Determinacy of Refinements to the Difference Hierarchy of Co-analytic sets

Chris Le Sueur
http://www.maths.bris.ac.uk/~cl7907/

University of Bristol

9th April 2014
1 Introduction

 Definitions and Notation

 Earlier results

2 Determinacy from Indiscernibles

 $0^#$

 Through the Difference Hierarchy

3 New results

 Obtaining Indiscernibles

 Effective Descriptive Set Theory in Uncountable Spaces

 Example: $\omega^2 - \Pi^1_1 + \Sigma^0_2$

 Further Results & Extensions
THEOREMS OF THE FORM:

\[\exists M (M \models T + M \text{ is iterable}) \implies \text{Det}(\omega^2 - \Pi^1_1 + \Gamma) \]
Goal

Theorems of the form:

$$\exists M (M \models T + M \text{ is iterable}) \implies \text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$$

$$T \subseteq \text{ZFC}, \Gamma \subseteq \Delta^1_1$$
Definition

A game \(G \) consists of:

- A tree \(T \), usually \(\omega^\omega \) but we will need larger trees, too
- A winning set \(A \subseteq [T] \)

Players \(I \) and \(II \) take turns extending positions \(p \in T \) by one element, ultimately (after \(\omega^\omega \)-many moves) specifying a play \(x \in [T] \), whereupon \(I \) wins if \(x \in A \).

Definition

\(G(A; T) \) is determined if there exists a winning strategy for either player; that is a \(\sigma : T \to \text{Field}(T) \) defined either on even or odd length positions, if \(\sigma \) is a strategy for \(I \) or \(II \), respectively, such that every play consistent with \(\sigma \) is a win for the relevant player.
Games and Determinacy

Definition

A game $G(A; T)$ consists of:

- A tree T, usually ω^ω, but we will need larger trees, too
- A winning set $A \subseteq \mathcal{T}$

Players I and II take turns extending positions $p \in T$ by one element, ultimately (after ω-many moves) specifying a play $x \in \mathcal{T}$, whereupon I wins if $x \in A$.

Definition $G(A; T)$ is determined if there exists a winning strategy for either player; that is a $\sigma : T \rightarrow \text{Field}(T)$ defined either on even or odd length positions, if σ is a strategy for I or II, respectively, such that every play consistent with σ is a win for the relevant player.
Games and Determinacy

Definition

A game $G(A; T)$ consists of:

- A tree T, usually $\omega^\lt\omega$ but we will need larger trees, too
Games and Determinacy

Definition

A game \(G(A; T) \) consists of:

- A tree \(T \), usually \(\omega^{<\omega} \) but we will need larger trees, too
- A winning set \(A \subseteq [T] \)
Games and Determinacy

Definition

A game \(G(A; T) \) consists of:

- A tree \(T \), usually \(\omega^{<\omega} \) but we will need larger trees, too
- A winning set \(A \subseteq [T] \)

Players I and II take turns extending positions \(p \in T \) by one element, ultimately (after \(\omega \)-many moves) specifying a play \(x \in [T] \), whereupon I wins if \(x \in A \).
Games and Determinacy

Definition

A game $G(\mathcal{A}; T)$ consists of:

- A tree T, usually $\omega < \omega$ but we will need larger trees, too
- A winning set $\mathcal{A} \subseteq [T]

Players I and II take turns extending positions $p \in T$ by one element, ultimately (after ω-many moves) specifying a play $x \in [T]$, whereupon I wins if $x \in \mathcal{A}$.

Definition

$G(\mathcal{A}; T)$ is determined if there exists a winning strategy for either player; that is a $\sigma : T \rightarrow \text{Field}(T)$ defined either on even or odd length positions, if σ is a strategy for I or II, respectively, such that every play consistent with σ is a win for the relevant player.
Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π^1_1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- Each $A_\beta \in \Gamma$;
- $A_\alpha = \emptyset$;
- $x \in A$ if and only if the least β such that $x \notin A_\beta$ is odd.

So, 1-$\Gamma = \Gamma$ and 2-$\Gamma = \Gamma \land \bar{\Gamma} = \Gamma - \Gamma$.

Fact

If α is a computable ordinal then $\Pi^1_1 \subsetneq \alpha$-$\Pi^1_1 \subsetneq \alpha + 1$-$\Pi^1_1 \subsetneq \Delta^1_2$.

Chris Le Sueur (University of Bristol)
Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π^1_1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- each $A_\beta \in \Gamma$;

So, 1-$\Gamma = \Gamma$ and 2-$\Gamma = \Gamma \land \bar{\Gamma} = \Gamma - \Gamma$.

Fact

If α is a computable ordinal then $\Pi^1_1 \subsetneq \alpha$-$\Pi^1_1 \subsetneq (\alpha + 1)$-$\Pi^1_1 \subsetneq \Delta^1_2$.

Chris Le Sueur (University of Bristol)
Determinacy of $\omega^2 - \Pi^1_1 + \Gamma$
9th April 2014

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_1^1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- each $A_\beta \in \Gamma$;
- $A_\alpha = \emptyset$;

So, 1-$\Gamma = \Gamma$ and 2-$\Gamma = \Gamma \land \tilde{\Gamma} = \Gamma - \Gamma$.

Fact

If α is a computable ordinal then $\Pi_1^1 \subsetneq \alpha$-$\Pi_1^1 \subsetneq (\alpha + 1)$-$\Pi_1^1 \subsetneq \Delta_2^1$.

Chris Le Sueur (University of Bristol)
Determinacy of $\omega^2 \cdot \Pi_1^1 + \Gamma$
9th April 2014 5 / 35
Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_1^1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- each $A_\beta \in \Gamma$;
- $A_\alpha = \emptyset$; and
- $x \in A \iff$ the least β such that $x \notin A_\beta$ is odd
Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_1^1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- each $A_\beta \in \Gamma$;
- $A_\alpha = \emptyset$; and

$$x \in A \iff \text{the least } \beta \text{ such that } x \notin A_\beta \text{ is odd}$$

So, $1 - \Gamma = \Gamma$ and $2 - \Gamma = \Gamma \land \complement \Gamma = \Gamma - \Gamma$.
Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π^1_1), α be a countable ordinal. We say a set A is α-Γ if there is a sequence $\langle A_\beta \mid \beta \leq \alpha \rangle$ such that:

- each $A_\beta \in \Gamma$;
- $A_\alpha = \emptyset$; and
- $x \in A \iff$ the least β such that $x \notin A_\beta$ is odd

So, $1 - \Gamma = \Gamma$ and $2 - \Gamma = \Gamma \cap \overset{\sim}{\Gamma} = \Gamma - \Gamma$.

Fact

If α is a computable ordinal then

$$\Pi^1_1 \subsetneq \alpha - \Pi^1_1 \subsetneq (\alpha + 1) - \Pi^1_1 \subsetneq \Delta^1_2$$
We can refine the difference hierarchy by restricting the final set in the sequence.

Definition

For $\Lambda \subseteq \Gamma$, we say

$$\Lambda \in \alpha - \Gamma + \Lambda$$

if $\Lambda \in (\alpha + 1) - \Gamma$, as witnessed by the sequence $\langle A_\beta \mid \beta \leq \alpha + 1 \rangle$, but $A_\alpha \in \Lambda$.
Well-known determinacy results provable within ZFC:
Well-known determinacy results provable within ZFC:

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>Det(Σ^0_1) (Gale-Stewart)</td>
</tr>
</tbody>
</table>
Well-known determinacy results provable within ZFC:

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>$\text{Det}(\Sigma^0_1)$ (Gale-Stewart)</td>
</tr>
<tr>
<td>$\text{KP} + \Sigma_1 - \text{Sep}$</td>
<td>$\text{Det}(\Sigma^0_2)$ (Wolfe)</td>
</tr>
</tbody>
</table>
ZFC

Well-known determinacy results provable within ZFC:

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>Det((\Sigma^0_1))</td>
<td>(Gale-Stewart)</td>
</tr>
<tr>
<td>KP + (\Sigma_1) - Sep</td>
<td>Det((\Sigma^0_2))</td>
<td>(Wolfe)</td>
</tr>
<tr>
<td>(\Sigma_2) - KP + (\Sigma_2) - Sep</td>
<td>Det((\Sigma^0_3))</td>
<td>(Davis)</td>
</tr>
</tbody>
</table>
ZFC

