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1 SL2(R) and the hyperbolic plane

This course is concerned with two closely related objects: the group SL2(R) of real
two-by-two matrices with determinant 1 (together with its sibling, PSL2(R)), and
the hyperbolic plane H—a metric space that is in some ways like the Euclidean
plane, and in some ways is very different. These objects are linked by symmetries:
PSL2(R) can be thought of as the group of Möbius maps, which are the isometries
of H. Therefore interest in either of these objects motivates interest in the other:

1. When studying a mathematical object it is natural to ask questions about
the object’s symmetries: that is, the group of maps from the object to itself
that preserve some important structure. If the object is geometric space then
the important structure is the measure of distance, so the symmetries are the
isometries.

2. Moving in the opposite direction, if our goal is to understand a group, a pow-
erful technique is to find nice objects on which the group acts. We then expect
to see properties of the group reflected in the object.

The goal of this course is to witness this principle in action, in the classic example
of the action of SL2(R) on H: each object will reveal truths about the other.

1.1 SL2(R) and PSL2(R)
To begin, recall the definitions of the following groups.

Definition 1.1. Let SL2(R) be the real two-dimensional special linear group, where
the group operation is matrix multiplication:

SL2(R) =

{
M =

(
a b
c d

)
: a, b, c, d ∈ R,detM = 1

}
Similarly, SL2(C) is the complex two-dimensional special linear group, in which the
matrices have coefficients in C.

Each of SL2(R) and SL2(C) contains a normal subgroup {±I}, where I is the
identity matrix. Let PSL2(R) and PSL2(C) be the quotients of SL2(R) and PSL2(C)
by this subgroup, so that elements of PSL2(R) are represented by elements of SL2(R),
with the additional relation that M = −M in SL2(R), and similarly for PSL2(C).

1.1.1 A primer on group theory

For reference (since many of you haven’t thought much about groups for a while!)
we recall some background material on groups.
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Definition 1.2. A group is a set G with a binary operation ? satisfying the following
conditions:

1. Closure: for g and h in G, g ? h is in G.

2. Associativity: for g, h and k in G, (g ? h) ? k = g ? (h ? k).

3. Identity: there exists e in G such that e ? g = g = g ? e for all g in G.

4. Inverses: for each g in G, there exists g−1 in G such that g ? g−1 = g−1 ? g = e.

Normally we don’t bother to write the ? symbol, so we just write gh for g ? h.

So when we say that SL2(R) and SL2(C) are groups where the operation is group
multiplication, we mean that each set, together with the binary operation defined by
letting M1 ? M2 be the matrix product of M1 and M2, is a group as defined above.

Definition 1.3. A homomorphism between group G1 and G2 with binary operations
?1 and ?2 is a map θ : G1 → G2 such that θ(g1 ?1 g2) = θ(g1) ?2 θ(g2).

Definition 1.4. A subgroup of a group G with binary operation ? is a subset H
such that e ∈ H, and g ? h ∈ H whenever g and h are in H. It follows from this that
H is itself a group!

A subgroup H of G is normal if for any h ∈ H and g ∈ G, ghg−1 ∈ H.

The point of normal subgroups is that you can take quotients.

Definition 1.5. For a normal subgroup H of G, we can form a new group, called the
quotient group G/H, essentially by setting all elements of H to be equal to e. More
formally, the elements of G/H are equivalence classes of elements of G, denoted gH,
where g1H is equivalent to g2H if and only if g−1

2 g1 ∈ H, i.e. the elements g1 and g2

differ by an element of H. The group operation is then g1H ? g2H = (g1g2)H. Be
warned: H must be a normal subgroup for this construction to work!

Finally, we have the following very very important theorem, which is the most
powerful way of proving that groups are isomorphic.

Theorem 1.6 (The (first) isomorphism theorem). Let θ : G1 → G2 be a homo-
morphism. Then the kernel Ker θ is a normal subgroup of G1 and the image Im(θ)
is isomorphic to the quotient of G1 by Ker θ. In particular, if θ is surjective then
G2
∼= G1/Ker θ.

This is (I think) everything you need to know about groups in this course. Fur-
thermore, none of this will be used very heavily, except in the first couple of lectures.

1.2 Möbius maps

We now introduce Möbius maps, which will form the bridge between SL2(R) and H.
These are maps of the form z 7→ (az + b)/(cz + d). But where does −d/c go? To
solve this problem, we introduce a point at infinity, which is formally defined to be
1/0.

