Package ‘trajectories’

February 20, 2015

Version 0.1-1
Date 2014-08-28
Title Classes and methods for trajectory data
Depends R (>= 2.14.0)
Imports methods, lattice, sp (>= 1.0-14), spacetime (>= 1.0-0), rgdal, rgeos
Suggests rgl, OpenStreetMap, RCurl, rjson, adehabitatLT
LazyData no
Description Classes and methods for trajectory data, with nested classes for individual trips, and collections for different entities. Methods include selection, generalization, aggregation, intersection, and plotting.
License GPL (>= 2)
URL http://github.com/edzer/trajectories
Collate Class-Tracks.R Tracks-methods.R stplot.R
Author Edzer Pebesma [cre, aut], Benedikt Klus [aut]
Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-28 12:56:00

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>2</td>
</tr>
<tr>
<td>generalize</td>
<td>3</td>
</tr>
<tr>
<td>stbox</td>
<td>4</td>
</tr>
<tr>
<td>stcube</td>
<td>4</td>
</tr>
<tr>
<td>Track-class</td>
<td>5</td>
</tr>
</tbody>
</table>

Index 10
Description

Trajectory, locally stored, from envirocar.org, see example below how it was imported

Usage

data(A3)

Examples

library(spacetime)
data(A3)dim(A3)
Not run:
importEnviroCar = function(trackID, url = "https://envirocar.org/api/stable/tracks/") {
 require(RCurl)
 require(rgdal)
 require(rjson)
 require(sp)
 url = getURL(paste(url, trackID, sep = ""),
 .opts = list(ssl.verifiedhost = FALSE)) # .opts needed for Windows
 # Read data into spatial object.
 spdf = readOGR(dsn = url, layer = "OGRGeoJSON", verbose = FALSE)
 # Convert time from factor to POSIXct.
 time = as.POSIXct(spdf$time, format = "")
 # Convert phenomena from JSON to data frame.
 phenomena = lapply(as.character(spdf$phenomenons), fromJSON)
 values = lapply(phenomena, function(x) as.data.frame(lapply(x, function(y) y$value)))
 # Get a list of all phenomena for which values exist.
 names = vector()
 for(i in values)
 names = union(names, names(i))
 # Make sure that each data frame has the same number of columns.
 values = lapply(values, function(x) {
 xNames = names(x)
 # Get the symmetric difference.
 diff = setdiff(union(names, xNames), intersect(names, xNames))
 if(length(diff) > 0)
 x[diff] = NA
 x
 })
 # Bind values together.
 data = do.call(rbind, values)
 sp = SpatialPoints(coords = coordinates(spdf),
 proj4string = CRS("+proj=longlat"))
 stidf = STIDF(sp = sp, time = time, data = data)
 Track(track = stidf)
generalize

} = importEnviroCar("528cf1a3e4b0a727145df093")

End(Not run)

generalize

Generalize objects of class Track, Tracks and TracksCollection

Description

Generalize objects of class Track, Tracks and TracksCollection.

Usage

```r
## S4 method for signature 'Track'
generalize(t, FUN = mean, ..., timeInterval, distance, n, tol, toPoints)
## S4 method for signature 'Tracks'
generalize(t, FUN = mean, ...)
## S4 method for signature 'TracksCollection'
generalize(t, FUN = mean, ...)
```

Arguments

- `t` An object of class Track, Tracks or TracksCollection.
- `FUN` The generalization method to be applied. Defaults to `mean` if none is passed.
- `timeInterval` (lower limit) time interval to split Track into segments
- `distance` (lower limit) distance to split Track into segments
- `n` number of points to form segments
- `tol` tolerance passed on to `gSimplify`, to generalize segments using the Douglas-Peucker algorithm.
- `toPoints` keep mid point rather than forming SpatialLines segments
- `...` Additional arguments passed to `FUN`

Value

An object of class Track, Tracks or TracksCollection.
stbox

obtain ranges of space and time coordinates

Description

obtain ranges of space and time coordinates

Usage

`stbox(obj)`

Arguments

- `obj` object of a class deriving from `Tracks` or `TracksCollection`.

Value

`stbox` returns a `data.frame`, with three columns representing x-, y- and time-coordinates, and two rows containing min and max values. `bbox` gives a matrix with coordinate min/max values, compatible to `bbox`.

Methods

- `stbox` signature `x = "Tracks"`: obtain st range from object
- `stbox` signature `x = "TracksCollection"`: obtain st range from object

stcube

Draw a space-time cube.

Description

Draw a space-time cube.

