by the vector vec. This is a method for the generic function shift.

If origin is given, then it should be one of the character strings "centroid", "midpoint" or "bottomleft". The argument vec will be ignored; instead the shift will be performed so that the specified geometric location is shifted to the origin. If origin="centroid" then the centroid of the image window will be shifted to the origin. If origin="midpoint" then the centre of the bounding rectangle of the image will be shifted to the origin. If origin="bottomleft" then the bottom left corner of the bounding rectangle of the image will be shifted to the origin.

Value

Another pixel image (of class "im") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley \textless{}Adrian.Baddeley@uwa.edu.au\textgreater{} http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner \textless{}r.turner@auckland.ac.nz\textgreater{}

See Also

shift

Examples

make up an image
X <- setcov(unit.square())
plot(X)

Y <- shift(X, c(10,10))
plot(Y)
no discernible difference except coordinates are different

shift(X, origin="mid")
Apply Vector Translation To Window

Description

Applies a vector shift to a window

Usage

```r
## S3 method for class 'owin'
shift(X, vec=c(0,0), ..., origin=NULL)
```

Arguments

- `X` Window (object of class "owin").
- `vec` Vector of length 2 representing a translation.
- `...` Ignored
- `origin` Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.

Details

The window is translated by the vector `vec`. This is a method for the generic function `shift`.

If `origin` is given, then it should be one of the character strings "centroid", "midpoint" or "bottomleft". The argument `vec` will be ignored; instead the shift will be performed so that the specified geometric location is shifted to the origin. If `origin="centroid"` then the centroid of the window will be shifted to the origin. If `origin="midpoint"` then the centre of the bounding rectangle of the window will be shifted to the origin. If `origin="bottomleft"` then the bottom left corner of the bounding rectangle of the window will be shifted to the origin.

Value

Another window (of class "owin") representing the result of applying the vector shift.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `shift`, `shift.ppp`, `periodify`, `rotate`, `affine`, `centroid.owin`
Examples

```r
W <- owin(c(0,1),c(0,1))
X <- shift(W, c(2,3))
## Not run:
plot(W)
# no discernible difference except coordinates are different
## End(Not run)
shift(W, origin="mid")
```

Description

Applies a vector shift to a point pattern.

Usage

```r
## S3 method for class 'ppp'
shift(X, vec=c(0,0), ..., origin=NULL)
```

Arguments

- **X**: Point pattern (object of class "ppp").
- **vec**: Vector of length 2 representing a translation.
- **...**: Ignored
- **origin**: Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.

Details

The point pattern, and its window, are translated by the vector vec.

This is a method for the generic function `shift`.

If `origin` is given, then it should be one of the character strings "centroid", "midpoint" or "bottomleft". The argument vec will be ignored; instead the shift will be performed so that the specified geometric location is shifted to the origin. If `origin="centroid"` then the centroid of the window will be shifted to the origin. If `origin="midpoint"` then the centre of the bounding rectangle of the window will be shifted to the origin. If `origin="bottomleft"` then the bottom left corner of the bounding rectangle of the window will be shifted to the origin.

Value

Another point pattern (of class "ppp") representing the result of applying the vector shift.
shift.psp

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
shift, shift.owin, periodify, rotate, affine

Examples
data(cells)
 X <- shift(cells, c(2,3))
 ## Not run:
 plot(X)
 # no discernible difference except coordinates are different

 ## End(Not run)
 plot(cells, pch=16)
 plot(shift(cells, c(0.03,0.03)), add=TRUE)

 shift(cells, origin="mid")

Description
Applies a vector shift to a line segment pattern.

Usage
S3 method for class 'psp'
shift(X, vec=c(0,0), ..., origin=NULL)

Arguments
X Line Segment pattern (object of class "psp").
vec Vector of length 2 representing a translation.
... Ignored
origin Character string determining a location that will be shifted to the origin. Options are "centroid", "midpoint" and "bottomleft". Partially matched.
Details

The line segment pattern, and its window, are translated by the vector \texttt{vec}.

This is a method for the generic function \texttt{shift}.

If \texttt{origin} is given, then it should be one of the character strings "centroid", "midpoint" or "bottomleft". The argument \texttt{vec} will be ignored; instead the shift will be performed so that the specified geometric location is shifted to the origin. If \texttt{origin=centroid} then the centroid of the window will be shifted to the origin. If \texttt{origin=midpoint} then the centre of the bounding rectangle of the window will be shifted to the origin. If \texttt{origin=bottomleft} then the bottom left corner of the bounding rectangle of the window will be shifted to the origin.

Value

Another line segment pattern (of class "psp") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley \texttt{<Adrian.Baddeley@uwa.edu.au>} \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner \texttt{<r.turner@auckland.ac.nz>}

See Also

\texttt{shift}, \texttt{shift.owin}, \texttt{shift.ppp}, \texttt{periodify}, \texttt{rotate}, \texttt{affine}

Examples

\begin{verbatim}
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, col="red")
Y <- shift(X, c(0.05,0.05))
plot(Y, add=TRUE, col="blue")

shift(Y, origin="mid")
\end{verbatim}

Description

Computes the side lengths of the (enclosing rectangle of) a window.

Usage

\begin{verbatim}
S3 method for class 'owin'
sidelengths(x)

S3 method for class 'owin'
shortside(x)
\end{verbatim}
Arguments

x A window whose side lengths will be computed. Object of class "owin".

Details

The functions shortside and sidelengths are generic. The functions documented here are the methods for the class "owin".

sidelengths.owin computes the side-lengths of the enclosing rectangle of the window x.

For safety, both functions give a warning if the window is not a rectangle. To suppress the warning, first convert the window to a rectangle using as.rectangle.

shortside.owin computes the minimum of the two side-lengths.

Value

For sidelengths.owin, a numeric vector of length 2 giving the side-lengths (x then y) of the enclosing rectangle. For shortside.owin, a numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shortside, sidelengths for the generic functions.

area.owin, diameter.owin, perimeter for other geometric calculations on "owin" objects.

owin, as.owin.

Examples

w <- owin(c(0,2),c(-1,3))
sidelengths(w)
shortside(as.rectangle(letterR))

simba Simulated data from a two-group experiment with replication within each group.

Description

The simba dataset contains simulated data from an experiment with a ‘control’ group and a ‘treatment’ group, each group containing 5 experimental units.

The responses in the experiment are point patterns.

The responses in the control group are independent realisations of a Poisson point process with intensity 80.
The responses in the treatment group are independent realisations of a Strauss process with activity parameter $\beta = 100$, interaction parameter $\gamma = 0.5$ and interaction radius $R = 0.07$ in the unit square.

Usage

```r
data(simba)
```

Format

`simba` is a hyperframe with 10 rows, and columns named:

- Points containing the point patterns
- group factor identifying the experimental group, with levels control and treatment).

Source

Simulated data, generated by Adrian Baddeley.

Description

This point pattern data set was simulated (using the Metropolis-Hastings algorithm) from a model fitted to the Numata Japanese black pine data set referred to in Baddeley and Turner (2000).

Usage

```r
data(simdat)
```

Format

An object of class "ppp" in a square window of size 10 by 10 units. See `ppp.object` for details of the format of a point pattern object.

Source

Rolf Turner <r.turner@auckland.ac.nz>

References

simplepanel

Description

A simple, artificially created, example of a linear network.

Usage

data(simplenet)

Format

simplenet is an object of class "linnet".

Source

Created by Adrian Baddeley.

simplepanel

Simple Point-and-Click Interface Panels

Description

These functions enable the user to create a simple, robust, point-and-click interface to any R code.

Usage

simplepanel(title, B, boxes, clicks, redraws=NULL, exit = NULL, env)
grow.simplepanel(P, side = c("right", "left", "top", "bottom"), len = NULL, new.clicks, new.redraws=NULL, ..., aspect)

Arguments

title Character string giving the title of the interface panel.
B Bounding box of the panel coordinates. A rectangular window (object of class "owin")
boxes A list of rectangular windows (objects of class "owin") specifying the placement of the buttons and other interactive components of the panel.
clicks A list of R functions, of the same length as boxes, specifying the operations to be performed when each button is clicked. See Details.
redraws Optional list of R functions, of the same length as boxes, specifying how to redraw each button. See Details.
exit An R function specifying actions to be taken when the interactive panel terminates.

env An environment that will be passed as an argument to all the functions in clicks, redraws and exit.

P An existing interaction panel (object of class "simplepanel").

side Character string identifying which side of the panel P should be grown to accommodate the new buttons.

len Optional. Thickness of the new panel area that should be grown to accommodate the new buttons. A single number in the same units as the coordinate system of P.

new.clinks List of R functions defining the operations to be performed when each of the new buttons is clicked.

new.redraws Optional. List of R functions, of the same length as new.clinks, defining how to redraw each of the new buttons.

... Arguments passed to layout.boxes to determine the layout of the new buttons.

aspect Optional. Aspect ratio (height/width) of the new buttons.

Details

These functions enable the user to create a simple, robust, point-and-click interface to any R code. The functions simplepanel and grow.simplepanel create an object of class "simplepanel". Such an object defines the graphics to be displayed and the actions to be performed when the user interacts with the panel.

The panel is activated by calling run.simplepanel.

The function simplepanel creates a panel object from basic data. The function grow.simplepanel modifies an existing panel object P by growing an additional row or column of buttons.

For simplepanel,

• The spatial layout of the panel is determined by the rectangles B and boxes.

• The argument clicks must be a list of functions specifying the action to be taken when each button is clicked. The list entries should have names. Each function should be of the form function(env, xy) where env is an environment that may contain shared data, and xy gives the coordinates of the mouse click, in the format list(x, y). The function returns TRUE if the panel should continue running, and FALSE if the panel should terminate.

• The argument redraws, if given, must be a list of functions specifying the action to be taken when each button is to be redrawn. Each function should be of the form function(button, name, env) where button is a rectangle specifying the location of the button in the current coordinate system; name is a character string giving the name of the button; and env is the environment that may contain shared data. The function returns TRUE if the panel should continue running, and FALSE if the panel should terminate. If redraws is not given, the default action is to draw a pink rectangle showing the button position, draw the name of the button in the middle of this rectangle, and return TRUE.

• The argument exit, if given, must be a function specifying the action to be taken when the panel terminates. (Termination occurs when one of the clicks functions returns FALSE). The exit function should be of the form function(env) where env is the environment that may contain shared data. Its return value will be used as the return value of run.simplepanel.
• The argument `env` should be an R environment. The panel buttons will have access to this environment, and will be able to read and write data in it. This mechanism is used to exchange data between the panel and other R code.

For `grow.simplepanel`,

• the spatial layout of the new boxes is determined by the arguments `side`, `len`, `aspect` and by the additional `...` arguments passed to `layout.boxes`.

• the argument `new.clicks` should have the same format as `clicks`. It implicitly specifies the number of new buttons to be added, and the actions to be performed when they are clicked.

• the optional argument `new.redraws`, if given, should have the same format as `redraws`. It specifies the actions to be performed when the new buttons are clicked.

Value

An object of class "simplepanel".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`run.simplepanel`, `layout.boxes`

Examples

```r
# make boxes (alternatively use layout.boxes())
Bminus <- square(1)
Bvalue <- shift(Bminus, c(1.2, 0))
Bplus <- shift(Bvalue, c(1.2, 0))
Bdone <- shift(Bplus, c(1.2, 0))
myboxes <- list(Bminus, Bvalue, Bplus, Bdone)
myB <- do.call(boundingbox,myboxes)

# make environment containing an integer count
myenv <- new.env()
assign("answer", 0, envir=myenv)

# what to do when finished: return the count.
myexit <- function(e) { return(get("answer", envir=e)) }

# button clicks
# decrement the count
Cminus <- function(e, xy) {
  ans <- get("answer", envir=e)
  assign("answer", ans - 1, envir=e)
  return(TRUE)
}

# display the count (clicking does nothing)
```
simplify.owin

Approximate a Polygon by a Simpler Polygon

Description

Given a polygonal window, this function finds a simpler polygon that approximates it.

Usage

simplify.owin(W, dmin)

Arguments

W The polygon which is to be simplified. An object of class "owin".
dmin Numeric value. The smallest permissible length of an edge.
Details

This function simplifies a polygon \(W \) by recursively deleting the shortest edge of \(W \) until all remaining edges are longer than the specified minimum length \(d_{\text{min}} \), or until there are only three edges left.

The argument \(W \) must be a window (object of class "owin"). It should be of type "polygonal". If \(W \) is a rectangle, it is returned without alteration.

The simplification algorithm is not yet implemented for binary masks. If \(W \) is a mask, an error is generated.

Value

Another window (object of class "owin") of type "polygonal".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin

Examples

data(letterR)
plot(letterR, col="red")
plot(simplify.owin(letterR, 0.3), col="blue", add=TRUE)
data(chorley)
W <- chorley$window
plot(W)
WS <- simplify.owin(W, 2)
plot(WS, add=TRUE, border="green")
points(vertices(WS))

simulate.kppm
Simulate a Fitted Cluster Point Process Model

Description

Generates simulated realisations from a fitted cluster point process model.

Usage

```r
## S3 method for class 'kppm'
simulate(object, nsim = 1, seed=NULL, ...,
         window=NULL, covariates=NULL, verbose=TRUE, retry=10,
         drop=FALSE)
```
simulate.kppm

Arguments
- **object**: Fitted cluster point process model. An object of class "kppm".
- **nsim**: Number of simulated realisations.
- **seed**: an object specifying whether and how to initialise the random number generator. Either NULL or an integer that will be used in a call to `set.seed` before simulating the point patterns.
- **...**: Ignored.
- **window**: Optional. Window (object of class "owin") in which the model should be simulated.
- **covariates**: Optional. A named list containing new values for the covariates in the model.
- **verbose**: Logical. Whether to print progress reports (when `nsim > 1`).
- **retry**: Number of times to repeat the simulation if it fails (e.g. because of insufficient memory).
- **drop**: Logical. If `nsim=1` and `drop=TRUE`, the result will be a point pattern, rather than a list containing a point pattern.

Details
This function is a method for the generic function `simulate` for the class "kppm" of fitted cluster point process models.

Simulations are performed by `rThomas`, `rMatClust` or `rLGCP` depending on the model.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the initial state of the random number generator. This follows the convention used in `simulate.lm` (see `simulate`). It can be used to force a sequence of simulations to be repeated exactly, as shown in the examples for `simulate`.

Value
A list of length `nsim` containing simulated point patterns (objects of class "ppp").

The return value also carries an attribute "seed" that captures the initial state of the random number generator. See Details.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also
kppm, rThomas, rMatClust, rLGCP, simulate.ppm, simulate

Examples
```r
data(redwood)
fit <- kppm(redwood, ~1, "Thomas")
simulate(fit, 2)
```
simulate.lppm

Simulate a Fitted Point Process Model on a Linear Network

Description

Generates simulated realisations from a fitted Poisson point process model on a linear network.

Usage

```r
## S3 method for class 'lppm'
simulate(object, nsim=1, ...

new.coef=NULL,
progress=(nsim > 1),
drop=FALSE)
```

Arguments

- **object**: Fitted point process model on a linear network. An object of class "lppm".
- **nsim**: Number of simulated realisations.
- **progress**: Logical flag indicating whether to print progress reports for the sequence of simulations.
- **new.coef**: New values for the canonical parameters of the model. A numeric vector of the same length as coef(object).
- **...**: Arguments passed to `predict.lppm` to determine the spatial resolution of the image of the fitted intensity used in the simulation.
- **drop**: Logical. If `nsim=1` and `drop=TRUE`, the result will be a point pattern, rather than a list containing a point pattern.

Details

This function is a method for the generic function `simulate` for the class "lppm" of fitted point process models on a linear network.

Only Poisson process models are supported so far.

Simulations are performed by `rpoislpp`.

Value

A list of length `nsim` containing simulated point patterns (objects of class "lpp") on the same linear network as the original data used to fit the model. The result also belongs to the class "solist", so that it can be plotted, and the class "timed", so that the total computation time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/],
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak
simulate.ppm

See Also

lppm, rpoislpp, simulate

Examples

```
fit <- lppm(unmark(chicago) ~ y)
simulate(fit)[[1]]
```

simulate.ppm
Simulate a Fitted Gibbs Point Process Model

Description

Generates simulated realisations from a fitted Gibbs or Poisson point process model.

Usage

```r
## S3 method for class 'ppm'
simulate(object, nsim=1, ..., 
singlerun = FALSE,
start = NULL,
control = default.rmhcontrol(object),
project=TRUE, new.coef=NULL,
verbose=FALSE, progress=(nsim > 1),
drop=FALSE)
```

Arguments

- **object**: Fitted point process model. An object of class "ppm".
- **nsim**: Number of simulated realisations.
- **singlerun**: Logical. Whether to generate the simulated realisations from a single long run of the Metropolis-Hastings algorithm (singlerun=TRUE) or from separate, independent runs of the algorithm (singlerun=FALSE, the default).
- **start**: Data determining the initial state of the Metropolis-Hastings algorithm. See rmhstart for description of these arguments. Defaults to `list(n.start=npoints(data.ppm(object)))` meaning that the initial state of the algorithm has the same number of points as the original dataset.
- **control**: Data controlling the running of the Metropolis-Hastings algorithm. See rmhcontrol for description of these arguments.
- **...**: Further arguments passed to rmhcontrol, or to rmh.default, or to covariate functions in the model.
- **project**: Logical flag indicating what to do if the fitted model is invalid (in the sense that the values of the fitted coefficients do not specify a valid point process). If project=TRUE the closest valid model will be simulated; if project=FALSE an error will occur.
verbose Logical flag indicating whether to print progress reports from \texttt{rmh.ppm} during the simulation of each point pattern.

progress Logical flag indicating whether to print progress reports for the sequence of simulations.

new.coef New values for the canonical parameters of the model. A numeric vector of the same length as \texttt{coef(object)}.

drop Logical. If \texttt{nsim=1} and \texttt{drop=TRUE}, the result will be a point pattern, rather than a list containing a point pattern.

Details

This function is a method for the generic function \texttt{simulate} for the class "ppm" of fitted point process models.

Simulations are performed by \texttt{rmh.ppm}.

If \texttt{singlerun=FALSE} (the default), the simulated patterns are the results of independent runs of the Metropolis-Hastings algorithm. If \texttt{singlerun=TRUE}, a single long run of the algorithm is performed, and the state of the simulation is saved every \texttt{nsave} iterations to yield the simulated patterns.

In the case of a single run, the behaviour is controlled by the parameters \texttt{nsave}, \texttt{nburn}, \texttt{nrep}. These are described in \texttt{rmhcontrol}. They may be passed in the \texttt{...} arguments or included in \texttt{control}. It is sufficient to specify two of the three parameters \texttt{nsave}, \texttt{nburn}, \texttt{nrep}.

Value

A list of length \texttt{nsim} containing simulated point patterns (objects of class "ppp"). It also belongs to the class "solist", so that it can be plotted, and the class "timed", so that the total computation time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{ppm}, \texttt{simulate.kppm}, \texttt{simulate}

Examples

```
fit <- ppm(japaneseepines, ~1, Strauss(0.1))
simulate(fit, 2)
simulate(fit, 2, singlerun=TRUE, nsave=1e4, nburn=1e4)
```
simulate.slrm

Simulate a Fitted Spatial Logistic Regression Model

Description
Generates simulated realisations from a fitted spatial logistic regression model

Usage

```r  
## S3 method for class 'slrm'  
simulate(object, nsim = 1, seed=NULL, ...,  
        window=NULL, covariates=NULL, verbose=TRUE, drop=FALSE)  
```

Arguments

- `object`: Fitted spatial logistic regression model. An object of class "slrm".
- `nsim`: Number of simulated realisations.
- `seed`: an object specifying whether and how to initialise the random number generator. Either NULL or an integer that will be used in a call to `set.seed` before simulating the point patterns.
- `...`: Ignored.
- `window`: Optional. Window (object of class "owin") in which the model should be simulated.
- `covariates`: Optional. A named list containing new values for the covariates in the model.
- `verbose`: Logical. Whether to print progress reports (when `nsim > 1`).
- `drop`: Logical. If `nsim=1` and `drop=TRUE`, the result will be a point pattern, rather than a list containing a point pattern.

Details
This function is a method for the generic function `simulate` for the class "slrm" of fitted spatial logistic regression models.
Simulations are performed by `rpoispp` after the intensity has been computed by `predict.slrm`.
The return value is a list of point patterns. It also carries an attribute "seed" that captures the initial state of the random number generator. This follows the convention used in `simulate.lm` (see `simulate`). It can be used to force a sequence of simulations to be repeated exactly, as shown in the examples for `simulate`.

Value
A list of length `nsim` containing simulated point patterns (objects of class "ppp").
The return value also carries an attribute "seed" that captures the initial state of the random number generator. See Details.
slrm

Spatial Logistic Regression

Description

Fits a spatial logistic regression model to a spatial point pattern.

Usage

slrm(formula, ..., data = NULL, offset = TRUE, link = "logit",
 dataAtPoints=NULL, splitby=NULL)

Arguments

formula

The model formula. See Details.

...

Optional arguments passed to pixellate determining the pixel resolution for the discretisation of the point pattern.

data

Optional. A list containing data required in the formula. The names of entries in the list should correspond to variable names in the formula. The entries should be point patterns, pixel images or windows.

offset

Logical flag indicating whether the model formula should be augmented by an offset equal to the logarithm of the pixel area.

link

The link function for the regression model. A character string, specifying a link function for binary regression.

dataAtPoints

Optional. Exact values of the covariates at the data points. A data frame, with column names corresponding to variables in the formula, with one row for each point in the point pattern dataset.

splitby

Optional. Character string identifying a window. The window will be used to split pixels into sub-pixels.

Examples

X <- copper$SouthPoints
fit <- slrm(X ~ 1)
simulate(fit, 2)
fitxy <- slrm(X ~ x+y)
simulate(fitxy, 2, window=square(2))

See Also

slrm, rpoispp, simulate.ppm, simulate.kppm, simulate

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>
Details

This function fits a Spatial Logistic Regression model (Tukey, 1972; Agterberg, 1974) to a spatial point pattern dataset. The logistic function may be replaced by another link function.

The formula specifies the form of the model to be fitted, and the data to which it should be fitted. The formula must be an R formula with a left and right hand side.

The left hand side of the formula is the name of the point pattern dataset, an object of class "ppp".

The right hand side of the formula is an expression, in the usual R formula syntax, representing the functional form of the linear predictor for the model.

Each variable name that appears in the formula may be

- one of the reserved names x and y, referring to the Cartesian coordinates;
- the name of an entry in the list data, if this argument is given;
- the name of an object in the parent environment, that is, in the environment where the call to slrm was issued.

Each object appearing on the right hand side of the formula may be

- a pixel image (object of class "im") containing the values of a covariate;
- a window (object of class "owin"), which will be interpreted as a logical covariate which is TRUE inside the window and FALSE outside it;
- a function in the R language, with arguments x, y, which can be evaluated at any location to obtain the values of a covariate.

See the Examples below.

The fitting algorithm discretises the point pattern onto a pixel grid. The value in each pixel is 1 if there are any points of the point pattern in the pixel, and 0 if there are no points in the pixel. The dimensions of the pixel grid will be determined as follows:

- The pixel grid will be determined by the extra arguments ... if they are specified (for example the argument dimyx can be used to specify the number of pixels).
- Otherwise, if the right hand side of the formula includes the names of any pixel images containing covariate values, these images will determine the pixel grid for the discretisation. The covariate image with the finest grid (the smallest pixels) will be used.
- Otherwise, the default pixel grid size is given by spatstat.options("npixel").

If link="logit" (the default), the algorithm fits a Spatial Logistic Regression model. This model states that the probability p that a given pixel contains a data point, is related to the covariates through

$$ \log \frac{p}{1 - p} = \eta $$

where \eta is the linear predictor of the model (a linear combination of the covariates, whose form is specified by the formula).

If link="cloglog" then the algorithm fits a model stating that

$$ \log(-\log(1 - p)) = \eta $$

.
If offset=TRUE (the default), the model formula will be augmented by adding an offset term equal to the logarithm of the pixel area. This ensures that the fitted parameters are approximately independent of pixel size. If offset=FALSE, the offset is not included, and the traditional form of Spatial Logistic Regression is fitted.

Value

An object of class "slrm" representing the fitted model.

There are many methods for this class, including methods for print, fitted, predict, anova, coef, logLik, terms, update, formula and vcov. Automated stepwise model selection is possible using step. Confidence intervals for the parameters can be computed using confint.

Author(s)

Adrian Baddeley <adrian@maths.uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

anova.slrm, coef.slrm, fitted.slrm, logLik.slrm, plot.slrm, predict.slrm, vcov.slrm

Examples

```r
X <- copper$SouthPoints
slrm(X ~ 1)
slrm(X ~ x+y)

slrm(X ~ x+y, link="cloglog")
# specify a grid of 2-km-square pixels
slrm(X ~ 1, eps=2)

Y <- copper$SouthLines
Z <- distmap(Y)
slrm(X ~ Z)
slrm(X ~ Z, dataAtPoints=list(Z=nncross(X,Y,what="dist")))

dat <- list(A=X, V=Z)
slrm(A ~ V, data=dat)
```
Smooth

Spatial smoothing of data

Description

Generic function to perform spatial smoothing of spatial data.

Usage

Smooth(X, ...)

Arguments

X Some kind of spatial data
...
Arguments passed to methods.

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset X.

Methods for this function include

- Smooth.ppp for point patterns
- Smooth.msr for measures
- Smooth.fv for function value tables

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp, Smooth.im, Smooth.msr, Smooth.fv.
Smooth.fv
Apply Smoothing to Function Values

Description
Applies smoothing to the values in selected columns of a function value table.

Usage

```r
## S3 method for class 'fv'
Smooth(X, which = "*", ..., 
    method=c("smooth.spline", "loess"),
    xinterval=NULL)
```

Arguments

- `X`
 Values to be smoothed. A function value table (object of class "fv", see `fv.object`).

- `which`
 Character vector identifying which columns of the table should be smoothed. Either a vector containing names of columns, or one of the wildcard strings "*" or "." explained below.

- `...`
 Extra arguments passed to `smooth.spline` or `loess` to control the smoothing.

- `method`
 Smoothing algorithm. A character string, partially matched to either "smooth.spline" or "loess".

- `xinterval`
 Optional. Numeric vector of length 2 specifying a range of `x` values. Smoothing will be performed only on the part of the function corresponding to this range.

Details
The command `Smooth.fv` applies smoothing to the function values in a function value table (object of class "fv").

`Smooth.fv` is a method for the generic function `Smooth`.

The smoothing is performed either by `smooth.spline` or by `loess`.

Smoothing is applied to every column (or to each of the selected columns) of function values in turn, using the function argument as the `x` coordinate and the selected column as the `y` coordinate. The original function values are then replaced by the corresponding smooth interpolated function values.

The optional argument `which` specifies which of the columns of function values in `x` will be smoothed. The default (indicated by the wildcard `which="*"`) is to smooth all function values, i.e., all columns except the function argument. Alternatively `which="."` designates the subset of function values that are displayed in the default plot. Alternatively `which` can be a character vector containing the names of columns of `x`.

If the argument `xinterval` is given, then smoothing will be performed only in the specified range of `x` values.
Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth, with.fv, fv.object, smooth.spline, smooth.spline

Examples

data(cells)
G <- Gest(cells)
plot(G)
plot(Smooth(G, df=9), add=TRUE)

Smooth.msr

Smooth a Signed or Vector-Valued Measure

Description

Apply kernel smoothing to a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
Smooth(X, ..., drop=TRUE)

Arguments

X

Object of class "msr" representing a signed measure or vector-valued measure.

...

Arguments passed to density.ppp controlling the smoothing bandwidth and
the pixel resolution.

drop

Logical. If TRUE (the default), the result of smoothing a scalar-valued measure
is a pixel image. If FALSE, the result of smoothing a scalar-valued measure is a
list containing one pixel image.

Details

This function applies kernel smoothing to a signed measure or vector-valued measure X. The Gaussian kernel is used.

The object X would typically have been created by residuals.ppm or msr.
Value
A pixel image or a list of pixel images. For scalar-valued measures, a pixel image (object of class "im") provided drop=TRUE. For vector-valued measures (or if drop=FALSE), a list of pixel images; the list also belongs to the class "listof" so that it can be printed and plotted.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also
Smooth, msr, plot.msr

Examples
```
example(msr)
plot(Smooth(rp))
plot(Smooth(rs))
```

Smooth.ppp

Spatial smoothing of observations at irregular points

Description
Performs spatial smoothing of numeric values observed at a set of irregular locations. Uses Gaussian kernel smoothing and least-squares cross-validated bandwidth selection.

Usage
```
## S3 method for class 'ppp'
Smooth(X, sigma=NULL, 
   ..., 
   weights = rep(1, npoints(X)), 
   at="pixels", 
   edge=TRUE, diggle=FALSE)

markmean(X, ...)

markvar(X, sigma=NULL, ..., weights=NULL, varcov=NULL)
```
Arguments

- **X**: A marked point pattern (object of class "ppp").
- **sigma**: Smoothing bandwidth. A single positive number, a numeric vector of length 2, or a function that selects the bandwidth automatically. See `density.ppp`.
- **weights**: Optional weights attached to the observations. A numeric vector, numeric matrix, or an expression. See `density.ppp`.
- **at**: String specifying whether to compute the smoothed values at a grid of pixel locations (at="pixels") or only at the points of **X** (at="points").
- **edge**: Arguments passed to `density.ppp` to determine the edge correction.
- **varcov**: Variance-covariance matrix. An alternative to **sigma**. See `density.ppp`.

Details

The function `smooth.ppp` performs spatial smoothing of numeric values observed at a set of irregular locations. The functions `markmean` and `markvar` are wrappers for `smooth.ppp` which compute the spatially-varying mean and variance of the marks of a point pattern.

`smooth.ppp` is a method for the generic function `Smooth` for the class "ppp" of point patterns. Thus you can type simply `Smooth(X)`.

Smoothing is performed by Gaussian kernel weighting. If the observed values are v_1, \ldots, v_n at locations x_1, \ldots, x_n respectively, then the smoothed value at a location u is (ignoring edge corrections)

$$ g(u) = \frac{\sum_i k(u - x_i)v_i}{\sum_i k(u - x_i)} $$

where k is a Gaussian kernel. This is known as the Nadaraya-Watson smoother (Nadaraya, 1964, 1989; Watson, 1964). By default, the smoothing kernel bandwidth is chosen by least squares cross-validation (see below).

The argument **X** must be a marked point pattern (object of class "ppp", see `ppp.object`). The points of the pattern are taken to be the observation locations x_i, and the marks of the pattern are taken to be the numeric values v_i observed at these locations.

The marks are allowed to be a data frame (in `smooth.ppp` and `markmean`). Then the smoothing procedure is applied to each column of marks.

The numerator and denominator are computed by `density.ppp`. The arguments ... control the smoothing kernel parameters and determine whether edge correction is applied. The smoothing kernel bandwidth can be specified by either of the arguments **sigma** or **varcov** which are passed to `density.ppp`. If neither of these arguments is present, then by default the bandwidth is selected by least squares cross-validation, using `bw.smoothppp`.

The optional argument **weights** allows numerical weights to be applied to the data. If a weight w_i is associated with location x_i, then the smoothed function is (ignoring edge corrections)

$$ g(u) = \frac{\sum_i k(u - x_i)v_iw_i}{\sum_i k(u - x_i)w_i} $$

An alternative to kernel smoothing is inverse-distance weighting, which is performed by `idw`.

1273
Value

If X has a single column of marks:

- If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values are values of the interpolated function.
- If at="points", the result is a numeric vector of length equal to the number of points in X. Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

- If at="pixels" (the default), the result is a named list of pixel images (object of class "im"). There is one image for each column of marks. This list also belongs to the class listof, for which there is a plot method.
- If at="points", the result is a data frame with one row for each point of X, and one column for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that was used.

Very small bandwidth

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to nearest-neighbour interpolation; the result will be computed by nnmark. This is unless at="points" and leaveoneout=FALSE, when the original mark values are returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

Smooth, density.ppp, bw.smoothppp, nnmark, ppp.object, im.object.

See idw for inverse-distance weighted smoothing.

To perform interpolation, see also the akima package.
Examples

```r
# Longleaf data - tree locations, marked by tree diameter
# Local smoothing of tree diameter (automatic bandwidth selection)
Z <- Smooth(longleaf)
# Kernel bandwidth sigma=5
plot(Smooth(longleaf, 5))
# mark variance
plot(markvar(longleaf, sigma=5))
# data frame of marks: trees marked by diameter and height
plot(Smooth(finpines, sigma=2))
```

Description

Perform spatial smoothing of numeric values observed at a set of irregular locations, and return the result as a function of spatial location.

Usage

```r
Smoothfun(X, ...)
```

```r
## S3 method for class 'ppp'
Smoothfun(X, sigma = NULL, ..., 
weights = NULL, edge = TRUE, diggle = FALSE)
```

Arguments

- `X`
 Marked point pattern (object of class "ppp").
- `sigma`
 Smoothing bandwidth, or bandwidth selection function, passed to `Smooth.ppp`.
- `...`
 Additional arguments passed to `Smooth.ppp`.
- `weights`
 Optional vector of weights associated with the points of `X`.
- `edge, diggle`
 Logical arguments controlling the edge correction. Arguments passed to `Smooth.ppp`.

Details

The commands `Smoothfun` and `Smooth` both perform kernel-smoothed spatial interpolation of numeric values observed at irregular spatial locations. The difference is that `Smooth` returns a pixel image, containing the interpolated values at a grid of locations, while `Smoothfun` returns a function(`x, y`) which can be used to compute the interpolated value at any spatial location. For purposes such as model-fitting it is more accurate to use `Smoothfun` to interpolate data.

Value

A function with arguments `x, y`. The function also belongs to the class "Smoothfun" which has methods for print and `as.im`. It also belongs to the class "funxy" which has methods for plot, contour and `persp`.
Softcore

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

See Also

smooth

Examples

f <- Smoothfun(longleaf)
f
plot(f)

softcore

The Soft Core Point Process Model

Description

Creates an instance of the Soft Core point process model which can then be fitted to point pattern data.

Usage

Softcore(kappa, sigma=NA)

Arguments

kappa The exponent κ of the Soft Core interaction

sigma Optional. Initial estimate of the parameter σ. A positive number.

Details

The (stationary) Soft Core point process with parameters β and σ and exponent κ is the pairwise interaction point process in which each point contributes a factor β to the probability density of the point pattern, and each pair of points contributes a factor

\[
\exp \left\{ - \left(\frac{\sigma}{\bar{d}} \right)^{2/\kappa} \right\}
\]

to the density, where \bar{d} is the distance between the two points.

Thus the process has probability density

\[
f(x_1, \ldots, x_n) = \alpha \beta^n \exp \left\{ - \sum_{i<j} \left(\frac{\sigma}{\|x_i - x_j\|} \right)^{2/\kappa} \right\}
\]
where \(x_1, \ldots, x_n\) represent the points of the pattern, \(n(x)\) is the number of points in the pattern, \(\alpha\) is the normalising constant, and the sum on the right hand side is over all unordered pairs of points of the pattern.

This model describes an “ordered” or “inhibitive” process, with the interpoint interaction decreasing smoothly with distance. The strength of interaction is controlled by the parameter \(\sigma\), a positive real number, with larger values corresponding to stronger interaction; and by the exponent \(\kappa\) in the range \((0, 1)\), with larger values corresponding to weaker interaction. If \(\sigma = 0\) the model reduces to the Poisson point process. If \(\sigma > 0\), the process is well-defined only for \(\kappa\) in \((0, 1)\). The limit of the model as \(\kappa \to 0\) is the hard core process with hard core distance \(h = \sigma\).

The nonstationary Soft Core process is similar except that the contribution of each individual point \(x_i\) is a function \(\beta(x_i)\) of location, rather than a constant beta.

The function `ppm()`, which fits point process models to point pattern data, requires an argument of class “interact” describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Soft Core process pairwise interaction is yielded by the function `softcore()`. See the examples below.

The main argument is the exponent kappa. When kappa is fixed, the model becomes an exponential family with canonical parameters \(\log \beta\) and

\[
\log \gamma = \frac{2}{\kappa} \log \sigma
\]

The canonical parameters are estimated by `ppm()`, not fixed in `softcore()`.