Definition 1.7. The Riemann sphere C∞ is the space C ∪ {∞}, where we think of
∞ = 1/0 as being infinitely far away in any direction. Then a circle in C∞ is either
a circle in C, or it is a (straight) line in C together with the point ∞. We think of
the latter type of circles as being circles with infinite radius.
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Definition 1.8. A Möbius map is a map C∞ → C∞ of either of the following forms:

z 7→


az+b
cz+d if z ∈ C− {−d/c}
∞ if z = −d/c
a/c if z =∞,

z 7→

{
az+b
d if z ∈ C
∞ if z =∞.

where a, b, c and d are complex numbers with ad − bc 6= 0. (In the second case,
c = 0.)

Remark 1.9. It is often convenient to require that ad − bc = 1. This normalisation
can be achieved for any Möbius map by dividing the numerator and denominator by√
ad− bc. In this case we say the Möbius map is normalised.

Definition 1.10. A real Möbius map is a Möbius map such that

1. the coefficients a, b, c and d are real, and

2. ad− bc > 0.

The second condition ensures that the normalisation with ad − bc = 1 still has real
coefficients.

Exercise 1.11. The set of Möbius maps forms a group under composition. (In this
exercise you should worry about the point∞. Then you should stop worrying about
∞ for the rest of the course.)

In other words, you must prove:

1. Closure: if f and g are Möbius maps then the composition f ◦ g is a Möbius
map.

2. Associativity: not a problem: composition of maps is always associative.

3. Identity: the identity map is a Möbius map.

4. Inverses: if f(z) = (az + b)/(cz + d) is a Möbius map then it has an inverse,
which is also a Möbius map. (Hint: this is easier if the map is normalised, in
which case you can check that g(z) = (dz − b)/(−cz + a) works.)

Proposition 1.12. The group of Möbius maps is isomorphic to PSL2(C), and so
elements of PSL2(C) represent transformations of C∞.

Proof. Define a map θ : SL2(C)→ {Möbius maps} as follows:

θ

(
a b
c d

)
(z) =

az + b

cz + d

We show this map is a homomorphism. We must prove that the following two Möbius
maps are equal. On the one hand we have the composition of Möbius maps:

θ

(
a b
c d

)
◦ θ
(
α β
γ δ

)
.

On the other we have the image under θ of the product of the matrices.

θ

((
a b
c d

)(
α β
γ δ

))
= θ

(
aα+ bγ aβ + bδ
cα+ dγ cβ + dδ

)
(1)
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We evaluate the first of these maps at z.

θ

(
a b
c d

)
◦ θ
(
α β
γ δ

)
(z) =

aαz+βγz+δ + b

cαz+βγz+δ + d

=
(aα+ bγ)z + (aβ + bδ)

(cα+ dγ)z + (cβ + dδ)

= θ

((
a b
c d

)(
α β
γ δ

))
(z)

This shows that the map is indeed a homomorphism.
We show it is surjective. This comes down to normalisation. Let f(z) = (az +

b)/(cz + d) be a Möbius map. Then observe that f = θ(M), where

M =

(
a√

ad−bc
b√

ad−bc
c√

ad−bc
d√

ad−bc

)

It is simple to check that M ∈ SL2(C), and therefore f ∈ Im θ.
We now compute its kernel. This is the set of matrices M ∈ SL2(C) such that

θ(M) is the identity map. Let M =
(
a b
c d

)
∈ SL2(C). Then

θ(M) is the identity map

⇐⇒ az + b

cz + d
= z for all z

⇐⇒ az + b = z(cz + d) for all z

⇐⇒ cz2 + (d− a)z − b = 0 for all z

⇐⇒ c = 0, a = d and b = 0

⇐⇒M = ±I

(In the fimal line, we use the fact that M has determinant 1, so ad − bc = 1.) So
Ker θ = {±I}.

Now the isomorphism theorem tells us that the image of θ, which is the group of
Möbius maps, is isomorphic to the quotient SL2(C)/{±I} = PSL2(C).

Exercise 1.13. The set of real Möbius maps forms a group isomorphic to PSL2(R).

Definition 1.14. For a given Möbius map f , we call the two preimages under θ of
f the matrix representatives of f .

The Möbius maps are some of the nicest maps from C∞ to itself: they preserve a
good deal of structure. As a very useful example, we prove the following proposition.

Proposition 1.15. The image of a circle in C∞ under a Möbius map is a circle.

We first prove the following lemma.