Usage

```r
# S4 method for signature 'Track'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l",
       aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm", ...,
       y, z)
# S4 method for signature 'Tracks'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l",
       aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
       normalizeBy = "week", ..., y, z, col)
# S4 method for signature 'TracksCollection'
stcube(x, xlab = "x", ylab = "y", zlab = "t",
       type = "l", aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
       normalizeBy = "week", ..., y, z, col)
```
Arguments

- **x**: An object of class `Track`, `Tracks` or `TracksCollection`.
- **xlab**, **ylab**, **zlab**, **type**, **aspect**, **xlim**, **ylim**, **zlim**: Arguments passed to `plot3d()` of package `rgl`.
- **showMap**: Flag if a basemap is to be shown on the xy plane.
- **mapType**: The tile server from which to get the map. Passed as `type` to `openmap()` of package `openstreetmap`.
- **normalizeBy**: An abstract time period (either week or day) to be normalized by.
- **y**, **z**, **col**: Ignored, but included in the method signature for implementation reasons.
- **...**: Additional arguments passed to `plot3d()` of package `rgl`.

Value

A space-time cube.

Description

Classes for representing sets of trajectory data, with attributes, for different IDs (persons, objects, etc)

Usage

```
Track(track, df = NULL, fn = TrackStats)
Tracks(tracks, tracksData = data.frame(row.names=names(tracks)),
  fn = TrackSummary)
TracksCollection(tracksCollection, tracksCollectionData,
  fn = TracksSummary)
TrackSummary(track)
TracksSummary(tracksCollection)
## S4 method for signature 'Track'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'TracksCollection'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Track,data.frame'
coerce(from, to)
## S4 method for signature 'Tracks,data.frame'
coerce(from, to)
## S4 method for signature 'TracksCollection,data.frame'
coerce(from, to)
```
Arguments

- `track` object of class `STIDF-class`, representing a single trip
- `df` optional `data.frame` with information between track points
- `tracks` named list with Track objects
- `tracksData` `data.frame` with summary data for each Track
- `tracksCollection` list, with Tracks objects
- `tracksCollectionData` `data.frame`, with summary data on `tracksCollection`
- `fn` function;
- `x` object of class `Track` etc
- `i` selection of spatial entities
- `j` selection of temporal entities (see syntax in package `xts`)
- `...` selection of attribute(s)
- `drop` logical
- `from` from
- `to` target class

Value

Functions `Track`, `Tracks` and `TracksCollection` are constructor functions that take the slots as arguments, check object validity, and compute summary statistics on the track and tracks sets.

Objects from the Class

Objects of class `Track` extend `STIDF-class` and contain single trips or tracks, objects of class `Tracks` contain multiple `Track` objects for a single ID (person, object or tracking device), objects of class `TracksCollection` contain multiple `Tracks` objects for different IDs.

Slots of class "Track"

- `sp`: spatial locations of the track points, with length n
- `time`: time stamps of the track points
- `endTime`: end time stamps of the track points
- `data`: `data.frame` with n rows, containing attributes of the track points
- `connections`: `data.frame`, with n-1 rows, containing attributes between the track points such as distance and speed

Slots of class "Tracks"

- `tracks`: list with Track objects, of length m
- `tracksData`: `data.frame` with m rows, containing summary data for each Track object
Slots of class "TracksCollection"

- tracksCollection: list Tracks objects, of length p
- tracksCollectionData: data.frame with p rows, containing summary data for each Tracks object

Methods

[[signature(obj = "Track")]: retrieves the attribute element
[[signature(obj = "Tracks")]: retrieves the attribute element
[[signature(obj = "TracksCollection")]: retrieves the attribute element
[[< signature(obj = "Track")]: sets or replaces the attribute element
[[< signature(obj = "Tracks")]: sets or replaces the attribute element
[[< signature(obj = "TracksCollection")]: sets or replaces the attribute element
$ signature(obj = "Track")]: retrieves the attribute element
$ signature(obj = "Tracks")]: retrieves the attribute element
$ signature(obj = "TracksCollection")]: retrieves the attribute element
$< signature(obj = "Track")]: sets or replaces the attribute element
$< signature(obj = "Tracks")]: sets or replaces the attribute element
$< signature(obj = "TracksCollection")]: sets or replaces the attribute element

coerce Track, data.frame coerce to data.frame
coerce Tracks, data.frame coerce to data.frame
coerce TracksCollection, data.frame coerce to data.frame

plot signature(x = "TracksCollection", y = "missing"): plots sets of sets of tracks
stplot signature(obj = "TracksCollection")]: plots sets of sets of tracks