The optional argument `sigmaP` can be used to improve numerical stability. If `sigmaP` is given, it should be a positive number, and it should be a rough estimate of the parameter \(\sigma\).

Value

An object of class “interact” describing the interpoint interaction structure of the Soft Core process with exponent \(\kappa\).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm`, `pairwise.family`, `ppm.object`
solapply

Examples

data(cells)
ppm(cells, ~1, Softcore(kappa=0.5), correction="isotropic")
fit the stationary Soft Core process to 'cells'

solapply

Apply a Function Over a List and Obtain a List of Objects

Description

Applies the function FUN to each element of the list X, and returns the result as a list of class "solist" or "anylist" as appropriate.

Usage

anylapply(X, FUN, ...)
solapply(X, FUN, ..., check = TRUE, promote = TRUE, demote = FALSE)

Arguments

X A list.
FUN Function to be applied to each element of X.
... Additional arguments to FUN.
check,promote,demote

Arguments passed to solist which determine how to handle different classes of objects.

Details

These convenience functions are similar to lapply except that they return a list of class "solist" or "anylist".

In both functions, the result is computed by lapply(X, FUN, ...).
In anylapply the result is converted to a list of class "anylist" and returned.
In solapply the result is converted to a list of class "solist" if possible, using as.solist. If this is not possible, then the behaviour depends on the argument demote. If demote=TRUE the result will be returned as a list of class "anylist". If demote=FALSE (the default), an error occurs.

Value

A list, usually of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>
solist

See Also

solist, anylist.

Examples

solapply(waterstriders, density)

solist

List of Two-Dimensional Spatial Objects

Description

Make a list of two-dimensional spatial objects.

Usage

solist(..., check=TRUE, promote=TRUE, demote=FALSE)

Arguments

... Any number of objects, each representing a two-dimensional spatial dataset.
check Logical value. If TRUE, check that each of the objects is a 2D spatial object.
promote Logical value. If TRUE, test whether all objects belong to the same class, and if so, promote the list of objects to the appropriate class of list.
demote Logical value determining what should happen if any of the objects is not a 2D spatial object: if demote=FALSE (the default), a fatal error occurs; if demote=TRUE, a list of class "anylist" is returned.

Details

This command creates an object of class "solist" (spatial object list) which represents a list of two-dimensional spatial datasets. The datasets do not necessarily belong to the same class.

Typically the intention is that the datasets in the list should be treated in the same way, for example, they should be plotted side-by-side. The spatstat package provides a plotting function, plot.solist, and many other functions for this class.

In the spatstat package, various functions produce an object of class "solist". For example, when a point pattern is split into several point patterns by split.ppp, or an image is split into several images by split.im, the result is of class "solist".

If check=TRUE then the code will check whether all objects in ... belong to the classes of two-dimensional spatial objects defined in the spatstat package. They do not have to belong to the same class. Set check=FALSE for efficiency, but only if you are sure that all the objects are valid.

If some of the objects in ... are not two-dimensional spatial objects, the action taken depends on the argument demote. If demote=TRUE, the result will belong to the more general class "anylist" instead of "solist". If demote=FALSE (the default), an error occurs.
If promote=TRUE then the code will check whether all the objects ... belong to the same class. If they are all point patterns (class "ppp"), the result will also belong to the class "ppplist". If they are all pixel images (class "im"), the result will also belong to the class "imlist".

Use `as.solist` to convert a list to a "solist".

Value

A list, usually belonging to the class "solist".

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

`as.solist, anylist, solapply`

Examples

```r
solist(cells, density(cells))
solist(cells, japanesepines, redwood)
```

solutionset

Evaluate Logical Expression Involving Pixel Images and Return Region Where Expression is True

Description

Given a logical expression involving one or more pixel images, find all pixels where the expression is true, and assemble these pixels into a window.

Usage

```r
solutionset(..., envir)
```

Arguments

- `...` An expression in the R language, involving one or more pixel images.
- `envir` Optional. The environment in which to evaluate the expression.
solutionset

Details

Given a logical expression involving one or more pixel images, this function will find all pixels where the expression is true, and assemble these pixels into a spatial window.

Pixel images in spatstat are represented by objects of class "im" (see `im.object`). These are essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then `solutionset(abs(X) > 3)` will find all the pixels in X for which the pixel value is greater than 3 in absolute value, and return a window containing all these pixels.

If X and Y are two pixel images, `solutionset(X > Y)` will find all pixels for which the pixel value of X is greater than the corresponding pixel value of Y, and return a window containing these pixels.

In general, . . . can be any logical expression involving pixel images.

The code first tries to evaluate the expression using `eval.im`. This is successful if the expression involves only (a) the names of pixel images, (b) scalar constants, and (c) functions which are vectorised. There must be at least one pixel image in the expression. The expression `expr` must be vectorised. See the Examples.

If this is unsuccessful, the code then tries to evaluate the expression using pixel arithmetic. This is successful if all the arithmetic operations in the expression are listed in `Math.im`.

Value

A spatial window (object of class "owin", see `owin.object`).

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`im.object`, `owin.object`, `eval.im`, `levelset`

Examples

```r
# test images
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y - 1 }, unit.square())

W <- solutionset(abs(X) > 0.1)
W <- solutionset(X > Y)
W <- solutionset(X + Y >= 1)

area(solutionset(X < Y))

solutionset(density(cells) > 20)
```
spatialcdf

Spatial Cumulative Distribution Function

Description

Compute the spatial cumulative distribution function of a spatial covariate, optionally using spatially-varying weights.

Usage

spatialcdf(Z, weights = NULL, normalise = FALSE, ..., W = NULL, Zname = NULL)

Arguments

Z Spatial covariate. A pixel image or a function(x,y,...)
weights Spatial weighting for different locations. A pixel image, a function(x,y,...), a window, a constant value, or a fitted point process model (object of class "ppm" or "kppm").
normalise Logical. Whether the weights should be normalised so that they sum to 1.
... Arguments passed to as.mask to determine the pixel resolution, or extra arguments passed to Z if it is a function.
W Optional window (object of class "owin") defining the spatial domain.
Zname Optional character string for the name of the covariate Z used in plots.

Details

If weights is missing or NULL, it defaults to 1. The values of the covariate Z are computed on a grid of pixels. The weighted cumulative distribution function of Z values is computed, taking each value with weight equal to the pixel area. The resulting function F is such that $F(t)$ is the area of the region of space where $Z \leq t$.

If weights is a pixel image or a function, then the values of weights and of the covariate Z are computed on a grid of pixels. The weights are multiplied by the pixel area. Then the weighted empirical cumulative distribution function of Z values is computed using ewcdf. The resulting function F is such that $F(t)$ is the total weight (or weighted area) of the region of space where $Z \leq t$.

If weights is a fitted point process model, then it should be a Poisson process. The fitted intensity of the model, and the value of the covariate Z, are evaluated at the quadrature points used to fit the model. The weights are multiplied by the weights of the quadrature points. Then the weighted empirical cumulative distribution of Z values is computed using ewcdf. The resulting function F is such that $F(t)$ is the expected number of points in the point process that will fall in the region of space where $Z \leq t$.

If normalise=TRUE, the function is normalised so that its maximum value equals 1, so that it gives the cumulative fraction of weight or cumulative fraction of points.

The result can be printed, plotted, and used as a function.
Value

A cumulative distribution function object belonging to the classes "spatialcdf", "ewcdf", "ecdf" and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

ewcdf, cdf.test

Examples

```r
with(be1.extra, {
  plot(spatialcdf(grad))
  fit <- ppm(be1 ~ elev)
  plot(spatialcdf(grad, predict(fit)))
  plot(A <- spatialcdf(grad, fit)
      A(0.1)
})
```

spatstat.options

Internal Options in Spatstat Package

Description

Allows the user to examine and reset the values of global parameters which control actions in the spatstat package.

Usage

```r
spatstat.options(...)
reset.spatstat.options()
```

Arguments

... Either empty, or a succession of parameter names in quotes, or a succession of name=value pairs. See below for the parameter names.

Details

The function spatstat.options allows the user to examine and reset the values of global parameters which control actions in the spatstat package. It is analogous to the system function options.

The function reset.spatstat.options resets all the global parameters in spatstat to their original, default values.

The global parameters of interest to the user are:
checkpolygons Logical flag indicating whether the functions `owin` and `as.owin` should apply very strict checks on the validity of polygon data. These strict checks are no longer necessary, and the default is `checkpolygons=FALSE`. See also `fixpolygons` below.

checksegments Logical flag indicating whether the functions `psp` and `as.psp` should check the validity of line segment data (in particular, checking that the endpoints of the line segments are inside the specified window). It is advisable to leave this flag set to `TRUE`.

eroded.intensity Logical flag affecting the behaviour of the score and pseudo-score residual functions `Gcom`, `Gres`, `Kcom`, `Kres`, `psstA`, `psstG`, `psst`. The flag indicates whether to compute intensity estimates on an eroded window (`eroded.intensity=TRUE`) or on the original data window (`eroded.intensity=FALSE`, the default).

expand The default expansion factor (area inflation factor) for expansion of the simulation window in `rmh` (see `rmhcontrol`). Initialised to 2.

expand.polynom Logical. Whether expressions involving `polynom` in a model formula should be expanded, so that `polynom(x, 2)` is replaced by `x + 1*(x^2)` and so on. Initialised to `TRUE`.

fastK.lgcp Logical. Whether to use fast or slow algorithm to compute the (theoretical) K-function of a log-Gaussian Cox process for use in `lgcp.estK` or `Kmodel`. The slow algorithm uses accurate numerical integration; the fast algorithm uses Simpson’s Rule for numerical integration, and is about two orders of magnitude faster. Initialised to `FALSE`.

fixpolygons Logical flag indicating whether the functions `owin` and `as.owin` should repair errors in polygon data. For example, self-intersecting polygons and overlapping polygons will be repaired. If `checkpolygons = FALSE` then the default is `fixpolygons=TRUE`.

gpclib Defunct. This parameter was used to permit or forbid the use of the package `gpclib`, because of its restricted software licence. This package is no longer needed.

huge.npoints The maximum value of n for which `runif(n)` will not generate an error (possible errors include failure to allocate sufficient memory, and integer overflow of n). An attempt to generate more than this number of random points triggers a warning from `runifpoint` and other functions. Defaults to 1e6.

image.colfun Function determining the default colour map for `plot.im`. When called with one integer argument n, this function should return a character vector of length n specifying n different colours.

Kcom.remove.zeros Logical value, determining whether the algorithm in `Kcom` and `Kres` removes or retains the contributions to the function from pairs of points that are identical. If these are retained then the function has a jump at $r = 0$. Initialised to `TRUE`.

maxedgewt Edge correction weights will be trimmed so as not to exceed this value. This applies to the weights computed by `edge.Trans` or `edge.Ripley` and used in `Kest` and its relatives.

maxmatrix The maximum permitted size (rows times columns) of matrices generated by `spatstat`’s internal code. Used by `ppm` and `predict.ppm` (for example) to decide when to split a large calculation into blocks. Defaults to $2^4 = 16777216$.

monochrome Logical flag indicating whether graphics should be plotted in grey scale (`monochrome=TRUE`) or in colour (`monochrome=FALSE`, the default).

n.bandwidth Integer. Number of trial values of smoothing bandwidth to use for cross-validation in `bw.relrisk` and similar functions.

ndummy.min The minimum number of dummy points in a quadrature scheme created by `default.dummy`. Either an integer or a pair of integers giving the minimum number of dummy points in the x and y directions respectively.
ngrid.disc Number of points in the square grid used to compute a discrete approximation to the areas of discs in areaLoss and areaGain when exact calculation is not available. A single integer.

npixel Default number of pixels in a binary mask or pixel image. Either an integer, or a pair of integers, giving the number of pixels in the x and y directions respectively.

nvoxel Default number of voxels in a 3D image, typically for calculating the distance transform in F3est. Initialised to 4 megavoxels: nvoxel = 2^22 = 4194304.

par.binary List of arguments to be passed to the function image when displaying a binary image mask (in plot.owin or plot.ppp). Typically used to reset the colours of foreground and background.

par.contour List of arguments controlling contour plots of pixel images by contour.im.

par.fv List of arguments controlling the plotting of functions by plot.fv and its relatives.

par.persp List of arguments to be passed to the function persp when displaying a real-valued image, such as the fitted surfaces in plot.ppm.

par.points List of arguments controlling the plotting of point patterns by plot.ppp.

par.pp3 List of arguments controlling the plotting of three-dimensional point patterns by plot.pp3.

print.ppm.SE Default rule used by print.ppm to decide whether to calculate and print standard errors of the estimated coefficients of the model. One of the strings "always", "never" or "poisson" (the latter indicating that standard errors will be calculated only for Poisson models). The default is "poisson" because the calculation for non-Poisson models can take a long time.

progress Character string determining the style of progress reports printed by progressreport. Either "tty" or "txtbar".

project.fast Logical. If TRUE, the algorithm of project.ppm will be accelerated using a shortcut. Initialised to FALSE.

psstA.ngrid Single integer, controlling the accuracy of the discrete approximation of areas computed in the function psstA. The area of a disc is approximated by counting points on an n x n grid. Initialised to 32.

psstA.nr Single integer, determining the number of distances r at which the function psstA will be evaluated (in the default case where argument r is absent). Initialised to 30.

psstG.remove.zeroes Logical value, determining whether the algorithm in psstG removes or retains the contributions to the function from pairs of points that are identical. If these are retained then the function has a jump at r = 0. Initialised to TRUE.

rmh.p, rmh.q, rmh.nrep New default values for the parameters p, q and nrep in the Metropolis-Hastings simulation algorithm. These override the defaults in rmhcontrol.default.

scalable Logical flag indicating whether the new code in rmh.default which makes the results scalable (invariant to change of units) should be used. In order to recover former behaviour (so that previous results can be reproduced) set this option equal to FALSE. See the “Warning” section in the help for rmh() for more detail.

terse Integer between 0 and 4. The level of terseness (brevity) in printed output from many functions in spatstat. Higher values mean shorter output. A rough guide is the following:

0 Full output
The value of `terse` is initialised to 0.

`units.paren` The kind of parenthesis which encloses the text that explains a `unitname`. This text is seen in the text output of functions like `print.ppp` and in the graphics generated by `plot.fv`. The value should be one of the character strings `'{', '[', '{' or '}'. The default is '{'.

If no arguments are given, the current values of all parameters are returned, in a list.
If one parameter name is given, the current value of this parameter is returned (not in a list, just the value).
If several parameter names are given, the current values of these parameters are returned, in a list.
If `name=value` pairs are given, the named parameters are reset to the given values, and the previous values of these parameters are returned, in a list.

Value

Either a list of parameters and their values, or a single value. See Details.

Internal parameters

The following parameters may also be specified to `spatstat.options` but are intended for software development or testing purposes.

- `allow.logi.influence` Logical. For software development purposes only: prevents `spatstat` from performing incorrect calculations in cases which are not yet supported. Initialised to `FALSE`.
- `closepairs.newcode` Logical. Whether to use new version of the code for `closepairs`. Initialised to `TRUE`.
- `crossing.psp.useCall` Logical. Whether to use new version of the code for `crossing.psp`. Initialised to `TRUE`.
- `crosspairs.newcode` Logical. Whether to use new version of the code for `crosspairs`. Initialised to `TRUE`.
- `densityC` Logical. Indicates whether to use accelerated C code (`densityC=TRUE`) or interpreted R code (`densityC=FALSE`) to evaluate `density.ppp(X, at="points")`. Initialised to `TRUE`.
- `exactdt.checks.data` Logical. Do not change this value, unless you are Adrian Baddeley.
- `fasteval` One of the strings `’off’`, `’on’` or `’test’` determining whether to use accelerated C code to evaluate the conditional intensity of a Gibbs model. Initialised to `’on’`.
- `old.morpho.psp` Logical. Whether to use old R code for morphological operations. Initialised to `FALSE`.
- `selfcrossing.psp.useCall` Logical. Whether to use new version of the code for `selfcrossing.psp`. Initialised to `TRUE`.
- `use.Krect` Logical. Whether to use new code for the K-function in a rectangular window. Initialised to `TRUE`.
Data recording the locations of small spider webs on the network of mortar lines of a brick wall.

Usage

data("spiders")

Format

Object of class "lpp" representing a pattern of points on a linear network.

Details

The data give the positions of 48 webs of the urban wall spider *Oecobius navus* on the mortar lines of a brick wall, recorded by Voss (1999) and manually digitised by Mark Handcock. The mortar spaces provide the only opportunity for constructing webs (Voss 1999; Voss et al 2007) so this is a pattern of points on a network of lines.
The habitat preferences of this species were studied in detail by Voss et al (2007). Questions of interest include evidence for non-uniform density of webs and for interaction between nearby individuals.

Observations were made inside a square quadrat of side length 1.125 metres. The original hand-drawn map was digitised manually by Mark S. Handcock, and reformatted as a spatstat object by Ang Qi Wei.

The dataset spiders is an object of class "lpp" (point pattern on a linear network). Coordinates are given in millimetres. The linear network has 156 vertices and a total length of 20.22 metres.

Please cite Voss et al (2007) with any use of these data.

Source

Dr Sasha Voss. Coordinates manually recorded by M.S. Handcock and formatted by Q.W. Ang.

Please cite Voss et al (2007) with any use of these data.

References

Examples

```r
plot(spiders, show.window=FALSE, pch=16)
```

split.hyperframe

Divide Hyperframe Into Subsets and Reassemble

Description

split divides the data x into subsets defined by f. The replacement form replaces values corresponding to such a division.

Usage

```r
## S3 method for class 'hyperframe'
split(x, f, drop = FALSE, ...)

## S3 replacement method for class 'hyperframe'
split(x, f, drop = FALSE, ...) <- value
```
split.hyperframe

Arguments

x Hyperframe (object of class "hyperframe").
f a factor in the sense that as.factor(f) defines the grouping, or a list of such factors in which case their interaction is used for the grouping.

drop logical value, indicating whether levels that do not occur should be dropped from the result.

value a list of hyperframes which arose (or could have arisen) from the command
split(x,f,drop=drop).

... Ignored.

Details

These are methods for the generic functions split and split<- for hyperframes (objects of class "hyperframe").

A hyperframe is like a data frame, except that its entries can be objects of any kind. The behaviour of these methods is analogous to the corresponding methods for data frames.

Value

The value returned from split.hyperframe is a list of hyperframe containing the values for the groups. The components of the list are named by the levels of f (after converting to a factor, or if already a factor and drop = TRUE, dropping unused levels).

The replacement method split<-.hyperframe returns a new hyperframe x for which split(x,f) equals value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also

hyperframe, [.hyperframe

Examples

split(pyramidal, pyramidal$group)
split.im

Divide Image Into Sub-images

Description

Divides a pixel image into several sub-images according to the value of a factor, or according to the tiles of a tessellation.

Usage

```r
## S3 method for class 'im'
split(x, f, ..., drop = FALSE)
```

Arguments

- **x**
 Pixel image (object of class "im").

- **f**
 Splitting criterion. Either a tessellation (object of class "tess") or a pixel image with factor values.

- **...**
 Ignored.

- **drop**
 Logical value determining whether each subset should be returned as a pixel images (drop=FALSE) or as a one-dimensional vector of pixel values (drop=TRUE).

Details

This is a method for the generic function `split` for the class of pixel images. The image `x` will be divided into subsets determined by the data `f`. The result is a list of these subsets.

The splitting criterion may be either

- a tessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the spatial domain.
- a pixel image (object of class "im") with factor values. The levels of the factor determine subsets of the spatial domain.

If `drop=FALSE` (the default), the result is a list of pixel images, each one a subset of the pixel image `x`, obtained by restricting the pixel domain to one of the subsets. If `drop=TRUE`, then the pixel values are returned as numeric vectors.

Value

- If `drop=FALSE`, a list of pixel images (objects of class "im"). It is also of class "listof" so that it can be plotted immediately.
- If `drop=TRUE`, a list of numeric vectors.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>
split.ppp

See Also

by.im, tess.im

Examples

W <- square(1)
X <- as.im(function(x,y)(sqrt(x^2+y^2)), W)
Y <- dirichlet(runifpoint(12, W))
plot(split(X,Y))

split.ppp Divide Point Pattern into Sub-patterns

Description

Divides a point pattern into several sub-patterns, according to their marks, or according to any user-specified grouping.

Usage

S3 method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=NULL, ...)
S3 replacement method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=missing(f), ...) <- value

Arguments

x A two-dimensional point pattern. An object of class "ppp".
f Data determining the grouping. Either a factor, a pixel image with factor values, a tessellation, a window, or the name of one of the columns of marks.
drop Logical. Determines whether empty groups will be deleted.
un Logical. Determines whether the resulting subpatterns will be unmarked (i.e. whether marks will be removed from the points in each subpattern).
...
value List of point patterns.

Details

The function split.ppp divides up the points of the point pattern x into several sub-patterns according to the values of f. The result is a list of point patterns.

The argument f may be

- a factor, of length equal to the number of points in x. The levels of f determine the destination of each point in x. The ith point of x will be placed in the sub-pattern split.ppp(x)$i where i = f[i].
a pixel image (object of class "im") with factor values. The pixel value of \(f \) at each point of \(x \) will be used as the classifying variable.

- a tessellation (object of class "tess"). Each point of \(x \) will be classified according to the tile of the tessellation into which it falls.

- a window (object of class "owin"). Each point of \(x \) will be classified according to whether it falls inside or outside this window.

- a character string, matching the name of one of the columns of marks, if \(\text{marks}(x) \) is a data frame. This column should be a factor.

If \(f \) is missing, then it will be determined by the marks of the point pattern. The pattern \(x \) can be either

- a multitype point pattern (a marked point pattern whose marks vector is a factor). Then \(f \) is taken to be the marks vector. The effect is that the points of each type are separated into different point patterns.

- a marked point pattern with a data frame of marks, containing at least one column that is a factor. The first such column will be used to determine the splitting factor \(f \).

Some of the sub-patterns created by the split may be empty. If \(\text{drop} = \text{TRUE} \), then empty sub-patterns will be deleted from the list. If \(\text{drop} = \text{FALSE} \) then they are retained.

The argument \(\text{un} \) determines how to handle marks in the case where \(x \) is a marked point pattern. If \(\text{un} = \text{TRUE} \) then the marks of the points will be discarded when they are split into groups, while if \(\text{un} = \text{FALSE} \) then the marks will be retained.

If \(f \) and \(\text{un} \) are both missing, then the default is \(\text{un} = \text{TRUE} \) for multitype point patterns and \(\text{un} = \text{FALSE} \) for marked point patterns with a data frame of marks.

The result of \(\text{split.ppp} \) has class "splitppp" and can be plotted using \(\text{plot.splitppp} \).

The assignment function \(\text{split} \leftarrow \cdot \text{ppp} \) updates the point pattern \(x \) so that it satisfies \(\text{split}(x, f, \text{drop}, \text{un}) = \text{value} \).

The argument \(\text{value} \) is expected to be a list of point patterns, one for each level of \(f \). These point patterns are expected to be compatible with the type of data in the original pattern \(x \).

Splitting can also be undone by the function \(\text{superimpose} \), but this typically changes the ordering of the data.

Value

The value of \(\text{split.ppp} \) is a list of point patterns. The components of the list are named by the levels of \(f \). The list also has the class "splitppp".

The assignment form \(\text{split} \leftarrow \cdot \text{ppp} \) returns the updated point pattern \(x \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cut.ppp, plot.splitppp, superimpose, im, tess, ppp.object
Examples

(1) Splitting by marks

Multitype point pattern: separate into types
data(amacrine)

u <- split(amacrine)

plot them
plot(split(amacrine))

the following are equivalent:
amon <- split(amacrine)$on
amon <- unmark(amacrine[amacrine$marks == "on"])

the following are equivalent:
amon <- split(amacrine, un=FALSE)$on
amon <- amacrine[amacrine$marks == "on"]

Scramble the locations of the 'on' cells
u <- split(amacrine)
u$on <- runifpoint(amon$n, amon$window)
split(amacrine) <- u

Point pattern with continuous marks
data(longleaf)

cut the range of tree diameters into three intervals
using cut.ppp
long3 <- cut(longleaf, breaks=3)

now split them
long3split <- split(long3)

(2) Splitting by a factor

Unmarked point pattern
data(swedishpines)

cut & split according to nearest neighbour distance
f <- cut(nndist(swedishpines), 3)
u <- split(swedishpines, f)

(3) Splitting over a tessellation
tes <- tess(xgrid=seq(0, 0.96, length=5), ygrid=seq(0, 100, length=5))
v <- split(swedishpines, tes)

(4) how to apply an operation to selected points:
split into components, transform desired component, then un-split
e.g. apply random jitter to 'on' points only
X <- amacrine
Y <- split(X)
Y$on <- rjitter(Y$on, 0.1)
Description

Divides a multidimensional point pattern into several sub-patterns, according to their marks, or according to any user-specified grouping.

Usage

```r
## S3 method for class 'ppx'
split(x, f = marks(x), drop=FALSE, un=NULL, ...)
```

Arguments

- **x**: A multi-dimensional point pattern. An object of class "ppx".
- **f**: Data determining the grouping. Either a factor, or the name of one of the columns of marks.
- **drop**: Logical. Determines whether empty groups will be deleted.
- **un**: Logical. Determines whether the resulting subpatterns will be unmarked (i.e. whether marks will be removed from the points in each subpattern).
- **...**: Other arguments are ignored.

Details

The generic command `split` allows a dataset to be separated into subsets according to the value of a grouping variable.

The function `split.ppx` is a method for the generic `split` for the class "ppx" of multidimensional point patterns. It divides up the points of the point pattern `x` into several sub-patterns according to the values of `f`. The result is a list of point patterns.

The argument `f` may be

- a factor, of length equal to the number of points in `x`. The levels of `f` determine the destination of each point in `x`. The `i`th point of `x` will be placed in the sub-pattern `split.ppx(x)[l]` where `l = f[i]`.
- a character string, matching the name of one of the columns of marks, if `marks(x)` is a data frame. This column should be a factor.

If `f` is missing, then it will be determined by the marks of the point pattern. The pattern `x` can be either

- a multitype point pattern (a marked point pattern whose marks vector is a factor). Then `f` is taken to be the marks vector. The effect is that the points of each type are separated into different point patterns.
• a marked point pattern with a data frame or hyperframe of marks, containing at least one column that is a factor. The first such column will be used to determine the splitting factor \(f \).

Some of the sub-patterns created by the split may be empty. If \(\text{drop}=\text{TRUE} \), then empty sub-patterns will be deleted from the list. If \(\text{drop}=\text{FALSE} \) then they are retained.

The argument \(\text{un} \) determines how to handle marks in the case where \(x \) is a marked point pattern. If \(\text{un}=\text{TRUE} \) then the marks of the points will be discarded when they are split into groups, while if \(\text{un}=\text{FALSE} \) then the marks will be retained.

If \(f \) and \(\text{un} \) are both missing, then the default is \(\text{un}=\text{TRUE} \) for multitype point patterns and \(\text{un}=\text{FALSE} \) for marked point patterns with a data frame of marks.

The result of \(\text{split.ppx} \) has class "\text{splitppx}" and "\text{listof}". There are methods for \text{print}, \text{summary} and \text{plot}.

\section*{Value}

A list of point patterns. The components of the list are named by the levels of \(f \). The list also has the class "\text{splitppx}" and "\text{listof}".

\section*{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

\section*{See Also}

\text{ppx}, \text{plot.listof}

\section*{Examples}

\begin{verbatim}
df <- data.frame(x=runif(4), y=runif(4), t=runif(4),
 age=rep(c("old", "new"), 2),
 size=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t","m","m"))
X
split(X)
\end{verbatim}

\begin{verbatim}
spokes

\textbf{Spokes pattern of dummy points}
\end{verbatim}

\section*{Description}

Generates a pattern of dummy points in a window, given a data point pattern. The dummy points lie on the radii of circles emanating from each data point.

\section*{Usage}

\begin{verbatim}
spokes(x, y, nrad = 3, nper = 3, fctr = 1.5, Mdefault = 1)
\end{verbatim}
Arguments

- **x**: Vector of \(x \) coordinates of data points, or a list with components \(x \) and \(y \), or a point pattern (an object of class `ppp`).
- **y**: Vector of \(y \) coordinates of data points. Ignored unless \(x \) is a vector.
- **nrad**: Number of radii emanating from each data point.
- **nper**: Number of dummy points per radius.
- **fctr**: Scale factor. Length of largest spoke radius is \(fctr \times M \) where \(M \) is the mean nearest neighbour distance for the data points.
- **Mdefault**: Value of \(M \) to be used if \(x \) has length 1.

Details

This function is useful in creating dummy points for quadrature schemes (see `quadscheme`).

Given the data points, the function creates a collection of \(nrad \times nper \times \text{length}(x) \) dummy points.

Around each data point \((x[i], y[i])\) there are \(nrad \times nper \) dummy points, lying on \(nrad \) radii emanating from \((x[i], y[i])\), with \(nper \) dummy points equally spaced along each radius.

The (equal) spacing of dummy points along each radius is controlled by the factor \(fctr \). The distance from a data point to the furthest of its associated dummy points is \(fctr \times M \) where \(M \) is the mean nearest neighbour distance for the data points.

If there is only one data point the nearest neighbour distance is infinite, so the value \(M\text{default} \) will be used in place of \(M \).

If \(x \) is a point pattern, then the value returned is also a point pattern, which is clipped to the window of \(x \). Hence there may be fewer than \(nrad \times nper \times \text{length}(x) \) dummy points in the pattern returned.

Value

If argument \(x \) is a point pattern, a point pattern with window equal to that of \(x \). Otherwise a list with two components \(x \) and \(y \). In either case the components \(x \) and \(y \) of the value are numeric vectors giving the coordinates of the dummy points.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `quad.object`, `quadscheme`, `inside.owin`, `gridcentres`, `stratrand`
sporophores

Examples

```r
dat <- runifrect(10)
dum <- spokes(dat$x, dat$y, 5, 3, 0.7)
plot(dum)
Q <- quadscheme(dat, dum, method="dirichlet")
plot(Q, tiles=TRUE)
```

Description

Spatial pattern of sporophores of three species of fungi around a tree.

Usage

```r
data(sporophores)
```

Format

A multitype spatial point pattern (an object of class "ppp" with factor-valued marks indicating the species). Spatial coordinates are given in centimetres. Levels of the species variable are "L laccata", "L pubescens" and "Hebloma spp".

Details

Ford, Mason and Pelham (1980) studied the spatial locations of sporophores of three species of mycorrhizal fungi distributed around a young birch tree in agricultural soil. The dataset given here is the spatial pattern in the fifth year after the tree was planted. The species are *Laccaria laccata*, *Lactarius pubescens* and *Hebloma spp*.

Source

Data generously provided by Dr E.D. Ford. Please cite Ford et al (1980) in any use of these data.

References

Examples

```r
## reproduce Fig 1 in Ford et al (1980)
plot(sporophores, chars=c(16,1,2), cex=0.6, leg.args=list(cex=1.1))
points(0,0, pch=16, cex=2)
text(15,8,"Tree", cex=0.75)
```
Spruces Point Pattern

Description

The data give the locations of Norwegian spruce trees in a natural forest stand in Saxonia, Germany. Each tree is marked with its diameter at breast height.

Usage

```r
data(spruces)
```

Format

An object of class "ppp" representing the point pattern of tree locations in a 56 x 38 metre sampling region. Each tree is marked with its diameter at breast height. All values are given in metres.

See [ppp.object](https://www.statsoft.com/textbook/pt-ppp-object) for details of the format of a point pattern object. The marks are numeric.

Source

References

Examples

```r
plot(spruces)
# To reproduce Goulard et al. Figure 3
# (Goulard et al: "influence zone radius equals 5 * stem diameter")
# (spatstat help(plot.ppp): "size of symbol = diameter")
plot(spruces, maxsize=10*max(spruces$marks))
plot(unmark(spruces), add=TRUE)
```
Description

Creates a square window

Usage

square(r=1)
unit.square()

Arguments

r

Numeric. The side length of the square, or a vector giving the minimum and maximum coordinate values.

Details

If r is a number, square(r) is a shortcut for creating a window object representing the square \([0, r] \times [0, r]\). It is equivalent to the command owin(c(0,r),c(0,r)).

If r is a vector of length 2, then square(r) creates the square with x and y coordinates ranging from r[1] to r[2].

unit.square creates the unit square \([0, 1] \times [0, 1]\). It is equivalent to square(1) or square() or owin(c(0,1),c(0,1)).

These commands are included mainly to improve the readability of some code.

Value

An object of class "owin" (see owin.object) specifying a window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object, owin

Examples

W <- square(10)
W <- square(c(-1,1))
stieltjes
Compute Integral of Function Against Cumulative Distribution

Description

Computes the Stieltjes integral of a function \(f \) with respect to a function \(M \).

Usage

\[
\text{stieltjes}(f, M, \ldots)
\]

Arguments

- \(f \) The integrand. A function in the R language.
- \(M \) The cumulative function against which \(f \) will be integrated. An object of class "fv".
- \(\ldots \) Additional arguments passed to \(f \).

Details

This command computes the Stieltjes integral

\[
I = \int f(x) dM(x)
\]

of a real-valued function \(f(x) \) with respect to a nondecreasing function \(M(x) \).

One common use of the Stieltjes integral is to find the mean value of a random variable from its cumulative distribution function \(F(x) \). The mean value is the Stieltjes integral of \(f(x) = x \) with respect to \(F(x) \).

The argument \(f \) should be a function in the R language. It should accept a numeric vector argument \(x \) and should return a numeric vector of the same length.

The argument \(M \) should be a function value table (object of class "fv", see fv.object). Such objects are returned by the commands Kest, Gest, etc.

Value

A list containing the value of the Stieltjes integral computed using each of the versions of the function \(M \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Gest
Examples

```r
data(redwood)
# estimate cdf of nearest neighbour distance
G <- Gest(redwood)
# compute estimate of mean nearest neighbour distance
stieltjes(function(x)[x]), G)
# estimated probability of a distance in the interval [0.1,0.2]
stieltjes(function(x,a,b)( (x >= a) & (x <= b)), G, a=0.1, b=0.2)
```

Description

Draw the Stienen diagram of a point pattern, or compute the region covered by the Stienen diagram.

Usage

```r
stienen(X, ..., bg = "grey", border = list(bg = NULL))
stienuenset(X, edge=TRUE)
```

Arguments

- **X**: Point pattern (object of class "ppp").
- **...**: Arguments passed to `plot.ppp` to control the plot.
- **bg**: Fill colour for circles.
- **border**: Either a list of arguments passed to `plot.ppp` to control the display of circles at the border of the diagram, or the value FALSE indicating that the border circles should not be plotted.
- **edge**: Logical value indicating whether to include the circles at the border of the diagram.

Details

The Stienen diagram of a point pattern (Stienen, 1982) is formed by drawing a circle around each point of the pattern, with diameter equal to the nearest-neighbour distance for that point. These circles do not overlap. If two points are nearest neighbours of each other, then the corresponding circles touch.

- `stienenSet(X)` computes the union of these circles and returns it as a window (object of class "owin").
- `stienen(X)` generates a plot of the Stienen diagram of the point pattern X. By default, circles are shaded in grey if they lie inside the window of X, and are not shaded otherwise.
Value

The plotting function stienen returns NULL.
The return value of stienenSet is a window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

References

tion, RWTH Aachen.

See Also

nndist, plot.ppp

Examples

Y <- stienenSet(cells)
stienen(redwood)

stratrand Stratified random point pattern

Description

Generates a “stratified random” pattern of points in a window, by dividing the window into rectan-
gular tiles and placing k random points in each tile.

Usage

stratrand(window, nx, ny, k = 1)

Arguments

window A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of tiles in each row.
ny Number of tiles in each column.
k Number of random points to generate in each tile.
Details

The bounding rectangle of window is divided into a regular $nx \times ny$ grid of rectangular tiles. In each tile, k random points are generated independently with a uniform distribution in that tile.

Note that some of these grid points may lie outside the window, if window is not of type "rectangle". The function inside.owin can be used to select those grid points which do lie inside the window. See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well as in simulating random point patterns.