Lemma 1.16. The group of Möbius maps is generated by the maps of the following
four forms:

1. z 7→ z + z0, z0 ∈ C (translations),

2. z 7→ λz, λ ∈ R>0 (dilations),

3. z 7→ eiθz, θ ∈ R (rotations),
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4. z 7→ 1/z (inversion).

Proof. Consider f(z) = (az + b)/(cz + d). If c = 0 then f(z) = (a/d)z + (b/d), a
composition of a dilation and a rotation, followed by a translation.

If c 6= 0 then

f(z) =
bc− ad
c2

· 1

z + d/c
+ (a/c),

which is a translation, followed by an inversion, followed by a composition of a
dilation and a rotation, followed by a translation.

Proof of proposition 1.15. It if sufficient to prove the proposition for the three types
of Möbius maps listed in Lemma 1.16. The first three are obvious; the forth will be
an exercise.

Exercise 1.17. Show that the image of a circle in C∞ under the map z → 1/z is a
circle.

The following proposition, which we don’t prove, shows additional structure in C
preserved by Möbius maps.

Proposition 1.18. Möbius maps preserve angles between lines and circles.

So we have a nice action of PSL2(C) on C∞. But what about PSL2(R)?

Proposition 1.19. Real Möbius maps preserve the upper half plane {z ∈ C : Imz > 0} ⊂
C∞. We call this set H.

We prove this as a corollary of the following useful lemma (which we will certainly
use again!)

Lemma 1.20. Let f be a normalised Möbius map

z 7→ az + b

cz + d

for a, b, c and d in R with ad− bc = 1. Then, for any z ∈ C− {−d/c},

Imf(z) =
1

|cz + d|2
Imz

Proof.

Imf(z) =
1

2i

(
f(z)− f(z)

)
=

1

2i

(
az + b

cz + d
− az + b

cz + d

)
=

1

2i

(ad− bc)(z − z)
(cz + d)(cz + d)

=
z − z

2i

1

(cz + d)(cz + d)

=
1

|cz + d|2
Imz
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Proof of Proposition 1.19. Let z ∈ H and f ∈ PSL2(R). Without loss of generality
assume f is normalised. Then

Imf(z) = Imz/ |cz + d|2 > 0,

so f(z) ∈ H.

Therefore the action restricts to H. We have now defined the central object of
study in this course: the action of PSL2(R) on H. But this action is clearly not
isometric, with respect to the Euclidean metric at least. Our goal is now to invent a
new metric for H so that any real Möbius map is an isometry with respect to that
metric. This turns H into the object that is called the hyperbolic plane.

Definition 1.21. The hyperbolic plane H has a boundary ∂H = R ∪ {∞}. Note
that this is also preserved by the action of PSL2(R).

Example 1.22. The map z 7→ 2z is a Möbius map. Clearly this is not an isometry
of H with respect to the Euclidean metric: it doubles all distances! It also doubles
the imaginary part of any point in H. This hints at our course of action: we modify
the Euclidean metric on H by expanding distances between points close to R and
contracting distances between points with large imaginary part.

1.3 Reinventing Euclidean geometry

Definition 1.23. Let I = [a, b] be a closed interval. Then a path in R2 is a differ-
entiable map γ → R2.

Using just the Euclidean norm ‖·‖ on R2 we can compute the following qantities:

1. The speed of the path at time t ∈ I:

‖γ̇(t)‖ =
√
γ̇(t) · γ̇(t).

2. The length of the path:

`(γ) =

∫ b

a

‖γ̇(t)‖dt

=

∫ b

a

√
|γ̇1(t)2 + γ̇2(t)2|

Here γ(t) = (γ1(t), γ2(t)).

The first of these quantities is a local “infinitessimal” quantities, and we think of
the norm on R2 as an infinitessimal metric. But the third quantity is a “large scale”
property and demonstrates that one can integrate infinitessimal geometric properties
into large scale properties.

In fact, all global geometry of Euclidean space can be deduced from this inner
product, as we shall now see.

Definition 1.24. Let P(x, y) be the set of paths in U from x to y, i.e. differentiable
maps γ : [0, 1]→ R2 with γ(0) = x and γ(1) = y.

Proposition 1.25. Let x and y be points in R2. Then the Euclidean distance between
x and y is equal to the infimum

inf
γ∈P(p,q)

`(γ),

This infimum is realised by a straight line.

Exercise 1.26. Prove Proposition 1.25.
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1.4 Other geometries

We can now study other geometric objects in a similar manner: to modify the metric
we simply weight the inner product by a function that varies on U . In this way we
can expand the metric in some areas while contracting it in others. Then we compute
lengths of paths as in the Euclidean case, but with a modified integrand. But be
warned: the length function might no longer be minimised by a straight line: the
length-minimising path might be much more complicated!