Well-known determinacy results provable within ZFC:

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>$\text{Det}(\Sigma_1^0)$</td>
<td>Gale-Stewart</td>
</tr>
<tr>
<td>KP + Σ_1 - Sep</td>
<td>$\text{Det}(\Sigma_2^0)$</td>
<td>Wolfe</td>
</tr>
<tr>
<td>Σ_2 - KP + Σ_2 - Sep</td>
<td>$\text{Det}(\Sigma_3^0)$</td>
<td>Davis</td>
</tr>
<tr>
<td>ZFC</td>
<td>$\text{Det}(\Delta_1^1)$</td>
<td>Martin</td>
</tr>
</tbody>
</table>
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^#$ exists</td>
<td>Det(Π^1_1)</td>
</tr>
</tbody>
</table>

(Martin)
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0# exists</td>
<td>Det(Π^1_1)</td>
<td>Martin</td>
</tr>
<tr>
<td>0# exists</td>
<td>Det($\omega \cdot n - \Pi^1_1$)</td>
<td>Martin</td>
</tr>
</tbody>
</table>
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0# exists</td>
<td>(\text{Det}(\Pi^1_1)) \hspace{2cm} (Martin)</td>
</tr>
<tr>
<td>0# exists</td>
<td>(\text{Det}(\omega \cdot n - \Pi^1_1)) \hspace{2cm} (Martin)</td>
</tr>
<tr>
<td>(\exists \kappa \text{ measurable})</td>
<td>(\text{Det}(\omega^2 - \Pi^1_1)) \hspace{2cm} (Martin)</td>
</tr>
</tbody>
</table>
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\Pi^1_1)$</td>
</tr>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\omega \cdot n - \Pi^1_1)$ (Martin)</td>
</tr>
<tr>
<td>$\exists \kappa$ measurable</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$ (Martin)</td>
</tr>
<tr>
<td>\exists a “clever mouse”</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$ (Welch)</td>
</tr>
</tbody>
</table>
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\Pi^1_1)$</td>
<td>(Martin)</td>
</tr>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\omega \cdot n - \Pi^1_1)$</td>
<td>(Martin)</td>
</tr>
<tr>
<td>$\exists \kappa$ measurable</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$</td>
<td>(Martin)</td>
</tr>
<tr>
<td>\exists a “clever mouse”</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$</td>
<td>(Welch)</td>
</tr>
<tr>
<td>(\exists an iterable model of T)</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$</td>
<td></td>
</tr>
</tbody>
</table>
Beyond ZFC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Determinacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\Pi^1_1)$ (Martin)</td>
</tr>
<tr>
<td>$0^#$ exists</td>
<td>$\text{Det}(\omega \cdot n - \Pi^1_1)$ (Martin)</td>
</tr>
<tr>
<td>$\exists \kappa$ measurable</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$ (Martin)</td>
</tr>
<tr>
<td>\exists a “clever mouse”</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1)$ (Welch)</td>
</tr>
<tr>
<td>(\exists an iterable model of T)</td>
<td>$\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$</td>
</tr>
<tr>
<td>0^+ exists</td>
<td>$\text{Det}((\omega^2 + 1) - \Pi^1_1)$ (Martin)</td>
</tr>
</tbody>
</table>
Martin’s Method

We want to prove $\text{Det}(\Pi^1_1)$ using the $0^\#$ indiscernibles.
Martin’s Method

We want to prove $\text{Det}(\Pi^1_1)$ using the $0^#$ indiscernibles.

- Characterize membership in the winning set A by well-orders.
Martin’s Method

We want to prove Det(Π^1_1) using the $0^#$ indiscernibles.

- Characterize membership in the winning set A by well-orders.

- Define an open auxiliary game in which player I must confirm that they won the integer game by exhibiting well-orders.
Martin’s Method

We want to prove Det(Π^1_1) using the 0# indiscernibles.

- Characterize membership in the winning set A by well-orders.
- Define an open auxiliary game in which player I must confirm that they won the integer game by exhibiting well-orders.
- Define a winning strategy in the original game, using the fact that a winning strategy must exist in the auxiliary one.

The winner doesn’t see their opponents moves in the auxiliary game and must “imagine” them; indiscernibility will ensure that the imaginary moves can be picked arbitrarily without altering the outcome.
Martin’s Method

We want to prove Det(Π^1_1) using the 0♯ indiscernibles.

- Characterize membership in the winning set A by well-orders.

- Define an open auxiliary game in which player I must confirm that they won the integer game by exhibiting well-orders.

- Define a winning strategy in the original game, using the fact that a winning strategy must exist in the auxiliary one.

- The winner doesn’t see their opponents moves in the auxiliary game and must “imagine” them; indiscernibility will ensure that the imaginary moves can be picked arbitrarily without altering the outcome.
Martin’s Method

We start with the tree representation of Π^1_1 sets:
Martin’s Method

We start with the tree representation of Π^1_1 sets:

Theorem

Let $A \subseteq \omega^\omega$ be Π^1_1, then there is a tree $T \subseteq (\omega \times \omega)^{<\omega}$ such that

- $x \in A \iff T^x$ is wellfounded
- The Kleene-Brouwer ordering well-orders T^x
- $< x$ wellorders ω

T^x is the part of T compatible with x;

$< x$ orders i before j if $s^i \supseteq t^j$ or $s^i(i) < t^j(i)$ at the first disagreement;

$< x$ orders s^i, $s^j \in T^x$ and $s^i < KB s^j$, where $i \mapsto s^i$ is some recursive enumeration of $(\omega \times \omega)^{<\omega}$.
Martin’s Method

We start with the tree representation of Π^1_1 sets:

Theorem

Let $A \subseteq \omega^\omega$ be Π^1_1, then there is a tree $T \subseteq (\omega \times \omega)^{<\omega}$ such that

$x \in A \iff T_x$ is wellfounded

\iff The Kleene-Brouwer ordering well-orders T_x

$\iff <_x$ wellorders ω
Martin’s Method

We start with the tree representation of Π^1_1 sets:

Theorem

Let $A \subseteq \omega^\omega$ be Π^1_1, then there is a tree $T \subseteq (\omega \times \omega)^{<\omega}$ such that

\[x \in A \iff T_x \text{ is wellfounded} \]

\[\iff \text{The Kleene-Brouwer ordering well-orders } T_x \]

\[\iff <_x \text{ wellorders } \omega \]

\[\implies T_x \text{ is the part of } T \text{ compatible with } x; \]
Martin’s Method

We start with the tree representation of Π^1_1 sets:

Theorem

Let $A \subseteq \omega^\omega$ be Π^1_1, then there is a tree $T \subseteq (\omega \times \omega)^{<\omega}$ such that

$x \in A \iff T_x$ is wellfounded

\iff The Kleene-Brouwer ordering well-orders T_x

$\iff <_x$ wellorders ω

- T_x is the part of T compatible with x;
- $<_{KB}$ orders a sequence s before t if $s \supseteq t$ or $s(i) < t(i)$ at the first disagreement;
Martin’s Method

We start with the tree representation of Π^1_1 sets:

Theorem

Let $A \subseteq \omega^\omega$ be Π^1_1, then there is a tree $T \subseteq (\omega \times \omega)^{<\omega}$ such that

\[x \in A \iff T_x \text{ is wellfounded} \iff \text{The Kleene-Brouwer ordering well-orders } T_x \iff <_x \text{ wellorders } \omega \]

- T_x is the part of T compatible with x;
- $<_\KB$ orders a sequence s before t if $s \supseteq t$ or $s(i) < t(i)$ at the first disagreement;
- $<_x$ orders i before j if $s_i, s_j \in T_x$ and $s_i <_\KB s_j$, where $i \mapsto s_i$ is some recursive enumeration of $(\omega \times \omega)^{<\omega}$.
Martin’s Method

Let $G = G(A; \omega^\omega)$ with $A \in \Pi^1_1$. Define an auxiliary game, $G^* = G(A^*; T^*)$, according the following scheme:
Martin’s Method

Let \(G = G(A; \omega^\omega) \) with \(A \in \Pi^1_1 \). Define an auxiliary game, \(G^* = G(A^*; T^*) \), according the following scheme:

\[
\begin{align*}
\text{I} & \langle a_0, \eta_0 \rangle \quad \langle a_2, \eta_2 \rangle \quad \cdots \\
\text{II} & \quad \quad \quad \quad a_1 \quad \quad a_3
\end{align*}
\]

Where each \(\eta_{2i} \in \omega_1 \).