Value

A list with two components x and y, which are numeric vectors giving the coordinates of the random points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme, inside.owin, gridcentres

Examples

w <- unit.square()
xy <- stratrand(w, 10, 10)
Not run:
plot(w)
points(xy)

End(Not run)

polygonal boundary
bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),
y=c(0.1,0.1,0.5,0.7,0.3))
w <- owin(c(0,1), c(0,1), poly=bdry)
xy <- stratrand(w, 10, 10, 3)
Not run:
plot(w)
points(xy)

End(Not run)
determine which grid points are inside polygon
ok <- inside.owin(xyx, xyy, w)
Not run:
plot(w)
points(xy$x[ok], xy$y[ok])

End(Not run)
The Strauss Point Process Model

Description

Creates an instance of the Strauss point process model which can then be fitted to point pattern data.

Usage

StraussHrI

Arguments

r
The interaction radius of the Strauss process

Details

The (stationary) Strauss process with interaction radius \(r \) and parameters \(\beta \) and \(\gamma \) is the pairwise interaction point process in which each point contributes a factor \(\beta \) to the probability density of the point pattern, and each pair of points closer than \(r \) units apart contributes a factor \(\gamma \) to the density. Thus the probability density is

\[
 f(x_1, \ldots, x_n) = \alpha \beta^{n(x)} \gamma^{s(x)}
\]

where \(x_1, \ldots, x_n \) represent the points of the pattern, \(n(x) \) is the number of points in the pattern, \(s(x) \) is the number of distinct unordered pairs of points that are closer than \(r \) units apart, and \(\alpha \) is the normalising constant.

The interaction parameter \(\gamma \) must be less than or equal to 1 so that this model describes an "ordered" or "inhibitive" pattern.

The nonstationary Strauss process is similar except that the contribution of each individual point \(x_i \) is a function \(\beta(x_i) \) of location, rather than a constant beta.

The function \texttt{ppm()}, which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Strauss process pairwise interaction is yielded by the function \texttt{Strauss()}. See the examples below.

Note the only argument is the interaction radius \(r \). When \(r \) is fixed, the model becomes an exponential family. The canonical parameters \(\log(\beta) \) and \(\log(\gamma) \) are estimated by \texttt{ppm()}, not fixed in \texttt{Strauss()}.

Value

An object of class "interact" describing the interpoint interaction structure of the Strauss process with interaction radius \(r \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner <r.turner@auckland.ac.nz>
References

See Also

`ppm`, `pairwise.family`, `ppm.object`

Examples

```r
Strauss(r=0.1)
# prints a sensible description of itself
data(cells)

## Not run:
ppm(cells, ~1, Strauss(r=0.07))
# fit the stationary Strauss process to 'cells'

## End(Not run)

ppm(cells, ~polynom(x,y,3), Strauss(r=0.07))
# fit a nonstationary Strauss process with log-cubic polynomial trend
```

StraussHard

The Strauss / Hard Core Point Process Model

Description

Creates an instance of the “Strauss/ hard core” point process model which can then be fitted to point pattern data.

Usage

```r
StraussHard(r, hc=NA)
```

Arguments

- `r` The interaction radius of the Strauss interaction
- `hc` The hard core distance. Optional.

Details

A Strauss/hard core process with interaction radius \(r \), hard core distance \(h \), and parameters \(\beta \) and \(\gamma \), is a pairwise interaction point process in which

- distinct points are not allowed to come closer than a distance \(h \) apart
- each pair of points closer than \(r \) units apart contributes a factor \(\gamma \) to the probability density.
This is a hybrid of the Strauss process and the hard core process. The probability density is zero if any pair of points is closer than \(h \) units apart, and otherwise equals

\[
f(x_1, \ldots, x_n) = \alpha \beta^{n(x)} \gamma^{s(x)}
\]

where \(x_1, \ldots, x_n \) represent the points of the pattern, \(n(x) \) is the number of points in the pattern, \(s(x) \) is the number of distinct unordered pairs of points that are closer than \(r \) units apart, and \(\alpha \) is the normalising constant.

The interaction parameter \(\gamma \) may take any positive value (unlike the case for the Strauss process). If \(\gamma = 1 \), the process reduces to a classical hard core process. If \(\gamma < 1 \), the model describes an “ordered” or “inhibitive” pattern. If \(\gamma > 1 \), the model is “ordered” or “inhibitive” up to the distance \(h \), but has an “attraction” between points lying at distances in the range between \(h \) and \(r \).

The function `ppm()`, which fits point process models to point pattern data, requires an argument of class “interact” describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Strauss/hard core process pairwise interaction is yielded by the function `strausshard()`. See the examples below.

The canonical parameter \(\log(\gamma) \) is estimated by `ppm()`, not fixed in `strausshard()`. If the hard core distance argument \(hc \) is missing or `NA`, it will be estimated from the data when `ppm` is called. The estimated value of \(hc \) is the minimum nearest neighbour distance multiplied by \(n/(n+1) \), where \(n \) is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the “Strauss/hard core” process with Strauss interaction radius \(r \) and hard core distance \(hc \).

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

`ppm`, `pairwise.family`, `ppm.object`

Examples

```r
strausshard(r=1, hc=0.02)  # prints a sensible description of itself
data(cells)
```
Extract List of Individual Point Process Models

Description
Takes a Gibbs point process model that has been fitted to several point patterns simultaneously, and produces a list of fitted point process models for the individual point patterns.

Usage
```
subfits(object, what="models", verbose=FALSE)
subfits.old(object, what="models", verbose=FALSE)
subfits.new(object, what="models", verbose=FALSE)
```

Arguments
- **object**: An object of class "mppm" representing a point process model fitted to several point patterns.
- **what**: What should be returned. Either "models" to return the fitted models, or "interactions" to return the fitted interactions only.
- **verbose**: Logical flag indicating whether to print progress reports.

Details
- `object` is assumed to have been generated by `mppm`. It represents a point process model that has been fitted to a list of several point patterns, with covariate data.
- For each of the individual point pattern datasets, this function derives the corresponding fitted model for that dataset only (i.e. a point process model for the i-th point pattern, that is consistent with `object`).
- If `what="models"`, the result is a list of point process models (a list of objects of class "ppm"), one model for each point pattern dataset in the original fit. If `what="interactions"`, the result is a list of fitted interpoint interactions (a list of objects of class "fii").
- Two different algorithms are provided, as `subfits.old` and `subfits.new`. Currently `subfits` is the same as the old algorithm `subfits.old` because the newer algorithm is too memory-hungry.
Value

A list of point process models (a list of objects of class "ppm") or a list of fitted interpoint interactions (a list of objects of class "fii").

Author(s)

Adrian Baddeley <adrian.baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <rolf@math.unb.ca> http://www.math.unb.ca/~rolf

See Also

ppm

Examples

```r
fit <- ppm(Wat~x, data=hyperframe(Wat=waterstriders))
subfits(fit)
```

subset.hyperframe
Subset of Hyperframe Satisfying A Condition

Description

Given a hyperframe, return the subset specified by imposing a condition on each row, and optionally by choosing only some of the columns.

Usage

```r
## S3 method for class 'hyperframe'
subset(x, subset, select, ...)
```

Arguments

- `x`: A hyperframe pattern (object of class "hyperframe").
- `subset`: Logical expression indicating which points are to be kept. The expression may involve the names of columns of `x` and will be evaluated by `with.hyperframe`.
- `select`: Expression indicating which columns of marks should be kept.
- `...`: Arguments passed to `[.hyperframe` such as `drop` and `strip`.
Details

This is a method for the generic function `subset`. It extracts the subset of rows of \(x \) that satisfy the logical expression `subset`, and retains only the columns of \(x \) that are specified by the expression `select`. The result is always a hyperframe.

The argument `subset` determines the subset of rows that will be extracted. It should be a logical expression. It may involve the names of columns of \(x \). The default is to keep all points.

The argument `select` determines which columns of \(x \) will be retained. It should be an expression involving the names of columns (which will be interpreted as integers representing the positions of these columns). For example if there are columns named \(A \) to \(Z \), then `select=D:F` is a valid expression and means that columns \(D, E \) and \(F \) will be retained. Similarly `select=-(A:C)` is valid and means that columns \(A \) to \(C \) will be deleted. The default is to retain all columns.

Setting `subset=FALSE` will remove all the rows. Setting `select=FALSE` will remove all the columns. The result is always a hyperframe.

Value

A hyperframe.

Author(s)

Adrian Baddeley \(<Adrian.Baddeley@uwa.edu.au>\) \(\text{http://www.maths.uwa.edu.au/~adrian/} \), Rolf Turner \(<r.turner@auckland.ac.nz>\) and Ege Rubak \(<\text{rubak@math.au.dk}>\)

See Also

`subset, [.hyperframe`

Examples

```r
a <- subset(flu, virustype=="wt")

aa <- subset(flu, minndist(pattern) > 10)

aaa <- subset(flu, virustype=="wt", select = -pattern)
```

subset.ppp

Subset of Point Pattern Satisfying A Condition

Description

Given a point pattern, return the subset of points which satisfy a specified condition.
Usage

S3 method for class 'ppp'
subset(x, subset, select, ...)

S3 method for class 'pp3'
subset(x, subset, select, ...)

S3 method for class 'lpp'
subset(x, subset, select, ...)

S3 method for class 'ppx'
subset(x, subset, select, ...)

Arguments

- `x` A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").
- `subset` Logical expression indicating which points are to be kept. The expression may involve the names of spatial coordinates (x, y, etc), the marks, and (if there is more than one column of marks) the names of individual columns of marks. Missing values are taken as false.
- `select` Expression indicating which columns of marks should be kept.
- `...` Ignored.

Details

This is a method for the generic function `subset`. It extracts the subset of points of `x` that satisfy the logical expression `subset`, and retains only the columns of marks that are specified by the expression `select`. The result is always a point pattern.

The argument `subset` determines the subset of points that will be extracted. It should be a logical expression. It may involve the variable names `x` and `y` representing the Cartesian coordinates; the names of other spatial coordinates or local coordinates; the name `marks` representing the marks; and (if there is more than one column of marks) the names of individual columns of marks. The default is to keep all points.

The argument `select` determines which columns of marks will be retained (if there are several columns of marks). It should be an expression involving the names of columns of marks (which will be interpreted as integers representing the positions of these columns). For example if there are columns of marks named A to Z, then `select=D:F` is a valid expression and means that columns D, E and F will be retained. Similarly `select=-(A:C)` is valid and means that columns A to C will be deleted. The default is to retain all columns.

Setting `subset=FALSE` will produce an empty point pattern (i.e. containing zero points) in the same window as `x`. Setting `select=FALSE` or `select= -marks` will remove all the marks from `x`.

The result is always a point pattern, of the same class as `x`. Spatial coordinates (and local coordinates) are always retained. To extract only some columns of marks or coordinates as a data frame, use `subset(as.data.frame(x), ...)`.
Value
A point pattern of the same class as \(x \), in the same spatial window as \(x \). The result is a subset of \(x \), possibly with some columns of marks removed.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
subset.[.ppp

Examples
```r
plot(subset(cells, x > 0.5))
subset(amacrine, marks == "on")
subset(redwood, nndist(redwood) > 0.04)
subset(finpines, select=height)
subset(finpines, diameter > 2, height)
subset(nbfires, year==1999 & ign.src == "campfire",
    select=cause:fnl.size)

v <- subset(chicago, x + y > 1100 & marks == "assault")
a <- subset(rpoispp3(40), z > 0.5)
```

suffstat: Sufficient Statistic of Point Process Model

Description
The canonical sufficient statistic of a point process model is evaluated for a given point pattern.

Usage
```r
suffstat(model, X=data.ppm(model))
```

Arguments
- `model` A fitted point process model (object of class "ppm").
- `X` A point pattern (object of class "ppp").
Details

The canonical sufficient statistic of model is evaluated for the point pattern x. This computation is useful for various Monte Carlo methods.

Here model should be a point process model (object of class "ppm", see ppm.object), typically obtained from the model-fitting function ppm. The argument x should be a point pattern (object of class "ppp").

Every point process model fitted by ppm has a probability density of the form

\[f(x) = Z(\theta) \exp(\theta^T S(x)) \]

where \(x \) denotes a typical realisation (i.e. a point pattern), \(\theta \) is the vector of model coefficients, \(Z(\theta) \) is a normalising constant, and \(S(x) \) is a function of the realisation \(x \), called the “canonical sufficient statistic” of the model.

For example, the stationary Poisson process has canonical sufficient statistic \(S(x) = n(x) \), the number of points in \(x \). The stationary Strauss process with interaction range \(r \) (and fitted with no edge correction) has canonical sufficient statistic \(S(x) = (n(x), s(x)) \) where \(s(x) \) is the number of pairs of points in \(x \) which are closer than a distance \(r \) to each other.

suffstat(model, x) returns the value of \(S(x) \), where \(S \) is the canonical sufficient statistic associated with model, evaluated when \(x \) is the given point pattern \(X \). The result is a numeric vector, with entries which correspond to the entries of the coefficient vector coef(model).

The sufficient statistic \(S \) does not depend on the fitted coefficients of the model. However it does depend on the irregular parameters which are fixed in the original call to ppm, for example, the interaction range \(r \) of the Strauss process.

The sufficient statistic also depends on the edge correction that was used to fit the model. For example in a Strauss process,

- If the model is fitted with correction="none", the sufficient statistic is \(S(x) = (n(x), s(x)) \) where \(n(x) \) is the number of points and \(s(x) \) is the number of pairs of points which are closer than \(r \) units apart.
- If the model is fitted with correction="periodic", the sufficient statistic is the same as above, except that distances are measured in the periodic sense.
- If the model is fitted with correction="translate", then \(n(x) \) is unchanged but \(s(x) \) is replaced by a weighted sum (the sum of the translation correction weights for all pairs of points which are closer than \(r \) units apart).
- If the model is fitted with correction="border" (the default), then points lying less than \(r \) units from the boundary of the observation window are treated as fixed. Thus \(n(x) \) is replaced by the number \(n_r(x) \) of points lying at least \(r \) units from the boundary of the observation window, and \(s(x) \) is replaced by the number \(s_r(x) \) of pairs of points, which are closer than \(r \) units apart, and at least one of which lies more than \(r \) units from the boundary of the observation window.

Non-finite values of the sufficient statistic (NA or -Inf) may be returned if the point pattern \(X \) is not a possible realisation of the model (i.e. if \(X \) has zero probability of occurring under model for all values of the canonical coefficients \(\theta \)).

Value

A numeric vector of sufficient statistics. The entries correspond to the model coefficients coef(model).
summary.anylist

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm

Examples

fitS <- ppm(swedishpines, ~1, Strauss(7))
X <- rpoispp(intensity(swedishpines), win=Window(swedishpines))
suffstat(fitS, X)

summary.anylist Summary of a List of Things

Description

Prints a useful summary of each item in a list of things.

Usage

S3 method for class 'anylist'
summary(object, ...)

Arguments

object An object of class "anylist".
...
Ignored.

Details

This is a method for the generic function summary.

An object of the class "anylist" is effectively a list of things which are intended to be treated in a similar way. See anylist.

This function extracts a useful summary of each of the items in the list.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

anylist, summary.plot.anylist
Examples

```r
x <- anylist(A=runif(10), B=runif(10), C=runif(10))
summary(x)
```

Description

summary method for class "im".

Usage

```r
## S3 method for class 'im'
summary(object, ...)
## S3 method for class 'summary.im'
print(x, ...)
```

Arguments

- `object` A pixel image.
- `...` Ignored.
- `x` Object of class "summary.im" as returned by `summary.im`.

Details

This is a method for the generic `summary` for the class "im". An object of class "im" describes a pixel image. See `im.object` for details of this class.

`summary.im` extracts information about the pixel image, and `print.summary.im` prints this information in a comprehensible format.

In normal usage, `print.summary.im` is invoked implicitly when the user calls `summary.im` without assigning its value to anything. See the examples.

The information extracted by `summary.im` includes

- `range` The range of the image values.
- `mean` The mean of the image values.
- `integral` The “integral” of the image values, calculated as the sum of the image values multiplied by the area of one pixel.
- `dim` The dimensions of the pixel array: `dim[1]` is the number of rows in the array, corresponding to the `y` coordinate.

Value

`summary.im` returns an object of class "summary.im", while `print.summary.im` returns `NULL`.
summary.listof

Summary of a List of Things

Description
Prints a useful summary of each item in a list of things.

Usage
```r
## S3 method for class 'listof'
summary(object, ...)
```

Arguments
- `object`: An object of class "listof".
- `...`: Ignored.

Details
This is a method for the generic function `summary`.

An object of the class "listof" is effectively a list of things which are all of the same class.

This function extracts a useful summary of each of the items in the list.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/]
and Rolf Turner <r.turner@auckland.ac.nz>
See Also

 summary.plot.listof

Examples

 x <- list(A=runif(10), B=runif(10), C=runif(10))
 class(x) <- c("listof", class(x))
 summary(x)

summary.owin Summary of a Spatial Window

Description

Prints a useful description of a window object.

Usage

 ## S3 method for class 'owin'
 summary(object, ...)

Arguments

 object Window (object of class "owin").
 ... Ignored.

Details

 A useful description of the window object is printed.
 This is a method for the generic function summary.

Author(s)

 Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
 and Rolf Turner <r.turner@auckland.ac.nz>

See Also

 summary, summary.ppp, print.owin

Examples

 summary(owin()) # the unit square

 data(demopat)
 W <- demopat$window # weird polygonal window
 summary(W) # describes it

 summary(as.mask(W)) # demonstrates current pixel resolution
Summary of a Fitted Point Process Model

Description

summary method for class "ppm".

Usage

```r
## S3 method for class 'ppm'
summary(object, ..., quick=FALSE)

## S3 method for class 'summary.ppm'
print(x, ...)
```

Arguments

- `object`: A fitted point process model.
- `...`: Ignored.
- `quick`: Logical flag controlling the scope of the summary.
- `x`: Object of class "summary.ppm" as returned by `summary.ppm`.

Details

This is a method for the generic `summary` for the class "ppm". An object of class "ppm" describes a fitted point process model. See `ppm.object` for details of this class.

`summary.ppm` extracts information about the type of model that has been fitted, the data to which the model was fitted, and the values of the fitted coefficients. (If `quick=TRUE` then only the information about the type of model is extracted.)

`print.summary.ppm` prints this information in a comprehensible format.

In normal usage, `print.summary.ppm` is invoked implicitly when the user calls `summary.ppm` without assigning its value to anything. See the examples.

You can also type `coef(summary(object))` to extract a table of the fitted coefficients of the point process model object together with standard errors and confidence limits.

Value

`summary.ppm` returns an object of class "summary.ppm", while `print.summary.ppm` returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/] and Rolf Turner <r.turner@auckland.ac.nz>
Examples

```r
# invent some data
X <- rpoispp(42)
# fit a model to it
fit <- ppm(X, ~x, Strauss(r=0.1))
# summarize the fitted model
summary(fit)
# 'quick' option
summary(fit, quick=TRUE)

# save the full summary
s <- summary(fit)
# print it
print(s)
# extract stuff
names(s)
coef(s)
s$argss$correction
s$name
s$trend$value

## Not run:
# multitype pattern
data(demopat)
fit <- ppm(demopat, ~marks, Poisson())
summary(fit)

## End(Not run)

# model with external covariates
fitX <- ppm(X, ~Z, covariates=list(Z=function(x,y){x+y}))
summary(fitX)
```

summary.ppp

Summary of a Point Pattern Dataset

Description

Prints a useful summary of a point pattern dataset.

Usage

```r
## S3 method for class 'ppp'
summary(object, ..., checkdup=TRUE)
```
Arguements

object Point pattern (object of class "ppp").
... Ignored.
checkdup Logical value indicating whether to check for the presence of duplicate points.

Details

A useful summary of the point pattern object is printed.
This is a method for the generic function `summary`.
If checkdup=TRUE, the pattern will be checked for the presence of duplicate points, using `duplicated.ppp`.
This can be time-consuming if the pattern contains many points, so the checking can be disabled by setting checkdup=FALSE.
If the point pattern was generated by simulation using `rmh`, the parameters of the algorithm are printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`summary, summary.owin, print.ppp`

Examples

```r
summary(cells)  # plain vanilla point pattern

# multitype point pattern

summary(lansing)  # tabulates frequencies of each mark

# numeric marks

summary(longleaf)  # prints summary.default(x$marks)

# weird polygonal window

summary(demopat)  # describes it
```

Summary of a Line Segment Pattern Dataset

Description

Prints a useful summary of a line segment pattern dataset.
Usage

```r
## S3 method for class 'psp'
summary(object, ...)
```

Arguments

- `object` Line segment pattern (object of class "psp").
- `...` Ignored.

Details

A useful summary of the line segment pattern object is printed.

This is a method for the generic function `summary`.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`summary`, `summary.owin`, `print.psp`

Examples

```r
a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
summary(a) # describes it
```

Summary

`summary.quad` **Summarizing a Quadrature Scheme**

Description

summary method for class "quad".

Usage

```r
## S3 method for class 'quad'
summary(object, ..., checkdup=FALSE)
## S3 method for class 'summary.quad'
print(x, ..., dp=3)
```
Arguments

- **object**: A quadrature scheme.
-**...**: Ignored.
- **checkdup**: Logical value indicating whether to test for duplicated points.
- **dp**: Number of significant digits to print.
- **x**: Object of class "summary.quad" returned by summary.quad.

Details

This is a method for the generic summary for the class "quad". An object of class "quad" describes a quadrature scheme, used to fit a point process model. See quad.object for details of this class. summary.quad extracts information about the quadrature scheme, and print.summary.quad prints this information in a comprehensible format.

In normal usage, print.summary.quad is invoked implicitly when the user calls summary.quad without assigning its value to anything. See the examples.

Value

summary.quad returns an object of class "summary.quad", while print.summary.quad returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
# make a quadrature scheme
Q <- quadscheme(rpoispp(42))
# summarize it
summary(Q)
# save the summary
s <- summary(Q)
# print it
print(s)
# extract total quadrature weight
s$w$all$sum
```
summary.solist

Summary of a List of Spatial Objects

Description

Prints a useful summary of each entry in a list of two-dimensional spatial objects.

Usage

```r
## S3 method for class 'solist'
summary(object, ...)
```

Arguments

- `object`: An object of class "solist".
- `...`: Ignored.

Details

This is a method for the generic function `summary`.

An object of the class "solist" is effectively a list of two-dimensional spatial datasets. See `solist`.

This function extracts a useful summary of each of the datasets.

Author(s)

Rolff Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.au.dk>

See Also

`solist, summary, plot.solist`

Examples

```r
x <- solist(cells, japanesepines, redwood)
summary(x)
```
summary.splitppp

Summary of a Split Point Pattern

Description

Prints a useful summary of a split point pattern.

Usage

```r
## S3 method for class 'splitppp'
summary(object, ...)  
```

Arguments

- `object` Split point pattern (object of class "splitppp", effectively a list of point patterns, usually created by `split.ppp`).
- `...` Ignored.

Details

This is a method for the generic function `summary`.

An object of the class "splitppp" is effectively a list of point patterns (objects of class "ppp") representing different sub-patterns of an original point pattern.

This function extracts a useful summary of each of the sub-patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`summary`, `split`, `split.ppp`

Examples

```r
data(amacrine)  # multitype point pattern
summary(split(amacrine))
```
Compute Quadratic Forms

Description

Calculates certain quadratic forms of matrices.

Usage

\[
\text{sumouter}(x, \text{w=NULL}) \\
\text{quadform}(x, v) \\
\text{bilinearform}(x, v, y)
\]

Arguments

- \(x, y\) A matrix, whose rows are the vectors in the quadratic form.
- \(w\) Optional vector of weights
- \(v\) Matrix determining the quadratic form

Details

The matrix \(x\) will be interpreted as a collection of row vectors. The command \text{sumouter} computes the sum of the outer products of these vectors, weighted by the entries of \(w\):

\[
M = \sum_i w_i x_i x_i^T
\]

where the sum is over all rows of \(x\) (after removing any rows containing NA or other non-finite values). If \(w\) is missing, the weights will be taken as 1. The result is a \(p \times p\) matrix where \(p = \text{ncol}(x)\).

The command \text{quadform} evaluates the quadratic form, defined by the matrix \(v\), for each of the row vectors of \(x\):

\[
y_i = x_i V x_i^T
\]

The result \(y\) is a numeric vector of length \(n\) where \(n = \text{nrow}(x)\). If \(x[i,]\) contains NA or other non-finite values, then \(y[i] = \text{NA}\).

The command \text{bilinearform} evaluates the more general bilinear form defined by the matrix \(v\). Here \(x\) and \(y\) must be matrices of the same dimensions. For each of the row vectors of \(x\) and corresponding row vector of \(y\), the bilinear form is

\[
z_i = x_i V y_i^T
\]

The result \(z\) is a numeric vector of length \(n\) where \(n = \text{nrow}(x)\). If \(x[i,]\) or \(y[i,]\) contains NA or other non-finite values, then \(z[i] = \text{NA}\).

Value

A vector or matrix.
Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
x <- matrix(1:12, 4, 3)
dimnames(x) <- list(c("Wilma", "Fred", "Barney", "Betty"), letters[1:3])
x

sumouter(x)

w <- 4:1
sumouter(x, w)

v <- matrix(1, 3, 3)
quadform(x, v)

# should be the same as quadform(x, v)
bilinearform(x, v, x)

# See what happens with NA's
x[3,2] <- NA
sumouter(x, w)
quadform(x, v)
```

superimpose Superimpose Several Geometric Patterns

Description
Superimpose any number of point patterns or line segment patterns.

Usage

```r
superimpose(...)
```

S3 method for class 'ppp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'psp'
superimpose(..., W=NULL, check=TRUE)

Default S3 method:
superimpose(...)
```
Arguments

... Any number of arguments, each of which represents either a point pattern or a line segment pattern.

w Optional. Data determining the window for the resulting pattern. Either a window (object of class "owin", or something acceptable to as.owin), or a function which returns a window, or one of the strings "convex", "rectangle", "bbox" or "none".

check Logical value (passed to ppp or psp as appropriate) determining whether to check the geometrical validity of the resulting pattern.

Details

This function is used to superimpose several geometric patterns of the same kind, producing a single pattern of the same kind.

The function superimpose is generic, with methods for the class ppp of point patterns, the class psp of line segment patterns, and a default method. There is also a method for lpp, described separately in superimpose.lpp. The dispatch to a method is determined by the class of the first argument in ...

- default: If the first argument is not an object of class ppp or psp, then the default method superimpose.default is executed. All arguments in ... must have components x and y representing spatial coordinates. They may include objects of class ppp. The result will be either a list(x,y) or a point pattern (objects of class ppp) as explained below.

- ppp: If the first ... argument is an object of class ppp then the method superimpose.ppp is executed. All arguments in ... must be either ppp objects or lists with components x and y. The result will be an object of class ppp.

- psp: If the first ... argument is an object of class psp then the psp method is dispatched and all ... arguments must be psp objects. The result is a psp object.

The patterns are not required to have the same window of observation.

The window for the superimposed pattern is controlled by the argument w.

- If w is a window (object of class "w" or something acceptable to as.owin) then this determines the window for the superimposed pattern.

- If w is NULL, or the character string "none", then windows are extracted from the geometric patterns, as follows. For superimpose.psp, all arguments ... are line segment patterns (objects of class "psp"); their observation windows are extracted; the union of these windows is computed; and this union is taken to be the window for the superimposed pattern. For superimpose.ppp and superimpose.default, the arguments ... are inspected, and any arguments which are point patterns (objects of class "ppp") are selected; their observation windows are extracted, and the union of these windows is taken to be the window for the superimposed point pattern. For superimpose.default if none of the arguments is of class "ppp" then no window is computed and the result of superimpose is a list(x,y).

- If w is one of the strings "convex", "rectangle" or "bbox" then a window for the superimposed pattern is computed from the coordinates of the points or the line segments as follows. "bbox": the bounding box of the points or line segments (see bounding.box.xy);
"convex": the Ripley-Rasson estimator of a convex window (see ripras);
"rectangle": the Ripley-Rasson estimator of a rectangular window (using ripras with argument shape="rectangle").

- If \( w \) is a function, then this function is used to compute a window for the superimposed pattern from the coordinates of the points or the line segments. The function should accept input of the form \( \text{list}(x,y) \) and is expected to return an object of class "\text{owin}". Examples of such functions are ripras and bounding.box.xy.

The arguments \( \ldots \) may be \textit{marked} patterns. The marks of each component pattern must have the same format. Numeric and character marks may be "mixed". If there is such mixing then the numeric marks are coerced to character in the combining process. If the mark structures are all data frames, then these data frames must have the same number of columns and identical column names.

If the arguments \( \ldots \) are given in the form \texttt{name=value}, then the \texttt{name}s will be used as an extra column of marks attached to the elements of the corresponding patterns.

**Value**

For \texttt{superimpose.ppp}, a point pattern (object of class "ppp"). For \texttt{superimpose.default}, either a point pattern (object of class "ppp") or a \texttt{list}(x,y). For \texttt{superimpose.psp}, a line segment pattern (object of class "psp").

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> [http://www.maths.uwa.edu.au/~adrian/](http://www.maths.uwa.edu.au/~adrian/) and Rolf Turner <r.turner@auckland.ac.nz>

**See Also**

\texttt{superimpose.lpp}, \texttt{concatxy}, \texttt{quadscheme}.

**Examples**

```r
superimposing point patterns
p1 <- runifrect(30)
p2 <- runifrect(42)
s1 <- superimpose(p1,p2) # Unmarked pattern.
p3 <- \text{list}(x=rnorm(20),y=rnorm(20))
s2 <- superimpose(p3,p2,p1) # Default method gets called.
s2a <- superimpose(p1,p2,p3) # Same as s2 except for order of points.
s3 <- superimpose(clyde=p1,irving=p2) # Marked pattern; marks a factor
 # with levels "clyde" and "irving";
 # warning given.
m(t) <- factor(sample(LETTERS[1:3],30,TRUE))
m(t) <- factor(sample(LETTERS[1:3],42,TRUE))
s5 <- superimpose(clyde=p1,irving=p2) # Marked pattern with extra column
marks(p2) <- \text{data.frame}(a=marks(p2),b=runif(42))
s6 <- \text{try}(\text{superimpose}(p1,p2)) # Gives an error.
m(t) <- \text{data.frame}(a=marks(p1),b=1:30)
s7 <- superimpose(p1,p2) # O.K.
```

# how to make a 2-type point pattern with types "a" and "b"
superimpose.lpp

Superimpose Several Point Patterns on Linear Network

Description

Superimpose any number of point patterns on the same linear network.

Usage

## S3 method for class 'lpp'
superimpose(..., L=NULL)

Arguments

...  Any number of arguments, each of which represents a point pattern on the same linear network. Each argument can be either an object of class "lpp", giving both the spatial coordinates of the points and the linear network, or a list(x,y) or list(x,y,seg,tp) giving just the spatial coordinates of the points.

L    Optional. The linear network. An object of class "linnet". This argument is required if none of the other arguments is of class "lpp".

Details

This function is used to superimpose several point patterns on the same linear network. It is a method for the generic function superimpose.

Each of the arguments ... can be either a point pattern on a linear network (object of class "lpp" giving both the spatial coordinates of the points and the linear network), or a list(x,y) or list(x,y,seg,tp) giving just the spatial coordinates of the points. These arguments must represent point patterns on the same linear network.

The argument L is an alternative way to specify the linear network, and is required if none of the arguments ... is an object of class "lpp".
The arguments ... may be marked patterns. The marks of each component pattern must have the same format. Numeric and character marks may be "mixed". If there is such mixing then the numeric marks are coerced to character in the combining process. If the mark structures are all data frames, then these data frames must have the same number of columns and identical column names. If the arguments ... are given in the form name=value, then the names will be used as an extra column of marks attached to the elements of the corresponding patterns.

**Value**

An object of class "lpp" representing the combined point pattern on the linear network.

**Author(s)**


Rolf Turner <r.turner@auckland.ac.nz> Ege Rubak <rubak@math.aau.dk> and Greg McSwiggan.

**See Also**

`superimpose`

**Examples**

```r
X <- rpoislpp(5, simplenet)
Y <- rpoislpp(10, simplenet)
superimpose(X,Y) # not marked
superimpose(A=X, B=Y) # multitype with types A and B
```
Note

Source
Strand (1972), Ripley (1981)

References

symbolmap
*Graphics Symbol Map*

Description
Create a graphics symbol map that associates data values with graphical symbols.

Usage
symbolmap(...) range = NULL, inputs = NULL)

Arguments
... Named arguments specifying the graphical parameters. See Details.
range Optional. Range of numbers that are mapped. A numeric vector of length 2 giving the minimum and maximum values that will be mapped. Incompatible with inputs.
inputs Optional. A vector containing all the data values that will be mapped to symbols. Incompatible with range.

Details
A graphical symbol map is an association between data values and graphical symbols. The command `symbolmap` creates an object of class "symbolmap" that represents a graphical symbol map. Once a symbol map has been created, it can be applied to any suitable data to generate a plot of those data. This makes it easy to ensure that the same symbol map is used in two different plots. The symbol map can be plotted as a legend to the plots, and can also be plotted in its own right. The possible values of data that will be mapped are specified by `range` or `inputs`. 
• if range is given, it should be a numeric vector of length 2 giving the minimum and maximum values of the range of numbers that will be mapped. These limits must be finite.
• if inputs is given, it should be a vector of any atomic type (e.g. numeric, character, logical, factor). This vector contains all the possible data values that will be mapped.
• If neither range nor inputs is given, it is assumed that the possible values are real numbers.

The association of data values with graphical symbols is specified by the other arguments ... which are given in name=value form. These arguments specify the kinds of symbols that will be used, the sizes of the symbols, and graphics parameters for drawing the symbols.

Each graphics parameter can be either a single value, for example shape="circles", or a function(x) which determines the value of the graphics parameter as a function of the data x, for example shape=function(x) ifelse(x > 0, "circles", "squares"). Colourmaps (see colourmap) are also acceptable because they are functions.

Currently recognised graphics parameters, and their allowed values, are:

- **shape** The shape of the symbol: currently either "circles" or "squares" or NA. This parameter takes precedence over pch.
- **size** The size of the symbol: a positive number or zero.
- **pch** Graphics character code: a positive integer, or a single character. See par.
- **cex** Graphics character expansion factor.
- **fg,bg** Colour of foreground (or symbol border) and background (or symbol interior).
- **col,lwd,lty** Colour, width and style of lines.
- **etch** Logical. If TRUE, each symbol is surrounded by a border drawn in the opposite colour, which improves its visibility against the background. Default is FALSE.

**Value**

An object of class "symbolmap".

**Author(s)**

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

**See Also**

- plot.symbolmap to plot the symbol map itself.
- invoke.symbolmap to apply the symbol map to some data and plot the resulting symbols.
- update.symbolmap to change the symbol map.

**Examples**