Definition 1.27. Let U be an open subset of R2 and let g be a positive smooth
function on U . Let γ be a differentiable map [a, b] → U . Then the length of γ with
respect to g is:

`(γ) =

∫ b

a

g(γ(t))‖γ̇(t)‖dt.

Then the metric d on U determined by g is defined by

d(x, y) = inf
γ∈P(x,y)

`(γ).

A path that whose length is equal to the distance between its end points is called
a geodesic arc.

Proposition 1.28. (For those who did the metric spaces course.) The map so
defined is a metric on U .

Remark 1.29. In practice it is very difficult to compute distances between pairs of
points with respect to a distance defined in this way, unless the metric is very special.

The area of a domain in U can be computed similarly: the square of the function
g weights the integral:

Definition 1.30. The area of a domain D ⊂ U is

Area(D) =

∫
D

g2dxdy

Remark 1.31. We have seen that introducing the weighting g modifies lengths and
areas. But what about angles? In fact we do not modify these, since the introduction
of g is a local rescaling, which does not modify angles.

2 The hyperbolic plane

We now introduce the second major character of this story: we equip the upper half
plane with a metric that makes PSL2(R) into a group of isometries. The resulting
geometric space is called the hyperbolic plane. From now on, we tend to identify the
plane R2 with the complex numbers C, in the standard way. Then ‖(x, y)‖ = |x+yi|
for any real vector (x, y).

Definition 2.1. The hyperbolic plane H is the upper half plane {z|Imz ≥ 0}
equipped with the metric determined by the following function:

gH(z) =
1

Imz

In other words the length of a path γ is given by the following expression.

`(γ) =

∫ b

a

1

Imγ(t)
|γ̇(t)|dt =

∫ b

a

1

γ2(t)

√
γ̇1(t)2 + γ̇2(t)2dt

Here we write γ(t) = γ1(t) + iγ2(t) as the sum of its real and imaginary parts. We
denote by dH the metric determined by gH.
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2.1 Review of complex contour integrals

We will sometimes express lenghts as contour integrals in the complex plane, using
the following notation.

Definition 2.2. By definition, we say that for any function g and path γ : [a, b]→ C,∫
γ

g(z)|dz| =
∫ b

a

g(γ(t))|γ̇(t)|dt

In particular, for paths γ in the hyperbolic plane,

`(γ) =

∫
γ

1

Imz
|dz|

The purpose of this definition is to give us the following easy-to-remember form
for integration by substitution, as long as the substitution function is holomorphic,
i.e. a differentiable function of a complex variable.

Lemma 2.3. Let f : C→ C be a complex differentiable function. Then substitution
z = f(w) in an integral looks like this:∫

f◦γ
g(z)|dz| =

∫
γ

g(f(w))

∣∣∣∣ dz

dw
dw

∣∣∣∣
=

∫
γ

g(f(w))

∣∣∣∣ dz

dw

∣∣∣∣|dw|
=

∫
γ

g(f(w))|f ′(w)||dw|

Example 2.4. As an example, consider the map f : H→ H defined by f(z) = 2z. We
show that this map doubles all Euclidean lengths of paths. Let γ : [a, b] → H be a
path in H. Then,

`(γ) =

∫
γ

|dz|

`(f ◦ γ) =

∫
f◦γ
|dz|.

In the second of these integrals, perform the substitution z = f(w) and note that
f ′(w) = 2 for all w.

`(f ◦ γ) =

∫
γ

2|dw| = 2`(γ)

2.2 Isometries

Recall the following definition.

Definition 2.5. An isometry of H is a bijective map f : H→ H such that dH(f(x), f(y)) =
dH(x, y) for any x and y in H, i.e. f preserves all distances.

Proposition 2.6. Real Möbius maps are isometries of H.

Proof. We have already seen that the image of H under such a map is H. Further-
more, Möbius maps are invertible, so it remains to show that dH(x, y) = dH(f(x), f(y))
for any real Möbius map f .
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Note that it is sufficient to show that any real Möbius map preserves all lengths
of paths, that is, `(f ◦ γ) = `(γ) for any path γ. This is because, for x and y in H,
γ is a path from x to y if and only if f ◦ γ is a path from f(x) to f(y).

Consider the Möbius map f(z) = (az + b)/(cz + d) where a, b, c and d are real
numbers. Normalised f , so ad − bc = 1. Let γ be a path in H. We measure the
length of its image under f :

`(f ◦ γ) =

∫
f◦γ

|dz|
Imz

.