Let \(x = \langle a_0, a_1, a_2, \ldots \rangle \). I wins if the function \(i \mapsto \eta_{2i} \) is an order-preserving embedding of \(\langle \omega, < \rangle \) into \(\langle \omega_1, < \rangle \), which by the fact about \(\Pi^1_1 \) sets, implies \(x \in A \).

Notice that, if I loses, he does so at a finite stage: There must be some \(i, j \) such that \(i < x \) and \(\eta_{2i} > \eta_{2j} \), so let \(n = \max(i, j) \). If \(x | n = y | n \) then \(i < x \) \(\iff \) \(i < y \), so after \(n \) moves we can see that I has lost.

Thus \(A^* \) is open (when viewed with the appropriate topology) and hence has a winning strategy.
Martin’s Method

Let $G = G(A; \omega^{<\omega})$ with $A \in \Pi^1_1$. Define an auxiliary game, $G^* = G(A^*; T^*)$, according the following scheme:

I $\langle a_0, \eta_0 \rangle \quad \langle a_2, \eta_2 \rangle \quad \cdots$

II $a_1 \quad a_3$

Where each $\eta_{2i} \in \omega_1$.

Let $x = \langle a_0, a_1, a_2, \ldots \rangle$. I wins if the function $i \mapsto \eta_{2i}$ is an order-preserving embedding of $\langle \omega, <_x \rangle$ into $\langle \omega_1, < \rangle$, which by the fact about Π^1_1 sets, implies $x \in A$.

Notice that, if I loses, he does so at a finite stage: There must be some i, j such that $i < x j$ and $\eta_{2i} > \eta_{2j}$, so let $n = \max(i, j)$. If $x \upharpoonright n = y \upharpoonright n$ then $i < x j \leftrightarrow i < y j$, so after n moves we can see that I has lost.

Thus A^* is open (when viewed with the appropriate topology) and hence has a winning strategy.
Martin’s Method

Let $G = G(A; \omega^{<\omega})$ with $A \in \Pi^1_1$. Define an auxiliary game, $G^* = G(A^*; T^*)$, according the following scheme:

$I \langle a_0, \eta_0 \rangle \downarrow \downarrow \langle a_2, \eta_2 \rangle \downarrow \downarrow \cdots$

$II a_1 \nearrow a_3$

Where each $\eta_{2i} \in \omega_1$.

Let $x = \langle a_0, a_1, a_2, \ldots \rangle$. I wins if the function $i \mapsto \eta_{2i}$ is an order-preserving embedding of $\langle \omega, <_x \rangle$ into $\langle \omega_1, < \rangle$, which by the fact about Π^1_1 sets, implies $x \in A$.

Notice that, if I loses, he does so at a finite stage: There must be some i, j such that $i <_x j$ and $\eta_{2i} > \eta_{2j}$, so let $n = \max(i, j)$. If $x \upharpoonright n = y \upharpoonright n$ then $i <_x j \leftrightarrow i <_y j$, so after n moves we can see that I has lost.
Martin’s Method

Let $G = G(A; \omega^{<\omega})$ with $A \in \Pi^1_1$. Define an auxiliary game, $G^* = G(A^*; T^*)$, according the following scheme:

$I \langle a_0, \eta_0 \rangle \downarrow \langle a_2, \eta_2 \rangle \downarrow \cdots$

II $a_1 \rightarrow a_3$

Where each $\eta_{2i} \in \omega_1$.

Let $x = \langle a_0, a_1, a_2, \ldots \rangle$. I wins if the function $i \mapsto \eta_{2i}$ is an order-preserving embedding of $\langle \omega, <_x \rangle$ into $\langle \omega_1, < \rangle$, which by the fact about Π^1_1 sets, implies $x \in A$.

Notice that, if I loses, he does so at a finite stage: There must be some i, j such that $i <_x j$ and $\eta_{2i} > \eta_{2j}$, so let $n = \max(i, j)$. If $x | n = y | n$ then $i <_x j \leftrightarrow i <_y j$, so after n moves we can see that I has lost.

Thus A^* is open (when viewed with the appropriate topology) and hence has a winning strategy.
Martin’s Method

If I has a winning strategy in G^*, he can play the integer moves it would tell him to play to win in $G(A; T)$.

II has a harder time: if she has such a winning strategy, she doesn’t know what ordinals I would have decided to play.

But, all the objects used to define the game: ω_1^*, T^*, A^* are elements of L, so if II has a winning strategy, she has one definable over L.

Indeed, the winning strategy σ^* is also winning in V, by a standard argument using an absolute construction of the winning strategy for open games.

It remains to use the indiscernibles for L to find a winning strategy in G.

Chris Le Sueur (University of Bristol)
Martin’s Method

If I has a winning strategy in G^*, he can play the integer moves it would tell him to play to win in $G(A; T)$.

II has a harder time: if she has such a winning strategy, she doesn’t know what ordinals I would have decided to play.
Martin’s Method

If I has a winning strategy in G^*, he can play the integer moves it would tell him to play to win in $G(A; T)$.

II has a harder time: if she has such a winning strategy, she doesn’t know what ordinals I would have decided to play.

But, all the objects used to define the game: ω_1, T^*, A^* are elements of L, so if II has a winning strategy, she has one definable over L.
Martin’s Method

If I has a winning strategy in G^*, he can play the integer moves it would tell him to play to win in $G(A; T)$.

II has a harder time: if she has such a winning strategy, she doesn’t know what ordinals I would have decided to play.

But, all the objects used to define the game: ω_1, T^*, A^* are elements of L, so if II has a winning strategy, she has one definable over L.

Indeed, the winning strategy σ^* is also winning in V, by a standard argument using an absolute construction of the winning strategy for open games.
Martin’s Method

If I has a winning strategy in G^*, he can play the integer moves it would tell him to play to win in $G(A; T)$.

II has a harder time: if she has such a winning strategy, she doesn’t know what ordinals I would have decided to play.

But, all the objects used to define the game: ω_1, T^*, A^* are elements of L, so if II has a winning strategy, she has one definable over L.

Indeed, the winning strategy σ^* is also winning in V, by a standard argument using an absolute construction of the winning strategy for open games.

It remains to use the indiscernibles for L to find a winning strategy in G.
Martin’s Method

Let φ be a formula defining σ^*; $\varphi(p^*, a) \leftrightarrow \sigma^*(p^*) = a$.
Martin’s Method

Let φ be a formula defining σ^*; $\varphi(p^*, a) \leftrightarrow \sigma^*(p^*) = a$.

Let C be the $0^\#$ indiscernibles, and let $\gamma < \omega_1$ be greater than any ordinal parameter less than ω_1 in φ’s definition.
Martin’s Method

Let φ be a formula defining σ^*; $\varphi(p^*, a) \leftrightarrow \sigma^*(p^*) = a$.

Let C be the $0^\#$ indiscernibles, and let $\gamma < \omega_1$ be greater than any ordinal parameter less than ω_1 in φ’s definition. Define a strategy σ as follows:

$$
\sigma(p) = a \leftrightarrow \exists p^* \in (\omega \times C \cap (\omega_1 \setminus \gamma))^{<\omega} \left[p^* \text{ is compatible with } p \land p^* \text{ is not badly lost for } I \land \varphi(p^*, a) \right]
$$
Martin’s Method

Let φ be a formula defining σ^*; $\varphi(p^*, a) \leftrightarrow \sigma^*(p^*) = a$.

Let C be the $0^\#$ indiscernibles, and let $\gamma < \omega_1$ be greater than any ordinal parameter less than ω_1 in φ’s definition. Define a strategy σ as follows:

$$
\sigma(p) = a \leftrightarrow \exists p^* \in (\omega \times C \cap (\omega_1 \setminus \gamma))^\omega
$$

$$
[p^* \text{ is compatible with } p \land p^* \text{ is not badly lost for } I \land \varphi(p^*, a)]
$$

Indiscernibility of the elements of C ensures that $\sigma(p^*)$ is the same for any selection of p^* compatible with p, and so σ is well-defined.
Martin’s Method

It remains to show that \(\sigma \), so defined, is winning.
Martin’s Method

It remains to show that σ, so defined, is winning.