```r
g <- symbolmap(inputs=letters[1:10], pch=1:20)
g1 <- symbolmap(range=c(0,100), size=function(x) x/50)
g2 <- symbolmap(shape=function(x) ifelse(x > 0, "circles", "squares"),
```
Create a Tessellation

Description

Creates an object of class "tess" representing a tessellation of a spatial region.

Usage

tess(..., xgrid = NULL, ygrid = NULL, tiles = NULL, image = NULL,
       window=NULL, marks=NULL, keepempty=FALSE)

Arguments

... Ignored.

xgrid, ygrid Cartesian coordinates of vertical and horizontal lines determining a grid of rectangles. Incompatible with other arguments.

tiles List of tiles in the tessellation. A list, each of whose elements is a window (object of class "owin"). Incompatible with other arguments.

image Pixel image which specifies the tessellation. Incompatible with other arguments.

window Optional. The spatial region which is tessellated (i.e. the union of all the tiles). An object of class "owin".

marks Optional vector or data frame of marks associated with the tiles.

keepempty Logical flag indicating whether empty tiles should be retained or deleted.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger spatial region. This command creates an object of class "tess" that represents a tessellation.

Three types of tessellation are supported:

rectangular: tiles are rectangles, with sides parallel to the x and y axes. They may or may not have equal size and shape. The arguments xgrid and ygrid determine the positions of the vertical and horizontal grid lines, respectively. (See quadrats for another way to do this.)

tile list: tiles are arbitrary spatial regions. The argument tiles is a list of these tiles, which are objects of class "owin".

pixel image: Tiles are subsets of a fine grid of pixels. The argument image is a pixel image (object of class "im") with factor values. Each level of the factor represents a different tile of the tessellation. The pixels that have a particular value of the factor constitute a tile.
The optional argument window specifies the spatial region formed by the union of all the tiles. In other words it specifies the spatial region that is divided into tiles by the tessellation. If this argument is missing or NULL, it will be determined by computing the set union of all the tiles. This is a time-consuming computation. For efficiency it is advisable to specify the window. Note that the validity of the window will not be checked.

Empty tiles may occur, either because one of the entries in the list tiles is an empty window, or because one of the levels of the factor-valued pixel image image does not occur in the pixel data. When keepempty=TRUE, empty tiles are permitted. When keepempty=FALSE (the default), tiles are not allowed to be empty, and any empty tiles will be removed from the tessellation.

There are methods for print, plot, [ and [<- for tessellations. Use tiles to extract the list of tiles in a tessellation, tilenames to extract the names of the tiles, and tile.areas to compute their areas.

The tiles may have marks, which can be extracted by marks.tess and changed by marks<-.tess.

Tessellations can be used to classify the points of a point pattern, in split.ppp, cut.ppp and by.ppp.

To construct particular tessellations, see quadrats, hextess, dirichlet, delaunay and rpoislinetess.

Value
An object of class "tess" representing the tessellation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
marks.tess, plot.tess, [.tess, as.tess, tiles, intersect.tess, split.ppp, cut.ppp, by.ppp, bdist.tiles, tile.areas.

To construct particular tessellations, see quadrats, hextess, dirichlet, delaunay and rpoislinetess.

To divide space into pieces containing equal amounts of stuff, use quantess.

Examples
A <- tess(xgrid=0:4, ygrid=0:4)
A
B <- A[c(1, 2, 5, 7, 9)]
B
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2))), W=owin())
levels(v) <- letters[seq(length(levels(v)))]
E <- tess(image=v)
E
texturemap

Description
Create a map that associates data values with graphical textures.

Usage
texturemap(inputs, textures, ...)

Arguments
- inputs: A vector containing all the data values that will be mapped to textures.
- textures: A vector of integer codes specifying the textures to which the inputs will be mapped.
- ...: Other graphics parameters such as col, lwd, lty.

Details
A texture map is an association between data values and graphical textures. The command texturemap creates an object of class "texturemap" that represents a texture map.

Once a texture map has been created, it can be applied to any suitable data to generate a texture plot of those data using textureplot. This makes it easy to ensure that the same texture map is used in two different plots. The texture map can also be plotted in its own right.

The argument inputs should be a vector containing all the possible data values (such as the levels of a factor) that are to be mapped. The textures should be integer values between 1 and 8, representing the eight possible textures described in the help for add.texture.

Value
An object of class "texturemap" representing the texture map.

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak

See Also
textureplot

Examples
texturemap(letters[1:4], 2:5, col=1:4, lwd=2)
Textureplot

Plot Image Using Texture Fill

Description

For a factor-valued pixel image, this command plots each level of the factor using a different texture.

Usage

textureplot(x, ..., 
  main, add=FALSE, clipwin=NULL, do.plot = TRUE, 
  border=NULL, col = NULL, lwd = NULL, lty = NULL, spacing = NULL, 
  textures=1:8, 
  legend=TRUE, 
  leg.side=c("right", "left", "bottom", "top"), 
  legsep=0.1, legwid=0.2)

Arguments

  x      Pixel image (object of class "im") whose pixel values are a factor with at most 8 levels.
  ...    Other arguments passed to add.texture.
  main   Character string giving a main title for the plot.
  add    Logical value indicating whether to draw on the current plot (add=TRUE) or to initialise a new plot (add=FALSE).
  clipwin Optional. A window (object of class "owin"). Only this subset of the image will be displayed.
  do.plot Logical. Whether to actually do the plot.
  border Colour for drawing the boundaries between the different regions. The default (border=NULL) means to use par("fg"). Use border=NA to omit borders.
  col    Numeric value or vector giving the colour or colours in which the textures should be plotted.
  lwd    Numeric value or vector giving the line width or widths to be used.
  lty    Numeric value or vector giving the line type or types to be used.
  spacing Numeric value or vector giving the spacing parameter for the textures.
  textures Textures to be used for each level. Either a texture map (object of class "texturemap") or a vector of integer codes (to be interpreted by add.texture).
  legend Logical. Whether to display an explanatory legend.
  leg.side Position of legend relative to main plot.
  legsep  Separation between legend and main plot, as a fraction of the shortest side length of the main plot.
  legwid  Width (if vertical) or height (if horizontal) of the legend as a fraction of the shortest side length of the main plot.
Details

For each level of the factor, the algorithm finds the region where the image takes this value, and fills
the region with a texture using `add.texture`.

Value

(Invisible) A texture map (object of class "texturemap") associating a texture with each level of
the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`im, plot.im, add.texture`.

Examples

```r
Z <- cut(setcov(owin()), 3, labels=c("Lo", "Med", "Hi"))
textureplot(Z)
```

thomas.estK

Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the K function.

Usage

```r
thomas.estK(X, startpar=c(kappa=1, scale=1), lambda=NULL,
 q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)```

Arguments

- `X` Data to which the Thomas model will be fitted. Either a point pattern or a
 summary statistic. See Details.
- `startpar` Vector of starting values for the parameters of the Thomas process.
- `lambda` Optional. An estimate of the intensity of the point process.
- `q, p` Optional. Exponents for the contrast criterion.
- `rmin, rmax` Optional. The interval of r values for the contrast criterion.
- `...` Optional arguments passed to `optim` to control the optimisation algorithm. See
 Details.
Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of Minimum Contrast, using the K function.

The argument x can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of the point pattern will be computed using Kest, and the method of minimum contrast will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the K function, and this object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Thomas point process to x, by finding the parameters of the Thomas model which give the closest match between the theoretical K function of the Thomas process and the observed K function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity κ, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean μ, and the locations of the offspring points of one parent are independent and isotropically Normally distributed around the parent point with standard deviation σ which is equal to the parameter scale.

The named vector of starting values can use either sigma2 (σ^2) or scale as the name of the second component, but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Thomas process is

$$K(r) = \pi r^2 + \frac{1}{\kappa} \left(1 - \exp\left(-\frac{r^2}{4\sigma^2}\right)\right).$$

The theoretical intensity of the Thomas process is $\lambda = \kappa \mu$.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters κ and σ^2. Then the remaining parameter μ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if x is a point pattern, then λ will be estimated from x. If x is a summary statistic and lambda is missing, then the intensity λ cannot be estimated, and the parameter μ will be returned as NA.

The remaining arguments rmin, rmax, q, p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function optim. For example, to constrain the parameter values to a certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments lower and upper to specify (vectors of) minimum and maximum values for each parameter.
Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

kppm, lgcp.estK, matclust.estK, mincontrast, Kest, rThomas to simulate the fitted model.

Examples

data(redwood)
 u <- thomas.estK(redwood, c(kappa=1, scale=0.1))
 u
 plot(u)

thomas.estpcf

Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using the pair correlation function.
Usage

thomas.estpcf(X, startpar=c(kappa=1, scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

Arguments

x Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the pair correlation function pcf.

The argument x can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Thomas point process to x, by finding the parameters of the Thomas model
which give the closest match between the theoretical pair correlation function of the Thomas pro-
cess and the observed pair correlation function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity \(\kappa \), and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean \(\mu \),
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation \(\sigma \) which is equal to the parameter scale.
The named vector of starting values can use either sigma2 \((\sigma^2)\) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Thomas process is

\[
g(r) = 1 + \frac{1}{4\pi \kappa \sigma^2} \exp(-\frac{r^2}{4\sigma^2}).
\]
The theoretical intensity of the Thomas process is $\lambda = \kappa \mu$.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters κ and σ^2. Then the remaining parameter μ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the intensity λ cannot be estimated, and the parameter μ will be returned as NA.

The remaining arguments $r_{\text{min}}, r_{\text{max}}, q, p$ control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function optim. For example, to constrain the parameter values to a certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments lower and upper to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

- par Vector of fitted parameter values.
- fit Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also

thomas.estK, mincontrast, pcf, rThomas to simulate the fitted model.
tile.areas

Compute Areas of Tiles in a Tessellation

Description

Computes the area of each tile in a tessellation.

Usage

tile.areas(x)

Arguments

x A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger spatial region. See tess.

This command computes the area of each of the tiles that make up the tessellation x. The result is a numeric vector in the same order as the tiles would be listed by tiles(x).

Value

A numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, tiles

Examples

A <- tess(xgrid=0:2, ygrid=0:2)
tile.areas(A)
v <- as.im(function(x,y){factor(round(x^2 + y^2))}, W=owin())
E <- tess(image=v)
tile.areas(E)
Names of Tiles in a Tessellation

Description

Extract or Change the Names of the Tiles in a Tessellation.

Usage

```r
tilenames(x)
tilenames(x) <- value
```

Arguments

- `x`: A tessellation (object of class "tess").
- `value`: Character vector giving new names for the tiles.

Details

These functions extract or change the names of the tiles that make up the tessellation `x`.

If the tessellation is a regular grid, the tile names cannot be changed.

Value

`tilenames` returns a character vector.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`tess`, `tiles`

Examples

```r
D <- dirichlet(runifpoint(10))
tilenames(D)
tilenames(D) <- paste("Cell", 1:10)
```
Extract List of Tiles in a Tessellation

Description
Extracts a list of the tiles that make up a tessellation.

Usage
tiles(x)

Arguments
x A tessellation (object of class "tess").

Details
A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger spatial region. See tess.
The tiles that make up the tessellation x are returned in a list.

Value
A list of windows (objects of class "owin").

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also
tess, tilenames, tile.areas

Examples
A <- tess(xgrid=0:2,ygrid=0:2)
tiles(A)
v <- as.im(function(x,y)(factor(round(x^2 + y^2))), W=owin())
E <- tess(image=v)
tiles(E)
timed

Record the Computation Time

Description

Saves the result of a calculation as an object of class "timed" which includes information about the time taken to compute the result. The computation time is printed when the object is printed.

Usage

timed(x, ..., starttime = NULL, timetaken = NULL)

Arguments

- **x**: An expression to be evaluated, or an object that has already been evaluated.
- **starttime**: The time at which the computation is defined to have started. The default is the current time. Ignored if timetaken is given.
- **timetaken**: The length of time taken to perform the computation. The default is the time taken to evaluate x.
- **...**: Ignored.

Details

This is a simple mechanism for recording how long it takes to perform complicated calculations (usually for the purposes of reporting in a publication).

If x is an expression to be evaluated, timed(x) evaluates the expression and measures the time taken to evaluate it. The result is saved as an object of the class "timed". Printing this object displays the computation time.

If x is an object which has already been computed, then the time taken to compute the object can be specified either directly by the argument timetaken, or indirectly by the argument starttime.

- **timetaken** is the duration of time taken to perform the computation. It should be the difference of two clock times returned by proc.time. Typically the user sets begin <- proc.time() before commencing the calculations, then end <- proc.time() after completing the calculations, and then sets timetaken <- end - begin.

- **starttime** is the clock time at which the computation started. It should be a value that was returned by proc.time at some earlier time when the calculations commenced. When timed is called, the computation time will be taken as the difference between the current clock time and starttime. Typically the user sets begin <- proc.time() before commencing the calculations, and when the calculations are completed, the user calls result <- timed(result, starttime=begin).

If the result of evaluating x belongs to other S3 classes, then the result of timed(x, ...) also inherits these classes, and printing the object will display the appropriate information for these classes as well.
Value

An object inheriting the class "timed".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

timed(envelope(cells, nsim=19))

transect.im Pixel Values Along a Transect

Description

Extract the pixel values of a pixel image at each point along a linear transect.

Usage

transect.im(X, ..., from="bottomleft", to="topright",
click=FALSE, add=FALSE)

Arguments

X A pixel image (object of class "im").
... Ignored.
from,to Optional. Start point and end point of the transect. Pairs of \((x, y)\) coordinates in a format acceptable to \texttt{xy.coords}, or keywords "bottom", "left", "top", "right", "bottomleft" etc.

Details

The pixel values of the image \(X\) along a line segment will be extracted. The result is a function table ("fv" object) which can be plotted directly.

If \texttt{click=TRUE}, then the user is prompted to click two points on the plot of \(X\). These endpoints define the transect.

Otherwise, the transect is defined by the endpoints \texttt{from} and \texttt{to}. The default is a diagonal transect from bottom left to top right of the frame.
Value

An object of class "fv" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im

Examples

z <- density(redwood)
plot(transect.im(z))
Not run:
plot(transect.im(z, click=TRUE))
End(Not run)

trim.rectangle

Cut margins from rectangle

Description

Trims a margin from a rectangle.

Usage

trim.rectangle(W, xmargin=0, ymargin=xmargin)

Arguments

W
xmargin
ymargin

A window (object of class "owin"). Must be of type "rectangle".

Width of horizontal margin to be trimmed. A single nonnegative number, or a vector of length 2 indicating margins of unequal width at left and right.

Height of vertical margin to be trimmed. A single nonnegative number, or a vector of length 2 indicating margins of unequal width at bottom and top.

Details

This is a simple convenience function to trim off a margin of specified width and height from each side of a rectangular window. Unequal margins can also be trimmed.

Value

Another object of class "owin" representing the window after margins are trimmed.
Description

An object describing the family of all Gibbs point processes with interaction order equal to 3.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the interaction structure of Gibbs point processes which have infinite order of interaction, such as the triplet interaction process Triplets.

Anyway, triplet.family is an object of class "isf" containing a function triplet.family$eval for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

Triplets to create the triplet interaction process structure.

Other families: pairwise.family, pairsat.family, inorder.family, ord.family.

Triplets
The Triplet Point Process Model

Description

Creates an instance of Geyer’s triplet interaction point process model which can then be fitted to point pattern data.

Usage

`Triplets(r)`

Arguments

- `r` The interaction radius of the Triplets process

Details

The (stationary) Geyer triplet process (Geyer, 1999) with interaction radius r and parameters β and γ is the point process in which each point contributes a factor β to the probability density of the point pattern, and each triplet of close points contributes a factor γ to the density. A triplet of close points is a group of 3 points, each pair of which is closer than r units apart.

Thus the probability density is

$$f(x_1, \ldots, x_n) = \alpha \beta^n(x) \gamma^s(x)$$

where x_1, \ldots, x_n represent the points of the pattern, $n(x)$ is the number of points in the pattern, $s(x)$ is the number of unordered triples of points that are closer than r units apart, and α is the normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered” or “inhibitive” pattern.

The nonstationary Triplets process is similar except that the contribution of each individual point x_i is a function $\beta(x_i)$ of location, rather than a constant beta.

The function `ppm()`, which fits point process models to point pattern data, requires an argument of class “interact” describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Triplets process pairwise interaction is yielded by the function `Triplets()`. See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an exponential family. The canonical parameters $\log(\beta)$ and $\log(\gamma)$ are estimated by `ppm()`, not fixed in `Triplets()`.
A third order summary statistic of a spatial point pattern. Computes the third order summary statistic $T(r)$ of a spatial point pattern.

Usage

```r
Tstat(X, ..., r = NULL, rmax = NULL,
      correction = c("border", "translate"), ratio = FALSE, verbose=TRUE)
```
Arguments

X
The observed point pattern, from which an estimate of $T(r)$ will be computed. An object of class "ppp", or data in any format acceptable to \texttt{as.ppp()}.

...
Ignored.

r
Optional. Vector of values for the argument r at which $T(r)$ should be evaluated. Users are advised \texttt{not} to specify this argument; there is a sensible default.

rmax
Optional. Numeric. The maximum value of r for which $T(r)$ should be estimated.

correction
Optional. A character vector containing any selection of the options "none", "border", "bord.modif", "translate", "translation", or "best". It specifies the edge correction(s) to be applied.

ratio
Logical. If \texttt{TRUE}, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

verbose
Logical. If \texttt{TRUE}, an estimate of the computation time is printed.

Details

This command calculates the third-order summary statistic $T(r)$ for a spatial point patterns, defined by Schladitz and Baddeley (2000).

The definition of $T(r)$ is similar to the definition of Ripley’s K function $K(r)$, except that $K(r)$ counts pairs of points while $T(r)$ counts triples of points. Essentially $T(r)$ is a rescaled cumulative distribution function of the diameters of triangles in the point pattern. The diameter of a triangle is the length of its longest side.

Value

An object of class "fv", see \texttt{fv.object}, which can be plotted directly using \texttt{plot.fv}.

Computation time

If the number of points is large, the algorithm can take a very long time to inspect all possible triangles. A rough estimate of the total computation time will be printed at the beginning of the calculation. If this estimate seems very large, stop the calculation using the user interrupt signal, and call \texttt{Tstat} again, using \texttt{rmax} to restrict the range of r values, thus reducing the number of triangles to be inspected.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}

References

See Also

\texttt{Kest}
tweak.colourmap

Examples

plot(Tstat(redwood))

tweak.colourmap

Change Colour Values in a Colour Map

Description

Assign new colour values to some of the entries in a colour map.

Usage

tweak.colourmap(m, col, ..., inputs=NULL, range=NULL)

Arguments

m
 A colour map (object of class "colourmap").
inputs
 Input values to the colour map, to be assigned new colours. Incompatible with range.
range
 Numeric vector of length 2 specifying a range of numerical values which should be assigned a new colour. Incompatible with inputs.
col
 Replacement colours for the specified inputs or the specified range of values.
...
 Other arguments are ignored.

Details

This function changes the colour map m by assigning new colours to each of the input values specified by inputs, or by assigning a single new colour to the range of input values specified by range. The modified colour map is returned.

Value

Another colour map (object of class "colourmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

colourmap, interp.colourmap, colourtools.

Examples

c <- colourmap(rainbow(32), range=c(0,1))
plot(tweak.colourmap(c, inputs=c(0.5, 0.6), "white"))
plot(tweak.colourmap(c, range=c(0.5,0.6), "white"))
union.quad

Description

Combines the data and dummy points of a quadrature scheme into a single point pattern.

Usage

union.quad(Q)

Arguments

Q A quadrature scheme (an object of class "quad").

Details

The argument Q should be a quadrature scheme (an object of class "quad", see quad.object for details).

This function combines the data and dummy points of Q into a single point pattern. If either the data or the dummy points are marked, the result is a marked point pattern.

The function as.ppp will perform the same task.

Value

A point pattern (of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, as.ppp

Examples

data(simdat)
Q <- quadscheme(simdat, default.dummy(simdat))
U <- union.quad(Q)
Not run: plot(U)
equivalent:
U <- as.ppp(Q)
Description

Removes any points that are identical to other points in a spatial point pattern.

Usage

```r
## S3 method for class 'ppp'
unique(x, ..., warn=FALSE)
```

```r
## S3 method for class 'ppx'
unique(x, ..., warn=FALSE)
```

Arguments

- `x`: A spatial point pattern (object of class "ppp" or "ppx").
- `...`: Arguments passed to `duplicated.ppp` or `duplicated.data.frame`.
- `warn`: Logical. If TRUE, issue a warning message if any duplicated points were found.

Details

These are methods for the generic function `unique` for point pattern datasets (of class "ppp", see `ppp.object`, or class "ppx").

This function removes duplicate points in `x`, and returns a point pattern.

Two points in a point pattern are deemed to be identical if their `x,y` coordinates are the same, and their marks are the same (if they carry marks). This is the default rule: see `duplicated.ppp` for other options.

Value

Another point pattern object.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`ppp.object`, `duplicated.ppp`, `multiplicity.ppp`

Examples

```r
X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
unique(X)
unique(X, rule="deldir")
```
Description

Inspect or change the name of the unit of length in a spatial dataset.

Usage

```r
unitname(x)
## S3 method for class 'im'
unitname(x)
## S3 method for class 'kppm'
unitname(x)
## S3 method for class 'minconfit'
unitname(x)
## S3 method for class 'owin'
unitname(x)
## S3 method for class 'ppm'
unitname(x)
## S3 method for class 'ppp'
unitname(x)
## S3 method for class 'psp'
unitname(x)
## S3 method for class 'quad'
unitname(x)
## S3 method for class 'slrm'
unitname(x)
unitname(x) <- value
## S3 replacement method for class 'im'
unitname(x) <- value
## S3 replacement method for class 'kppm'
unitname(x) <- value
## S3 replacement method for class 'minconfit'
unitname(x) <- value
## S3 replacement method for class 'owin'
unitname(x) <- value
## S3 replacement method for class 'ppm'
unitname(x) <- value
## S3 replacement method for class 'ppp'
unitname(x) <- value
## S3 replacement method for class 'psp'
unitname(x) <- value
## S3 replacement method for class 'quad'
unitname(x) <- value
## S3 replacement method for class 'slrm'
unitname(x) <- value
```
Arguments

- **x**: A spatial dataset. Either a point pattern (object of class "ppp"), a line segment pattern (object of class "psp"), a window (object of class "owin"), a pixel image (object of class "im"), a quadrature scheme (object of class "quad"), or a fitted point process model (object of class "ppm" or "kppm" or "slrm" or "minconfit").

- **value**: Name of the unit of length. See Details.

Details

Spatial datasets in the **spatstat** package may include the name of the unit of length. This name is used when printing or plotting the dataset, and in some other applications.

`unitname(x)` extracts this name, and `unitname(x) <- value` sets the name to `value`.

A valid name is either

- a single character string
- a vector of two character strings giving the singular and plural forms of the unit name
- a list of length 3, containing two character strings giving the singular and plural forms of the basic unit, and a number specifying the multiple of this unit.

Note that re-setting the name of the unit of length does not affect the numerical values in `x`. It changes only the string containing the name of the unit of length. To rescale the numerical values, use `rescale`.

Value

The return value of `unitname` is an object of class "units" containing the name of the unit of length in `x`. There are methods for print and summary.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `rescale`
- `owin`
- `ppp`

Examples

```r
X <- runifpoint(20)

# if the unit of length is 1 metre:
unitname(X) <- c("metre", "metres")

# if the unit of length is 6 inches:
unitname(X) <- list("inch", "inches", 6)
```
unmark

Remove Marks

Description

Remove the mark information from a spatial dataset.

Usage

unmark(X)
S3 method for class 'ppp'
unmark(X)
S3 method for class 'splitppp'
unmark(X)
S3 method for class 'psp'
unmark(X)
S3 method for class 'ppx'
unmark(X)

Arguments

X A point pattern (object of class "ppp"), a split point pattern (object of class "splitppp"), a line segment pattern (object of class "psp") or a multidimensional space-time point pattern (object of class "ppx").

Details

A 'mark' is a value attached to each point in a spatial point pattern, or attached to each line segment in a line segment pattern, etc.

The function unmark is a simple way to remove the marks from such a dataset.

Value

An object of the same class as X with any mark information deleted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, psp.object
Examples

```r
data(lansing)
hicks <- lansing[lansing$marks == "hickory", ]
## Not run:
plot(hicks)  # still a marked point pattern, but only 1 value of marks
plot(unmark(hicks))  # unmarked
## End(Not run)
```

unnormdensity Weighted kernel smoother

Description

An unnormalised version of kernel density estimation where the weights are not required to sum to 1. The weights may be positive, negative or zero.

Usage

```r
unnormdensity(x, ..., weights = NULL)
```

Arguments

- **x**: Numeric vector of data
- **...**: Arguments passed to `density.default`. Arguments must be named.
- **weights**: Optional numeric vector of weights for the data.

Details

This is an alternative to the standard R kernel density estimation function `density.default`. The standard `density.default` requires the weights to be nonnegative numbers that add up to 1, and returns a probability density (a function that integrates to 1).

This function `unnormdensity` does not impose any requirement on the weights except that they be finite. Individual weights may be positive, negative or zero. The result is a function that does not necessarily integrate to 1 and may be negative. The result is the convolution of the kernel k with the weighted data,

$$f(x) = \sum_{i} w_i k(x - x_i)$$

where x_i are the data points and w_i are the weights.

The algorithm first selects the kernel bandwidth by applying `density.default` to the data x with normalised, positive weight vector $w = \text{abs}(\text{weights})/\text{sum}(\text{abs}(\text{weights}))$ and extracting the selected bandwidth. Then the result is computed by applying `density.default` to x twice using the normalised positive and negative parts of the weights.

Note that the arguments `...` must be passed by name, i.e. in the form (name=value). Arguments that do not match an argument of `density.default` will be ignored silently.
Value

Object of class "density" as described in density.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

density.default

Examples

d <- unnormdensity(c(1:3, weights=c(-1,0,1)))
if(interactive()) plot(d)

update.kppm

Update a Fitted Cluster Point Process Model

Description

update method for class "kppm".

Usage

S3 method for class 'kppm'
update(object, trend = ~1, ..., clusters = NULL)

Arguments

object

Fitted cluster point process model. An object of class "kppm", obtained from kppm.
trend

A formula without a left hand side, determining the form of the intensity of the model.
...

Other arguments passed to kppm.
clusters

The type of cluster mechanism. A character string. See kppm.

Details

object should be a fitted cluster point process model, obtained from the model-fitting function kppm. The model will be updated according to the new arguments provided.

The argument trend determines the formula for the intensity in the model. It should be an R formula without a left hand side. It may include the symbols . and + or - to specify addition or deletion of terms in the current model formula, as shown in the Examples below.

The model is refitted using kppm.
Value

Another fitted cluster point process model (object of class "kppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, methods.kppm, vcov.kppm

Examples

data(redwood)
fit <- kppm(redwood, ~1, "Thomas")
fitx <- update(fit, ~ . + x)
fitM <- update(fit, clusters="MatClust")

update.ppm Update a Fitted Point Process Model

Description

update method for class "ppm".

Usage

S3 method for class 'ppm'
update(object, ..., fixdummy=TRUE, use.internal=NULL,
 envir=environment(terms(object)))

Arguments

 object An existing fitted point process model, typically produced by ppm.
 ... Arguments to be updated in the new call to ppm.
 fixdummy Logical flag indicating whether the quadrature scheme for the call to ppm should use the same set of dummy points as that in the original call.
 use.internal Optional. Logical flag indicating whether the model should be refitted using the internally saved data (use.internal=TRUE) or by re-evaluating these data in the current frame (use.internal=FALSE).
 envir Environment in which to re-evaluate the call to ppm.
Details

This is a method for the generic function `update` for the class "ppm". An object of class "ppm" describes a fitted point process model. See `ppm.object` for details of this class.

`update.ppm` will modify the point process model specified by `object` according to the new arguments given, then re-fit it. The actual re-fitting is performed by the model-fitting function `ppm`.

If you are comparing several model fits to the same data, or fits of the same model to different data, it is strongly advisable to use `update.ppm` rather than trying to fit them by hand. This is because `update.ppm` re-fits the model in a way which is comparable to the original fit.

The arguments ... are matched to the formal arguments of `ppm` as follows.

First, all the named arguments in ... are matched with the formal arguments of `ppm`. Use `name=NULL` to remove the argument name from the call.

Second, any unnamed arguments in ... are matched with formal arguments of `ppm` if the matching is obvious from the class of the object. Thus ... may contain

- exactly one argument of class "ppp" or "quad", which will be interpreted as the named argument `Q`;
- exactly one argument of class "formula", which will be interpreted as the named argument `trend` (or as specifying a change to the trend formula);
- exactly one argument of class "interact", which will be interpreted as the named argument `interaction`;
- exactly one argument of class "data.frame", which will be interpreted as the named argument `covariates`.

The `trend` argument can be a formula that specifies a change to the current trend formula. For example, the formula `~ . + Z` specifies that the additional covariate `Z` will be added to the right hand side of the trend formula in the existing object.

The argument `fixdummy=TRUE` ensures comparability of the objects before and after updating. When `fixdummy=FALSE`, calling `update.ppm` is exactly the same as calling `ppm` with the updated arguments. However, the original and updated models are not strictly comparable (for example, their pseudolikelihoods are not strictly comparable) unless they used the same set of dummy points for the quadrature scheme. Setting `fixdummy=TRUE` ensures that the re-fitting will be performed using the same set of dummy points. This is highly recommended.

The value of `use.internal` determines where to find data to re-evaluate the model (data for the arguments mentioned in the original call to `ppm` that are not overwritten by arguments to `update.ppm`).

If `use.internal=FALSE`, then arguments to `ppm` are re-evaluated in the frame where you call `update.ppm`. This is like the behaviour of the other methods for `update`. This means that if you have changed any of the objects referred to in the call, these changes will be taken into account. Also if the original call to `ppm` included any calls to random number generators, these calls will be recomputed, so that you will get a different outcome of the random numbers.

If `use.internal=TRUE`, then arguments to `ppm` are extracted from internal data stored inside the current fitted model object. This is useful if you don’t want to re-evaluate anything. It is also necessary if if object has been restored from a dump file using `load` or `source`. In such cases, we have lost the environment in which object was fitted, and data cannot be re-evaluated.

By default, if `use.internal` is missing, `update.ppm` will re-evaluate the arguments if this is possible, and use internal data if not.
Value

Another fitted point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(nztrees)
data(cells)

fit the stationary Poisson process
fit <- ppm(nztrees, ~ 1)

fit a nonstationary Poisson process
fitP <- update(fit, trend=~x)
fitP <- update(fit, ~x)

change the trend formula: add another term to the trend
fitPxy <- update(fitP, ~ . + y)
change the trend formula: remove the x variable
fitPy <- update(fitPxy, ~ . - x)

fit a stationary Strauss process
fitS <- update(fit, interaction= Strauss(13))
fitS <- update(fit, Strauss(13))

refit using a different edge correction
fitS <- update(fitS, correction="isotropic")

re-fit the model to a subset
of the original point pattern
nzw <- owin(c(0,148),c(0,95))
nzsub <- nztrees[nzw]
fut <- update(fitS, Q=nzsub)
fut <- update(fitS, nzsub)

WARNING: the point pattern argument is called 'Q'
ranfit <- ppm(rpoispp(42), ~1, Poisson())
ranfit
different random data!
update(ranfit)
the original data
update(ranfit, use.internal=TRUE)
Description

update method for class "rmhcontrol".

Usage

```r
## S3 method for class 'rmhcontrol'
update(object, ...)
```

Arguments

- `object`: Object of class "rmhcontrol" containing control parameters for a Metropolis-Hastings algorithm.
- `...`: Arguments to be updated in the new call to `rmhcontrol`.

Details

This is a method for the generic function `update` for the class "rmhcontrol". An object of class "rmhcontrol" describes a set of control parameters for the Metropolis-Hastings simulation algorithm. See `rmhcontrol`.

`update.rmhcontrol` will modify the parameters specified by `object` according to the new arguments given.

Value

Another object of class "rmhcontrol".

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

```r
a <- rmhcontrol(expand=1)
update(a, expand=2)
```
update.symbolmap

Update a Graphics Symbol Map.

Description

This command updates the object using the arguments given.

Usage

```r
## S3 method for class 'symbolmap'
update(object, ...)
```

Arguments

- `object`: Graphics symbol map (object of class "symbolmap").
- `...`: Additional or replacement arguments to `symbolmap`.

Details

This is a method for the generic function `update` for the class "symbolmap" of graphics symbol maps. It updates the object using the parameters given in the extra arguments.

The extra arguments must be given in the form `name=value` and must be recognisable to `symbolmap`. They override any parameters of the same name in `object`.

Value

Another object of class "symbolmap".

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak.

See Also

- `symbolmap` to create a graphics symbol map.

Examples

```r
g <- symbolmap(size=function(x) x/50)
g
update(g, range=c(0,1))
update(g, size=42)
update(g, shape="squares", range=c(0,1))
```
Urkiola Woods Point Pattern

Description
Locations of birch (Betula celtiberica) and oak (Quercus robur) trees in a secondary wood in Urkiola Natural Park (Basque country, northern Spain). They are part of a more extensive dataset collected and analysed by Laskurain (2008). The coordinates of the trees are given in meters.

Usage
data(urkiola)

Format
An object of class "ppp" representing the point pattern of tree locations. Entries include

x Cartesian x-coordinate of tree
y Cartesian y-coordinate of tree
marks factor indicating species of each tree

The levels of marks are birch and oak. See ppp.object for details of the format of a ppp object.

Source
N.A. Laskurain. Kindly formatted and communicated by M. de la Cruz Rot

References

valid.ppm
Check Whether Point Process Model is Valid

Description
Determines whether a fitted point process model satisfies the integrability conditions for existence of the point process.

Usage
valid.ppm(object, warn=TRUE)
Arguments

object Fitted point process model (object of class "ppm").

warn Logical value indicating whether to issue a warning if the validity of the model cannot be checked (due to unavailability of the required code).

Details

The model-fitting function \texttt{ppm} fits Gibbs point process models to point pattern data. By default, \texttt{ppm} does not check whether the fitted model actually exists as a point process. This checking is done by \texttt{valid.ppm}.

Unlike a regression model, which is well-defined for any values of the fitted regression coefficients, a Gibbs point process model is only well-defined if the fitted interaction parameters satisfy some constraints. A famous example is the Strauss process (see \texttt{Strauss}) which exists only when the interaction parameter γ is less than or equal to 1. For values $\gamma > 1$, the probability density is not integrable and the process does not exist (and cannot be simulated).

By default, \texttt{ppm} does not enforce the constraint that a fitted Strauss process (for example) must satisfy $\gamma \leq 1$. This is because a fitted parameter value of $\gamma > 1$ could be useful information for data analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model should be fitted.

The function \texttt{valid.ppm} checks whether the fitted model object specifies a well-defined point process. It returns \texttt{TRUE} if the model is well-defined.

Another possible reason for invalid models is that the data may not be adequate for estimation of the model parameters. In this case, some of the fitted coefficients could be \texttt{NA} or infinite values. If this happens then \texttt{valid.ppm} returns \texttt{FALSE}.

Use the function \texttt{project.ppm} to force the fitted model to be valid.

Value

A logical value, or \texttt{NA}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

\texttt{ppm}, \texttt{project.ppm}

Examples

\begin{verbatim}
fit1 <- ppm(cells, ~1, Strauss(0.1))
valid.ppm(fit1)
fit2 <- ppm(redwood, ~1, Strauss(0.1))
valid.ppm(fit2)
\end{verbatim}
Description

This command estimates the variance of any summary statistic (such as the K-function) by spatial subdivision of a single point pattern dataset.

Usage

\[
\text{varblock}(X, \text{fun} = \text{Kest}, \\
\quad \text{blocks} = \text{quadrats}(X, nx = nx, ny = ny), \\
\quad \ldots, \\
\quad nx = 3, ny = nx, \\
\quad \text{confidence}=0.95)
\]

Arguments

- **x**: Point pattern dataset (object of class "ppp").
- **fun**: Function that computes the summary statistic.
- **blocks**: Optional. A tessellation that specifies the division of the space into blocks.
- **\ldots**: Arguments passed to **fun**.
- **nx, ny**: Optional. Number of rectangular blocks in the x and y directions. Incompatible with **blocks**.
- **confidence**: Confidence level, as a fraction between 0 and 1.

Details

This command computes an estimate of the variance of the summary statistic **fun**(X) from a single point pattern dataset X using a subdivision method. It can be used to plot confidence intervals for the true value of a summary function such as the K-function.

The window containing X is divided into pieces by an nx * ny array of rectangles (or is divided into pieces of more general shape, according to the argument **blocks** if it is present). The summary statistic **fun** is applied to each of the corresponding sub-patterns of X as described below. Then the pointwise sample mean, sample variance and sample standard deviation of these summary statistics are computed. Then pointwise confidence intervals are computed, for the specified level of confidence, defaulting to 95 percent.

The variance is estimated by equation (4.21) of Diggle (2003, page 52). This assumes that the point pattern X is stationary. For further details see Diggle (2003, pp 52–53).

The estimate of the summary statistic from each block is computed as follows. For most functions **fun**, the estimate from block B is computed by finding the subset of X consisting of points that fall inside B, and applying **fun** to these points, by calling **fun**(X[B]).

However if **fun** is the K-function **Kest**, or any function which has an argument called **domain**, the estimate for each block B is computed by calling **fun**(X, domain=B). In the case of the K-function this means that the estimate from block B is computed by counting pairs of points in which the first point lies in B, while the second point may lie anywhere.
Value

A function value table (object of class "fv") that contains the result of \(\text{fun}(X)\) as well as the sample mean, sample variance and sample standard deviation of the block estimates, together with the upper and lower two-standard-deviation confidence limits.