Now change variables: let z = f(w).

`(f ◦ γ) =

∫
γ

1

Imf(w)

∣∣∣∣ dz

dw
dw

∣∣∣∣
=

∫
γ

|cw + d|2

Imw

∣∣∣∣ 1

(cw + d)2dw

∣∣∣∣
=

∫
γ

|dw|
Imw

= `(γ)

Therefore f is an isometry.

Lemma 2.7. For any w1 and w2 in H there is a real Möbius map f with f(w1) = w2.

Proof. First we show that for any w1 ∈ H there exists a real Möbius map such
that f(i) = w1. Let w1 = a + bi, for real numbers a and b, so b > 0. Then let
f(z) = (bz + a)/(1). Note that this satisfies the “ad− bc > 0” condition.

Then, for any w2 ∈ H, let g be a real Möbius map so that g(i) = w2. Then g◦f−1

is a real Möbius map with g ◦ f−1(w1) = g(i) = w2.

2.3 Geodesics and computing distances

We are now ready to describe geodesic arcs in H, and therefore compute our first
actual distances.

Theorem 2.8. Geodesic arcs in H are segments of vertical lines and semicircles
meeting R at right angles.

It turns out that the simplest case is when one end point of the geodesic arc is
directly above the other. This case is covered by the following lemma.

Lemma 2.9. For any a and b in R, the unique geodesic joining ai to bi is a straight
vertical line. The distance from ai to bi with b > a is log(b/a).

Proof. Let γ be a path with γ(0) = ai and γ(1) = bi. Express γ as the sum of its
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real and imaginary parts: γ(t) = γ1(t) + γ2(t)i. Then,

`(γ) =

∫ 1

0

1

Imγ(t)
|γ̇(t)|dt

=

∫ 1

0

1

γ2(t)

√
γ̇1(t)2 + γ̇2(t)2dt

≥
∫ 1

0

1

γ2(t)
|γ̇2(t)|dt

≥
∫ 1

0

γ̇2(t)

γ2(t)
dt

= [log γ2(t)]
1
0

= log(b/a).

Equality in the third line holds if the image of γ is contained in the imaginary axis,
and equality in the forth line holds if γ is injective. Therefore dH(ai, bi) = log(b/a)
and the distance is minimised by the vertical line segment.

For general pairs of points we simply use an isometry to transform the configu-
ration into this “easy” case. This is the power of having a large isometry group: we
can use Möbius maps to transform geometric questions into easier questions.

Proof of theorem 2.8. The key point is the following fact, which follows easily from
the definition of a geodesic arc and the fact that Möbius maps preserve lengths and
distances. The fact is this: let γ be a geodesic arc in H and let f be a real Möbius
map. Then f ◦ γ is also a geodesic arc.

Let x and y be points in H. We begin by proving the following claim: there is a
real Möbius map f such that f(x) and f(y) lie on the imaginary axis.

To prove the claim, we first treat the case in which <(f(x)) = <(f(y)). In this
case, let f(z) = z −<(f(x)), and it is clear both that this is a real Möbius map and
that it has the required property.

If this is not the case then there is a semicircle H meeting R at right angles and
passing through x and y. Let the points of intersection between H and R be ζ+ and
ζ−, with ζ+ > ζ−. Let f(z) = (z − ζ+)(z − ζ−). Then ad− bc = ζ+ − ζ− so this is a
real Möbius map.

Further, note that f(R∪{∞}) = R∪{∞} (this is true for all real Möbius maps),
that f(ζ−) = ∞, and f(ζ+) = 0. The map f preserves lines and circles, and also
preserves angles. It follows that f(H) is a straight line through 0 and perpendicular
to R. Therefore f(H) is the imaginary axis and f(x) and f(y) lie on the imaginary
axis.

This completes the proof of the claim.
By Lemma 2.3 there is a unique geodesic arc γ from f(x) to f(y), and this

geodesic arc is a straight vertical segment. Then f−1 ◦ γ is a geodesic arc from x to
y, and since f−1 preserves angles and also preserves the set of lines and circles, it
follows that f−1 ◦ γ is a segment of a straight line or circle perpendicular to R, as
required.

To see that this geodesic arc is unique, let γ′ be another geodesic arc from x to
y. Then f ◦ γ′ is another geodesic arc from f(x) to f(y), violating the uniqueness
proved in Lemma 2.3. This completes the proof of the theorem.