Suppose instead that $x \in A$ is compatible with σ. Then there is an order-preserving embedding of $\langle \omega, <_x \rangle$ into $\langle \omega_1, < \rangle$ and thus into $\langle C \cap (\omega_1 \setminus \gamma), < \rangle$; let g be such an embedding and let $\eta_{2i} = g(i)$.
Martin’s Method

It remains to show that σ, so defined, is winning.

Suppose instead that $x \in A$ is compatible with σ. Then there is an order-preserving embedding of $\langle \omega, <_x \rangle$ into $\langle \omega_1, < \rangle$ and thus into $\langle C \cap (\omega_1 \setminus \gamma), < \rangle$; let g be such an embedding and let $\eta_{2i} = g(i)$.

Let x^* be the play of G^* with integer components from x and where I played the η_{2i}’s as ordinals. But x^* is thus in A^*, yet compatible with σ^* which was winning for II — contradiction!
Ingredients

- Indiscernibles for \mathbb{L}
Ingredients

- Indiscernibles for L

 Must also be *good*, in particular closed-unbounded. Later we will want remarkability, too.
Ingredients

- Indiscernibles for L

 Must also be *good*, in particular closed-unbounded. Later we will want remarkability, too.

- Definable winning strategy in L
Ingredients

- Indiscernibles for L

 Must also be *good*, in particular closed-unbounded. Later we will want remarkability, too.

- Definable winning strategy in L

 We will make the auxiliary game more complex, but will still need a winning strategy in a suitable model. We will also want to weaken the indiscernibles, so will need simple winning strategies.
$\omega^2 - \Pi^1_1$

- Proceeding through the difference hierarchy on Π^1_1 sets, the procedure is much the same.
$\omega^2 - \Pi^1_1$

- Proceeding through the difference hierarchy on Π^1_1 sets, the procedure is much the same.

- We have to do some bookkeeping, and create many witnessing functions $g : \langle \omega, <_x \rangle \to \langle \aleph_n, < \rangle$
$\omega^2 - \Pi^1_1$

- Proceeding through the difference hierarchy on Π^1_1 sets, the procedure is much the same.

- We have to do some bookkeeping, and create many witnessing functions $g : \langle \omega, <_x \rangle \rightarrow \langle \aleph_n, < \rangle$

- For $\text{Det}(\omega \cdot n - \Pi^1_1)$ the auxiliary game is defined using $\langle \aleph_i \mid i \leq n \rangle$
Proceeding through the difference hierarchy on Π_1^1 sets, the procedure is much the same.

We have to do some bookkeeping, and create many witnessing functions $g : \langle \omega, <_x \rangle \rightarrow \langle \aleph_n, < \rangle$

For $\text{Det}(\omega \cdot n - \Pi_1^1)$ the auxiliary game is defined using $\langle \aleph_i | i \leq n \rangle$

Thus we need to go beyond L for $\omega^2 - \Pi_1^1$
$\omega^2 - \Pi^1_1$

- Proceeding through the difference hierarchy on Π^1_1 sets, the procedure is much the same.

- We have to do some bookkeeping, and create many witnessing functions $g : \langle \omega, <_x \rangle \rightarrow \langle \aleph_n, < \rangle$

- For $\text{Det}(\omega \cdot n - \Pi^1_1)$ the auxiliary game is defined using $\langle \aleph_i \mid i \leq n \rangle$

- Thus we need to go beyond L for $\omega^2 - \Pi^1_1$

- A measurable cardinal is enough (Martin)
$\omega^2 - \Pi^1_1$

- Proceeding through the difference hierarchy on Π^1_1 sets, the procedure is much the same.

- We have to do some bookkeeping, and create many witnessing functions $g : \langle \omega, <_x \rangle \rightarrow \langle \aleph_n, < \rangle$

- For $\text{Det}(\omega \cdot n - \Pi^1_1)$ the auxiliary game is defined using $\langle \aleph_i \mid i \leq n \rangle$

- Thus we need to go beyond L for $\omega^2 - \Pi^1_1$

- A measurable cardinal is enough (Martin)

- We can get by with a certain kind of iterable model (Welch)
Aim

- We want to prove $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for different Γ, using weak hypotheses.
Aim

- We want to prove $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for different Γ, using weak hypotheses

- We’ll use the techniques outlined above to develop a framework for proving such things
Aim

- We want to prove $\text{Det}(\omega^2 \cdot \Pi^1_1 + \Gamma)$ for different Γ, using weak hypotheses.
- We’ll use the techniques outlined above to develop a framework for proving such things.
- This will require pushing the method quite a bit...
Aim

- We want to prove $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for different Γ, using weak hypotheses.

- We’ll use the techniques outlined above to develop a framework for proving such things.

- This will require pushing the method quite a bit...

- ... and developing a generalised notion of computability, and some forcing results, and proving determinacy in some weak systems.
Iterability

If $M \models \text{"U is a normal measure on } \kappa\text{"}$ is a transitive model of some weak set theory, then we can take an ultrapower of M by U. If M is *iterable*, we can repeat this as long as we like. Iterating M yields a sequence of critical points $\kappa_\alpha = j_{0\alpha}(\kappa)$.
Iterability

If $M \models \text{"} \mathcal{U} \text{ is a normal measure on } \kappa \text{"} \text{ is a transitive model of some weak set theory, then we can take an ultrapower of } M \text{ by } \mathcal{U}. \text{ If } M \text{ is } \textit{iterable}, \text{ we can repeat this as long as we like. Iterating } M \text{ yields a sequence of critical points } \kappa_\alpha = j_{0\alpha}(\kappa).

Then it is a fact that, if M_λ is the λth iterate, $\langle \kappa_\alpha | \alpha < \lambda \rangle$ is a sequence of Σ_1-indiscernibles for $\langle M_\lambda, \in, \langle j_{0\lambda}(x) | x \in M \rangle \rangle$.
Iterability

If $M \models "\mathcal{U} \text{ is a normal measure on } \kappa"$ is a transitive model of some weak set theory, then we can take an ultrapower of M by \mathcal{U}. If M is iterable, we can repeat this as long as we like. Iterating M yields a sequence of critical points $\kappa_\alpha = j_0 \alpha(\kappa)$.

Then it is a fact that, if M_λ is the λth iterate, $\langle \kappa_\alpha \mid \alpha < \lambda \rangle$ is a sequence of Σ_1-indiscernibles for $\langle M_\lambda, \in, \langle j_0 \lambda(x) \mid x \in M \rangle \rangle$.

If we view $0^\#$ as a mouse, $M = \langle J^E_M, \in, E^M, F \rangle$ then the $0^\#$ indiscernibles are the critical points generated by iterating M.
Iterability

If $M \models \text{"}U \text{ is a normal measure on } \kappa \text{"}$ is a transitive model of some weak set theory, then we can take an ultrapower of M by U. If M is iterable, we can repeat this as long as we like. Iterating M yields a sequence of critical points $\kappa_\alpha = j_{0\alpha}(\kappa)$.

Then it is a fact that, if M_λ is the λth iterate, $\langle \kappa_\alpha \mid \alpha < \lambda \rangle$ is a sequence of Σ_1-indiscernibles for $\langle M_\lambda, \in, \langle j_{0\lambda}(x) \mid x \in M \rangle \rangle$.

If we view $0^\#$ as a mouse, $M = \langle J^{E^M}_\alpha, \in, E^M, F \rangle$ then the $0^\#$ indiscernibles are the critical points generated by iterating M.

If M satisfies more set theory: Σ_n-KP + Σ_n-Separation, then the critical points are Σ_n indiscernibles in the same way.
Infinite Sets of Indiscernibles

So it’s easy to generate Σ_n indiscernibles, which we’ll need to integrate Σ_n-definable strategies.
Infinite Sets of Indiscernibles

So it’s easy to generate Σ_n indiscernibles, which we’ll need to integrate Σ_n-definable strategies.

But remember that for $\text{Det}(\omega^2 - \Pi^1_1)$ we wanted to define the game using $\langle \aleph_n \mid n < \omega \rangle$, i.e. an infinite set of indiscernibles!
Infinite Sets of Indiscernibles

So it’s easy to generate Σ_n indiscernibles, which we’ll need to integrate Σ_n-definable strategies.

But remember that for $\text{Det}(\omega^2 - \Pi_1^1)$ we wanted to define the game using $\langle \aleph_n \mid n < \omega \rangle$, i.e. an infinite set of indiscernibles!