Errors

If the blocks are too small, there may be insufficient data in some blocks, and the function \(\text{fun}\) may report an error. If this happens, you need to take larger blocks.

An error message about incompatibility may occur. The different function estimates may be incompatible in some cases, for example, because they use different default edge corrections (typically because the tiles of the tessellation are not the same kind of geometric object as the window of \(X\), or because the default edge correction depends on the number of points). To prevent this, specify the choice of edge correction, in the \texttt{correction} argument to \(\text{fun}\), if it has one.

An alternative to \texttt{varblock} is Loh's mark bootstrap \texttt{lohboot}.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

References

See Also

tess, quadrats for basic manipulation.
lohboot for an alternative bootstrap technique.

Examples

\[
v \leftarrow \text{varblock}(amacrine, Kest, nx=4, ny=2)
v \leftarrow \text{varblock}(amacrine, Kcross, nx=4, ny=2)
\]
if(interactive()) plot(v, iso ~ r, shade=c("hiiso", "loiso"))

vargamma.estK Fit the Neyman-Scott Cluster Point Process with Variance Gamma kernel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset by the Method of Minimum Contrast.
Usage

vargamma.estK(X, startpar=c(kappa=1, scale=1), nu = -1/4, lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

x
Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.

startpar
Vector of starting values for the parameters of the model.

nu
Numerical value controlling the shape of the tail of the clusters. A number greater than -1/2.

lambda
Optional. An estimate of the intensity of the point process.

q, p
Optional. Exponents for the contrast criterion.

rmin, rmax
Optional. The interval of \(r \) values for the contrast criterion.

... Optional arguments passed to \texttt{optim} to control the optimisation algorithm. See Details.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel (Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the \(K \) function.

The argument \(x \) can be either

\textbf{a point pattern:} An object of class "ppp" representing a point pattern dataset. The \(K \) function of the point pattern will be computed using \texttt{Kest}, and the method of minimum contrast will be applied to this.

\textbf{a summary statistic:} An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the \(K \) function, and this object should have been obtained by a call to \texttt{Kest} or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to \(x \), by finding the parameters of the model which give the closest match between the theoretical \(K \) function of the model and the observed \(K \) function. For a more detailed explanation of the Method of Minimum Contrast, see \texttt{mincontrast}.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity \(\kappa \), and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean \(\mu \), and the locations of the offspring points of one parent have a common distribution described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index \(\nu \). This is the parameter \(\nu' = \alpha/2 - 1 \) appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of spatstat instead of specifying \(\nu \) (called \texttt{nu.ker} at that time) the user could specify \texttt{nu.pcf} which is the parameter \(\nu = \alpha - 1 \) appearing in equation (13), page 127 of Jalilian et al (2013). These are related by \(\text{nu.pcf} = 2 * \text{nu.ker} + 1 \) and \(\text{nu.ker} = (\text{nu.pcf} - 1)/2 \). This syntax is
still supported but not recommended for consistency across the package. In that case exactly one of
nu.ker or nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity \(\lambda \). Otherwise, if \(X \) is a point pattern, then \(\lambda \) will be estimated from \(X \). If \(X \) is a summary statistic and lambda is missing, then the intensity \(\lambda \) cannot be estimated, and the parameter \(\mu \) will be returned as NA.

The remaining arguments \(r_{\text{min}}, r_{\text{max}}, q, p \) control the method of minimum contrast; see \texttt{mincontrast}.

The corresponding model can be simulated using \texttt{rVarGamma}.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in \texttt{rVarGamma}.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the function \texttt{kppm} and the fitted models can be simulated using \texttt{simulate.kppm}.

The optimisation algorithm can be controlled through the additional arguments "\ldots" which are passed to the optimisation function \texttt{optim}. For example, to constrain the parameter values to a certain range, use the argument \texttt{method}="L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments \texttt{lower} and \texttt{upper} to specify (vectors of) minimum and maximum values for each parameter.

\section*{Value}

An object of class "\texttt{minconfit}". There are methods for printing and plotting this object. It contains the following main components:

- \texttt{par} Vector of fitted parameter values.
- \texttt{fit} Function value table (object of class "\texttt{fv}") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

\section*{Author(s)}

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for \texttt{spatstat} by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
http://www.maths.uwa.edu.au/~adrian/

\section*{References}

\section*{See Also}

\texttt{kppm,vargamma.estpcf,lgcp.estK,thomas.estK,cauchy.estK,mincontrast,Kest,Kmodel.

\texttt{rVarGamma} to simulate the model.
Examples

```r
if(interactive()) {
  u <- vargamma.estpcf(redwood)
  plot(u)
}
```

\[\text{vargamma.estpcf} \]

Fit the Neyman-Scott Cluster Point Process with Variance Gamma kernel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

Usage

```r
vargamma.estpcf(x, startpar=c(kappa=1, scale=1), nu = -1/4, lambda=NULL,
                 q = 1/4, p = 2, rmin = NULL, rmax = NULL,
                 ..., pcfargs = list())
```

Arguments

- **x**: Data to which the model will be fitted. Either a point pattern or a summary statistic. See Details.
- **startpar**: Vector of starting values for the parameters of the model.
- **nu**: Numerical value controlling the shape of the tail of the clusters. A number greater than \(-1/2\).
- **lambda**: Optional. An estimate of the intensity of the point process.
- **q, p**: Optional. Exponents for the contrast criterion.
- **rmin, rmax**: Optional. The interval of \(r\) values for the contrast criterion.
- **...**: Optional arguments passed to `optim` to control the optimisation algorithm. See Details.
- **pcfargs**: Optional list containing arguments passed to `pcf.ppp` to control the smoothing in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel (Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument `x` can be either
a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation function of the point pattern will be computed using pcf, and the method of minimum contrast will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the pair correlation function, and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by finding the parameters of the model which give the closest match between the theoretical pair correlation function of the model and the observed pair correlation function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity κ, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean μ, and the locations of the offspring points of one parent have a common distribution described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index ν. This is the parameter $\nu' = \alpha/2 - 1$ appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of spatstat instead of specifying ν (called ν_ker at that time) the user could specify ν_pcf which is the parameter $\nu = \alpha - 1$ appearing in equation (13), page 127 of Jalilian et al (2013). These are related by $\nu_\text{pcf} = 2 * \nu_\text{ker} + 1$ and $\nu_\text{ker} = (\nu_\text{pcf} - 1)/2$. This syntax is still supported but not recommended for consistency across the package. In that case exactly one of ν_ker or ν_pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ. Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the intensity λ cannot be estimated, and the parameter μ will be returned as NA.

The remaining arguments rmin, rmax, q, p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function optim. For example, to constrain the parameter values to a certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments lower and upper to specify (vectors of) minimum and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:

par Vector of fitted parameter values.
Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

Author(s)
Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/

References

See Also
kppm, vargamma.estK, lgcpp.estpcf, thomas.estpcf, cauchy.estpcf, mincontrast.pcf, pcfmodel.
rvargamma to simulate the model.

Examples
```r
u <- vargamma.estpcf(redwood)
u
plot(u, legendpos="topright")
```

S3 method for class 'kppm'
vcov(object, ..., what=c("vcov", "corr", "fisher", "internals"),
fast = NULL, rmax = NULL, eps.rmax = 0.01,
verbose = TRUE)
vcov.kppm

Arguments

- **object**: A fitted cluster point process model (an object of class "kppm").
- **what**: Character string (partially-matched) that specifies what matrix is returned. Options are "vcov" for the variance-covariance matrix, "corr" for the correlation matrix, and "fisher" for the Fisher information matrix.
- **fast**: Logical specifying whether tapering (using sparse matrices from Matrix) should be used to speed up calculations. Warning: This is expected to underestimate the true asymptotic variances/covariances.
- **rmax**: Optional. The dependence range. Not usually specified by the user. Only used when fast=TRUE.
- **eps.rmax**: Numeric. A small positive number which is used to determine rmax from the tail behaviour of the pair correlation function when fast option (fast=TRUE) is used. Namely rmax is the smallest value of r at which \((g(r) - 1)/(g(0) - 1)\) falls below eps.rmax. Only used when fast=TRUE. Ignored if rmax is provided.
- **verbose**: Logical value indicating whether to print progress reports during very long calculations.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical (regression) parameters in the cluster point process model **object**. It is a method for the generic function **vcov**.

The result is an \(n \times n\) matrix where \(n = \text{length(coef(model))}\). To calculate a confidence interval for a regression parameter, use **confint** as shown in the examples.

Value

A square matrix.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Ported to **spatstat** by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> and Ege Rubak.

References

See Also

kppm, vcov, vcov.ppm
Examples

```r
data(redwood)
fit <- kppm(redwood ~ x + y)
vcov(fit)
vcov(fit, what="corr")

# confidence interval
confint(fit)
# cross-check the confidence interval by hand:
sd <- sqrt(diag(vcov(fit)))
t(coef(fit) + 1.96 * outer(sd, c(lower=-1, upper=1)))
```

vcov.mppm

Calculate Variance-Covariance Matrix for Fitted Multiple Point Process Model

Description

Given a fitted multiple point process model, calculate the variance-covariance matrix of the parameter estimates.

Usage

```r
## S3 method for class 'mppm'
vcov(object, ..., what="vcov", err="fatal")
```

Arguments

- `object` A multiple point process model (object of class "mppm").
- `...` Ignored.
- `what` Character string indicating which quantity should be calculated. Either "vcov" for the variance-covariance matrix, "corr" for the correlation matrix, or "fisher" for the Fisher information matrix.
- `err` Character string indicating what action to take if an error occurs. Either "fatal", "warn" or "null".

Details

This is a method for the generic function `vcov`.

The argument `object` should be a fitted multiple point process model (object of class "mppm") generated by `mppm`. The model must be a Poisson point process.

The variance-covariance matrix of the parameter estimates is computed using asymptotic theory for maximum likelihood.

If `what="vcov"` (the default), the variance-covariance matrix is returned. If `what="corr"`, the variance-covariance matrix is normalised to yield a correlation matrix, and this is returned. If `what="fisher"`, the Fisher information matrix is returned instead.
In all three cases, the rows and columns of the matrix correspond to the parameters (coefficients) in
the same order as in coef(model).

These calculations are not available if the model is not Poisson, or if it was computed using gam. In
such cases, the argument err determines what will happen. If err="fatal" an error will occur. If
err="warn" a warning will be issued and NA will be returned. If err="null", no warning is issued,
but NULL is returned.

Value

A numeric matrix (or NA or NULL).

See Also

vcov, mppm

Examples

fit <- mppm(Wat ~x, data=hyperframe(Wat=waterstriders))
vcov(fit)

vcov.ppm

Variance-Covariance Matrix for a Fitted Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted point process
model.

Usage

S3 method for class 'ppm'
vcov(object, ..., what = "vcov", verbose = TRUE,
 fine=FALSE,
 gam.action=c("warn", "fatal", "silent"),
 matrix.action=c("warn", "fatal", "silent"),
 log1.action=c("warn", "fatal", "silent"),
 hessian=FALSE)

Arguments

object A fitted point process model (an object of class "ppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Options are
"vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

fine Logical value indicating whether to use a quick estimate (fine=FALSE, the de-
fault) or a slower, more accurate estimate (fine=TRUE).
verbose Logical. If TRUE, a message will be printed if various minor problems are encountered.
gam.action String indicating what to do if object was fitted by gam.
matrix.action String indicating what to do if the matrix is ill-conditioned (so that its inverse cannot be calculated).
logi.action String indicating what to do if object was fitted via the logistic regression approximation using a non-standard dummy point process.
hessian Logical. Use the negative Hessian matrix of the log pseudolikelihood instead of the Fisher information.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical parameters in the point process model object. It is a method for the generic function vcov. object should be an object of class "ppm", typically produced by ppm.
The canonical parameters of the fitted model object are the quantities returned by coef.ppm(object). The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:
what="vcov" return the variance-covariance matrix of the parameter estimates
what="corr" return the correlation matrix of the parameter estimates
what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to the canonical parameters given by coef.ppm(object). The row and column names of the matrix are also identical to the names in coef.ppm(object).

For models fitted by the Berman-Turner approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the maximum pseudolikelihood (using the default method="mpl" in the call to ppm), the implementation works as follows.

- If the fitted model object is a Poisson process, the calculations are based on standard asymptotic theory for the maximum likelihood estimator (Kutoyants, 1998). The observed Fisher information matrix of the fitted model object is first computed, by summing over the Berman-Turner quadrature points in the fitted model. The asymptotic variance-covariance matrix is calculated as the inverse of the observed Fisher information. The correlation matrix is then obtained by normalising.

- If the fitted model is not a Poisson process (i.e. it is some other Gibbs point process) then the calculations are based on Coeurjolly and Rubak (2012). A consistent estimator of the variance-covariance matrix is computed by summing terms over all pairs of data points. If required, the Fisher information is calculated as the inverse of the variance-covariance matrix.

For models fitted by the Huang-Ogata method (method="ho" in the call to ppm), the implementation uses the Monte Carlo estimate of the Fisher information matrix that was computed when the original model was fitted.

For models fitted by the logistic regression approximation to the maximum pseudolikelihood (method="logi" in the call to ppm), calculations are based on (Baddeley et al., 2013). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If required, the Fisher information is calculated as the inverse of the variance-covariance matrix. In this case the calculations depend on the type of dummy pattern used, and currently only the types "stratrand", "binomial" and "poisson" as generated by `quadscheme.logi` are implemented. For other types the behavior depends on the argument `logi.action`. If `logi.action="fatal"` an error is produced. Otherwise, for types "grid" and "transgrid" the formulas for "stratrand" are used which in many cases should be conservative. For an arbitrary user specified dummy pattern (type "given") the formulas for "poisson" are used which in many cases should be conservative. If `logi.action="warn"` a warning is issued otherwise the calculation proceeds without a warning.

The argument `verbose` makes it possible to suppress some diagnostic messages.

The asymptotic theory is not correct if the model was fitted using `gam` (by calling `ppm` with `use.gam=TRUE`). The argument `gam.action` determines what to do in this case. If `gam.action="fatal"`, an error is generated. If `gam.action="warn"`, a warning is issued and the calculation proceeds using the incorrect theory for the parametric case, which is probably a reasonable approximation in many applications. If `gam.action="silent"`, the calculation proceeds without a warning.

If `hessian=TRUE` then the negative Hessian (second derivative) matrix of the log pseudolikelihood, and its inverse, will be computed. For non-Poisson models, this is not a valid estimate of variance, but is useful for other calculations.

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained using `confint(object)` or `coef(summary(object))`.

Value

A square matrix.

Error messages

An error message that reports `system is computationally singular` indicates that the determinant of the Fisher information matrix was either too large or too small for reliable numerical calculation. This can occur because of numerical overflow or collinearity in the covariates. To check this, rescale the coordinates of the data points and refit the model. See the Examples.

In a Gibbs model, a singular matrix may also occur if the fitted model is a hard core process: this is a feature of the variance estimator.

Author(s)

Original code for Poisson point process was written by Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>. New code for stationary Gibbs point processes was generously contributed by Ege Rubak and Jean-Francois Coeurjolly. New code for generic Gibbs process written by Adrian Baddeley. New code for logistic method contributed by Ege Rubak.

References

See Also

- `vcov` for the generic,
- `ppm` for information about fitted models,
- `confint` for confidence intervals.

Examples

```r
X <- rpoispp(42)
fit <- ppm(X, ~ x + y)
vcov(fit)
vcov(fit, what="Fish")

# example of singular system
data(demopat)
m <- ppm(demopat, ~polynom(x,y,2))
## Not run: try(v <- vcov(m))

## End(Not run)

# rescale x, y coordinates to range [0,1] x [0,1] approximately
demopat <- rescale(demopat, 10000)
m <- ppm(demopat, ~polynom(x,y,2))
v <- vcov(m)

# Gibbs example
fitS <- ppm(swedishpines, ~1, Strauss(9))
coef(fitS)
sqrt(diag(vcov(fitS)))
```

vcov.slrms

Variance-Covariance Matrix for a Fitted Spatial Logistic Regression

Description

Returns the variance-covariance matrix of the estimates of the parameters of a point process model that was fitted by spatial logistic regression.

Usage

```r
## S3 method for class 'slrm'
vcov(object, ...,
     what=c("vcov", "corr", "fisher", "Fisher"))
```
vcov.slrm

Arguments

object A fitted point process model of class "slrm".

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Options are "vcov" for the variance-covariance matrix, "corr" for the correlation matrix, and "fisher" or "Fisher" for the Fisher information matrix.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "slrm", typically produced by slrm. It represents a Poisson point process model fitted by spatial logistic regression.

The canonical parameters of the fitted model object are the quantities returned by coef.slrm(object). The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates
what="corr" return the correlation matrix of the parameter estimates
what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to the canonical parameters given by coef.slrm(object). The row and column names of the matrix are also identical to the names in coef.slrm(object).

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained using confint(object) or coef(summary(object)).

Standard errors for the fitted intensity can be obtained using predict.slrm.

Value

A square matrix.

Error messages

An error message that reports system is computationally singular indicates that the determinant of the Fisher information matrix was either too large or too small for reliable numerical calculation. This can occur because of numerical overflow or collinearity in the covariates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>.

References

vertices

See Also

vcov for the generic,
slrm for information about fitted models,
predict.slrm for other kinds of calculation about the model,
confint for confidence intervals.

Examples

x <- rpoispp(42)
fit <- slrm(x ~ x + y)
vcov(fit)
vcov(fit, what="corr")
vcov(fit, what="f")

vertices Vertices of a Window

Description

Finds the vertices of a window, or similar object.

Usage

vertices(w)

S3 method for class 'owin'
vertices(w)

Arguments

w A window (object of class "owin") or similar object.

Details

This function computes the vertices (‘corners’) of a spatial window or other object.

For vertices.owin, the argument w should be a window (an object of class "owin", see owin.object for details).

If w is a rectangle, the coordinates of the four corner points are returned.

If w is a polygonal window (consisting of one or more polygons), the coordinates of the vertices of all polygons are returned.

If w is a binary mask, then a ‘boundary pixel’ is defined to be a pixel inside the window which has at least one neighbour outside the window. The coordinates of the centres of all boundary pixels are returned.
vesicles

Value

A list with components x and y giving the coordinates of the vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object.

Examples

data(letterR)
vert <- vertices(letterR)

plot(letterR, main="Polygonal vertices")
points(vert)
plot(letterR, main="Boundary pixels")
points(vertices(as.mask(letterR)))

vesicles Vesicles Data

Description

Point pattern of synaptic vesicles observed in rat brain tissue.

Usage

data(vesicles)

Format

The dataset vesicles is a point pattern (object of class "ppp") representing the location of the synaptic vesicles. The window of the point pattern represents the region of presynapse where synaptic vesicles were observed in this study. There is a hole in the window, representing the region occupied by mitochondria, where synaptic vesicles do not occur.

The dataset vesicles.extra is a list with entries

<table>
<thead>
<tr>
<th>presynapse</th>
<th>outer polygonal boundary of presynapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitochondria</td>
<td>polygonal boundary of mitochondria</td>
</tr>
<tr>
<td>mask</td>
<td>binary mask representation of vesicles window</td>
</tr>
<tr>
<td>activezone</td>
<td>line segment pattern representing the active zone.</td>
</tr>
</tbody>
</table>
All coordinates are in nanometres (nm).

Details

As part of a study on the effects of stress on brain function, Khanmohammadi et al (2014) analysed the spatial pattern of synaptic vesicles in 45-nanometre-thick sections of rat brain tissue visualised in transmission electron microscopy.

To investigate the influence of stress, Khanmohammadi et al (2014) study the distribution of the synaptic vesicles in the pre-synaptic neuron in relation to the active zone of the presynaptic membrane. They hypothesize that the synaptic vesicle density is a decreasing function of distance to the active zone.

The boundaries for the active zone, mitochondria, pre- and post synaptic terminals, and the centre of the synaptic vesicles were annotated by hand on the image.

Raw Data

For demonstration and training purposes, the raw data files for this dataset are also provided in the spatstat package installation:

- vesicles.txt: spatial locations of vesicles
- presynapse.txt: vertices of presynapse
- mitochondria.txt: vertices of mitochondria
- vesiclesimage.tif: greyscale microscope image
- vesiclesmask.tif: binary image of mask
- activezone.txt: coordinates of activezone

The files are in the folder rawdata/vesicles in the spatstat installation directory. The precise location of the files can be obtained using system.file, as shown in the examples.

Source

Nicoletta Nava, Mahdieh Khanmohammadi and Jens Randel Nyengaard. Experiment performed by Nicoletta Nava at the Stereology and Electron Microscopy Laboratory, Aarhus University, Denmark. Images were annotated by Mahdieh Khanmohammadi at the Department of Computer Science, University of Copenhagen. Jens Randel Nyengaard provided supervision and guidance, and curated the data.

References

Examples

```r
plot(vesicles)
with(vesicles.extra,
    plot(activezone, add=TRUE, col="red"))
```
volume

Description

Computes the volume of a spatial object such as a three-dimensional box.

Usage

```r
volume(x)
```

Arguments

- **x**
 - An object whose volume will be computed.

Details

This function computes the volume of an object such as a three-dimensional box.

The function `volume` is generic, with methods for the classes "box3" (three-dimensional boxes) and "boxx" (multi-dimensional boxes).

There is also a method for the class "owin" (two-dimensional windows), which is identical to `area.owin`, and a method for the class "linnet" of linear networks, which returns the length of the network.

Value

The numerical value of the volume of the object.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

- `area.owin`
- `volume.box3`
- `volume.boxx`
- `volume.linnet`
waka

Trees in Waka national park

Description

This dataset is a spatial point pattern of trees recorded at Waka National Park, Gabon. See Balinga et al (2006).

The dataset `waka` is a point pattern (object of class "ppp") containing the spatial coordinates of each tree, marked by the tree diameter at breast height `dbh`. The survey region is a 100 by 100 metre square. Coordinates are given in metres, while the `dbh` is in centimetres.

Usage

`data(waka)`

Source

Nicolas Picard

References

Examples

```r
data(waka)
p Plot(waka, marks=0.01)
title(sub="Tree diameters to scale")
p Plot(waka, marks=0.04)
title(sub="Tree diameters 4x scale")
```

waterstriders

Waterstriders data. Three independent replications of a point pattern formed by insects.
Description

The territorial behaviour of an insect group called waterstriders was studied in a series of laboratory experiments by Dr Matti Nummelin (University of Helsinki). The data were analysed in the pioneering PhD thesis of Antti Penttinen (1984).

The dataset `waterstriders` is a list of three point patterns. Each point pattern gives the locations of larvae of the waterstrider *Limnoporus (Gerris) rufoscutellatus* (larval stage V) in a homogeneous area about 48 cm square. The point patterns can be assumed to be independent.

It is known that this species of waterstriders exhibits territorialism at older larvae stages and at the adult stage. Therefore, if any deviation from Complete Spatial Randomness exists in these three point patterns, it is expected to be towards inhibition.

The data were obtained from photographs which were scanned manually. The waterstriders are in a pool which is larger than the picture. A guard area (width about 2.5 cm) has been deleted because it is a source of inhomogeneity to interactions.

Penttinen (1984, chapter 5) fitted a pairwise interaction model with a Strauss/hardcore interaction (see `strausshard`) with hard core radius 1.5 cm and interaction radius 4.5 cm.

Usage

```r
data(waterstriders)
```

Format

`waterstriders` is a list of three point patterns (objects of class "ppp"). It also has class "listof" so that it can be plotted and printed directly. The point pattern coordinates are in centimetres.

Source

Data were collected by Dr. Matti Nummelin (University of Helsinki, Finland). Data kindly provided by Prof. Antti Penttinen, University of Jyväskylä, Finland.

References

whist

Description

Computes the weighted histogram of a set of observations with a given set of weights.

Usage

```r
whist(x, breaks, weights = NULL)
```
Arguments

- **x**: Numeric vector of observed values.
- **breaks**: Vector of breakpoints for the histogram.
- **weights**: Numeric vector of weights for the observed values.

Details

This low-level function computes (but does not plot) the weighted histogram of a vector of observations `x` using a given vector of weights.

The arguments `x` and `weights` should be numeric vectors of equal length. They may include `NA` or infinite values.

The argument `breaks` should be a numeric vector whose entries are strictly increasing. These values define the boundaries between the successive histogram cells. The breaks do not have to span the range of the observations.

There are \(N-1 \) histogram cells, where \(N = \text{length(breaks)} \). An observation \(x[i] \) falls in the \(j \)th cell if \(\text{breaks}[j] \leq x[i] < \text{breaks}[j+1] \) (for \(j < N-1 \)) or \(\text{breaks}[j] \leq x[i] < \text{breaks}[j+1] \) (for \(j = N-1 \)). The weighted histogram value \(h[j] \) for the \(j \)th cell is the sum of \(\text{weights}[i] \) for all observations \(x[i] \) that fall in the cell.

Note that, in contrast to the function `hist`, the function `whist` does not require the breakpoints to span the range of the observations \(x \). Values of \(x \) that fall outside the range of `breaks` are handled separately; their total weight is returned as an attribute of the histogram.

Value

A numeric vector of length \(N-1 \) containing the histogram values, where \(N = \text{length(breaks)} \).

The return value also has attributes "low" and "high" giving the total weight of all observations that are less than the lowest breakpoint, or greater than the highest breakpoint, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz> with thanks to Peter Dalgaard.

Examples

```r
x <- rnorm(100)
b <- seq(-1,1,length=21)
w <- runif(100)
whist(x,b,w)
```
will.expand

Test Expansion Rule

Description

Determines whether an expansion rule will actually expand the window or not.

Usage

```r
will.expand(x)
```

Arguments

- `x` Expansion rule. An object of class "rmhexpand".

Details

An object of class "rmhexpand" describes a rule for expanding a simulation window. See `rmhexpand` for details.

One possible expansion rule is to do nothing, i.e. not to expand the window.

This command inspects the expansion rule `x` and determines whether it will or will not actually expand the window. It returns `TRUE` if the window will be expanded.

Value

Logical value.

Author(s)

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

`rmhexpand`, `expand.owin`

Examples

```r
x <- rmhexpand(distance=0.2)
y <- rmhexpand(area=1)
will.expand(x)
will.expand(y)
```
Window

Extract or Change the Window of a Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions extract or change the window in which the object is defined.

Usage

Window(X, ...)

Window(X, ...) <- value

S3 method for class 'ppp'
Window(X, ...)

S3 replacement method for class 'ppp'
Window(X, ...) <- value

S3 method for class 'psp'
Window(X, ...)

S3 replacement method for class 'psp'
Window(X, ...) <- value

S3 method for class 'im'
Window(X, ...)

S3 replacement method for class 'im'
Window(X, ...) <- value

Arguments

X A spatial object such as a point pattern, line segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

value Another window (object of class "owin") to be used as the window for X.

Details

The functions Window and Window<- are generic.

Window(X) extracts the spatial window in which X is defined.

Window(X) <- W changes the window in which X is defined to the new window W, and discards any data outside W. In particular:

- If X is a point pattern (object of class "ppp") then Window(X) <- W discards any points of X which fall outside W.
• If \(X \) is a line segment pattern (object of class "psp") then \(\text{Window}(X) \leftarrow W \) clips the segments of \(X \) to the boundaries of \(W \).

• If \(X \) is a pixel image (object of class "im") then \(\text{Window}(X) \leftarrow W \) has the effect that pixels lying outside \(W \) are retained but their pixel values are set to NA.

Many other classes of spatial object have a method for \(\text{Window} \), but not \(\text{Window} \leftarrow \). See \texttt{Window.ppm}.

\textbf{Value}

The result of \(\text{Window} \) is a window (object of class "owin").

The result of \(\text{Window} \leftarrow \) is the updated object \(X \), of the same class as \(X \).

\textbf{Author(s)}

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> \url{http://www.maths.uwa.edu.au/~adrian/}
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

\textbf{See Also}

\texttt{Window.ppm}

\textbf{Examples}

```r
## point patterns
Window(cells)
X &lt;- demopat
Window(X)
Window(X) &lt;- as.rectangle(Window(X))

## line segment patterns
X &lt;- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Window(X)
Window(X) &lt;- square(0.5)

## images
Z &lt;- setcov(owin())
Window(Z)
Window(Z) &lt;- square(0.5)
```

\textbf{Description}

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions extract the window in which the object is defined.
Usage

```r
## S3 method for class 'ppm'
Window(X, ..., from=c("points", "covariates"))

## S3 method for class 'kppm'
Window(X, ..., from=c("points", "covariates"))

## S3 method for class 'lpp'
Window(X, ...)

## S3 method for class 'lppm'
Window(X, ...)

## S3 method for class 'msr'
Window(X, ...)

## S3 method for class 'quad'
Window(X, ...)

## S3 method for class 'quadratcount'
Window(X, ...)

## S3 method for class 'quadrat.test'
Window(X, ...)

## S3 method for class 'tess'
Window(X, ...)

## S3 method for class 'layered'
Window(X, ...)

## S3 method for class 'distfun'
Window(X, ...)

## S3 method for class 'nnfun'
Window(X, ...)

## S3 method for class 'funxy'
Window(X, ...)

## S3 method for class 'rmhmodel'
Window(X, ...)

## S3 method for class 'leverage.ppm'
Window(X, ...)

## S3 method for class 'influence.ppm'
Window(X, ...)
```
Arguments

X A spatial object.
...
from Character string. See Details.

Details

These are methods for the generic function Window which extract the spatial window in which the object X is defined.

The argument from applies when X is a fitted point process model (object of class "ppm" or "kppm"). If from="data" (the default), Window extracts the window of the original point pattern data to which the model was fitted. If from="covariates" then Window returns the window in which the spatial covariates of the model were provided.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

 x <- quadratcount(cells, 4)
 Window(x)

with.fv Evaluate an Expression in a Function Table

Description

Evaluate an R expression in a function value table (object of class "fv").

Usage

 # S3 method for class 'fv'
 with(data, expr, ..., fun = NULL, enclos=NULL)
Arguments

- **data**: A function value table (object of class "fv") in which the expression will be evaluated.
- **expr**: The expression to be evaluated. An R language expression, which may involve the names of columns in `data`, the special abbreviations `.x` and `.y`, and global constants or functions.
- **fun**: Logical value, specifying whether the result should be interpreted as another function (fun=TRUE) or simply returned as a numeric vector or array (fun=FALSE). See Details.
- **enclos**: An environment in which to search for variables that are not found in `data`. Defaults to `parent.frame()`.

Details

This is a method for the generic command `with` for an object of class "fv" (function value table). An object of class "fv" is a convenient way of storing and plotting several different estimates of the same function. It is effectively a data frame with extra attributes. See `fv.object` for further explanation.

This command makes it possible to perform computations that involve different estimates of the same function. For example we use it to compute the arithmetic difference between two different edge-corrected estimates of the K function of a point pattern.

The argument `expr` should be an R language expression. The expression may involve

- the name of any column in `data`, referring to one of the estimates of the function;
- the symbol `.x` which stands for all the available estimates of the function;
- the symbol `.y` which stands for the recommended estimate of the function (in an "fv" object, one of the estimates is always identified as the recommended estimate);
- the symbol `.x` which stands for the argument of the function;
- global constants or functions.

See the Examples. The expression should be capable of handling vectors and matrices.

The interpretation of the argument `fun` is as follows:

- If `fun=FALSE`, the result of evaluating the expression `expr` will be returned as a numeric vector, matrix or data frame.
- If `fun=TRUE`, then the result of evaluating `expr` will be interpreted as containing the values of a new function. The return value will be an object of class "fv". (This can only happen if the result has the right dimensions.)
- The default is `fun=TRUE` if the result of evaluating `expr` has more than one column, and `fun=FALSE` otherwise.

To perform calculations involving several objects of class "fv", use `eval.fv`.

This text is a natural representation of the extracted content, formatted for readability and coherence.
with.hyperframe

Description

An expression, involving the names of columns in a hyperframe, is evaluated separately for each row of the hyperframe.

Usage

```r
## S3 method for class 'hyperframe'
with(data, expr, ..., simplify = TRUE, ee = NULL, enclos=NULL)
```
Arguments

- **data**: A hyperframe (object of class "hyperframe") containing data.
- **expr**: An R language expression to be evaluated.
- **simplify**: Logical. If TRUE, the return value will be simplified to a vector whenever possible.
- **ee**: Alternative form of expr, as an object of class "expression".
- **enclos**: An environment in which to search for objects that are not found in the hyperframe. Defaults to `parent.frame()`.

Details

This function evaluates the expression `expr` in each row of the hyperframe `data`. It is a method for the generic function `with`.

The argument `expr` should be an R language expression in which each variable name is either the name of a column in the hyperframe `data`, or the name of an object in the parent frame (the environment in which `with` was called.) The argument `ee` can be used as an alternative to `expr` and should be an expression object (of class "expression").

For each row of `data`, the expression will be evaluated so that variables which are column names of `data` are interpreted as the entries for those columns in the current row.

For example, if a hyperframe `h` has columns called `A` and `B`, then `with(h, A != B)` inspects each row of `data` in turn, tests whether the entries in columns `A` and `B` are equal, and returns the `n` logical values.

Value

Normally a list of length `n` (where `n` is the number of rows) containing the results of evaluating the expression for each row. If `simplify=TRUE` and each result is a single atomic value, then the result is a vector or factor containing the same values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/ and Rolf Turner <r.turner@auckland.ac.nz>

See Also

- `hyperframe`, `plot.hyperframe`

Examples

```r
# generate Poisson point patterns with intensities 10 to 100
H <- hyperframe(L=seq(10,100, by=10))
X <- with(H, rpoispp(L))
```
Description

Create spatial objects that represent a text string, an arrow, or a yardstick (scale bar).

Usage

textstring(x, y, txt = NULL, ...)
onearrow(x0, y0, x1, y1, txt = NULL, ...)
yardstick(x0, y0, x1, y1, txt = NULL, ...)

Arguments

x, y Coordinates where the text should be placed.
x0, y0, x1, y1 Spatial coordinates of both ends of the arrow or yardstick. Alternatively x0 can be a point pattern (class "ppp") containing exactly two points, or a line segment pattern (class "psp") consisting of exactly one line segment.
txt The text to be displayed beside the line segment. Either a character string or an expression.
... Additional named arguments for plotting the object.

details

These commands create objects that represent components of a diagram:

- textstring creates an object that represents a string of text at a particular spatial location.
- onearrow creates an object that represents an arrow between two locations.
- yardstick creates an object that represents a scale bar: a line segment indicating the scale of the plot.

To display the relevant object, it should be plotted, using plot. See the help files for the plot methods plot.textstring, plot.onearrow and plot.yardstick.

These objects are designed to be included as components in a layered object or a solist. This makes it possible to build up a diagram consisting of many spatial objects, and to annotate the diagram with arrows, text and so on, so that ultimately the entire diagram is plotted using plot.

Value

An object of class "diagramobj" which also belongs to one of the special classes "textstring", "onearrow" or "yardstick". There are methods for plot, print, "[" and shift.
zapsmall.im

Author(s)
Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>

See Also
plot.textstring, plot.onearrow, plot.yardstick.

Examples

x <- rescale(swedishpines)
plot(x, pch=16, main="")
ys <- yardstick(as.psp(list(xmid=4, ymid=0.5, length=1, angle=0),
 window=Window(x)),
 txt="1 m")
plot(ys, angle=90)

Description

Modifies a pixel image, identifying those pixels that have values very close to zero, and replacing
the value by zero.

Usage

zapsmall.im(x, digits)

Arguments

x
Pixel image (object of class "im").
digits
Argument passed to zapsmall indicating the precision to be used.

Details

The function zapsmall is applied to each pixel value of the image x.

Value

Another pixel image.