Note

segments is a data.frame form in which track segments instead of track points form a record, with x0, y0, x1 and y1 the start and end coordinates

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

http://www.jstatsoft.org/v51/i07/
Examples

library(sp)
library(spacetime)
t0 = as.POSIXct(as.Date("2013-09-30", tz="CET"))
person A, track 1:
x = c(7,6,5,4,3,3)
y = c(7,6,5,5,6,7)
n = length(x)
t = t0 + cumsum(runif(n) * 60)
require(rgdal)
crs = CRS("+proj=longlat")
#crs = CRS(as.character(NA))
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
person A, track 2:
x = c(7,6,6,7,7)
y = c(6,5,4,4,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
A2 = Track(stidf)
Tracks for person A:
A = Tracks(list(A1=A1, A2=A2))
person B, track 1:
x = c(2,2,1,1,2,3)
y = c(5,4,3,2,2,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
B1 = Track(stidf)
person B, track 2:
x = c(3,3,4,3,3,4)
y = c(5,4,3,2,1,1)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
B2 = Track(stidf)
Tracks for person A:
B = Tracks(list(B1=B1, B2=B2))
Tr = TracksCollection(list(A=A, B=B))
stplot(Tr)
attr = "direction", arrows=TRUE, lwd = 3, by = "direction")
stplot(Tr)
plot(Tr, col=2, axes=TRUE)
dim(Tr)
dim(Tr[2])
dim(Tr[2][1])
u = stack(Tr) # four IDs
dim(u)

(dim(unstack(u, c(1,1,2,2))) # regroups to original

(dim(unstack(u, c(1,1,2,3))) # regroups to three IDs

(dim(unstack(u, c(1,2,2,1))) # regroups differently

Track-class
as(Tr, "data.frame")[1:10,] # tracks separated by NA rows
as(Tr, "segments")[1:10,] # track segments as records
Tr["distance"] = Tr["distance"] * 1000
Tr$distance = Tr$distance / 1000
Tr$distance
Index

*Topic **classes**
 Track-class, 5
*Topic **datasets**
 A3, 2
*Topic **dplot**
 stbox, 4
*Topic **generalize**
 generalize, 3
*Topic **space-time cube**
 stcube, 4
 [,Track-method (Track-class), 5
 [,Tracks-method (Track-class), 5
 [,TrackCollection-method (Track-class), 5
 [[[Track,ANY,missing-method (Track-class), 5
 [[[Tracks,ANY,missing-method (Track-class), 5
 [[[TrackCollection,ANY,missing-method (Track-class), 5
 [<-,Track,ANY,missing-method (Track-class), 5
 [<-,Tracks,ANY,missing-method (Track-class), 5
 [<-,TrackCollection,ANY,missing-method (Track-class), 5
 $,Track-method (Track-class), 5
 $,Tracks-method (Track-class), 5
 $,TrackCollection-method (Track-class), 5
 $<-,Track-method (Track-class), 5
 $<-,Tracks-method (Track-class), 5
 $<-,TrackCollection-method (Track-class), 5
 A3, 2
 aggregate,Track-method (Track-class), 5
 aggregate,Tracks-method (Track-class), 5
 aggregate,TrackCollection-method (Track-class), 5
 stbox, 4
 coerce,Track, data.frame-method (Track-class), 5
 coerce,Tracks, data.frame-method (Track-class), 5
 coerce,TrackCollection, data.frame-method (Track-class), 5
 coordnames,Track-method (Track-class), 5
 coordnames,Tracks-method (Track-class), 5
 coordnames,TrackCollection-method (Track-class), 5
 generalize, 3
 generalize,Track-method (generalize), 3
 generalize,Tracks-method (generalize), 3
 generalize,TrackCollection-method (generalize), 3
 gSimplify, 3
 plot,TrackCollection, ANY-method (Track-class), 5
 segments-class (Track-class), 5
 segPanel (Track-class), 5
 SpatialLines, 3
 stbox, 4
 stbox,Tracks-method (stbox), 4
 stbox,TrackCollection-method (stbox), 4
 stcube, 4
 stcube,Track-method (stcube), 4
 stcube,Tracks-method (stcube), 4
 stcube,TrackCollection-method (stcube), 4
 STIDF-class, 6
 stplot,TrackCollection-method (Track-class), 5
 Track (Track-class), 5
 Track-class, 5
INDEX

Tracks (Track-class), 5
Tracks-class (Track-class), 5
TracksCollection (Track-class), 5
TracksCollection-class (Track-class), 5
tracksPanel (Track-class), 5
TracksSummary (Track-class), 5
TrackSummary (Track-class), 5