Exercise sheet 2

Benjamin Barrett

October 14, 2019

Assessed questions should be submitted to G.90 (Fry Building) no later than 12pm (midday) on 21st October 2019. Feel free to email me at benjamin.barrett@bristol.ac.uk if you have any questions.

The following questions will not be assessed, but spending time thinking about them should be useful.

- 1. Using the fact that Möbius maps preserve angles and circles in the Riemann sphere, together with the characterisation of geodesics in \mathbb{H} , show that paths in \mathbb{D} are geodesics if and only if they are segments of circles meeting the unit circle at right angles.
- 2. Prove that if f is a parabolic Möbius map then there exists a real Möbius map g such that $g \circ f \circ g^{-1}(z) = z \pm 1$.
- 3. Find a matrix representative in $SL_2(\mathbb{R})$ of the Möbius map $z \mapsto (4z + 1)/(2z + 1)$, and hence compute its trace invariant.
- 4. Consider an ideal triangle Δ with vertices at 0, 1 and ∞ , all on $\partial \mathbb{H}^2$.
 - (a) Draw a sketch of Δ , showing the smapes of its three edges.
 - (b) What is the area of Δ , according to the Gauss-Bonnet theorem?
 - (c) Write down an integral that computes the area of Δ . Evaluate this integral to verify the Gauss-Bonnet theorem in this case.
- 5. Prove that a hyperbolic Möbius map is conjugate to a map $z \mapsto \lambda z$ for some $\lambda > 0$.

Please submit the following questions for assessment as described above.

- 6. (7 marks.)
 - (a) (2 marks.) State the Gauss-Bonnet theorem for hyperbolic polygons.
 - (b) (3 marks.) Use it to give an upper bound on the area of a hyperbolic *n*-gon.
 - (c) (2 marks.) Show that this upper bound is attained by an ideal n-gon: that is, one in which all vertices are on $\partial \mathbb{H}$.
- 7. (6 marks.) Let f and g be conjugate real Möbius maps, so that there exists a real Möbius map h such that $h \circ f \circ h^{-1} = g$.

- (a) (3 marks.) Prove that f and g have the same number of fixed points. (Hint: show that h maps the fixed points of f bijectively to the fixed points of g.)
- (b) (3 marks.) Prove that $\tau(f) = \tau(g)$. (Hint: for square matrices A and B, Tr(AB) = Tr(BA).)
- 8. (7 marks.) Let f be a hyperbolic Möbius map. Prove that its fixed points in $\partial \mathbb{H}$ can be labelled as ζ_+ and ζ_- so that for any $x \in \partial \mathbb{H} - \{\zeta_-\}$, $f^n(x) \to \zeta_+$ as $n \to \infty$. You may use the fact that if x_n is a sequence of points in \mathbb{C}_{∞} converging to a point x, and g is a Möbius map, then $g(x_n) \to g(x)$ as $n \to \infty$.
- 9. (5 marks.) Classify the following Möbius maps as elliptic, parabolic or hyperbolic.

$$f(z) = 2z + 3$$

$$f(z) = -1/z$$

$$f(z) = z/(1-z)$$

$$f(z) = z/(z+1)$$

$$f(z) = (4z+1)/(2z+1)$$

The following more difficult questions will not be assessed and are non-examinable. These questions might explore topics beyond the syllabus, or go into more detail than we have time to in this course; they are intended to be interesting, but you should not worry if you cannot obtain complete solutions or do not have time to attempt them. I am happy to mark any attempted solutions at any time, or to discuss these questions further by email.

10. Think about what a parabolic Möbius map looks like in the Poincaré disk model. If you can, draw a picture. Do the same for a hyperbolic Möbius map in the disk model, and for an elliptic Möbius map in the upper half plane model.