Author(s)

Ege Rubak and Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/
See Also

zapsmall

Examples

data(cells)
D <- density(cells)
zapsmall.im(D)
Index

*Topic IO
 scanpp, 1238
*Topic \textasciitilde kwd1
 timed, 1344
*Topic \textasciitilde kwd2
 timed, 1344
*Topic arith
 whist, 1385
*Topic array
 sumouter, 1324
*Topic attribute
 bind.fv, 147
 fasp.object, 400
 fv.object, 429
 im.object, 498
 owin.object, 830
 ppm.object, 978
 ppp.object, 993
 pppmatching.object, 1000
 psp.object, 1028
 quad.object, 1042
*Topic classes
 fv, 426
*Topic classif
 clusterset, 212
 nnclean, 780
*Topic color
 beachcolours, 139
 colourmap, 220
 colourtools, 221
 interp.colourmap, 519
 plot.colourmap, 898
 tweak.colourmap, 1351
*Topic datagen
 box3, 154
 boxx, 155
 clickjoin, 195
 default.dummy, 265
 default.expand, 266
default.rmhcontrol, 268
disc, 303
discs, 307
ellipse, 335
gridcentres, 461
gridweights, 462
hextess, 476
im, 495
inlinex, 505
owin, 828
pixelquad, 890
pp3, 971
pp, 990
pppmatching, 998
ppx, 1001
psp, 1026
quadratresample, 1054
quadrats, 1055
quadscheme, 1056
quadscheme,logi, 1059
quasirandom, 1065
rCauchy, 1070
rcell, 1072
rcellnumber, 1073
rDGS, 1074
rDiggleGratton, 1076
rGaussPoisson, 1107
rgbim, 1108
rHardcore, 1109
rjitter, 1118
rlabel, 1121
rLGCP, 1122
rlinegrid, 1124
rMatClust, 1125
rMaternI, 1127
rMaternII, 1128
rmh, 1129
rmh.default, 1131
rmh.ppm, 1141
1398
INDEX

rmhcontrol, 1144
rmhexpand, 1148
rmhmodel, 1151
rmhmodel.default, 1152
rmhmodel.list, 1159
rmhmodel.ppm, 1161
rmhstart, 1163
rMosaicField, 1165
rMosaicSet, 1166
rmpoint, 1167
rmpoispp, 1171
rNeymanScott, 1174
rpoint, 1187
rpoisline, 1189
rpoislinetess, 1190
rpoislpp, 1191
rpoispp, 1192
rpoispp3, 1194
rpoisppOnLines, 1195
rpoisppx, 1197
rPoissonCluster, 1198
rQuasi, 1200
rshift, 1201
rshift.ppp, 1202
rshift.psp, 1204
rshift.splitpp, 1206
rSSI, 1207
rstrat, 1209
rStrauss, 1210
rStraussHard, 1212
rsyst, 1214
rthin, 1215
rThomas, 1217
runifdisc, 1220
runiflpp, 1222
runifpoint, 1223
runifpoint3, 1224
runifpointOnLines, 1225
runifpointx, 1226
rVarGamma, 1227
spokes, 1295
square, 1299
stratrand, 1302
tess, 1332

*Topic datasets

amacrine, 67
anemones, 68
ants, 77
bdspots, 138
bei, 142
betacells, 145
bramblecanes, 156
bronzefilter, 157
cells, 182
chicago, 184
chorley, 186
clmfires, 199
copper, 244
demohyper, 273
demopat, 274
dendrite, 274
finpines, 409
flu, 417
ganglia, 433
gordon, 457
gorillas, 457
hamster, 464
heather, 473
humberside, 483
hytiala, 488
japanese pines, 549
Kovesi, 607
lansing, 620
letterR, 637
longleaf, 688
mucosa, 765
murchison, 772
nbfires, 773
nztrees, 818
osteop, 825
paracou, 851
ponderosa, 962
pyramidal, 1036
redwood, 1081
redwoodfull, 1082
residualspaper, 1105
shapley, 1245
simba, 1254
simdat, 1255
simplemt, 1256
spiders, 1287
sporophores, 1297
simba, 1298
swedishpines, 1329
urkiola, 1364
vesicles, 1381
waka, 1384
waterstriders, 1384
*Topic data
 sessionLibs, 1243
*Topic distribution
dmixpois, 318
rknn, 1119
*Topic documentation
 beginner, 141
 foo, 419
 latest.news, 622
*Topic fit model
 improve.kppm, 500
*Topic hplot
 add.texture, 49
 contour.im, 237
 contour.imlist, 239
 diagnose.ppm, 284
 envelope, 340
 envelope.envelope, 350
 envelope.ppm, 354
 invoke.symbolmap, 524
 iplot, 526
 istat, 548
 layered, 623
 layerplotargs, 624
 lurking, 692
 methods.objsurf, 739
 pairs.im, 845
 panel.contour, 850
 persp.im, 880
 perspPoints, 883
 plot.anylist, 891
 plot.bermantest, 894
 plot.cdf.test, 896
 plot.colourmap, 898
 plot.envelope, 899
 plot.fasp, 900
 plot.fv, 902
 plot.hyperframe, 906
 plot.im, 907
 plot.imlist, 912
 plot.layered, 916
 plot.listof, 921
 plot.lpp, 924
 plot.mppm, 926
 plot.msr, 927
 plot.onearrow, 928
 plot.owin, 930
 plot.plotppm, 932
 plot.pp3, 934
 plot.ppm, 935
 plot.ppp, 937
 plot.psp, 942
 plot.quad, 944
 plot.quadratcount, 945
 plot.quadrat.test, 947
 plot.slr, 949
 plot.spatial, 950
 plot.splitppp, 953
 plot.symbolmap, 954
 plot.tess, 955
 plot.texturemap, 956
 plot.texturemap, 957
 plot.yardstick, 958
 pool.envelope, 965
 pool.fasp, 966
 pool.fv, 968
 qqplot.ppm, 1037
 rose, 1177
 symbolmap, 1330
 texturemap, 1334
 textureplot, 1335
 update.symbolmap, 1363
 yardstick, 1395
*Topic htest
 berman.test, 143
 cdf.test, 175
 cdf.test.mppm, 179
 clarkevans.test, 192
 dclf.progress, 260
 dclf.test, 262
 envelope, 340
 envelope.envelope, 350
 envelope.ppm, 354
 hopskel, 481
 plot.quadrat.test, 947
 plot.scan.test, 948
 pool.envelope, 965
 pool.fasp, 966
 pool.fv, 968
 pool.quadrat.test, 969
 quadrat.test, 1044
 quadrat.test.mppm, 1048
 quadrat.test.splitppp, 1050
 scan.test, 1234
scanLRTS, 1236
segregation.test, 1240
*Topic iplot
 clickbox, 193
clickdist, 194
clickpoly, 196
clickppp, 197
identify.ppp, 489
identify.psp, 490
run.simplepanel, 1219
simplepanel, 1256
transect.im, 1345
*Topic iteration
 applynbd, 81
evelope, 340
envelope.envelope, 350
envelope.psp, 354
pool.envelope, 965
pool.psp, 966
pool.fv, 968
*Topic list
 anylist, 79
 as.solist, 131
Extract.anynlist, 369
Extract.solist, 393
solapply, 1278
solist, 1279
*Topic manip
 anylist, 79
append.psp, 80
as.box3, 91
as.data.frame.hyperframe, 92
as.data.frame.psp, 94
as.data.frame.psp, 95
as.function.im, 97
as.fv, 98
as.hyperframe, 100
as.hyperframe.psp, 102
as.im, 103
as.layered, 108
as.linim, 109
as.linnet.linim, 110
as.linnet.psp, 112
as.mask, 114
as.mask.psp, 116
as.owin, 119
as.polygonal, 123
as.ppp, 125
as.psp, 127
as.rectangle, 130
as.solist, 131
as.tess, 132
by.im, 167
by.ppp, 169
cbind.hyperframe, 174
collapse.fv, 218
commonGrid, 223
compatible, 226
compatible.fasp, 227
compatible.fv, 228
compatible.im, 229
concatxy, 231
coords, 243
crossing.psp, 255
data.ppm, 259
delaunay, 269
delaunay.distance, 270
delaunay.network, 271
dirichlet, 300
dirichlet.vertices, 301
discretise, 306
domain, 319
delaunay, 269
delaunay.distance, 270
delaunay.network, 271
dirichlet, 300
dirichlet.vertices, 301
discretise, 306
domain, 319
edgess, 329
delaunay, 269
delaunay.distance, 270
delaunay.network, 271
dirichlet, 300
dirichlet.vertices, 301
discretise, 306
domain, 319
edgess, 329
delaunay, 269
delaunay.distance, 270
delaunay.network, 271
dirichlet, 300
dirichlet.vertices, 301
discretise, 306
domain, 319
edgess, 329
endpoints.psp, 339
eval.fasp, 359
eval.fv, 361
eval.im, 362
eval.linim, 364
expand.owin, 368
Extract.anynlist, 369
Extract.fasp, 370
Extract.fv, 371
Extract.hyperframe, 373
Extract.im, 375
Extract.influence.ppm, 377
Extract.layered, 379
Extract.leverage.ppm, 380
Extract.linnet, 381
Extract.listof, 382
Extract.lpp, 383
Extract.msr, 385
Extract.owin, 386
Extract.ppp, 387
Extract.ppx, 389
Extract.psp, 391
Extract.quad, 392
Extract.solist, 393
Extract.splitppp, 394
Extract.tess, 395
Frame, 422
fvnames, 430
grow.rectangle, 463
harmonise, 469
harmonise.fv, 470
harmonise.im, 471
hyperframe, 487
im, 495
im.apply, 497
interp.im, 520
is.convex, 530
is.dppm, 531
is.empty, 531
is.im, 533
is.lpp, 534
is.marked, 535
is.marked.ppm, 536
is.marked.ppp, 537
is.multitype, 538
is.multitype.ppm, 539
is.multitype.ppp, 541
is.owin, 542
is.ppm, 543
is.ppp, 543
is.rectangle, 544
levelset, 638
lut, 695
marks, 703
marks.psp, 705
marks.tess, 706
nearest.raster.point, 776
nestsplit, 779
npoints, 816
nsegments, 817
padimage, 833
periodify, 879
pixelcentres, 884
pixellate, 885
pixellate.owin, 886
pixellate.ppp, 887
pixellate.psp, 889
pointsOnLines, 960
quad.ppm, 1043
quantess, 1061
raster.x, 1067
rat, 1069
Replace.im, 1092
rescue.rectangle, 1100
rgbim, 1108
round.ppp, 1185
selfcrossing.psp, 1241
selfcut.psp, 1242
shift, 1248
shift.im, 1248
shift.owin, 1250
shift.ppp, 1251
shift.psp, 1252
solapply, 1278
solist, 1279
solutionset, 1280
split.hyperframe, 1288
split.im, 1290
split.ppp, 1291
split.ppx, 1294
stienen, 1301
subset.hyperframe, 1308
subset.ppp, 1309
superimpose, 1325
superimpose.lpp, 1328
tile.areas, 1341
tilenames, 1342
tiles, 1343
transect.im, 1345
trim.rectangle, 1346
union.quad, 1352
unitname, 1354
unmark, 1356
will.expand, 1387
Window, 1388
WindowOnly, 1389
with.fv, 1391
with.hyperframe, 1393
*Topic math
 affine, 53
 affine.im, 54
 affine.linnet, 55
 affine.lpp, 56
 affine.owin, 58
 affine.ppp, 59
 affine.psp, 60
 affine.tess, 61
angles.psp, 69
area.owin, 84
areaGain, 85
areaLoss, 89
as.lpp, 113
bdist.pixels, 135
bdist.points, 136
bdist.tiles, 137
border, 150
centroid.owin, 183
chop.tess, 185
circumradius, 189
clip.inline, 198
closepairs, 201
closepairs.ppp, 203
closing, 205
complement.owin, 230
connected, 234
connected.ppp, 236
convolve.im, 242
crossdist, 247
crossdist.default, 248
crossdist.lpp, 249
crossdist.psp, 250
crossdist.ppp, 251
crossdist.ppx, 253
crossdist.psp, 254
deltametric, 272
deriv.fv, 281
diameter, 289
diameter.box, 290
diameter.boxx, 291
diameter.linnet, 293
diameter.owin, 294
dilated.areas, 297
dilation, 299
dirichlet.vertices, 301
dispartarea, 305
distsdf, 309
distfun, 310
distfun.lpp, 312
distmap, 313
distmap.owin, 314
distmap.ppp, 316
distmap.psp, 317
dummify, 322
eroded.areas, 357
erosion, 358
fardist, 398
flipxy, 416
funxy, 425
gauss.hermite, 434
imcov, 499
incircle, 502
increment.fv, 504
inside.owin, 508
integral.im, 510
integral.linim, 511
integral.msr, 512
intersect.owin, 521
intersect.tess, 523
is.subset.owin, 547
LambertW, 619
lengths.psp, 633
linfun, 669
matchingdist, 712
maxnndist, 722
methods.linfun, 732
midpoints.psp, 747
nearestsegment, 778
nncross, 785
nncross.lpp, 788
nncross.psp, 790
nndist, 794
nndist.psp, 797
nndist.ppx, 799
nndist.psp, 800
nnfun, 802
nnfun.lpp, 803
nnmap, 804
nnwhich, 809
nnwhich.psp, 813
nnwhich.ppx, 814
opening, 820
overlap.owin, 827
pairdist, 834
pairdist.default, 835
pairdist.psp, 837
pairdist.ppp, 838
pairdist.ppx, 839
pairdist.psp, 840
perimeter, 878
pppdist, 995
project2segment, 1024
project2set, 1025
quadratcount, 1051
range.fv, 1066
reflect, 1084
rescale, 1094
rescale.im, 1095
rescale.owin, 1096
rescale.ppp, 1098
rescale.psp, 1099
rotate, 1179
rotate.im, 1180
rotate.owin, 1181
rotate.ppp, 1182
rotate.psp, 1183
rotmean, 1184
rounding, 1186
scalardilate, 1232
setcov, 1244
sidelengths.owin, 1253
simplify.owin, 1259
stieltjes, 1300
stienen, 1301
vertices, 1380
volume, 1383

*Topic methods
 adaptive.density, 48
 anova.lppm, 70
 anova.mppm, 72
 anova.ppm, 73
 anova.slrm, 75
 as.data.frame.im, 93
 as.function.fv, 96
 as.matrix.im, 117
 as.matrix.owin, 118
 bw.diggle, 158
 bw.frac, 160
 bw.ppl, 161
 bw.relrisk, 162
 bw.scott, 164
 bw.smoothppp, 165
 bw.stoyan, 166
 by.im, 167
 by.ppp, 169
 coef.mppm, 215
 coef.ppm, 216
 coef.slrm, 217
 cut.im, 256
 cut.ppp, 257
density.ppp, 275
 density.psp, 279
density.splitppp, 280
duplicated.ppp, 324
fitted.ppm, 413
fitted.slrm, 415
formula.fv, 420
formula.ppm, 421
hist.im, 480
idw, 491
logLik.slrm, 685
Math.im, 719
Math.linim, 720
mean.im, 723
methods.box3, 725
methods.boxx, 726
methods.fii, 727
methods.funxy, 728
methods.kppm, 729
methods.layered, 731
methods.linnet, 734
methods.lpp, 736
methods.pp3, 740
methods.rhohat, 742
methods.rho2hat, 743
methods.slrm, 745
methods.units, 746
nndensity.ppp, 792
nnmark, 806
predict.slrm, 1012
quantile.im, 1064
relrisk.ppm, 1089
residuals.ppm, 1102
scaletointerval, 1233
Smooth, 1269
Smooth.ppp, 1272
Smoothfun.ppp, 1275
split.im, 1290
split.ppp, 1291
split.ppx, 1294
summary.anylist, 1313
summary.im, 1314
summary.listof, 1315
summary.owin, 1316
summary.ppm, 1317
summary.ppp, 1318
summary.psp, 1319
summary.quad, 1320
summary.solist, 1322
summary.splitppp, 1323
INDEX

unique.ppp, 1353
update.ppm, 1359
update.rmhcontrol, 1362
vcov.kppm, 1372
vcov.mppm, 1374
vcov.ppm, 1375
vcov.slrnm, 1378
zapsmall.im, 1396

+Topic models
addvar, 50
anova.lpkm, 70
anova.mppm, 72
anova.ppm, 73
anova.slrnm, 75
AreaInter, 87
as.interact, 106
as.ppm, 124
BadGey, 133
cauhcy.estK, 170
cauhcy.estpcf, 172
clusterfit, 208
coeff.mppm, 215
coeff.ppm, 216
coeff.slrnm, 217
compareFit, 224
Concom, 232
data.ppm, 259
dfbetas.ppm, 283
diagnose.ppm, 284
DiggleGatesStibbard, 295
DiggleGratton, 296
dummy.ppm, 323
eem, 332
effectfun, 334
exactMLEstrausa, 366
Fiksel, 405
fitin.ppm, 411
fitted.mppm, 412
fitted.ppm, 413
fitted.slrnm, 415
Gcom, 435
Geyer, 448
Gres, 459
Hardcore, 466
harmonic, 468
hierpair.family, 478
HierStrauss, 479
Hybrid, 484
hybrid.family, 486
influence.ppm, 506
inorder.family, 508
intensity, 513
intensity.ppm, 515
ippm, 527
is.dppm, 531
is.hybrid, 532
is.marked.ppm, 536
is.multitype.ppm, 539
is.ppm, 543
is.stationary, 545
Kcom, 566
Kmodel, 598
Kmodel.kppm, 599
Kmodel.ppm, 600
kppm, 609
Kres, 613
LennardJones, 634
leverage.ppm, 639
lgch.estK, 640
lgch.estpcf, 643
loglik.mppm, 682
loglik.ppm, 683
loglik.slrnm, 685
lppm, 690
lurking, 692
matclust.estK, 714
matclust.estpcf, 716
methods.lppm, 737
mincontrast, 748
model.depends, 751
model.frame.ppm, 753
model.images, 754
model.matrix.ppm, 756
model.matrix.slrnm, 758
mppm, 760
msr, 762
MultiHard, 766
MultiStrauss, 768
MultiStraussHard, 770
objsurf, 819
Ord, 822
ord.family, 823
OrdThresh, 824
PairPiece, 843
pairsat.family, 846
Pairwise, 847
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pairwise.family</td>
<td>849</td>
</tr>
<tr>
<td>parres</td>
<td>852</td>
</tr>
<tr>
<td>plot.influence.ppm</td>
<td>913</td>
</tr>
<tr>
<td>plot.kppm</td>
<td>914</td>
</tr>
<tr>
<td>plot.leverage.ppm</td>
<td>917</td>
</tr>
<tr>
<td>plot.lppm</td>
<td>925</td>
</tr>
<tr>
<td>plot.mppm</td>
<td>926</td>
</tr>
<tr>
<td>plot.plotppm</td>
<td>932</td>
</tr>
<tr>
<td>plot.ppm</td>
<td>935</td>
</tr>
<tr>
<td>plot.slrml</td>
<td>949</td>
</tr>
<tr>
<td>Poisson</td>
<td>961</td>
</tr>
<tr>
<td>ppm</td>
<td>972</td>
</tr>
<tr>
<td>ppm.ppp</td>
<td>980</td>
</tr>
<tr>
<td>predict.kppm</td>
<td>1003</td>
</tr>
<tr>
<td>predict.lppm</td>
<td>1004</td>
</tr>
<tr>
<td>predict.mppm</td>
<td>1005</td>
</tr>
<tr>
<td>predict.ppm</td>
<td>1007</td>
</tr>
<tr>
<td>predict.slrml</td>
<td>1012</td>
</tr>
<tr>
<td>print.ppm</td>
<td>1015</td>
</tr>
<tr>
<td>profile1</td>
<td>1019</td>
</tr>
<tr>
<td>project.ppm</td>
<td>1022</td>
</tr>
<tr>
<td>psst</td>
<td>1029</td>
</tr>
<tr>
<td>psstA</td>
<td>1031</td>
</tr>
<tr>
<td>psstG</td>
<td>1034</td>
</tr>
<tr>
<td>qqplot.ppm</td>
<td>1037</td>
</tr>
<tr>
<td>quad.ppm</td>
<td>1043</td>
</tr>
<tr>
<td>reach</td>
<td>1078</td>
</tr>
<tr>
<td>relrisk.ppm</td>
<td>1087</td>
</tr>
<tr>
<td>residuals.mppm</td>
<td>1101</td>
</tr>
<tr>
<td>residuals.ppm</td>
<td>1102</td>
</tr>
<tr>
<td>residualspaper</td>
<td>1105</td>
</tr>
<tr>
<td>rho2hat</td>
<td>1111</td>
</tr>
<tr>
<td>rhohat</td>
<td>1112</td>
</tr>
<tr>
<td>rmh.ppm</td>
<td>1141</td>
</tr>
<tr>
<td>SatPiece</td>
<td>1229</td>
</tr>
<tr>
<td>Saturated</td>
<td>1231</td>
</tr>
<tr>
<td>simulate.kppm</td>
<td>1260</td>
</tr>
<tr>
<td>simulate.lppm</td>
<td>1262</td>
</tr>
<tr>
<td>simulate.ppm</td>
<td>1263</td>
</tr>
<tr>
<td>simulate.slrml</td>
<td>1265</td>
</tr>
<tr>
<td>slrm</td>
<td>1266</td>
</tr>
<tr>
<td>Smooth.msr</td>
<td>1271</td>
</tr>
<tr>
<td>Softcore</td>
<td>1276</td>
</tr>
<tr>
<td>Strauss</td>
<td>1304</td>
</tr>
<tr>
<td>StraussHard</td>
<td>1305</td>
</tr>
<tr>
<td>subfits</td>
<td>1307</td>
</tr>
<tr>
<td>suffstat</td>
<td>1311</td>
</tr>
<tr>
<td>summary.ppm</td>
<td>1317</td>
</tr>
<tr>
<td>thomas.estK</td>
<td>1336</td>
</tr>
<tr>
<td>thomas.estpcf</td>
<td>1338</td>
</tr>
<tr>
<td>triplet.family</td>
<td>1347</td>
</tr>
<tr>
<td>Triplets</td>
<td>1348</td>
</tr>
<tr>
<td>update.kppm</td>
<td>1358</td>
</tr>
<tr>
<td>update.ppm</td>
<td>1359</td>
</tr>
<tr>
<td>update.rmhcontrol</td>
<td>1362</td>
</tr>
<tr>
<td>valid.ppm</td>
<td>1364</td>
</tr>
<tr>
<td>vargamma.estK</td>
<td>1367</td>
</tr>
<tr>
<td>vargamma.estpcf</td>
<td>1370</td>
</tr>
<tr>
<td>vcov.kppm</td>
<td>1372</td>
</tr>
<tr>
<td>vcov.mppm</td>
<td>1374</td>
</tr>
<tr>
<td>vcov.ppm</td>
<td>1375</td>
</tr>
<tr>
<td>vcov.slrml</td>
<td>1378</td>
</tr>
</tbody>
</table>

Topic nonparametric

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>allstats</td>
<td>63</td>
</tr>
<tr>
<td>alltypes</td>
<td>64</td>
</tr>
<tr>
<td>blur</td>
<td>149</td>
</tr>
<tr>
<td>circdensity</td>
<td>188</td>
</tr>
<tr>
<td>clarkevans</td>
<td>190</td>
</tr>
<tr>
<td>clarkevans.test</td>
<td>192</td>
</tr>
<tr>
<td>deriv.fv</td>
<td>281</td>
</tr>
<tr>
<td>edge.Ripley</td>
<td>326</td>
</tr>
<tr>
<td>edge.Trans</td>
<td>327</td>
</tr>
<tr>
<td>Emark</td>
<td>336</td>
</tr>
<tr>
<td>ewcdf</td>
<td>365</td>
</tr>
<tr>
<td>F3est</td>
<td>396</td>
</tr>
<tr>
<td>Fest</td>
<td>401</td>
</tr>
<tr>
<td>Finhom</td>
<td>407</td>
</tr>
<tr>
<td>fryplot</td>
<td>423</td>
</tr>
<tr>
<td>G3est</td>
<td>431</td>
</tr>
<tr>
<td>Gcross</td>
<td>439</td>
</tr>
<tr>
<td>Gdot</td>
<td>442</td>
</tr>
<tr>
<td>Gest</td>
<td>445</td>
</tr>
<tr>
<td>Gfox</td>
<td>450</td>
</tr>
<tr>
<td>Ginhom</td>
<td>452</td>
</tr>
<tr>
<td>Gmulti</td>
<td>454</td>
</tr>
<tr>
<td>Hest</td>
<td>474</td>
</tr>
<tr>
<td>hopskel</td>
<td>481</td>
</tr>
<tr>
<td>Iest</td>
<td>493</td>
</tr>
<tr>
<td>increment.fv</td>
<td>504</td>
</tr>
<tr>
<td>intensity.lpp</td>
<td>514</td>
</tr>
<tr>
<td>intensity.ppp</td>
<td>516</td>
</tr>
<tr>
<td>intensity.quadratcount</td>
<td>518</td>
</tr>
<tr>
<td>Jcross</td>
<td>550</td>
</tr>
<tr>
<td>Jdot</td>
<td>552</td>
</tr>
<tr>
<td>Jest</td>
<td>555</td>
</tr>
<tr>
<td>Jinhom</td>
<td>558</td>
</tr>
</tbody>
</table>
bw.ppl, 161
bw.relrisk, 162
bw.scott, 164
bw.smoothppp, 165
bw.stoyan, 166
circdensity, 188
density.ppp, 275
density.psp, 279
density.splitppp, 280
idw, 491
nndensity.ppp, 792
nnmark, 806
relrisk.ppp, 1089
Smooth, 1269
Smooth.ppp, 1272
Smoothfun.ppp, 1275
unnormdensity, 1357
*Topic spatial
 adaptive.density, 48
 add.texture, 49
 addvar, 50
 affine, 53
 affine.im, 54
 affine.linnet, 55
 affine.lpp, 56
 affine.owin, 58
 affine.psp, 60
 affine.tess, 61
 allstats, 63
 alltypes, 64
 amacrine, 67
 anemones, 68
 angles.psp, 69
 anova.lppm, 70
 anova.mppm, 72
 anova.ppm, 73
 anova.slrm, 75
 ants, 77
 append.psp, 80
 applynbd, 81
 area.owin, 84
 areaGain, 85
 AreaInter, 87
 areaLoss, 89
 as.box3, 91
 as.data.frame.hyperframe, 92
 as.data.frame.im, 93
 as.data.frame.ppp, 94
 as.data.frame.psp, 95
 as.function.fv, 96
 as.function.im, 97
 as.fv, 98
 as.hyperframe, 100
 as.hyperframe.ppx, 102
 as.im, 103
 as.interact, 106
 as.layered, 108
 as.linim, 109
 as.linnet.linim, 110
 as.linnet.psp, 112
 as.lpp, 113
 as.mask, 114
 as.mask.psp, 116
 as.matrix.im, 117
 as.matrix.owin, 118
 as.owin, 119
 as.polygonal, 123
 as.ppm, 124
 as.ppp, 125
 as.psp, 127
 as.rectangle, 130
 as.solist, 131
 as.tess, 132
 BadGey, 133
 bdist.pixels, 135
 bdist.points, 136
 bdist.tiles, 137
 bdistps, 138
 beachcolours, 139
 bei, 142
 berman.test, 143
 betacells, 145
 bind.fv, 147
 blur, 149
 border, 150
 bounding.box.xy, 152
 boundingbox, 153
 box3, 154
 boxx, 155
 bramblecanes, 156
 bronzefilter, 157
 bw.diggle, 158
 bw.frac, 160
 bw.ppl, 161
 bw.relrisk, 162
bw.scott, 164
bw.smoothppp, 165
bw.stoyan, 166
by.im, 167
by.ppp, 169
cauchy.estK, 170
cauchy.estpcf, 172
cbind.hyperframe, 174
cdf.test, 175
cdf.test.mppm, 179
cells, 182
centroid.owin, 183
chicago, 184
chop.tess, 185
chorley, 186
circumradius, 189
clarkevans, 190
clarkevans.test, 192
clickbox, 193
clickdist, 194
clickjoin, 195
clickpoly, 196
clickppp, 197
clip.inline, 198
clmfires, 199
closepairs, 201
closepairs.psp, 203
closing, 205
clusterfield, 206
clusterfit, 208
clusterkernel, 210
clusterradius, 211
clusterset, 212
coef.mppm, 215
coef.ppm, 216
coef.slrm, 217
collapse.fv, 218
colourmap, 220
commonGrid, 223
compareFit, 224
compatible, 226
compatible.fasp, 227
compatible.fv, 228
compatible.im, 229
complement.owin, 230
concacty, 231
Concom, 232
connected, 234
connected.ppp, 236
contour.im, 237
contour.imlist, 239
convexhull, 240
convexhull.xy, 241
convolve.im, 242
coords, 243
copper, 244
corners, 246
crossdist, 247
crossdist.default, 248
crossdist.lpp, 249
crossdist.psp3, 250
crossdist.psp, 251
crossdist.pspx, 253
crossdist.psp, 254
crossing.psp, 255
cut.im, 256
cut.ppp, 257
data.ppm, 259
dclf.progress, 260
dclf.test, 262
default.dummy, 265
default.expand, 266
default.rmhcontrol, 268
delaunay, 269
delaunay.distance, 270
delaunay.network, 271
deltametric, 272
demopat, 274
density.ppp, 275
density.psp, 279
density.splitppp, 280
deriv.fv, 281
dfbetas.ppm, 283
diagnose.ppm, 284
diameter, 289
diameter.box3, 290
diameter.boxx, 291
diameter.linnet, 293
diameter.owin, 294
DiggleGatesStibbard, 295
DiggleGratton, 296
dilated.areas, 297
dilation, 299
dirichlet, 300
dirichlet.vertices, 301
dirichlet.weights, 302
disc, 303

distcdf, 309
distfun, 310
distfun.lpp, 312
distmap, 313
distmap.owin, 314
distmap.ppp, 316
distmap.psp, 317
domain, 319
dummy.ppm, 323
duplicated.ppp, 324
dummy.Ripley, 326
dummy.Trans, 327
dummy.pps, 329
dummy2triangles, 330
dummy2vees, 331
dummy.pps, 332
dummy.pps, 334
dummy.psp, 335

Enmark, 336
dimension, 336
diag, 336

diag, 336
diag, 336

Enmark, 336

diag, 336
diag, 336

diag, 336
diag, 336

diag, 336
diag, 336

Enmark, 336

Extract.owin, 386
Extract.pps, 387
Extract.ppx, 389
Extract.psp, 391
Extract.quad, 392
Extract.solist, 393
Extract.splitpp, 394
Extract.tess, 395

F3est, 396
fardist, 398
fasp.object, 400
Fest, 401
Fiksel, 405
Finhom, 407
finpines, 409
fitin.ppm, 411
fitted.mpp, 412
fitted.pps, 413
fitted.slrm, 415
flipxy, 416
formula.fv, 420
formula.pps, 421
Frame, 422
fryplot, 423
funxy, 425
fv, 426
fv.object, 429
fvnames, 430
G3est, 431
ganglia, 433
Gcom, 435
Gcross, 439
Gdot, 442
Gest, 445
Geyer, 448
Gfox, 450
Ginhom, 452
Gmulti, 454
gordon, 457
Gres, 459
gridcentres, 461
gridweights, 462
grow.rectangle, 463
hamster, 464
Hardcore, 466
harmonic, 468
harmonise, 469
harmonise.fv, 470