Definition

Prikry Forcing is:

$$P = \{ \langle p, X \rangle \mid p \in [\kappa_\lambda]^{<\omega}, X \in F_\lambda \cap M_\lambda \}$$

$$\langle p, X \rangle \leq_P \langle q, Y \rangle \iff q \text{ is an initial segment of } p \land X \cup (p \setminus q) \subseteq Y$$

where F_λ is a measure on κ_λ.

Theorem (Solovay)

If $\vec{c} = \langle \kappa_{i_0}, \kappa_{i_1}, \ldots \rangle$ is an ω-sequence of of critical points cofinal in κ_λ then \vec{c} is Prikry-generic over M_λ, hence $\vec{c} \in M_\lambda[\vec{c}]$
Infinite Sets of Indiscernibles

So it’s easy to generate Σ_n indiscernibles, which we’ll need to integrate Σ_n-definable strategies.

But remember that for $\text{Det}(\omega^2 - \Pi^1_1)$ we wanted to define the game using $\langle \mathcal{N}_n \mid n < \omega \rangle$, i.e. an infinite set of indiscernibles!

Definition

Prikry Forcing is:

$$\mathbb{P} = \{ \langle p, X \rangle \mid p \in [\kappa_\lambda]^{<\omega}, X \in F_\lambda \cap M_\lambda \}$$

$$\langle p, X \rangle \leq_\mathbb{P} \langle q, Y \rangle \iff q \text{ is an initial segment of } p \land X \cup (p \setminus q) \subseteq Y$$

where F_λ is a measure on κ_λ.
Infinite Sets of Indiscernibles

So it’s easy to generate Σ_n indiscernibles, which we’ll need to integrate Σ_n-definable strategies.

But remember that for $\text{Det}(\omega^2 - \Pi^1_1)$ we wanted to define the game using $\langle \kappa_n \mid n < \omega \rangle$, i.e. an infinite set of indiscernibles!

Definition

Prikry Forcing is:

$$\mathbb{P} = \{ \langle p, X \rangle \mid p \in [\kappa_\lambda]^{<\omega}, X \in F_\lambda \cap M_\lambda \}$$

$$\langle p, X \rangle \leq_{\mathbb{P}} \langle q, Y \rangle \iff q \text{ is an initial segment of } p \land X \cup (p \setminus q) \subseteq Y$$

where F_λ is a measure on κ_λ.

Theorem (Solovay)

If $\vec{c} = \langle \kappa_{i_0}, \kappa_{i_1}, \ldots \rangle$ is an ω-sequence of of critical points cofinal in κ_λ then \vec{c} is Prikry-generic over M_λ, hence $\vec{c} \in M_\lambda[\vec{c}]$.
Infinite Sets of Indiscernibles

Handily, the class of iteration points retains the following indiscernibility property:

\[M^\lambda \left[\vec{c} \right] \equiv \Sigma_n M^\mu \left[\vec{d} \right] \]

(Where we allow sentences from the language with ω constant symbols, interpreted as \vec{c} or \vec{d} appropriately.)

This kind of indiscernibility will suffice for the determinacy argument.
Infinite Sets of Indiscernibles

Handily, the class of iteration points retains the following indiscernibility property:

Theorem (L.S.)

If M satisfied Σ_n-KP + Σ_n-Separation and \vec{c} and \vec{d} are two ω-sequences of iteration points with suprema λ and μ, then

$$M_\lambda[\vec{c}] \equiv_{\Sigma_n} M_\mu[\vec{d}]$$

(Where we allow sentences from the language with ω constant symbols, interpreted as \vec{c} or \vec{d} appropriately.) This kind of indiscernibility will suffice for the determinacy argument.
Infinite Sets of Indiscernibles

Handily, the class of iteration points retains the following indiscernibility property:

Theorem (L.S.)

If M satisfied Σ_n-KP + Σ_n-Separation and \vec{c} and \vec{d} are two ω-sequences of iteration points with suprema λ and μ, then

$$M_\lambda[\vec{c}] \equiv_{\Sigma_n} M_\mu[\vec{d}]$$

(Where we allow sentences from the language with ω constant symbols, interpreted as \vec{c} or \vec{d} appropriately.)

This kind of indiscernibility will suffice for the determinacy argument.
Obstacle

Unfortunately, \mathbb{P} is not a set in M_λ, so we have ignored a problem: Does $M_\lambda[\bar{c}]$ satisfy any set theory?
Obstacle

Unfortunately, \mathbb{P} is not a set in M_λ, so we have ignored a problem: Does $M_\lambda[\vec{c}]$ satisfy any set theory?

Theorem (L.S.)

Assume in addition to our previous assumptions that M is a J-model, then

$$M_\lambda[\vec{c}] \models \Sigma_n - KP + \Sigma_n - \text{Separation}$$

$$\vec{c} \in M_\lambda[\vec{c}]$$
Obstacle

Unfortunately, \mathbb{P} is not a set in M_λ, so we have ignored a problem: Does $M_\lambda[\vec{c}]$ satisfy any set theory?

Theorem (L.S.)

Assume in addition to our previous assumptions that M is a J-model, then

$$M_\lambda[\vec{c}] \models \Sigma_n \text{- KP} + \Sigma_n \text{- Separation}$$

$$\vec{c} \in M_\lambda[\vec{c}]$$

Once we know the theory is preserved by iterating up to M_λ, the proof works by defining set-approximations to \mathbb{P} which cohere together, so that whether $p \Vdash \varphi$ can be checked in one of these set-forcings.
Status

So far we have obtained a family of models, which we call $\mathcal{A}_n[\vec{c}]$, which satisfy Σ_n-$\text{KP} + \Sigma_n$-Separation, which are all elementarily equivalent.
So far we have obtained a family of models, which we call $A_n[\bar{c}]$, which satisfy Σ_n-$KP + \Sigma_n$-Separation, which are all elementarily equivalent.

This elementary equivalence will be the kind of indiscernibility we need.
So far we have obtained a family of models, which we call $\mathcal{A}_n[\vec{c}]$, which satisfy Σ_n-KP + Σ_n-Separation, which are all elementarily equivalent.

This elementary equivalence will be the kind of indiscernibility we need. It remains to show that the auxiliary games are determined in these models.
Defining the Auxiliary Game

In the auxiliary game for $\omega^2 - \Pi^1_1$ play goes as follows:

$$
\begin{align*}
\text{I} & \langle a_0, \eta_0 \rangle \quad \langle a_2, \eta_2 \rangle \quad \cdots \\
\text{II} & \langle a_1, \eta_1 \rangle \quad \langle a_3, \eta_3 \rangle
\end{align*}
$$
Defining the Auxiliary Game

In the auxiliary game for $\omega^2 - \Pi^1_1$ play goes as follows:

\[
\begin{align*}
&\langle a_0, \eta_0 \rangle \quad \langle a_2, \eta_2 \rangle \quad \cdots \\
&\langle a_1, \eta_1 \rangle \quad \langle a_3, \eta_3 \rangle \\
(\text{each } \eta_i \in \kappa_\omega)
\end{align*}
\]

- A position or play in the game is *badly lost* for I if he has played his ordinals wrong, meaning that the play x^* will not be in one of the even A_βs witnessing that A is $\omega^2 - \Pi^1_1$.
Defining the Auxiliary Game

In the auxiliary game for $\omega^2 - \Pi^1_1$ play goes as follows:

\[
\begin{align*}
&\text{I } \langle a_0, \eta_0 \rangle \downarrow \langle a_2, \eta_2 \rangle \cdots \\
&\text{II } \langle a_1, \eta_1 \rangle \uparrow \langle a_3, \eta_3 \rangle
\end{align*}
\]

(each $\eta_i \in \mathcal{N}_\omega$)

- A position or play in the game is \textit{badly lost} for I if he has played his ordinals wrong, meaning that the play χ^* will not be in one of the even Λ_βs witnessing that Λ is $\omega^2 - \Pi^1_1$.
- II wins if the play is not badly lost for either player; I wins if it is badly lost for II.
Defining the Auxiliary Game

In the auxiliary game for $\omega^2 - \Pi^1_1$ play goes as follows:

\[
\begin{array}{cccccc}
I & \langle a_0, \eta_0 \rangle & \langle a_2, \eta_2 \rangle & \ldots \\
\downarrow & \downarrow & \downarrow & \\
\uparrow & \langle a_1, \eta_1 \rangle & \langle a_3, \eta_3 \rangle & \\
\end{array}
\]