Remark 2.10. Using this theorem, we now have the ability to compute the hyperbolic
distance between any two points x and y in H. In fact, we have two options:
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1. We know the (unique) geodesic arc from x to y, so we just need to compute its
length. Therefore it is sufficient to write down a parametrisation γ : [0, 1]→ R
of the arc and then compute an integral.

2. Alternatively, find a Möbius map sending x and y to the imaginary axis. Then
dH(x, y) = dH(f(x), f(y)), and this latter distance is given to us by Lemma 2.3.

Let’s end the section with the following simple definition, which is justifed by the
previous theorem.

Definition 2.11. We call a path γ : (−∞,∞) → H a maximal geodesic if all of
its finite subsegments are geodesics. Then Theorem 2.8 tells us that the maximal
geodesics are precisely the vertical lines and the semicircles meeting ∂H at right
angles.

2.4 The unit disk model

We now describe another model for the hyperbolic plane. This can be thought of as
a “map” of H, in which distances are distorted, just like in a map of the globe.

Lemma 2.12. The Möbius map f : z 7→ (z − i)/(z + i) sends H to the unit disk.

Proof. For x ∈ R, |x − i| = |x + i|, so |f(x)| = 1. Therefore the image of ∂H is the
unit circle. Furthermore, for z ∈ H, Imz > 0, so |z + i| > |z − i|. It follows that
|f(z)| < 1, and therefore f maps H to the open unit disk.

We now give the disk a metric that makes f into an isometry.

Proposition 2.13. Let the Poincaré disk D be the unit disk equipped with the metric
dD determined by the function

gD(z) =
2

1− |z|2

Then f : H→ D is an isometry.

Remark 2.14. In other words, lengths of paths in D are given by the following equa-
tion:

`(γ) =

∫
γ

2

1− |z|2
|dz| =

∫ b

a

2

1− |γ(t)|2
|γ̇(t)|dt.

Areas are given by the following equation.

Area(D) =

∫
D

2

(1− (x2 + y2))2
dxdy

Proof. Let γ be a path in H. We compute the length of f ◦ γ:

`(f ◦ γ) =

∫
f◦γ

2

1− |z|2
|dz|
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Perform the substitution z = f(w):

`(f ◦ γ) =

∫
γ

2

1− |f(w)|2
|f ′(w)||dw|

=

∫
γ

2|w + i|2

|w + i|2 − |w − i|2
2

|w + i|2
|dw|

=

∫
γ

4

(w + i)(w − i)− (w − i)(w + i)
|dw|

=

∫
γ

4

|w|2 + wi− wi+ 1− |w|2 − wi+ wi− 1
|dw|

=

∫
γ

2

−i(w − w)
|dw|

=

∫
γ

1

Imw
|dw|

= `(γ)

The result follows.

Exercise 2.15. Prove that maximal geodesics in D are precisely the segments of circles
that meet the unit circle at right angles. (Hint: use the fact that Möbius maps send
lines and circles to lines and circles.)

The Poincaré disk model turns out to be particularly useful in situations where we
are interested in one particular point: placing this point at 0 ∈ D often simplifies such
problems. One example of this is in imagining rotations (later to be called elliptic
isometries): these are isometries of the hyperbolic plane that fix a point within the
hyperbolic plane. They are hard to imagine in the upper half plane model, but easier
to imagine in the unit disk, as long as we assume that the fixed point is at 0.

Exercise 2.16. The map z 7→ eiθz is an isometry of D for any θ ∈ R.

3 Classification of isometries

We have now seen three easy-to-imagine types of isometries of the hyperbolic plane:

1. The map H→ H defined by z 7→ λz, where λ > 0.

2. The map H→ H defined by z 7→ z + b, where b > 0.

3. The map D→ D defined by z 7→ eiθz, where θ ∈ R.

In this section we consider the classification all of isometries of H. We will see that
any isometry falls into exactly one of three fairly distinct classes, each represented
by one of the isometries listed above. The moral is that understanding these three
types of isometries is sufficient to give and understanding of all isometries of the
hyperbolic plane.

Our primary tool will be the study of fixed points of isometries, either in H or
∂H.

Definition 3.1. An isometry of H is

1. elliptic if it has exactly one fixed point, and that fixed point in H ∪ ∂H, and
this fixed point is in H;
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2. parabolic if it has exactly one fixed point in H ∪ ∂H and that fixed point is in
∂H;

3. hyperbolic if it has exactly two fixed points in H ∪ ∂H and those fixed points
are in ∂H.

It is clear that these possibilities are mutually exclusive.