Extract.anylist, 369
Extract.fasp, 370
Extract.fv, 371
Extract.hyperframe, 373
Extract.im, 375
Extract.influence.ppp, 377
Extract.layered, 379
Extract.leverage.ppp, 380
Extract.linnet, 381
Extract.listof, 382
Extract.lpp, 383
Extract.msr, 385
harmonise.im, 471
heather, 473
Hest, 474
hextess, 476
HierStrauss.family, 478
hist.im, 480
hopskel, 481
humberside, 483
Hybrid, 484
hybrid.family, 486
hyperframe, 487
hyytiala, 488
identify.ppp, 489
identify.psp, 490
idw, 491
Iest, 493
im, 495
im.apply, 497
im.object, 498
imcov, 499
improve.kppm, 500
incircle, 502
increment.fv, 504
inframe, 505
influence.ppm, 506
inorder.family, 508
inside.owin, 508
integral.im, 510
integral.linim, 511
integral.msr, 512
intensity, 513
intensity.lpp, 514
intensity.ppm, 515
intensity.ppp, 516
intensity.quadratcount, 518
interp.colourmap, 519
interp.im, 520
intersect.owin, 521
intersect.tess, 523
invoke.symbolmap, 524
iplot, 526
ippm, 527
is.convex, 530
is.dppm, 531
is.empty, 531
is.hybrid, 532
is.im, 533
is.lpp, 534
is.marked, 535
is.marked.ppm, 536
is.marked.ppp, 537
is.multitype, 538
is.multitype.ppm, 539
is.multitype.ppp, 541
is.owin, 542
is.ppm, 543
is.ppp, 543
is.rectangle, 544
is.stationary, 545
is.subset.owin, 547
istat, 548
japanesepines, 549
Jcross, 550
Jdot, 552
Jest, 555
Jinhom, 558
Jmulti, 561
K3est, 563
kaplan.meier, 565
Kcom, 566
Kcross, 569
Kcross.inhom, 572
Kdot, 575
Kdot.inhom, 578
Kest, 581
Kest.fft, 585
Kinhom, 587
km.rs, 591
Kmark, 593
Kmeasure, 595
Kmodel, 598
Kmodel.kppm, 599
Kmodel.ppm, 600
Kmulti, 601
Kmulti.inhom, 604
kppm, 609
Kres, 613
Kscaled, 615
Ksector, 618
lansing, 620
layered, 623
layerplotargs, 624
Lcross, 626
Lcross.inhom, 628
Ldot, 630
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ldot.inhom</td>
<td>631</td>
</tr>
<tr>
<td>lengths.psp</td>
<td>633</td>
</tr>
<tr>
<td>LennardJones</td>
<td>634</td>
</tr>
<tr>
<td>Lest</td>
<td>636</td>
</tr>
<tr>
<td>letterR</td>
<td>637</td>
</tr>
<tr>
<td>levelset</td>
<td>638</td>
</tr>
<tr>
<td>leverage.ppm</td>
<td>639</td>
</tr>
<tr>
<td>lgcp.estK</td>
<td>640</td>
</tr>
<tr>
<td>lgcp.estpcf</td>
<td>643</td>
</tr>
<tr>
<td>linedisc</td>
<td>646</td>
</tr>
<tr>
<td>lineark</td>
<td>648</td>
</tr>
<tr>
<td>linearkCross</td>
<td>649</td>
</tr>
<tr>
<td>linearkCross.inhom</td>
<td>650</td>
</tr>
<tr>
<td>linearkdot</td>
<td>652</td>
</tr>
<tr>
<td>linearkdot.inhom</td>
<td>654</td>
</tr>
<tr>
<td>linearkKinhom</td>
<td>656</td>
</tr>
<tr>
<td>linearmarkconnect</td>
<td>657</td>
</tr>
<tr>
<td>linearmarkequal</td>
<td>659</td>
</tr>
<tr>
<td>linearpcf</td>
<td>660</td>
</tr>
<tr>
<td>linearppcf</td>
<td>661</td>
</tr>
<tr>
<td>linearppcfCross</td>
<td>663</td>
</tr>
<tr>
<td>linearpcfDot</td>
<td>665</td>
</tr>
<tr>
<td>linearpcfDot.inhom</td>
<td>666</td>
</tr>
<tr>
<td>linearpcfinhom</td>
<td>668</td>
</tr>
<tr>
<td>linfun</td>
<td>669</td>
</tr>
<tr>
<td>Linhom</td>
<td>671</td>
</tr>
<tr>
<td>linin</td>
<td>672</td>
</tr>
<tr>
<td>linnet</td>
<td>674</td>
</tr>
<tr>
<td>localK</td>
<td>675</td>
</tr>
<tr>
<td>localKinhom</td>
<td>677</td>
</tr>
<tr>
<td>localpcf</td>
<td>679</td>
</tr>
<tr>
<td>logLik.mppm</td>
<td>682</td>
</tr>
<tr>
<td>logLik.ppm</td>
<td>683</td>
</tr>
<tr>
<td>logLik.slrM</td>
<td>685</td>
</tr>
<tr>
<td>lohboot</td>
<td>686</td>
</tr>
<tr>
<td>longleaf</td>
<td>688</td>
</tr>
<tr>
<td>lpp</td>
<td>689</td>
</tr>
<tr>
<td>lppm</td>
<td>690</td>
</tr>
<tr>
<td>lurking</td>
<td>692</td>
</tr>
<tr>
<td>lut</td>
<td>695</td>
</tr>
<tr>
<td>markconnect</td>
<td>697</td>
</tr>
<tr>
<td>markcorr</td>
<td>699</td>
</tr>
<tr>
<td>marks</td>
<td>703</td>
</tr>
<tr>
<td>marks.psp</td>
<td>705</td>
</tr>
<tr>
<td>marks.tess</td>
<td>706</td>
</tr>
<tr>
<td>markstat</td>
<td>708</td>
</tr>
<tr>
<td>marktable</td>
<td>709</td>
</tr>
<tr>
<td>markvario</td>
<td>710</td>
</tr>
<tr>
<td>matchingdist</td>
<td>712</td>
</tr>
<tr>
<td>matclust.estK</td>
<td>714</td>
</tr>
<tr>
<td>matclust.estpcf</td>
<td>716</td>
</tr>
<tr>
<td>Math.im</td>
<td>719</td>
</tr>
<tr>
<td>MaxnnDist</td>
<td>722</td>
</tr>
<tr>
<td>mean.im</td>
<td>723</td>
</tr>
<tr>
<td>methods.box3</td>
<td>725</td>
</tr>
<tr>
<td>methods.boxx</td>
<td>726</td>
</tr>
<tr>
<td>methods.fii</td>
<td>727</td>
</tr>
<tr>
<td>methods.funxy</td>
<td>728</td>
</tr>
<tr>
<td>methods.kppm</td>
<td>729</td>
</tr>
<tr>
<td>methods.layered</td>
<td>731</td>
</tr>
<tr>
<td>methods.linfun</td>
<td>732</td>
</tr>
<tr>
<td>methods.linnet</td>
<td>734</td>
</tr>
<tr>
<td>methods.lpp</td>
<td>736</td>
</tr>
<tr>
<td>methods.lppm</td>
<td>737</td>
</tr>
<tr>
<td>methods.objsurf</td>
<td>739</td>
</tr>
<tr>
<td>methods.pp3</td>
<td>740</td>
</tr>
<tr>
<td>methods.ppx</td>
<td>741</td>
</tr>
<tr>
<td>methods.rho2hat</td>
<td>742</td>
</tr>
<tr>
<td>methods.rhohat</td>
<td>743</td>
</tr>
<tr>
<td>methods.slrM</td>
<td>745</td>
</tr>
<tr>
<td>methods.units</td>
<td>746</td>
</tr>
<tr>
<td>midpoints.psp</td>
<td>747</td>
</tr>
<tr>
<td>mincontrast</td>
<td>748</td>
</tr>
<tr>
<td>miplot</td>
<td>750</td>
</tr>
<tr>
<td>model.depends</td>
<td>751</td>
</tr>
<tr>
<td>model.frame.ppm</td>
<td>753</td>
</tr>
<tr>
<td>model.images</td>
<td>754</td>
</tr>
<tr>
<td>model.matrix.ppm</td>
<td>756</td>
</tr>
<tr>
<td>model.matrix.slrM</td>
<td>758</td>
</tr>
<tr>
<td>moribund</td>
<td>759</td>
</tr>
<tr>
<td>mppm</td>
<td>760</td>
</tr>
<tr>
<td>msr</td>
<td>762</td>
</tr>
<tr>
<td>MultiHard</td>
<td>766</td>
</tr>
<tr>
<td>multiplicity.ppp</td>
<td>767</td>
</tr>
<tr>
<td>MultiStrauss</td>
<td>768</td>
</tr>
<tr>
<td>MultiStraussHard</td>
<td>770</td>
</tr>
<tr>
<td>murchison</td>
<td>772</td>
</tr>
<tr>
<td>nbfires</td>
<td>773</td>
</tr>
<tr>
<td>nearest.raster.point</td>
<td>776</td>
</tr>
<tr>
<td>nearestsegment</td>
<td>778</td>
</tr>
<tr>
<td>nestsplit</td>
<td>779</td>
</tr>
<tr>
<td>nnClan</td>
<td>780</td>
</tr>
<tr>
<td>nnCorr</td>
<td>782</td>
</tr>
<tr>
<td>nnCorr</td>
<td>782</td>
</tr>
<tr>
<td>nnCross</td>
<td>785</td>
</tr>
<tr>
<td>nnCross.lpp</td>
<td>788</td>
</tr>
</tbody>
</table>
INDEX

nncross.ppp, 790
nndensity.ppp, 792
nndist, 794
nndist.lpp, 796
nndist.pp3, 797
nndist.ppx, 799
nndist.psp, 800
nnfun, 802
nnfun.lpp, 803
nnmap, 804
nnmark, 806
nnorient, 808
nnwhich, 809
nnwhich.lpp, 811
nnwhich.pp3, 813
nnwhich.ppx, 814
npfun, 815
npoints, 816
nsegments, 817
nztrees, 818
objsurf, 819
opening, 820
Ord, 822
ord.family, 823
OrdThresh, 824
overlap.owin, 827
owin, 828
owin.object, 830
padimage, 833
pairdist, 834
pairdist.default, 835
pairdist.lpp, 836
pairdist.pp3, 837
pairdist.pp3, 838
pairdist.ppx, 839
pairdist.psp, 840
pairorient, 842
PairPiece, 843
pairs.im, 845
pairsat.family, 846
Pairwise, 847
pairwise.family, 849
panel.contour, 850
paracou, 851
parres, 852
pcf, 855
pcf.fasp, 856
pcf.fv, 858
pcf.ppp, 860
pcf3est, 863
pcfcrad, 865
pcfcrad.inhom, 867
pcfddot, 869
pcfddot.inhom, 872
pcfdinoc, 874
pcfmulti, 876
perimeter, 878
periodify, 879
persp.im, 880
perspPoints, 883
pixelcentres, 884
pixellate, 885
pixellate.owin, 886
pixellate.ppp, 887
pixellate.psp, 889
pixelquad, 890
plot.anylist, 891
plot.berman, 894
plot.cdftest, 896
plot.colourmap, 898
plot.envelope, 899
plot.fasp, 900
plot.fv, 902
plot.hyperframe, 906
plot.im, 907
plot.imlist, 912
plot.influence.ppm, 913
plot.kppm, 914
plot.layered, 916
plot.leverage.ppm, 917
plot.linim, 918
plot.linnet, 920
plot.listof, 921
plot.lpp, 924
plot.lppm, 925
plot.mppm, 926
plot.msr, 927
plot.onearrow, 928
plot.owin, 930
plot.plotppm, 932
plot.pp3, 934
plot.ppm, 935
plot.psp, 937
plot.psp, 942
plot.quad, 944
plot.quadratcount, 945
plot.quadrat.test, 947
plot.scan.test, 948
plot.slrm, 949
plot.solist, 950
plot.splitppp, 953
plot.symbolmap, 954
plot.tess, 955
plot.textstring, 956
plot.texturemap, 957
plot.yardstick, 958
pointsOnLines, 960
Poisson, 961
ponderosa, 962
pool, 963
pool.anylist, 964
pool.envelope, 965
pool.fasp, 966
pool.fv, 968
pool.quadrat.test, 969
pool.rat, 970
pp3, 971
ppm, 972
ppm.object, 978
ppm.ppp, 980
ppp, 990
ppp.object, 993
pppdist, 995
pppmatching, 998
pppmatching.object, 1000
ppx, 1001
predict.kppm, 1003
predict.lppm, 1004
predict.mppm, 1005
predict.ppm, 1007
predict.slrm, 1012
print.im, 1013
print.ppp, 1014
print.ppm, 1015
print.ppp.object, 1016
print.psp, 1017
print.quad, 1018
profilepl, 1019
project.ppm, 1022
project2segment, 1024
project2set, 1025
ppsp, 1026
ppsp.object, 1028
psst, 1029
pssta, 1031
psstG, 1034
pyramidal, 1036
qqplot.ppm, 1037
quad.object, 1042
quad.ppm, 1043
quadat.test, 1044
quadat.test.mppm, 1048
quadat.test.splitppp, 1050
quadatcount, 1051
quadatresample, 1054
quadscheme, 1056
quadscheme.logi, 1059
quantess, 1061
quantile.ecdf, 1063
quantile.im, 1064
quasirandom, 1065
range.fv, 1066
raster.x, 1067
rat, 1069
rCauchy, 1070
rcell, 1072
rDGS, 1074
rDiggleGratton, 1076
reach, 1078
reduced.sample, 1080
redwood, 1081
redwoodfull, 1082
reflect, 1084
retrisk, 1086
retrisk.ppm, 1087
retrisk.ppp, 1089
Replace.im, 1092
rescale, 1094
rescale.im, 1095
rescale.ppp, 1098
rescale.psp, 1099
rescue.rectangle, 1100
residuals.mppm, 1101
residuals.ppm, 1102
residualspaper, 1105
rGaussPoisson, 1107
rgbim, 1108
rHardcore, 1109
rholhat, 1111
rhohat, 1112
ripras, 1117
INDEX

rjitter, 1118
rknn, 1119
rlabel, 1121
rLGCP, 1122
rlinegrid, 1124
rMatClust, 1125
rMaternI, 1127
rMaternII, 1128
rmh, 1129
rmh.default, 1131
rmh.ppm, 1141
rmhcontrol, 1144
rmhexpand, 1148
rmhmodel, 1151
rmhmodel.default, 1152
rmhmodel.list, 1159
rmhmodel.ppm, 1161
rmhstart, 1163
rMosaicField, 1165
rMosaicSet, 1166
rmpoint, 1167
rmpoispp, 1171
rNeymanScott, 1174
rose, 1177
rotate, 1179
rotate.im, 1180
rotate.owin, 1181
rotate.ppp, 1182
rotate.psp, 1183
rotmean, 1184
round.ppp, 1185
rounding, 1186
rpoint, 1187
rpoisline, 1189
rpoislinetess, 1190
rpoislpp, 1191
rpoispp, 1192
rpoispp3, 1194
rpoisppOnLines, 1195
rpoisppx, 1197
rPoissonCluster, 1198
rQuasi, 1200
rshift, 1201
rshift.ppp, 1202
rshift.psp, 1204
rshift.splitppp, 1206
rSSI, 1207
rstrat, 1209
rStrauss, 1210
rStraussHard, 1212
rsyst, 1214
rthin, 1215
rThomas, 1217
runifdisc, 1220
runiflpp, 1222
runifpoint, 1223
runifpoint3, 1224
runifpointOnLines, 1225
runifpointx, 1226
rVarGamma, 1227
SatPiece, 1229
Saturated, 1231
scalardilate, 1232
scaleinterval, 1233
scan.test, 1234
scanLRTS, 1236
scanpp, 1238
segregation.test, 1240
selfcrossing.psp, 1241
selfcut.psp, 1242
setcov, 1244
shapley, 1245
sharpen, 1246
shift, 1248
shift.im, 1248
shift.owin, 1250
shift.ppp, 1251
shift.psp, 1252
sidelengths.owin, 1253
simba, 1254
simdat, 1255
simplenet, 1256
simplify.owin, 1259
simulate.kppm, 1260
simulate.lppm, 1262
simulate.ppm, 1263
simulate.slrm, 1265
slrm, 1266
Smooth, 1269
Smooth.fv, 1270
Smooth.msr, 1271
Smooth.ppp, 1272
Smoothfun.ppp, 1275
Softcore, 1276
solapply, 1278
solist, 1279
solutionset, 1280
spatialcdf, 1282
spatstat-package, 23
spatstat.options, 1283
split.hyperframe, 1288
split.im, 1290
split.ppp, 1291
split.ppx, 1294
spokes, 1295
spruces, 1298
square, 1299
stiltjies, 1300
stienen, 1301
stratrand, 1302
Strauss, 1304
StraussHard, 1305
subfits, 1307
subset.hyperframe, 1308
subset.ppp, 1309
suffstat, 1311
summary.anylist, 1313
summary.im, 1314
summary.listof, 1315
summary.owin, 1316
summary.ppm, 1317
summary.ppp, 1318
summary.psp, 1319
summary.quad, 1320
summary.solist, 1322
summary.splitppp, 1323
superimpose, 1325
superimpose.lpp, 1328
swedishpines, 1329
symbolmap, 1330
tess, 1332
texturemap, 1334
textureplot, 1335
thomas.estK, 1336
thomas.estpcf, 1338
tile.areas, 1341
tilenames, 1342
tiles, 1343
timed, 1344
transect.im, 1345
trim.rectangle, 1346
triplet.family, 1347
Triplets, 1348
Tstat, 1349
tweak.colourmap, 1351
union.quad, 1352
unique.ppp, 1353
unitname, 1354
unmark, 1356
update.kppm, 1358
update.ppm, 1359
update.rmhcontrol, 1362
update.symbolmap, 1363
valid.ppm, 1364
varblock, 1366
vargamma.estK, 1367
vargamma.estpcf, 1370
vcov.kppm, 1372
vcov.mppm, 1374
vcov.ppm, 1375
vcov.slrm, 1378
vertices, 1380
vesicles, 1381
volume, 1383
waka, 1384
waterstriders, 1384
will.expand, 1387
Window, 1388
WindowOnly, 1389
with.fv, 1391
with.hyperframe, 1393
yardstick, 1395
zapsmall.im, 1396

*Topic univar
 ewcdf, 365
 mean.im, 723
 quantile.im, 1064
 scaletointerval, 1233
 zapsmall.im, 1396

*Topic utilities
 bounding.box.xy, 152
 boundingbox, 153
 convexhull, 240
 convexhull.xy, 241
 corners, 246
 dirichlet.weights, 302
 dummy.ppm, 323
 layout.boxes, 625
 multiplicity.ppp, 767
 quadrats, 1055
 reload.or.compute, 1085
 ripras, 1117
INDEX

run.simplepanel, 1219
simplepanel, 1256
.Random.seed, 1133, 1135
[, 372, 373, 378, 379, 381, 384, 387, 390–392, 1093
[.anylist (Extract.anylist), 369
[.fasp (Extract.fasp), 370
[.fv (Extract.fv), 371
[.hyperframe, 488, 1289, 1308, 1309
[.hyperframe (Extract.hyperframe), 373
[.im, 30, 98, 256, 380, 381, 496, 499, 511, 1093
[.im (Extract.im), 375
[.influence.ppm
 (Extract.influence.ppm), 377
[.layered, 34, 624, 625, 916, 917
[.layered (Extract.layered), 379
[.leverage.ppm, 381
[.leverage.ppm (Extract.leverage.ppm), 380
[.linnet (Extract.linet), 381
[.lpp (Extract.lpp), 383
[.msr, 764
[.msr (Extract.msr), 385
[.owin (Extract.owin), 386
[.ppp, 27, 258, 378, 392, 393, 994, 1311
[.ppp (Extract.ppp), 387
[.ppx (Extract.ppx), 389
[.psp, 31, 1028, 1029
[.psp (Extract.psp), 391
[.quad (Extract.quad), 392
[.solist (Extract.solist), 393
[.splitpp (Extract.splitpp), 394
[.tess, 32, 1333
[.tess (Extract.tess), 395
[<-.anylist (Extract.anylist), 369
[<-.fv (Extract.fv), 371
[<-.hyperframe (Extract.hyperframe), 373
[<-.im, 30
[<-.im (Replace.im), 1092
[<-.layered (Extract.layered), 379
[<-.listof (Extract.listof), 382
[<-.ppp (Extract.ppp), 387
[<-.solist (Extract.solist), 393
[<-.splitpp (Extract.splitpp), 394
[<-.tess, 32
[<-.tess (Extract.tess), 395

[[<-.layered (Extract.layered), 379
$. 374
$.hyperframe (Extract.hyperframe), 373
$<-.fv (Extract.fv), 371
$<-.hyperframe (Extract.hyperframe), 373
%mark% (marks), 703

abline, 505
ad.test, 176–178, 181
adaptive.density, 48, 277, 278
add.texture, 49, 930, 957, 958, 1334–1336
add1, 979
addvar, 45, 50, 854
affine, 28, 29, 53, 54, 56–62, 368, 369, 417,
 732, 832, 1084, 1095, 1097–1100,
 1221, 1233, 1248, 1250, 1252, 1253
affine.im, 30, 53, 54, 59–62, 1180
affine.layered (methods.layered), 731
affine.linet, 55
affine.psp, 31, 53, 54, 59, 60, 60
affine.tess, 61
aggregate, 795
AIC, 40
AIC.ppm, 1019
AIC.ppm (logLik.ppm), 683
allstats, 35, 63
alltypes, 36, 64, 227, 360, 400, 401, 699,
 855–858, 860, 901, 902, 967
amacrine, 26, 67, 535, 536, 538–541, 993
anemones, 26, 68
angles.psp, 31, 69, 633, 747, 1028
anova, 71, 72, 74, 76
anova.linet, 71–74, 76
anova.lppm, 42, 70
anova.mppm, 72
anova.ppm, 40, 45, 73, 978, 1047, 1051
anova.slr, 43, 75, 1268
ants, 26, 77
anyDuplicated, 325
anyDuplicated.ppp (duplicated.ppp), 324
anyDuplicated.ppx (duplicated.ppp), 324
anyapply, 80
anyapply (solapply), 1278
anylist, 79, 369, 370, 965, 1279, 1280, 1313
append.psp, 80
apply, 81–83, 708, 709
applynb, 37, 81, 203, 708–710
approxfun, 471
area(area.owin), 84
area.owin, 29, 84, 294, 827, 832, 878, 1254, 1383
areaGain, 85, 90, 1285
AreaInter, 41, 86, 87, 90, 508, 850, 973, 976, 983, 968, 1020, 1032, 1135, 1142, 1143, 1157, 1163
areaLoss, 86, 89, 1285
array, 117
as.anylist, 132
as.arraylist, 79
as.array.im(as.matrix.im), 117
as.box3, 32, 91, 154, 155, 291, 972
as.data.frame, 92, 94, 95, 101, 102
as.data.frame.default, 93
as.data.frame.hyperframe, 34, 92, 488
as.data.frame.im, 39, 93
as.data.frame.ppm, 94
as.data.frame.ppx(as.hyperframe.ppx), 102
as.data.frame.psp, 31, 95
as.function, 97
as.function.fv, 96, 428, 429
as.function.im, 30, 97
as.function.linfun(methods.linfun), 732
as.function.rhohat(as.function.fv), 96
as.fv, 98
as.hyperframe, 32, 33, 100, 102, 103, 175, 488
as.hyperframe.ppx, 101, 102, 488
as.im, 30, 48, 102, 110, 118, 119, 224, 309, 311, 363, 472, 496, 498, 499, 729, 802, 885–888, 1275
as.im.function, 729
as.im.leverage.ppm, 640
as.im.owin, 29
as.im.ppm, 28, 105
as.im.ppp(pixelate.ppp), 887
as.im.scan.test, 1236–1238
as.im.scan.test(plot.scan.test), 948
as.interact, 40, 106, 728, 979
as.interact.fii, 412, 728
as.interact.ppm, 979
as.layered, 108, 624
as.linim, 109, 312, 670, 733, 804
as.linim.linfun(methods.linfun), 732
as.linnet, 56, 111
as.linnet(methods.linnet), 734
as.linnet.linfun(as.linnet.linim), 110
as.linnet.linim, 110
as.linnet.lpp(as.linnet.linim), 110
as.linnet.lppm(methods.lppm), 737
as.linnet.psp, 112, 271
as.lpp, 113, 690
as.mask.psp, 31, 116, 890
as.matrix.im, 30, 117, 119, 496, 499
as.matrix.owin, 117, 118
as.matrix.ppx(as.hyperframe.ppx), 102
as.owin.linfun(methods.linfun), 732
as.owin.linnet(methods.linnet), 734
as.owin.ppm, 979
as.polygonal, 29, 30, 115, 123, 878
as.ppm, 124, 1020
as.ppm.kppm, 613, 730
INDEX

992–994, 1057–1061, 1092, 1093, 1132, 1164, 1239, 1350, 1352
as.ppp.influence.ppm, 507
as.ppp.lpp (methods.lpp), 736
as.psp, 31, 80, 127, 735, 736, 943, 1027–1029, 1284
as.psp.linnet, 735
as.psp.linnet (methods.linnet), 734
as.psp.lpp (methods.lpp), 736
as.rectangle, 115, 130, 153, 183, 832, 1175, 1199, 1254
as.solist, 80, 131, 1278, 1280
as.tess, 32, 132, 523, 524, 1052, 1333
atan2, 70
axis, 898, 899, 909, 954
axis.default, 957
badgey, 41, 133, 134, 973, 976, 983, 988, 1020, 1135, 1157, 1163, 1230
barplot, 480, 481
bdist.pixels, 30, 135, 137, 138, 832
bdist.points, 30, 136, 136, 138, 832
bdist.tiles, 30, 32, 136, 137, 137, 1333
bdspots, 27, 138
beachcolourmap, 34, 881, 910
beachcolourmap (beachcolours), 139
beachcolours, 139, 881, 910
beginner, 141, 419
bej, 27, 142
berman.test, 45, 143, 178, 759, 895, 979
berman.test.ppm, 979
bermantest (moribund), 759
betacells, 27, 145, 434, 993
bilinearform (sumouter), 1324
bind.fv, 147, 428, 429
blur, 30, 149, 408, 453, 560, 589, 617
border, 29, 150
bounding.box.xy, 152, 241, 1117, 1118, 1326, 1327
boundingbox, 29, 130, 131, 153, 522, 832
box3, 32, 91, 154, 725, 747, 972, 1195, 1225
boxx, 33, 155, 292, 726, 1198, 1227
bramblecanes, 27, 156, 993
bronzefilter, 27, 157
bw.diggle, 34, 99, 158, 160, 162, 164, 277, 278, 1091
bw.frac, 35, 160, 164
bw.ppl, 34, 159, 160, 161, 164, 277, 278
bw.relrisk, 34, 160, 162, 167, 1089, 1091, 1284
bw.scott, 34, 159, 160, 162, 164
bw.smoothppp, 34, 160, 165, 1273, 1274
bw.stoyan, 35, 160, 163, 166
by, 168, 169
by.im, 167, 1291
by.ppp, 28, 169, 1333
cau.hestK, 39, 170, 174, 613, 1369
cau.estpcf, 39, 172, 172, 613, 1372
cbind, 148, 175
cbind.fv, 219, 428, 429, 470, 471
cbind.fv (bind.fv), 147
cbind.hyperframe, 33, 174, 488
cdf.test, 45, 145, 175, 180, 181, 759, 896, 897, 979, 1047, 1051, 1283
cdf.test.mppm, 179
cdf.test.ppm, 979
cells, 27, 182, 993
centroids.owin, 30, 183, 503, 1250
chicago, 27, 33, 184, 690
chisq.test, 1047, 1051
chop.tess, 32, 185, 199
chorley, 27, 186
chull, 530
circdensity, 188, 808, 842, 1178
circumradius, 189, 293
circumradius.linnet, 189
circumradius.linnet (diameter.linnet), 293
clarkevans, 34, 190, 192, 193, 483
clarkevans.test, 45, 191, 192, 483
clear.simplepanel (run.simplepanel), 1219
clickbox, 29, 193, 195, 197, 198
clickdist, 194, 194, 197, 198
clickjoin, 33, 195
clickpoly, 29, 194, 195, 196, 198
clickppp, 25, 194–197, 197, 490
clip.inline, 186, 198
clip.psp, 1028
clmfires, 27, 199
closepaircounts (closepairs), 201
closepairs, 201, 204, 1286
closepairs.ppp, 203, 203
closing, 29, 205, 821, 832
clusterfield, 206, 211, 915, 1070, 1125, 1217, 1228
INDEX

coefNfii, 208, 1071, 1126, 1218
cor

collapseNim, 215, 216, 218, 411, 727, 730, 738
collapseNimlist, 215, 762
collapseNimlistof, 40, 216, 422, 684, 978, 980, 1376
colours, 222
coloursNfii, 881, 910
colourmap, 34, 140, 220, 223, 519, 696, 881, 898, 899, 908, 909, 911, 1331, 1351
complex, 255
compatible, 226, 227, 228, 469, 470, 746, 1069
compatibleNfii, 227
compatibleNim, 226, 227, 228, 471
compatible.units, 226
compatible.unitsNmethods, 746
compatibleNunits, 226
compatibleNunitsNmethods, 746
compatibleNim, 46, 224
corners, 42, 246, 266, 1057, 1058
corrNim, 727
corrNlistof, 221
corrNimlist, 221
convexhull, 28, 30, 240, 241
convexhullNxy, 152, 240, 241, 269, 530, 1117, 1118
cov.conv, 31, 242, 500
covNim, 28, 32, 33, 243
covNimlist, 253, 799, 814, 840
covNim<-Nim, 243
cpplot, 850, 851
copper, 27, 244, 1105
cor, 782, 784
correspondence, 261
corners, 42, 246, 266, 1057, 1058
countendsNlinearDisc, 646
crossdist, 36, 247, 248–254, 834, 836, 838–841
crossdistNdefault, 247, 248, 248, 252
crossdistNim, 38, 249
crossdistNpp3, 38, 250
crossdistNpp, 247–250, 251
crossdistNppx, 38, 253
crossdistNpsp, 247–249, 252, 254
crossingNpsp, 31, 255, 1242, 1286
crosspaircountsNclosepairs, 201
crosspairs, 1286
crosspairsNclosepairs, 201
crosspairsNpp3, 203
cut, 256–258
cutNim, 30, 256, 496, 498, 499, 1064
cutNpp, 28, 37, 170, 257, 388, 782, 1292, 1333
cvmNtest, 176–178, 181
cutNdefault, 256–258
cutNim, 30, 256, 496, 498, 499, 1064
data, 26
data.frame, 487
dataNppm, 259, 333, 979
dclfn, 45, 260, 264
dclfnNprogress, 45, 260, 264
dclfnNtest, 45, 261, 262, 262, 347
defaultNdummy, 42, 265, 981, 1057, 1284
defaultNexpand, 266, 268, 269, 347
defaultNrmhcontrol, 268, 1142, 1143
delaunay, 28, 32, 269, 270, 271, 301, 1333
delaunayNdistance, 28, 269, 270, 271
delaunayNnetwork, 269, 270, 271, 675
deldir, 300
deltametric, 272
demohyper, 27, 273
demopat, 27, 274, 993
INDEX

density, 279, 280, 337, 338, 697, 698, 700, 702, 711, 862, 866, 871, 877
density.psp, 31, 279
density.splitppp, 280, 894, 923, 952
deriv, 282
deriv.fv, 36, 281, 504, 808, 842
dev.capabilities, 910
dev.new, 1220
dev.off, 1220
dev.set, 1220
dfbetas, 283
dfbetas.ppm, 45, 283, 414, 507, 640
diagnose.ppm, 45, 284, 333, 692–695, 1037–1040, 1103–1105
diameter, 289, 293, 832
diameter.boxx, 32, 154, 155, 290, 290
diameter.boxx, 33, 155, 156, 290, 291
diameter.linnet, 290, 293
diameter.owin, 29, 85, 290, 294, 832, 878, 1254
DiggleGatesStibbard, 41, 295, 973, 976, 983, 988, 1020, 1076, 1135, 1142, 1143, 1157, 1163
DiggleGratton, 41, 296, 296, 973, 976, 983, 988, 1020, 1077–1079, 1135, 1142, 1143, 1152, 1157, 1160, 1163
dilated.areas, 30, 90, 297
dilation, 29, 151, 205, 206, 267, 298, 299, 359, 464, 821, 832
dilation.owin, 1150
dirichlet, 28, 32, 48, 49, 269–271, 300, 301, 302, 1333
dirichlet.edges (dirichlet.vertices), 301
dirichlet.network (delaunay.network), 271
dirichlet.vertices, 301, 301
dirichlet.weights, 42, 302, 463, 1058
disc, 28, 303, 306, 308, 336, 829, 1221
discpartarea, 305
discretise, 28, 306
discs, 304, 307
distcdf, 160, 309
distfun, 36, 105, 310, 312, 314, 316–318, 729, 803
distfun.lpp, 38, 312, 670, 690, 804
distfun.owin, 30
distfun.psp, 31
distmap, 36, 272, 273, 298, 311, 313, 315–318, 475, 498, 503, 806
distmap.owin, 30, 313, 314, 316, 318
distmap.ppp, 31, 313–316, 317, 778, 1028
dknn (rknn), 1119
dmixpois, 318
domain, 319, 322
dpois, 319
drop1, 40, 979
dummary, 322
dummy.ppm, 323, 979
duplicated, 325
duplicated.data.frame, 325, 1353
duplicated.ppp, 28, 187, 324, 458, 484, 620, 768, 774, 851, 1245, 1319, 1353
duplicated.ppx (duplicated.ppp), 324
duplicatedxy, 325
edcdf, 365, 366
eedge.Ripley, 326, 329, 1284
eedge.Trans, 327, 327, 1284
eedges, 29, 31, 294, 329
eedges2triangles, 330, 332
eedges2vees, 331, 331
eem, 286, 288, 289, 332, 694, 695, 1040, 1104
effectfun, 40, 334
eellipse, 304, 335
Emark, 37, 336
eendpoints.psp, 31, 339
eenvelope.envelope, 343, 345, 347, 350, 966
eenvelope.lpp, 38, 343, 351
envelope.lppm, 42
envelope.lppm(envelope.lppm), 351
envelope.ppm, 32, 38, 343, 354
envelope.ppm, 979
eroded.areas, 29, 298, 357, 359, 832
eroded.volumes, 32, 154, 155
eroded.volumes(diameter.boxx), 290
eroded.volumes.boxx, 33, 156
eroded.volumes.boxx(diameter.boxx), 291
erosion, 29, 136, 137, 151, 205, 206, 300, 357, 358, 464, 500, 532, 821, 832, 1203, 1244, 1347
eval.fasp, 36, 227, 359, 400, 401
eval.fv, 36, 228, 359, 360, 361, 470, 471, 1392, 1393
eval.im, 31, 229, 362, 365, 496, 498, 499, 511, 719, 720, 1091, 1096, 1281
eval.linim, 42, 364, 673, 721, 722
ewcdf, 177, 181, 365, 1063, 1282, 1283
exactdt, 36
exactMLEstrauss, 366
expand.owin, 368, 1150, 1387
expression, 907
Extract.anylist, 369
Extract.fasp, 370
Extract.fv, 371
Extract.hyperframe, 373
Extract.im, 375
Extract.influence.ppm, 377
Extract.layered, 379
Extract.leverage.ppm, 380
Extract.linnet, 381
Extract.listof, 382
Extract.lpp, 383
Extract.msr, 385
Extract.owin, 386
Extract.ppp, 387
Extract.ppx, 389
Extract.psp, 391
Extract.quad, 392
Extract.solist, 393
Extract.splitppp, 394
Extract.tess, 395
extractAIC, 683, 738
extractAIC.lppm(methods.lppm), 737
extractAIC.ppm, 422, 978
extractAIC.ppm(logLik.ppm), 683
F3est, 38, 356, 396, 433, 564, 1285
fardist, 398
fasp, 967
fasp.object, 63, 66, 360, 370, 371, 400, 856, 857, 901, 902
fft, 596
Fhazard(Fest), 401
Fiksel, 41, 405, 850, 973, 976, 983, 988, 1020, 1135, 1157, 1163
Finhom, 35, 407, 454, 560
finpines, 27, 409
fitin, 40, 107, 727, 728, 979, 1079
fitin(fitin.ppm), 411
fitin.ppm, 411, 979
fitted, 416, 1003
fitted.kppm, 39, 613
fitted.kppm(predict.kppm), 1003
fitted.mppm, 412, 1007
fitted.ppm, 40, 413, 422, 588, 684, 978, 980, 1003, 1011
fitted.slrm, 43, 415, 1268
flipxy, 28, 29, 31, 53, 60, 61, 416, 417, 732, 1084
flipxy.layered(methods.layered), 731
flu, 27, 417
foo, 419
formula, 420, 421, 730, 738, 745, 752
formula.fv, 420
formula.kppm(methods.kppm), 729
formula.lppm(methods.lppm), 737
formula.ppm, 40, 421, 684, 978
formula.slrm(methods.slrm), 745
formula<- (formula.fv), 420
Frame, 28, 422
Frame<-(Frame), 422
fryplot, 34, 423, 596, 597
frypoints(fryplot), 423
funxy, 425, 729
fv, 97, 147, 148, 421, 426, 1178
image, 739, 933, 936, 937, 1285
image.default, 105, 898, 908–911, 931, 932
image.im(plot.im), 907
image.imlist(plot.imlist), 912
image.listof, 893, 894, 922, 923, 951, 952
image.listof(plot.imlist), 912
image.objsurf(methods.objsurf), 739
imcov, 31, 243, 309, 499, 1244
improve.kppm, 39, 500, 502, 610, 611
incircle, 29, 502
increment.fv, 504
infill, 186, 198, 199, 505
influence, 507
influence.ppm, 45, 284, 378, 506, 640, 913, 914
inorder.family, 478, 487, 508, 847, 850, 1348
inside.owin, 29, 461, 462, 508, 1296, 1303
integral, 513
integral(integral.im), 510
integral.im, 30, 510, 512, 597
integral.linfun(integral.linim), 511
integral.linim, 511
integral.msr, 512, 1104
intensity, 35, 513, 514–519, 793
intensity.lpp, 514, 690, 737
intensity.ppm, 40, 513, 514, 515, 517
intensity.ppp, 513, 514, 516, 516
intensity.quadratcount, 35, 518, 1052, 1053, 1116
intensity.splitpp(intensity.ppp), 516
interp.colourmap, 34, 221, 223, 519, 1351
interp.colours(colourtools), 221
interp.im, 30, 150, 520
intersect.owin, 29, 386, 521, 524, 532, 827
intersect.tess, 32, 523, 1333
invoke.symbolmap, 524, 955, 1331
iplot, 27, 526, 548, 941
iplot.layered, 526
iplot.ppp, 526
iplot.ppm, 283, 507, 527, 640, 975, 976, 988
is.convex, 30, 240, 530
is.dppm, 531
is.empty, 531
is.grey(colourtools), 221
is.hybrid, 40, 532
is.im, 30, 533
is.kppm(is.ppm), 543
is.lpp, 534
is.lppm(is.ppm), 534
is.marked, 535, 537, 538, 546, 979
is.marked.lppp(is.marked.ppm), 536
is.marked.ppm, 535, 536, 538, 979
is.marked.ppp, 535, 537, 537
is.mask, 30
is.mask(is.rectangle), 544
is.multitype, 538, 540–542, 979
is.multitype.lpp(is.multitype.ppp), 541
is.multitype.lppp(is.multitype.ppm), 539
is.multitype.ppm, 539, 539, 542, 979
is.multitype.ppp, 539, 540, 541
is.owin, 542
is.poisson, 979
is.poisson(is.stationary), 545
is.poisson.ppm, 979
is.polyoongal, 30
is.polyoongoal(is.rectangle), 544
is.ppm, 543
is.ppp, 543
is.psp, 31
is.rectangle, 30, 544
is.srm(is.ppm), 543
is.stationary, 545, 979
is.stationary.ppm, 979
is.subset.owin, 30, 522, 547
istat, 34, 527, 548
japanesepines, 27, 549
Jcross, 36, 65, 66, 550, 553, 554, 561, 563
Jdot, 36, 65, 66, 550, 552, 552, 561, 563
Jfox, 38
Jfox(Gfox), 450
Jinhom, 35, 409, 454, 558, 558
Jmulti, 36, 37, 550, 552–554, 561
K3est, 38, 356, 398, 433, 563, 838, 864
linnet, linim, linhom, linfun, lines, linearpcf dot, linearpcf dot inhom, linearpcf inhom, linfun, 42, 313, 669, 804
Linhom, 35, 628, 629, 631, 632, 671, 678, 679, 687
linim, 42, 110, 365, 512, 672, 721, 919, 1005
linnet, 33, 56, 111–113, 195, 196, 293, 647, 673, 674, 690, 735, 920, 1191, 1192, 1222
lm, 24, 468, 752, 760
load, 1360
localK, 35, 585, 675, 678, 679, 681, 687
localKinhom, 35, 677, 677, 681, 687
local, 35, 678, 679
local (localK), 675
localInhom, 35, 677
localInhom (localKinhom), 677
localpcf, 35, 679, 686, 687
localpcf inhom, 35, 687
localpcfinhom (localpcf), 679
locator, 194–198
locfit, 1114, 1115
loess, 337, 697, 700, 711, 1270
logLik, 683, 685, 738
logLik.lppm (methods.lppm), 737
logLik.mpp, 682
logLik.mppm, 40, 422, 683, 978
logLik.slm, 43, 685, 1268
looboot, 35, 44, 345, 584, 686, 862, 1367
longleaf, 27, 535, 536, 538–541, 688, 993
lpp, 25, 33, 57, 114, 184, 185, 275, 384, 649, 657, 661, 669, 689, 691, 737, 797, 812, 837, 925, 1005, 1192, 1222
lppm, 42, 71, 72, 546, 690, 738, 754–757, 926, 1004, 1263
Lscaled (Kscaled), 615
lurking, 285, 286, 288, 289, 692, 1040
lut, 221, 695
mad.progress, 45
mad.progress (dclf.progress), 260
mad.test, 45, 261, 262, 344, 347
mad.test (dclf.test), 262
markconnect, 36, 338, 658, 659, 697, 702, 712, 867, 871
markcorr, 37, 338, 594, 595, 699, 699, 712
markcorrint (Kmark), 593
markmean, 36
markmean (Smooth.ppp), 1272
marks, 28, 703, 706, 707
marks.psp, 31, 705, 1027
marks.tess, 706, 1333
marks<, 25
marks< (marks), 703
marks<.lpp (methods.lpp), 736
marks<.psp, 31
marks<.psp (marks.psp), 705
marks<.tess (marks.tess), 706
markstat, 37, 82, 83, 203, 708, 710
marktable, 37, 82, 83, 708, 709, 709, 807
markvar, 37
markvar (Smooth.ppp), 1272
markvario, 37, 338, 699, 702, 710
matchingdist, 712, 997, 999–1001
matclust.estK, 39, 613, 643, 714, 718, 748, 750, 1338
matclust.estpcf, 39, 613, 646, 716
Math.im, 719, 1281
Math.locfit, 673, 720
matrix, 496
max, 1067
max.fv (range.fv), 1066
max.im (mean.im), 723
maxnndist, 722
mctest.progress (dclf.progress), 260
mean, 724
mean.default, 724
mean.im, 30, 498, 723
median, 724
median.default, 724
median.im (mean.im), 723
methods.box3, 725
methods.boxx, 726
methods.fii, 412, 727
methods.funxy, 728
methods.kppm, 613, 729, 1359
methods.layered, 624, 625, 731
methods.linfun, 42, 313, 670, 732, 804
methods.linnet, 33, 111, 112, 675, 734
methods.lpp, 33, 690, 736
methods.lppm, 691, 737, 926
methods.objsurf, 739, 819, 820
methods.pp3, 740
methods.ppm (ppm.object), 978
methods.ppx, 690, 737, 741
methods.rho2hat, 742, 1112
methods.rhohat, 743, 1116
methods.slrm, 745
methods.units, 746
midpoints.psp, 31, 70, 340, 633, 747, 1028
min, 1067
min.fv (range.fv), 1066
min.im (mean.im), 723
minnndist (maxnndist), 722
miplot, 34, 750, 1053
model.covariates (model.depends), 751
model.depends, 40, 751
model.frame, 753, 754
model.frame.glm, 753
model.frame.kppm (model.frame.ppm), 753
model.frame.lppm (model.frame.ppm), 753
model.frame.ppm, 40, 422, 684, 753, 978
model.images, 40, 754, 757, 758
model.is.additive (model.depends), 751
model.matrix, 323, 752, 756–758
model.matrix.kppm (model.matrix.ppm), 756
model.matrix.lm, 755, 756, 758
model.matrix.lppm (model.matrix.ppm), 756
model.matrix.ppm, 422, 684, 754–756, 756, 978
model.matrix.slrm, 758
moribund, 759
mppm, 72, 73, 181, 215, 412, 413, 682, 760, 926, 927, 1005–1007, 1049, 1102, 1307, 1374, 1375
msr, 288, 385, 513, 694, 762, 927, 928, 1104, 1105, 1271, 1272
mucosa, 27, 765
MultiHard, 41, 467, 766, 770, 771, 850, 1135, 1137
multiplicity (multiplicity.ppp), 767
multiplicity.ppp, 325, 767, 1353
MultiStrauss, 41, 480, 767, 768, 770, 771,
850, 973, 976, 983, 988, 1078, 1079, 1135, 1142, 1143, 1152, 1157, 1160, 1163
MultiStraussHard, 41, 767, 770, 850, 973, 976, 983, 988, 1078, 1079, 1135, 1142, 1143, 1152, 1157, 1160, 1163
murchison, 27, 772
nbfires, 27, 773
nbw.rect (nbfires), 773
nearest.neighbour (Gest), 445
nearest.segment, 31, 318, 778, 1025
nestsplit, 779
news, 622
nlm, 528
nnclean, 35, 214, 780
nncorr, 782
nncross.lpp, 38, 690, 788
nncross.pp3, 38, 790
ndensity (nddensity.ppp), 792
ndensity.ppp, 792
nndist, 36, 191, 203, 248–253, 255, 447, 448, 483, 723, 782, 787, 792, 794, 798, 800, 801, 810, 811, 813–815, 834, 836, 838–841, 1302
nndist.lpp, 38, 690, 789, 796
nndist.pp3, 38, 797
nndist.ppp, 801
nndist.ppx, 38, 799
nndist.psp, 794, 795, 800
nnfun, 36, 105, 802, 804
nnfun.lpp, 38, 313, 670, 690, 803
nnmap, 36, 793, 804
nnmark, 28, 493, 806, 1274
nnmean, 37
nnmean (nncorr), 782
nnorient, 808, 843
nnvario, 37
nnvario (nncorr), 782
nnwhich, 36, 447, 448, 795, 798–800, 807, 809, 814, 815
nnwhich.lpp, 38, 690, 811
nnwhich.pp3, 38, 810, 813
nnwhich.ppx, 38, 814
nobs, 683, 738
nobs.lppm (methods.lppm), 737
nobs.ppm, 978
nobs.ppm(logLik.ppm), 683
npfun, 815
npoints, 28, 32, 33, 816, 818
nsegments, 817
nztrees, 27, 818, 993
objcсуж, 740, 819
offset, 752
onearrow, 929, 957
onearrow(yardstick), 1395
opening, 29, 206, 532, 820, 832
Ops.im(Math.im), 719
Ops.linim(Math.linim), 720
optim, 170, 171, 173, 367, 610, 612, 641, 642,
644, 645, 714, 715, 717, 718, 748, 749, 1336, 1337, 1339, 1340,
1368–1371
options, 1283, 1287
Ord, 41, 822, 823, 850, 973, 976, 983, 988,
1078, 1079
ord.family, 478, 487, 508, 823, 847, 850,
1348
OrdThresh, 41, 822, 823, 824, 850, 973, 976,
983, 988, 1020, 1078, 1079, 1162
osteo, 27, 825
overlap.owin, 328, 522, 827
owin, 25, 28, 50, 84, 122, 123, 131, 152, 153,
183, 206, 230, 240, 241, 246, 294,
298, 300, 304, 306, 336, 357, 359,
391, 461, 500, 509, 530, 545, 821,
828, 832, 930, 931, 990–994, 1027,
1028, 1068, 1072, 1118, 1209, 1214,
1244, 1254, 1260, 1284, 1299, 1302,
1355
owin.object, 85, 104, 115, 121, 122, 127,
129, 136, 183, 230, 294, 304, 336,
357, 377, 388, 392, 464, 509, 522,
542, 637, 638, 777, 828, 829, 830,
878, 932, 991, 992, 1027, 1093,
1101, 1169, 1173, 1181, 1189, 1194,
1224, 1244, 1281, 1299, 1347, 1380,
1381, 1391
padimage, 833
pairdist, 36, 248–253, 255, 795, 798, 800,
834, 838–841
pairdist.default, 834, 835, 839
pairdist.lpp, 37, 836
pairdist.ppp, 38, 837
pairdist.ppp, 834, 838, 841
pairdist.ppx, 38, 839
pairdist.psp, 834, 839, 840
pairorient, 809, 842
PairPiece, 41, 134, 823, 843, 850, 973, 976,
983, 988, 1078, 1079, 1135, 1142,
1143, 1152, 1157, 1160, 1163, 1230
pairs, 845, 846, 850, 851
pairs.default, 845, 846, 851
pairs.im, 845, 851
pairsat.family, 134, 478, 487, 508, 823,
846, 850, 1230, 1331, 1348
Pairwise, 41, 297, 823, 847, 850, 973, 976,
983, 988, 1078, 1079
pairwise.family, 89, 233, 296, 407, 450,
467, 478, 487, 508, 635, 767, 770,
771, 823, 844, 847, 848, 849, 1277,
1305, 1306, 1348
palette, 222, 223
paletteindex(colourtools), 221
panel.contour, 846, 850
panel.histogram(panel.contour), 850
panel.image, 846
panel.image(panel.contour), 850
panel.smooth, 851
par, 196, 198, 846, 893, 901, 906, 910, 923,
941, 944, 945, 952, 1331
paracou, 27, 851
parent.frame, 1392, 1394
parres, 45, 52, 852, 1116
pcf, 35, 167, 173, 174, 209, 346, 347, 548,
571, 574, 575, 577, 578, 580, 581,
584, 585, 590, 599–601, 603, 604,
606, 607, 611, 613, 617, 618, 637,
644, 646, 672, 681, 686, 687, 717,
718, 855, 857, 859, 860, 862, 864,
866, 867, 870, 871, 875, 1339, 1340,
1371, 1372
pcf.fasp, 855, 856, 856
pcf.fv, 617, 855, 856, 858
pcf.ppp, 173, 644, 717, 855, 856, 860,
867–869, 871, 873–875, 877, 1339,
1370
pcf3est, 38, 356, 398, 433, 564, 863
pcf.cross, 36, 65, 662, 666, 699, 865, 869,
871, 877
pcf.cross.inhom, 36, 663, 664, 667, 867, 873
INDEX