(each $\eta_i \in \mathcal{K}_\omega$)

- A position or play in the game is *badly lost* for I if he has played his ordinals wrong, meaning that the play x^* will not be in one of the even A_β's witnessing that A is $\omega^2 - \Pi^1_1$.
- II wins if the play is not badly lost for either player; I wins if it is badly lost for II.
- If the winning set A is $\omega^2 - \Pi^1_1 + \Gamma$ witnessed by $\langle A_\alpha \mid \alpha \leq \omega^2 + 1 \rangle$ with $A_{\omega^2} \in \Gamma$, then we can modify the win-condition:
Defining the Auxiliary Game

In the auxiliary game for $\omega^2 - \Pi^1_1$ play goes as follows:

I $\langle a_0, \eta_0 \rangle \downarrow \downarrow \langle a_2, \eta_2 \rangle \downarrow \downarrow \ldots$

II $\langle a_1, \eta_1 \rangle \uparrow \uparrow \langle a_3, \eta_3 \rangle$

(each $\eta_i \in \aleph_\omega$)

- A position or play in the game is *badly lost* for I if he has played his ordinals wrong, meaning that the play χ^* will not be in one of the even A_βs witnessing that A is $\omega^2 - \Pi^1_1$.

- II wins if the play is not badly lost for either player; I wins if it is badly lost for II.

- If the winning set A is $\omega^2 - \Pi^1_1 + \Gamma$ witnessed by $\langle A_\alpha \mid \alpha \leq \omega^2 + 1 \rangle$ with $A_{\omega^2} \in \Gamma$, then we can modify the win-condition: I wins if the play is badly lost for II, or it is not badly lost for either player and $\chi = \langle a_0, a_1, \ldots \rangle \in A_{\omega^2}$.
The Auxiliary Winning Set

- The auxiliary game is played on the tree $T^* = \mathcal{F}^{<\omega} = (\omega \times \mathcal{N}_\omega)^{<\omega}$.
The Auxiliary Winning Set

- The auxiliary game is played on the tree $T^* = F^{<\omega} = (\omega \times \mathcal{N}_\omega)^{<\omega}$.

- The winning set of the auxiliary game, A^* is a pointset in the space $[T^*] = F^\omega$.

The Auxiliary Winning Set

- The auxiliary game is played on the tree $T^* = F^<\omega = (\omega \times \aleph_\omega)^{<\omega}$.

- The winning set of the auxiliary game, A^* is a pointset in the space $[T^*] = F^\omega$.

- We want to study F^ω from the point of view of effective descriptive set theory since we’ll be working in L-like models.
The Auxiliary Winning Set

- The auxiliary game is played on the tree $T^* = F^{<\omega} = (\omega \times \aleph_\omega)^{<\omega}$.

- The winning set of the auxiliary game, A^* is a pointset in the space $[T^*] = F^{\omega}$.

- We want to study F^{ω} from the point of view of effective descriptive set theory since we’ll be working in L-like models.

- But this is hard; F^{ω} is uncountable, not separable, ...
Generalised Recursive Relations

Let

\[\mathcal{H} = \langle L_{\aleph_\omega} [\langle \aleph_n | n < \omega \rangle], \in, \langle \aleph_n | n < \omega \rangle \rangle \]
Generalised Recursive Relations

Let

\[\mathcal{H} = \langle L_{\mathcal{N}_\omega} [\langle \mathcal{N}_n \mid n < \omega \rangle], \in, \langle \mathcal{N}_n \mid n < \omega \rangle \rangle \]

Definition

Call a relation \(R \) on \(F^\omega \times F \) *generalised semi-recursive* (generalised lightface open) if there is a \(\Delta^\mathcal{H}_1 \), partial function \(f : F^{<\omega} \times F \rightarrow 2 \) such that:

1. \(R(x^*, a) \text{ iff } \exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f \) and \(f(x^* \upharpoonright m, a) = 0 \).
2. For any \(p \subseteq q \in T^* \), \(\langle p, a \rangle \in \text{dom } f \Rightarrow f(p, a) = f(q, a) \); \(R \) is called *generalised-recursive* if it also satisfies:
3. For any \(x^*, a \) there is an \(m \) such that \(\langle x^* \upharpoonright m, a \rangle \in \text{dom } f \).

\(H \) plays the role of \(HF \) in ordinary computability theory. Note though that semi-recursive here is not \(\Sigma^H_1 \) as one might expect; the existential character comes from property 1.
Generalised Recursive Relations

Let

\[\mathcal{H} = \langle L_{\aleph_\omega} [\langle \aleph_n \mid n < \omega \rangle], \in, \langle \aleph_n \mid n < \omega \rangle \rangle \]

Definition

Call a relation \(R \) on \(F_\omega \times F \) *generalised semi-recursive* (generalised lightface open) if there is a \(\Delta^\mathcal{H}_1 \), partial function \(f : F^{<\omega} \times F \to 2 \) such that:

1. \(R(x^*, a) \) iff \(\exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f \) and \(f(x^* \upharpoonright m, a) = 0 \).
Generalised Recursive Relations

Let

\[H = \langle L_{\aleph_\omega}, \langle \aleph_n \mid n < \omega \rangle, \in, \langle \aleph_n \mid n < \omega \rangle \rangle \]

Definition

Call a relation \(R \) on \(F^\omega \times F \) *generalised semi-recursive* (generalised lightface open) if there is a \(\Delta_1^H \), partial function \(f : F^{<\omega} \times F \to 2 \) such that:

1. \(R(x^*, a) \iff \exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f \text{ and } f(x^* \upharpoonright m, a) = 0. \)
2. For any \(p \subseteq q \in T^* \), \(\langle p, a \rangle \in \text{dom } f \rightarrow f(p, a) = f(q, a); \)

\(H \) plays the role of \(HF \) in ordinary computability theory.

Note though that semi-recursive here is not \(\Sigma_1^H \) as one might expect; the existential character comes from property 1.
Generalised Recursive Relations

Let

$$
\mathcal{H} = \langle L_{\aleph_\omega} [\langle \aleph_n \mid n < \omega \rangle], \in, \langle \aleph_n \mid n < \omega \rangle \rangle
$$

Definition

Call a relation R on $F^{\omega} \times F$ *generalised semi-recursive* (generalised lightface open) if there is a $\Delta_1^{\mathcal{H}}$, partial function $f : F^{<\omega} \times F \to 2$ such that:

1. $R(x^*, a)$ iff $\exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f$ and $f(x^* \upharpoonright m, a) = 0$.
2. For any $p \subseteq q \in T^*$, $\langle p, a \rangle \in \text{dom } f \rightarrow f(p, a) = f(q, a)$;

R is called *generalised-recursive* if it also satisfies:

3. For any x^*, a there is an m such that $\langle x^* \upharpoonright m, a \rangle \in \text{dom } f$.

H plays the role of HF in ordinary computability theory. Note though that semi-recursive here is not $\Sigma_1^{\mathcal{H}}$ as one might expect; the existential character comes from property 1.
Generalised Recursive Relations

Let

$$\mathcal{H} = \langle L_{\aleph_\omega} [\langle \aleph_n \mid n < \omega \rangle], \in, \langle \aleph_n \mid n < \omega \rangle \rangle$$

Definition

Call a relation R on $F^{\omega} \times F$ *generalised semi-recursive* (generalised lightface open) if there is a $\Delta^\mathcal{H}_1$, partial function $f : F^{<\omega} \times F \to 2$ such that:

1. $R(x^*, a)$ iff $\exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f$ and $f(x^* \upharpoonright m, a) = 0$.
2. For any $p \subseteq q \in T^*$, $\langle p, a \rangle \in \text{dom } f \to f(p, a) = f(q, a)$;

R is called *generalised-recursive* if it also satisfies:

3. For any x^*, a there is an m such that $\langle x^* \upharpoonright m, a \rangle \in \text{dom } f$.

\mathcal{H} plays the role of HF in ordinary computability theory.
Generalised Recursive Relations

Let

$$\mathcal{H} = \langle L_{\aleph_\omega} [\langle \aleph_n \mid n < \omega \rangle], \in, \langle \aleph_n \mid n < \omega \rangle \rangle$$

Definition

Call a relation R on $F^\omega \times F$ **generalised semi-recursive** (generalised lightface open) if there is a $\Delta_1^{\mathcal{H}}$, partial function $f : F^{<\omega} \times F \rightarrow 2$ such that:

1. $R(x^*, a)$ iff $\exists m \langle x^* \upharpoonright m, a \rangle \in \text{dom } f$ and $f(x^* \upharpoonright m, a) = 0$.
2. For any $p \subseteq q \in T^*$, $\langle p, a \rangle \in \text{dom } f \rightarrow f(p, a) = f(q, a)$;

R is called **generalised-recursive** if it also satisfies:

3. For any x^*, a there is an m such that $\langle x^* \upharpoonright m, a \rangle \in \text{dom } f$.

\mathcal{H} plays the role of HF in ordinary computability theory.