Proposition 3.2. Every real Möbius map is either elliptic, parabolic or hyperbolic.

Proof. Consider a real Möbius map f : z 7→ (az+b)/(cz+d), where c 6= 0. Note that
∞ is not a fixed point of f . Then fixed points of f are points where cz2 +dz = az+b,
which is a quadratic equation, so has at least one and at most two solutions in C.
This equation has real coefficients, so if it has one real root then its other root is
real, too, while if it has a non-real root w its other root is w, and exactly one of these
points is in H. In any of these cases, f is either elliptic, parabolic or hyperbolic.

The remaining case when c = 0 is left as an exercise.

Exercise 3.3. Prove the proposition for a real Möbius map of the form z 7→ (az+b)/d.
(Hint: notice that ∞ if always a fixed point of these maps.)

Our classification involves conjugacy, which is a concept you might recognise from
group theory:

Definition 3.4. Two real Möbius maps f and h are conjugage if there exists a real
Möbius map g such that h = g ◦ f ◦ g−1.

Exercise 3.5. Show that if f and g are real Möbius maps then g maps the fixed points
of f bijectively to the fixed points of g ◦ f ◦ g−1, and in particular these two maps
have the same numbers in H and in ∂H (Hint: first show that if x is fixed by f then
g · x is fixed by g ◦ f ◦ g−1.) In particular, deduce that conjugate Möbius maps have
the same type.

Convince yourself that, generally, conjugate Möbius maps “look basically the
same, but from a different point of view”.

3.1 Elliptic isometries

Recall that an elliptic isometry has exactly one fixed point, and this point is in H.
These are in many ways the least interesting isometries of H.

Let f be an elliptic isometry; we view it in the Poincaré disk model. Let g be an
isometry that maps the unique fixed point of f to 0. Then g ◦ f ◦ g−1 is a Möbius
map fixing 0 and the unit circle. Since Möbius maps preserve angles and hyperbolic
distances, this map must be a rotation, i.e. a map of the form z 7→ eiθz for some
θ ∈ R. This proves the following proposition.

Proposition 3.6. Any elliptic Möbius map is conjugate to a rotation with centre 0.

Remark 3.7. In light of this proposition, we think of all elliptic Möbius maps as
hyperbolic rotations, although they don’t always look like rotations!

Exercise 3.8. Try to picture an elliptic isometry in the upper half plane model. What
does the elliptic isometry fixing i look like?

13



3.2 Parabolic isometries

Similarly, let f be a parabolic isometry in the upper half plane model, so it fixes a
point in R ∪ {∞}. Let g be a Möbius map sending the fixed point of f to ∞. Then
g ◦ f ◦ g−1 fixes ∞, and therefore is a map of the form z 7→ az + b. If a 6= 1 then
this map has a fixed point in R in addition to the fixed point ∞, contradicting the
assumption that g was parabolic. Therefore g ◦ f ◦ g−1 is of the form z 7→ z + b, a
horizontal translation.

Proposition 3.9. Any parabolic Möbius map is conjugate to a translation z 7→ z+b
of H, for some b ∈ R.

Exercise 3.10. Think about what a parabolic Möbius map of H with a different fixed
point looks like.

3.3 Hyperbolic isometries

Finally, consider a hyperbolic isometry f . There is a Möbius map g sending the fixed
points of f to the points 0 and ∞, and so g ◦ f ◦ g−1 is a Möbius map fixing 0 and
∞. It therefore has the form z 7→ az for some a ∈ R.

Proposition 3.11. Any hyperbolic isometry is conjugate to z 7→ az for some a ∈ R.

3.4 Trace invariants

There is a quick way to tell into which class a particular Möbius map fits. Remember
that any Möbius map is represented by a pair ±A of elements of SL2(R). Then the
trace of the representing element is not a well-defined invariant, but its square is.

Definition 3.12. The trace invariant of a Möbius map f is (Tr(A))2, where A
is either element of SL2(R) whose image in the group of Möbius maps is f . This
quantity is denoted τ(f).

Remark 3.13. If f(z) = (az + b)/(cz + d) then you might think that τ(f) = a + d.
But this is only the case if the map is normalised

Exercise 3.14. The trace invariant is a conjugacy invariant in the group of Möbius
maps.

Proposition 3.15. Let f 6= Id.

1. The map f is elliptic if and only if τ(f) < 4.

2. The map f is parabolic if and only if τ(f) = 4.

3. The map f is hyperbolic if and only if τ(f) > 4.

Proof. Since the cases are mutually exclusive, it is enough to prove that elliptic
Möbius maps have τ < 4, parabolic have τ = 4 and hyperbolic have τ > 4.