pcfdot, 36, 665, 866, 867, 869, 873, 877
pcfdot.inhom, 36, 667, 869, 872
pcfinhom, 35, 209, 611, 613, 681, 687, 869, 873, 874
pcfmodel, 174, 599, 600, 1372
pcfmodel(Kmodel), 598
pcfmodel.kppm, 39, 613
pcfmodel.kppm(Kmodel.kppm), 599
pcfmodel.ppm, 40
pcfmodel.ppm(Kmodel.ppm), 600
pcfmulti, 36, 867, 871, 876
df.options, 911
perimeter, 29, 85, 294, 330, 832, 878, 1254
periodify, 28, 29, 31, 879, 1248, 1250, 1252, 1253
persp, 729, 739, 933, 936, 937, 1285
persp.default, 739, 881, 882
persp.funxy(methods.funxy), 728
persp.im, 30, 238, 498, 499, 729, 880, 883, 884, 911
persp.objsurf(methods.objsurf), 739
perspContour(perspPoints), 883
perspLines, 882
perspLines(perspPoints), 883
perspPoints, 882, 883
perspSegments(perspPoints), 883
pictex, 931
pixelcentres, 30, 31, 884, 1068
pixelate, 30, 735, 885, 887–890, 1012, 1266
pixelate.linnet, 886
pixelate.linnet(methods.linnet), 734
pixelate.own, 29, 885, 886, 886
pixelate.ppp, 28, 207, 276, 885–887, 887
pixelate.psp, 31, 116, 735, 885, 886, 889
pixelquad, 42, 890, 984
pknn(rrknn), 1119
plot, 727, 729, 733, 739, 742–744, 892, 907, 915, 917, 921, 930, 937, 941, 944, 949, 950, 956, 958, 1020, 1042
plot.anystat, 79, 370, 891, 952, 1313
plot.bermantest, 145, 894
plot.cdf.test, 178, 759, 896
plot.colour.map, 34, 221, 898
plot.default, 286, 693, 896, 938
plot.diagppm(diagnose.ppm), 284
plot.ecdf, 895
plot.envelope, 344, 345, 347, 899
plot.fasp, 63, 65, 66, 401, 900
plot.fii(methods.fii), 727
plot.funxy, 311, 426, 803
plot.funxy(methods.funxy), 728
plot.fv, 36, 64, 97, 99, 262, 310, 345, 347, 362, 403, 409, 420, 421, 427–431, 447, 453, 475, 494, 557, 560, 584, 627, 630, 636, 671, 676, 678, 681, 743, 744, 808, 842, 867, 871, 899–902, 902, 914, 915, 1285, 1286, 1350
plot.hyperframe, 33, 488, 906, 1394
plot.im, 30, 238, 376, 377, 498, 499, 729, 733, 846, 850, 882, 907, 912, 913, 915, 917, 919, 927, 928, 948–950, 956, 1284, 1336
plot.imlist, 912
plot.inline(inline), 505
plot.influence.ppm, 507, 913
plot.kppm, 39, 613, 730, 914, 1003, 1359
plot.ktest(moribund), 759
plot.layered, 34, 623, 624, 916
plot.leverage.ppm, 640, 917
plot.linfun(methods.linfun), 732
plot.linim, 42, 673, 918, 925, 926
plot.linnet, 920, 924
plot.listof, 64, 383, 756, 921, 926, 927, 939, 953, 954, 1295, 1316
plot.lpp, 924
plot.lppp, 738, 925
plot.mppm, 926
plot.msr, 764, 927, 1103, 1104, 1272
plot.objsurf(methods.objsurf), 739
plot.onearrow, 928, 1395, 1396
plot.powlaw, 29, 50, 832, 930, 940, 941, 943, 944, 956, 1285
plot.plotppm, 932, 936, 937
plot.pp3, 32, 934, 1285
plot.ppm, 40, 422, 684, 914, 915, 926, 927, 933, 935, 978, 980, 1010, 1011, 1016, 1285
plot.ppp, 27, 490, 913, 924, 925, 927, 928, 932, 933, 937, 944, 945, 953, 954, 992, 994, 1285, 1301, 1302
plot.ppx(methods.ppx), 741
plot.psp, 31, 491, 920, 942, 1028
plot.qppm, 1039
plot.quad, 944, 1018, 1042
plot.quadratcount, 945, 947, 1053
plot.quadrat.test, 946, 947
plot.rho2hat (methods.rho2hat), 742
plot.rhohat (methods.rhohat), 743
plot.scan.test, 948, 1236
plot.slm, 43, 745, 949, 1268
plot.solist, 239, 394, 912, 913, 950, 1279, 1322
plot.splitppp, 395, 953, 1292
plot.symbolmap, 525, 938, 954, 1331
plot.tess, 32, 946, 947, 955, 1333
plot.textstring, 956, 1393, 1396
plot.texturemap, 957
plot.yardstick, 958, 1395, 1396
pmixpois (dmixpois), 318
points, 846, 883, 924, 934, 938, 940, 941, 954
pointsOnLines, 32, 960, 1226
Poisson, 41, 107, 823, 850, 961, 973, 976, 983, 988, 1020, 1078, 1079, 1135, 1142, 1143, 1157, 1163
poly, 987
polygon, 919, 931, 932, 1178
polynom, 1284
polypath, 931
ponderosa, 27, 962
pool, 963, 964–971, 1069
pool.anylist, 964, 968
pool.envelope, 345, 347, 964, 965, 967
pool.fasp, 964, 966, 966
pool.fv, 964, 968, 971
pool.quadrat.test, 969, 1050
pool.rat, 964, 968, 970
pp3, 25, 32, 91, 154, 155, 244, 356, 741, 935, 971, 1002, 1195, 1225
ppm.ppp, 973, 975, 980
ppm.quad, 973–975
ppm.quad (ppm.ppp), 980
ppois, 319
ppp, 25, 126, 127, 170, 244, 269, 301, 307, 347, 675, 704, 829, 961, 975, 988, 990, 993, 994, 1135, 1196, 1226, 1239, 1326, 1355
pppdist, 37, 713, 995, 999, 1000
pppmatching, 998, 1000, 1001
pppmatching.object, 713, 997, 999, 1000
ppx, 25, 33, 102, 103, 155, 156, 244, 390, 704, 705, 742, 972, 1001, 1005, 1198, 1227, 1295
predict, 744, 1003, 1004, 1012
predict.glm, 987, 1011
predict.kppm, 39, 613, 730, 1003, 1359
predict.lppm, 42, 691, 926, 1004, 1262
predict.mppm, 413, 1005
predict.ppm, 40, 334, 335, 414, 415, 422, 515, 684, 936, 937, 974, 978, 980,
predict.rhohat (methods.rhohat), 743
predict.slrn, 43, 745, 949, 950, 1012, 1265, 1268, 1379, 1380
predict.smooth.spline, 857–860
print, 505, 725–727, 730, 733, 735, 736, 738–747, 1014–1017, 1020
print.box3 (methods.box3), 725
print.boxx (methods.boxx), 726
print.default, 733
print.fii (methods.fii), 727
print.im, 498, 1013
print.linfun (inlinfun), 505
print.kppm (methods.kppm), 729
print.linnet (methods.linnet), 734
print.listof, 922, 923
print.lpp (methods.lpp), 736
print.lpmp (methods.lpmp), 737
print.mppm, 215, 762
print.objsurf (methods.objsurf), 739
print.owin, 832, 1014, 1017, 1316
print.pp3, 817, 972
print.pp3 (methods.pp3), 740
print.ppm, 40, 216, 217, 483, 937, 974, 978, 980, 983, 1011, 1015, 1285
print.ppp, 1015, 1016, 1286, 1319
print.ppx, 817, 1002
print.ppx (methods.ppx), 741
print.psp, 31, 1017, 1320
print.qappm, 1039
print.quad, 1018
print.rho2hat (methods.rho2hat), 742
print.rhohat (methods.rhohat), 743
print.slrn (methods.slrn), 745
print.summary.fii (methods.fii), 727
print.summary.im (summary.im), 1314
print.summary.lpp (summary.lpp), 736
print.summary.pp3 (methods.pp3), 740
print.summary.ppm (summary.ppm), 1317
print.summary.quad (summary.quad), 1320
print.units (methods.units), 746
proc.time, 1344
profilepl, 125, 406, 529, 975, 976, 986, 988, 1019
progressreport, 1021, 1285
project.ppm, 40, 976, 982, 986, 988, 1022, 1285, 1365
project2segment, 32, 317, 318, 778, 1024, 1026
project2set, 1025
ps.options, 911
psp, 25, 31, 80, 128, 129, 199, 675, 961, 1026, 1028, 1029, 1124, 1190, 1196, 1226, 1284, 1326
psp.object, 128, 129, 245, 256, 280, 340, 392, 706, 772, 818, 943, 944, 1027, 1028, 1184, 1242, 1356
psst, 46, 225, 438, 460, 568, 614, 816, 1029, 1033, 1035, 1284
pssta, 46, 225, 438, 460, 568, 614, 1031, 1031, 1035, 1284, 1285
psstG, 46, 225, 438, 460, 568, 614, 1031, 1033, 1034, 1284, 1285
pyramidal, 27, 1036
qknn (rknn), 1119
qmixpois (dmixpois), 318
qpois, 319
qqplot.ppm, 45, 267, 268, 286, 288, 289, 695, 1037
quad, 42
quad.mppm, 413
quad.object, 126, 247, 266, 303, 393, 462, 463, 890, 891, 944, 984, 1018, 1042, 1044, 1057, 1058, 1296, 1303, 1321, 1352
quad.ppm, 414, 694, 753, 757, 763, 979, 1043, 1103
quadform (sumouter), 1324
quadat.test, 45, 133, 145, 178, 181, 947, 969, 970, 979, 1044, 1049, 1051–1053, 1056
quadat.test.mppm, 1048
quadat.test.ppm, 979, 1048
quadat.test.ppp, 1050
quadat.test.splitppp, 1046, 1047, 1050
quadatcount, 35, 133, 518, 519, 751, 946, 1045–1047, 1049, 1051, 1051, 1055, 1056, 1116
quadatresample, 26, 44, 46, 1047, 1051, 1053, 1054, 1056
quadrats, 32, 779, 1047, 1051, 1053, 1055, 1055, 1061, 1062, 1332, 1333, 1367
quadscheme, 41, 74, 232, 247, 266, 436, 461, 462, 567, 763, 890, 891, 975, 984,
null
INDEX

rmh.Ripley (edge.Ripley), 326
rmh.Trans, 327, 329
rmh.Trans (edge.Trans), 327
rmh.default, 1038, 1130, 1131, 1141–1143, 1194, 1263
rmh.ppm, 40, 42, 44, 979, 1130, 1135, 1141, 1264
rmhcontrol, 267–269, 1039, 1040, 1131, 1133, 1134, 1141–1143, 1144, 1150, 1152, 1157, 1160, 1162–1164, 1263, 1264, 1284, 1362
rmhcontrol.default, 268, 1285
rmhexpand, 268, 269, 269, 1075, 1076, 1109, 1145, 1146, 1148, 1148, 1211, 1213, 1387
rmhmodel, 979, 1079, 1143, 1145, 1148, 1151, 1151, 1153, 1159, 1160, 1162–1164
rmhmodel.default, 1132, 1151, 1152, 1152, 1159, 1160, 1163
rmhmodel.list, 1151, 1152, 1159, 1163
rmhmodel.ppm, 979, 1151, 1152, 1160, 1161
rmhstart, 1132, 1141–1143, 1145–1148, 1152, 1157, 1160, 1163, 1163, 1263
rmxpois (rmxpois), 318
RMmodel, 642, 643, 645, 646, 1123
rMosaicField, 44, 1165, 1167
rMosaicSet, 44, 1165, 1166
rmpoint, 26, 44, 1142, 1167, 1173, 1193
rmpoispp, 26, 44, 1130, 1142, 1169, 1171, 1193
rNeymanScott, 26, 44, 212, 994, 1071, 1107, 1108, 1123, 1126, 1174, 1199, 1218, 1228, 1229
rose, 188, 189, 808, 842, 1177
rotate, 28, 29, 53, 54, 56, 57, 59–62, 368, 369, 417, 732, 832, 1095, 1097, 1098, 1100, 1179, 1180, 1248, 1250, 1252, 1253
rotate.im, 30, 62, 1180
rotate.layered (methods.layered), 731
rotate.linnet (affine.linnet), 55
rotate.lpp (affine.lpp), 56
rotate.owin, 62, 832, 1179, 1181, 1182–1184
rotate.ppp, 1179, 1182, 1184
rotate.psp, 31, 1183
rotate.tess (affine.tess), 61
rotmean, 1184
round, 1185–1187
round.pp3 (round.ppp), 1185
round.ppp, 1185, 1187
round.pxx (round.ppp), 1185
rounding, 1186, 1186
rpoint, 26, 43, 1142, 1169, 1187, 1193, 1221, 1223, 1224
rpois, 319
rpoisline, 32, 44, 1124, 1189, 1191
rpoislinetess, 32, 44, 1165–1167, 1190, 1333
rpoislinetess, 32, 44, 1191
rpoissonlard, 26, 44, 191, 1192, 1195
rpoissonx, 33, 1197, 1227
rPoissonCluster, 26, 1198
rQuas, 1066, 1200
rshift, 26, 44, 46, 1201, 1204, 1206, 1207
rshift.ppp, 1201, 1202, 1205–1207
rshift.psp, 1201, 1204, 1204
rshift.splitpp, 1201, 1206
rSST, 26, 44, 994, 1194, 1207
rstrat, 26, 42, 44, 1073, 1194, 1209, 1215
rStrauss, 26, 44, 1076, 1077, 1110, 1135, 1154, 1194, 1210, 1213
rStraussHard, 1212, 1212
rsyst, 26, 44, 1073, 1210, 1214
rthin, 26, 44, 46, 1176, 1215
rThomas, 26, 39, 44, 207, 212, 994, 1071, 1108, 1126, 1176, 1194, 1199, 1217, 1261, 1337, 1338, 1340
rug, 743, 744
run.simplepanel, 1219, 1257, 1258
runifdisc, 26, 44, 1220
runiflpp, 33, 38, 690, 1192, 1222
runifpoint, 25, 43, 994, 1073, 1188, 1189, 1193, 1210, 1215, 1221, 1223, 1226, 1226, 1284
runifpoint3, 32, 1195, 1224
runifpointOnLines, 26, 44, 961, 1196, 1222, 1225
runifpointx, 33, 1198, 1226
rVarGamma, 26, 39, 44, 207, 212, 611, 1071, 1126, 1176, 1199, 1218, 1227, 1369, 1371, 1372
samecolour (colourtools), 221
sample, 1188, 1223
SatPiece, 41, 134, 450, 823, 847, 973, 976, 983, 988, 1229, 1230, 1231
Saturated, 41, 823, 847, 850, 973, 976, 983, 988, 1078, 1079, 1231
scalardilate, 28, 56, 57, 62, 732, 1232
scalardilate.im, 62
scalardilate.layered (methods.layered), 731
scalardilate.linnet (affine.linnet), 55
scalardilate.lpp (affine.lpp), 56
scalardilate.owin, 62
scalardilate.tess (affine.tess), 61
scale, 1234
scaleintervai, 31, 1233
scan, 458
scan.test, 36, 45, 948, 949, 1234, 1237, 1238
scanLRTS, 949, 1236, 1236
scand, 993, 1238
segments, 195, 883, 929, 943, 956, 959
segregation.test, 1240
selfcrossing.psp, 31, 256, 1241, 1243, 1286
selfcut.psp, 112, 1242
sessionInfo, 1243
sessionLibs, 1243
set.seed, 1135, 1261, 1265
setcov, 30, 309, 310, 328, 329, 498, 500, 827, 1244
setmarks (marks), 703
setminus.owin, 29
setminus.owin (intersect.owin), 521
shapley, 27, 1245
sharpen, 214, 1246
sharpen.ppp, 28, 35, 36, 277, 278
shift.im, 30, 62, 1180, 1248
shift.layered (methods.layered), 731
shift.linnet (affine.linnet), 55
shift.lpp (affine.lpp), 56
shift.owin, 62, 832, 1184, 1248, 1250, 1252, 1253
shift.psp, 1248, 1250, 1251, 1253
shift.psp, 31, 1252
shift.tess (affine.tess), 61
shortside, 1254
shortside (diameter.box3), 290
shortside.box3, 32
shortside.boxx, 33
shortside.boxx (diameter.boxx), 291
shortside.owin (sidelengths.owin), 1253
sidelengths, 1254
sidelengths (diameter.box3), 290
sidelengths.boxx (diameter.boxx), 291
sidelengths.owin, 1253
simba, 1254
simdat, 27, 993, 1255
simplenet, 33, 675, 1256
simplepanel, 626, 1219, 1220, 1256
simplify.owin, 29, 123, 878, 1259
simulate, 1261–1266
simulate.kppm, 39, 44, 171, 173, 344, 613, 730, 1260, 1264, 1266, 1359, 1369, 1371
simulate.lppm, 1262
simulate.ppm, 26, 40, 42, 44, 267, 422, 684, 978, 1143, 1261, 1263, 1266
simulate.slrm, 43, 745, 1265
slrm, 43, 76, 218, 416, 546, 685, 745, 755, 756, 758, 949, 950, 1012, 1013, 1266, 1266, 1379, 1380
Smooth, 149, 1269, 1270–1276
Smooth.fv, 36, 404, 1269, 1270
Smooth.im, 30, 1269
Smooth.im (blur), 149
Smooth.msr, 764, 928, 1269, 1271
Smooth.ppp, 28, 34, 36, 150, 165, 166, 277, 278, 492, 493, 807, 888, 927, 928, 1091, 1247, 1269, 1272, 1275
smooth.spline, 281, 282, 857–860, 1270, 1271
Smoothfun (Smoothfun.ppp), 1275
Smoothfun.ppp, 1275
Softcore, 41, 823, 850, 973, 976, 983, 988, 1020, 1078, 1079, 1135, 1142, 1143
INDEX

spatialcdf 1152, 1157, 1160, 1163, 1276
solapply 132, 1278, 1280
solist 80, 131, 132, 393, 394, 1278, 1279, 1279, 1322, 1395
solutionset 31, 499, 638, 1280
source 1360
spatialcdf 35, 481, 1282
spatstat (spatstat-package), 23
spatstat-package 23
spiders 27, 33, 690, 1287
split 1289, 1290, 1294, 1323
split.hyperframe 488, 1288
split.im 168, 1279, 1290
split.ppp 28, 109, 170, 280, 388, 394, 395, 774, 779, 780, 782, 953, 954, 1052, 1201, 1206, 1279, 1291, 1323, 1333
split.ppx 1294
split<-.hyperframe(split.hyperframe), 1288
split<-.ppp(split.ppp), 1291
spokes 42, 266, 1057, 1058, 1295
sporophores 27, 1297
spruces 27, 1298
square 28, 829, 1299
step 40, 684, 979, 1268
stepfun 1156
stiel.tjes 1300
stienen 1301
stienenSet(stienen), 1301
stratrand 266, 462, 1057, 1058, 1296, 1302
Strauss 41, 107, 449, 450, 467, 767, 770, 771, 823, 844, 850, 962, 973, 976, 983, 988, 1019, 1020, 1023, 1078, 1079, 1135, 1142, 1143, 1152, 1157, 1160, 1162, 1163, 1212, 1304, 1365
StraussHard 41, 407, 467, 823, 850, 973, 976, 983, 988, 1020, 1078, 1079, 1135, 1142, 1143, 1152, 1157, 1160, 1163, 1213, 1305, 1385
subfits 927, 1307
subset 1309–1311
subset.hyperframe 1308
subset.lpp 33
subset.ppp 1309
subset.pp3 32
subset.pp3(subset.ppp), 1309
subset.ppp 28, 388, 1309
subset.ppx 33
subset.ppx(subset.ppp), 1309
suffstat 1311
sum 724
sum.im(mean.im), 723
summary 30, 34, 42, 727, 735, 736, 738, 740, 746, 1313–1317, 1319–1323
summary.anylist 370, 1313
summary.fii(methods.fii), 727
summary.im(Math.im), 719
summary.im 481, 498, 724, 1014, 1314
summary.linim(Math.linim), 720
summary.linnet(methods.linnet), 734
summary.listof 383, 1315
summary.lpp(methods.lpp), 736
summary.lppm(methods.lppm), 737
summary.mppm 762
summary.own 832, 1015, 1316, 1319, 1320
summary.pp3(methods.pp3), 740
summary.ppm 40, 422, 546, 684, 1317
summary.ppp 1017, 1133, 1316, 1318
summary.psp 31, 70, 633, 747, 1017, 1319
summary.quad 1018, 1320
summary.solist 394, 1322
summary.splitppp 395, 1323
summary.units(methods.units), 746
sumouter 1324
superimpose 28, 31, 80, 231, 232, 994, 1292, 1325, 1328, 1329
superimpose.lpp 1326, 1327, 1328
Sweave 1085, 1243
swedishpines 27, 993, 1329
symbolmap 525, 938–940, 955, 1330, 1363
symbols 938, 940, 941, 944, 954
system.file 458, 1382
table 710
terms 421, 730, 738, 745, 752
terms.kppm(methods.kppm), 729
terms.lppm(methods.lppm), 737
terms.ppm 684, 978
terms.ppm(formula.ppm), 421
terms.slrm(methods.slrm), 745
terrain.colors 881, 910
text, 956, 957, 959
text.default, 946, 947
textstring, 956, 957
textstring (yardstick), 1395
texturemap, 50, 958, 1334
textureplot, 50, 958, 1334, 1335
thomas.estK, 39, 172, 613, 643, 716, 718, 748, 750, 1336, 1340, 1369
thomas.estpcf, 39, 174, 613, 646, 718, 1338, 1372
tile.areas, 32, 1333, 1341, 1343
tilenames, 1062, 1333, 1342, 1343
tilenames<- (tilenames), 1342
tiles, 32, 1333, 1341, 1342, 1343
timed, 1344
to.grey, 911
to.grey (colourtools), 221
topo.colors, 881, 910
transect.im, 31, 1345
trim.rectangle, 464, 1346
triplet.family, 1347, 1349
TripletS, 41, 1135, 1152, 1157, 1163, 1347, 1348, 1348
Tstat, 35, 1349
tweak.colourmap, 34, 221, 223, 519, 1351
txtProgressBar, 1022
union.owin, 29, 308
union.owin (intersect.owin), 521
union.quad, 1042, 1352
unique.ppp, 28, 187, 325, 458, 484, 620, 768, 774, 851, 1245, 1353
unique.ppx (unique.ppp), 1353
unirnroot, 620
unit.square (square), 1299
unitname, 154, 155, 725, 726, 735, 736, 740–742, 747, 979, 1094–1099, 1354
unitname.box3, 32
unitname.box3 (methods.box3), 725
unitname.boxx (methods.boxx), 726
unitname.linnet (methods.linnet), 734
unitname.lpp (methods.lpp), 736
unitname.ppx, 32
unitname.ppx (methods.ppx), 740
unitname.ppm, 979
unitname.ppx, 33
unitname.ppx (methods.ppx), 741
unitname<- (unitname), 1354
unitname<-.box3 (methods.box3), 725
unitname<-.boxx (methods.boxx), 726
unitname<-.linnet (methods.linnet), 734
unitname<-.lpp (methods.lpp), 736
unitname<-.pp3 (methods.ppx), 740
unitname<-.px (methods.ppx), 741
units, 1100
unmark, 28, 384, 388, 390, 704, 705, 736, 1356
unmark.lpp (methods.lpp), 736
unmark.psp, 31
unmark.tess (marks.tess), 706
unnormdensity, 1357
update, 738, 745, 1360, 1362, 1363
update.kppm, 39, 408, 452, 559, 588, 613, 730, 1358
update.lpp (methods.lppm), 737
update.ppp, 40, 408, 422, 436, 452, 559, 567, 588, 684, 978, 1029, 1032, 1034, 1039, 1359
update.rmhcontrol, 268, 269, 1142, 1143, 1362
update.slrm (methods.slrm), 745
update.symbolmap, 1331, 1363
urkiola, 27, 1364
valid.ppm, 40, 976, 986, 988, 1023, 1364
varblock, 35, 44, 345, 584, 687, 1055, 1366
vargamma.estK, 39, 172, 613, 1228, 1229, 1367, 1372
vargamma.estpcf, 39, 174, 613, 1228, 1229, 1369, 1370
vcov, 738, 1373–1376, 1378–1380
vcov.kppm, 39, 613, 730, 1003, 1359, 1372
vcov.lpp (methods.lppm), 737
vcov.mppm, 1374
vcov.ppm, 40, 422, 684, 978, 1088, 1373, 1375
vcov.slrm, 43, 745, 1268, 1378
vdCorput (quasirandom), 1065
vertexdegree (methods.linnet), 734
vertices, 530, 735, 1380
vertices.linnet (methods.linnet), 734
vesicles, 1381
Vmark, 37
Vmark (Emark), 336
volume, 735, 1383
INDEX

volume.box3, 32, 154, 155, 1383
volume.box3 (diameter.box3), 290
volume.boxx, 33, 155, 156, 1383
volume.boxx (diameter.boxx), 291
volume.linnet, 1383
volume.linnet (methods.linnet), 734
volume.owin (area.owin), 84

waka, 27, 1384
waterstriders, 27, 1384
whist, 1385
will.expand, 1150, 1387
Window, 28, 423, 735, 1388, 1391
Window.distfun (WindowOnly), 1389
Window.funxy (WindowOnly), 1389
Window.influence.ppm (WindowOnly), 1389
Window.kppm (WindowOnly), 1389
Window.layered (WindowOnly), 1389
Window.leverage.ppm (WindowOnly), 1389
Window.linnet (methods.linnet), 734
Window.lpp (WindowOnly), 1389
Window.lppm (WindowOnly), 1389
Window.msr (WindowOnly), 1389
Window.nnfun (WindowOnly), 1389
Window.ppm, 1389
Window.ppm (WindowOnly), 1389
Window.ppp, 1391
Window.psp, 1391
Window.quad (WindowOnly), 1389
Window.quadratcount (WindowOnly), 1389
Window.quadrattest (WindowOnly), 1389
Window.rmhmodel (WindowOnly), 1389
Window.tess (WindowOnly), 1389
Window<- (Window), 1388
WindowOnly, 1389
with, 1392–1394
with.fv, 36, 148, 282, 344, 428, 1067, 1271, 1391
with.hyperframe, 33, 488, 907, 1308, 1393

X11, 931
X11.options, 932
xfig, 931
xy.coords, 113, 114, 520, 525, 883, 1175, 1345

yardstick, 929, 957, 959, 960, 1395
zapsmall, 1396, 1397
zapsmall.im, 31, 1396