Note though that semi-recursive here is not $\Sigma_1^{\mathcal{H}}$ as one might expect; the existential character comes from property 1.
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

- P is called $\tilde{\Sigma}_0^1$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}_0^{n+1}$ iff there is a $\tilde{\Pi}_0^n$ predicate R such that $P(x^*, a) \iff \exists b \in \omega \,(R(x^*, a, b));$
- P is $\tilde{\Pi}_0^n$ iff $\neg P$ is $\tilde{\Sigma}_0^n$;
- P is $\tilde{\Delta}_0^n$ iff it is $\tilde{\Sigma}_0^n$ and $\tilde{\Pi}_0^n$.

One can find universal sets, ensuring that the hierarchy does not collapse.

$X \in \tilde{\Sigma}_1^1 \iff \exists Y \in \tilde{\Pi}_0^1 \,(x \in X \leftrightarrow \exists y \in \mathcal{T}^* \,(\langle x, y \rangle \in Y))$
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}_1^0$ if P is generalised semi-recursive;
- P is called $\tilde{\Sigma}_1^0$ if there is a $\tilde{\Pi}_0^1$ predicate R such that $P(x^*,a) \iff \exists b \in \omega (R(x^*,a,b))$;
- P is called $\tilde{\Pi}_0^1$ if $\neg P$ is $\tilde{\Sigma}_1^0$;
- P is called $\tilde{\Delta}_0^1$ if it is $\tilde{\Sigma}_1^0$ and $\tilde{\Pi}_0^1$.

One can find universal sets, ensuring that the hierarchy does not collapse. (Co-)analytic sets are defined in the obvious way:
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}^0_1$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}^0_{n+1}$ iff there is a $\tilde{\Pi}^0_n$ predicate R such that
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}_1^0$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}^0_{n+1}$ iff there is a $\tilde{\Pi}^0_n$ predicate R such that
 \[
P(x^*, a) \iff \exists b \in \omega(R(x^*, a, b));\]
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}_1^0$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}_n^0$ iff there is a $\tilde{\Pi}_n^0$ predicate R such that

 $$P(x^*, a) \iff \exists b \in \omega (R(x^*, a, b));$$
- P is $\tilde{\Pi}_n^0$ iff $\neg P$ is $\tilde{\Sigma}_n^0$;
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}_1^0$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}_{n+1}^0$ iff there is a $\tilde{\Pi}_n^0$ predicate R such that

$$
P(x^*, a) \iff \exists b \in \omega (R(x^*, a, b));$$

- P is $\tilde{\Pi}_n^0$ iff $\neg P$ is $\tilde{\Sigma}_n^0$;
- P is $\tilde{\Delta}_n^0$ iff it is $\tilde{\Sigma}_n^0$ and $\tilde{\Pi}_n^0$.
The Generalised Lightface Borel Hierarchy

Let P be a relation on $F^\omega \times F$ then:

Definition

- P is called $\tilde{\Sigma}_1^0$ if P is generalised semi-recursive;
- P is $\tilde{\Sigma}_{n+1}^0$ iff there is a $\tilde{\Pi}_n^0$ predicate R such that
 \[
 P(x^*, a) \iff \exists b \in \omega(R(x^*, a, b));
 \]
- P is $\tilde{\Pi}_n^0$ iff $\neg P$ is $\tilde{\Sigma}_n^0$;
- P is $\tilde{\Delta}_n^0$ iff it is $\tilde{\Sigma}_n^0$ and $\tilde{\Pi}_n^0$.

One can find universal sets, ensuring that the hierarchy does not collapse. (Co-)analytic sets are defined in the obvious way:

\[
X \in \tilde{\Sigma}_1^1 \iff \exists Y \in \tilde{\Pi}_1^0(x \in X \iff \exists y \in [T^*](\langle x, y \rangle \in Y))
\]
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

- The definition would be trivial with an admissible set in place of \mathcal{H};
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

▶ The definition would be trivial with an admissible set in place of \mathcal{H};

▶ $\Sigma^0_n \subseteq \tilde{\Sigma}^0_n$;

▶ $\tilde{\Sigma}^0_n \subseteq \tilde{\Sigma}^0_{n+1}$;

▶ $\tilde{\Pi}^0_{1+1}$ sets are sets of paths through a generalised-recursive tree, $\tilde{\Pi}^0_{1+1}$ sets have the analogous representation property that Π^0_{1+1} sets do;
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

- The definition would be trivial with an admissible set in place of \mathcal{H};

- $\Sigma^0_n \subseteq \tilde{\Sigma}^0_n$; $(\Sigma^0_{n+1} \lor \tilde{\Sigma}^0_1) \subseteq \tilde{\Sigma}^0_{n+1}$;
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

- The definition would be trivial with an admissible set in place of \mathcal{H};

- $\Sigma^0_n \subseteq \tilde{\Sigma}^0_n$; $(\Sigma^0_{n+1} \lor \tilde{\Sigma}^0_1) \subseteq \tilde{\Sigma}^0_{n+1}$;

- If $P \subseteq [T^*]$ and P is $\tilde{\Sigma}^0_{n+1}$ then $P = \bigcup_{i \in \omega} A_i$ for $\tilde{\Pi}^0_1$ sets A_i;
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

- The definition would be trivial with an admissible set in place of \mathcal{H};

- $\Sigma^0_n \subseteq \tilde{\Sigma}^0_n$; $(\Sigma^0_{n+1} \lor \tilde{\Sigma}^0_1) \subseteq \tilde{\Sigma}^0_{n+1}$;

- If $P \subseteq [T^*]$ and P is $\tilde{\Sigma}^0_{n+1}$ then $P = \bigcup_{i \in \omega} A_i$ for $\tilde{\Pi}^0_1$ sets A_i;

- $\tilde{\Pi}^0_1$ sets are sets of paths through a generalised-recursive tree, $\tilde{\Pi}^1_1$ sets have the analogous representation property that Π^1_1 sets do;
The Generalised Lightface Borel Hierarchy

Some things to note about this hierarchy:

- The definition would be trivial with an admissible set in place of \mathcal{K};

- $\Sigma^0_n \subseteq \widetilde{\Sigma}_n^0$; $(\Sigma^0_{n+1} \lor \Sigma^0_1) \subseteq \widetilde{\Sigma}^0_{n+1}$;

- If $P \subseteq [\mathcal{T}^*]$ and P is $\widetilde{\Sigma}^0_{n+1}$ then $P = \bigcup_{i \in \omega} A_i$ for $\widetilde{\Pi}^0_1$ sets A_i;

- $\widetilde{\Pi}_1^0$ sets are sets of paths through a generalised-recursive tree, $\widetilde{\Pi}_1^1$ sets have the analogous representation property that Π_1^1 sets do;

To illustrate how the situation relates to the ordinary case, we can consider the proof of the analogue of the Spector-Gandy theorem.
Summary of Generalised Effective Descriptive Set Theory

The Kleene-Basis theorem is a corollary of the Spector-Gandy theorem: If $X^* \subseteq [T]^*$ is $\tilde{\Sigma}_1^1$ and non-empty, then X^* has an element definable over any admissible set M containing H.

The story so far is that the theorems carry up from the normal setting, replacing HF with H and $L_{\omega^1_1}^{CK}$ with an admissible containing H.