If f is elliptic, it is conjugate to some rotation h, which must then have the same
τ , so we may assume that f is a rotation z 7→ eiθz, θ ∈ (0, 2π). This map is the image

of
(
eiθ/2 0

0 eiθ/2

)
, and this matrix has trace 2 cos(θ/2), and so τ(f) = 4 cos2(θ/2) < 4.

If f is parabolic then without loss of generality it is z 7→ z+b, which is the imagae
of ( 1 b

0 1 ), which has trace 2, so τ(f) = 4.
If f is hyperbolic then without loss of generality it is z 7→ az, a ∈ R. This is the

image of
(√

a 0

0 1/
√
a

)
, so τ(f) = (

√
a+ 1/

√
a)2 > 4.
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4 Gauss-Bonnet and tessellations

The goal of this section is to prove some fundamental geometric results about the
hyperbolic plane, linking lengths, angles and areas.

4.1 Proof of the Gauss-Bonnet theorem

Definition 4.1. Let z1, . . . zn be distinct points in H ∪ ∂H. For each i, let [zi, zi+1]
be the geodesic connecting zi to zi+1, which cound be a geodesic arc, a geodesic ray
or a maximal geodesic. Suppose that these only meet at their endpoints. Then we
call the subset of H bounded by these geodesics a hyperbolic n-gon.

We first prove the theorem for triangles:

Theorem 4.2. Let ∆ be a hyperbolic triangle with internal angles α, β and γ at
vertices A, B and C. Then:

Area(∆) = π − (α+ β + γ)

Here we allow “ideal vertices”, that is, vertices in ∂H. The angle at an ideal vertex
is always 0.

Remark 4.3. In particular, the sum of the angles of a hyperbolic triangle is always
less than π, and the area of a hyperbolic triangle is always at most π, with equality
if and only if all vertices are in R ∪ {∞}.

Proof. First suppose that at least one vertex, say C, is ideal. So γ = 0. Now, using
a Möbius transformation we may move C to∞. Then the edge AB is a segment of a
semicircle meeting R. By applying a Möbius transformation of the form z 7→ z + z0

we may assume that the centre is at 0, and by applying a transformation of the form
z 7→ λz we may assume that the radius is 1.

Let the x-coordinates of A and B be a and b. Now,

Area(∆) =

∫
∆

1

y2
dxdy

=

∫ b

a

(∫ ∞
√

1−x2

1

y2
dy

)
dx

=

∫ b

a

([
−1

y

]∞
√

1−x2

)
dx

=

∫ b

a

1√
1− x2

dx

Now substitute x = cos θ and notice that when x = a, θ = π − α, while when x = b,
θ = β.

Area(∆) =

∫ β

π−α
−1dθ

= π − (α+ β)

= π − (α+ β + γ),

which is what we wanted.
If no vertex is on ∂H then use a Möbius transformation to make the geodesic

arc AB vertical, with A above B. Let δ be the angle between BC and the vertical
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through C. We now have two ideal triangles, BC∞ and AC∞, to which we apply
the ideal case of the result.

Area(∆) = Area(AC∞)−Area(BC∞)

= (π − α− (δ + γ))− (π − (π − β)− δ)
= π − (α+ β + γ)

We now prove the result for general polygons.

Theorem 4.4 (Gauss-Bonnet). Let P be an n-gon with vertices A1, A2, . . . , An and
internal angles α1, α2, . . . , αn. Then:

Area(P ) = (n− 2)π −
n∑
i=1

αi

Sketch. The polygon can be cut into n− 2 triangles. Applying the theorem to each
triangle gives the general result.

4.2 Tessellations

As an application, we prove a theorem characterising the tessellations of H by trian-
gles with a particular property.

Theorem 4.5. Let ∆ be a hyperbolic triangle with vertices labelled A, B and C.
Suppose that there is a tessellation of H by triangles isometric to ∆ such that only
corresponding vertices meet. Then the number of copies of ∆ meeting at the points
A, B and C are integers l, m and n satisfying

1

l
+

1

m
+

1

n
<

1

2

Proof. Clearly the angle at A must be 2π/l, and correspondingly for B and C. Then
the Gauss-Bonnet Theorem tells us that

Area(∆) = π − 2π

(
1

l
+

1

m
+

1

n

)
= 2π

(
1

2
−
(

1

l
+

1

m
+

1

n

))
.

Asserting that the area must be postive completes the proof.
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