We will need to use the Kleene-Basis theorem to minimise complexities in determinacy arguments.
The Kleene-Basis theorem is a corollary of the Spector-Gandy theorem: If $X^* \subseteq [T^*]$ is $\tilde{\Sigma}_1^1$ and non-empty, then X^* has an element definable over any admissible set M containing \mathcal{H}.
Summary of Generalised Effective Descriptive Set Theory

- The Kleene-Basis theorem is a corollary of the Spector-Gandy theorem: If $X^* \subseteq [T^*]$ is $\tilde{\Sigma}_1^1$ and non-empty, then X^* has an element definable over any admissible set \mathcal{M} containing \mathcal{H}.

- The story so far is that the theorems carry up from the normal setting, replacing HF with \mathcal{H} and $L_{\omega_1^{CK}}$ with an admissible containing \mathcal{H}.
Summary of Generalised Effective Descriptive Set Theory

- The Kleene-Basis theorem is a corollary of the Spector-Gandy theorem: If \(X^* \subseteq [T^*] \) is \(\widetilde{\Sigma}^1_1 \) and non-empty, then \(X^* \) has an element definable over any admissible set \(\mathcal{M} \) containing \(\mathcal{H} \).

- The story so far is that the theorems carry up from the normal setting, replacing \(HF \) with \(\mathcal{H} \) and \(L_{\omega^1_{CK}} \) with an admissible containing \(\mathcal{H} \).

- We will need to use the Kleene-Basis theorem to minimise complexities in determinacy arguments.
Proving some Determinacy

Let $A \in \omega^2 - \Pi^1_1 + \Sigma^0_2$.

Recall that:
Let $A \in \omega^2 - \Pi_1^1 + \Sigma_2^0$.

Recall that:

- We define the auxiliary game by having both players play an integer and an ordinal on their turn;
Proving some Determinacy

Let $A \in \omega^2 - \Pi^1_1 + \Sigma^0_2$.

Recall that:

- We define the auxiliary game by having both players play an integer and an ordinal on their turn;

- I wins if the play is badly lost for II or both players play their ordinals correctly and the real part χ is in the Σ^0_2 set A_{ω^2}.
Proving some Determinacy

Let $A \in \omega^2 - \Pi^1_1 + \Sigma^0_2$.

Recall that:

- We define the auxiliary game by having both players play an integer and an ordinal on their turn;

- I wins if the play is *badly lost* for II or both players play their ordinals correctly *and* the real part χ is in the Σ^0_2 set A_{ω^2}.

We first show that this auxiliary game is $\tilde{\Sigma}^0_2$.
Complexity of the Auxiliary Game

Let B^I, B^{II} be the sets of badly lost (for I, II, respectively) plays. Then the winning set can be abbreviated as:

$$x^* \in A^* \iff x^* \notin B^I \land (x^* \in B^{II} \lor \pi(x^*) \in A_{\omega^2})$$

Where π is the projection function from $[T^*]$ to ω^ω.
Complexity of the Auxiliary Game

Let B^I, B^{II} be the sets of badly lost (for I, II, respectively) plays. Then the winning set can be abbreviated as:

$$x^* \in A^* \iff x^* \notin B^I \land (x^* \in B^{II} \lor \pi(x^*) \in A_{\omega^2})$$

Where π is the projection function from $[T^*]$ to ω^ω.

Now as before, we can tell that a badly lost play is so at a finite stage, so B^I, B^{II} are $\tilde{\Sigma}^0_1$.
Complexity of the Auxiliary Game

Let B^I, B^{II} be the sets of badly lost (for I, II, respectively) plays. Then the winning set can be abbreviated as:

$$x^* \in A^* \iff x^* \notin B^I \land (x^* \in B^{II} \lor \pi(x^*) \in A_{\omega^2})$$

Where π is the projection function from $[T^*]$ to ω^ω.

Now as before, we can tell that a badly lost play is so at a finite stage, so B^I, B^{II} are $\tilde{\Sigma}^0_1$:

$$x^* \in B^I \iff \exists m, b, i \left(F_{x^* | m}^{\omega \cdot i + b} : \langle \omega, \prec_{x^* | m}^{\omega \cdot i + b} \rangle \to \mathcal{N}_i \text{ not order-preserving} \right) \land \text{the least such } b \text{ is even}$$
Complexity of the Auxiliary Game

Let \(B^I, B^{II} \) be the sets of badly lost (for I, II, respectively) plays. Then the winning set can be abbreviated as:

\[
\chi^* \in \mathcal{A}^* \iff \chi^* \notin B^I \land (\chi^* \in B^{II} \lor \pi(\chi^*) \in \mathcal{A}_{\omega^2})
\]

Where \(\pi \) is the projection function from \([\mathcal{T}^*] \) to \(\omega^\omega \).

Now as before, we can tell that a badly lost play is so at a finite stage, so \(B^I, B^{II} \) are \(\widetilde{\Sigma}_0^1 \):

\[
\chi^* \in B^I \iff \exists m, b, i \left(F_{\chi^*|_m}^{\omega\cdot i+b} : \langle \omega, (\omega\cdot i+b) \rangle \rightarrow \aleph_i \text{ not order-preserving} \right) \land \text{the least such } b \text{ is even}
\]

On the other hand, projection is continuous, so \(\mathcal{A}^* \) is \(\widetilde{\Pi}_1^0 \land (\widetilde{\Sigma}_1^0 \lor \Sigma_2^0) \) which comes out as \(\widetilde{\Sigma}_2^0 \).
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ_2^0 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[\vec{c}]$ for G^*.
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ^0_2 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[\vec{c}]$ for G^*.

Considering a strategy for II, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ^0_2 determinacy, we find that there is a winning strategy $\sigma^* \in \mathcal{A}_1[\vec{c}]$ for G^*.

Considering a strategy for II, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:

- I has played indiscernibles as his ordinals;
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ^0_2 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[\vec{c}]$ for $G^*.$

Considering a strategy for II, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:

- I has played indiscernibles as his ordinals;
- The integer components agree;
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ^0_2 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[\vec{c}]$ for G^*.

Considering a strategy for Π, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:

- I has played indiscernibles as his ordinals;
- The integer components agree;
- Some other conditions to satisfy the bookkeeping.
Using Indiscernibility

Now, adapting Wolfe’s proof of Σ_2^0 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[^\vec{c}^*]$ for G^*.

Considering a strategy for II, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:

- I has played indiscernibles as his ordinals;
- The integer components agree;
- Some other conditions to satisfy the bookkeeping.

Then $\sigma^*(p) = \sigma^*(p')$.

Using Indiscernibility

Now, adapting Wolfe’s proof of Σ^0_2 determinacy, we find that there is a winning strategy $\sigma^* \in A_1[\vec{c}]$ for G^*.

Considering a strategy for Π^1_2, suppose p, p' are two positions of length $2n + 1$ in T^* subject to a few requirements:

- I has played indiscernibles as his ordinals;
- The integer components agree;
- Some other conditions to satisfy the bookkeeping.

Then $\sigma^*(p) = \sigma^*(p')$. This is shown by evaluating the Σ_1 definition of σ^* inside $A_1[\vec{c}]$ and $A_1[\vec{d}]$, where \vec{c}, \vec{d} are the enumerations of:

$$\{\aleph_i \mid i \in \omega\} \cup \{\eta_{2i} \mid i \leq n\}$$

$$\{\aleph_i \mid i \in \omega\} \cup \{\eta'_{2i} \mid i \leq n\}$$
Lifting to V

We define σ recursively as follows:
Lifting to V

We define σ recursively as follows:

Suppose p is a position in G consistent with σ, and that we can find indiscernibles to make p^* a position in G^* (satisfying the bookkeeping requirements) and consistent with σ^*.
Lifting to V

We define σ recursively as follows:

Suppose p is a position in G consistent with σ, and that we can find indiscernibles to make p^* a position in G^* (satisfying the bookkeeping requirements) and consistent with σ^*. Then let $\sigma(p) = \sigma^*(p^*)$.

Lifting to V

We define σ recursively as follows:

Suppose p is a position in G consistent with σ, and that we can find indiscernibles to make p^* a position in G^* (satisfying the bookkeeping requirements) and consistent with σ^*. Then let $\sigma(p) = \sigma^*(p^*)$.

σ is then shown to be well-defined and winning in much the same way as in the Π^1_1 game, but with more attention to book-keeping.
Further Results

Theorem (L.S.)

If there exists a non-trivial mouse \mathcal{M} with measurable cardinal κ satisfying the theory \mathcal{T}, then $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for the following combinations of \mathcal{T} and Γ:

1. $\mathcal{T} = \text{“cleverness + there exists a clever mouse,”}$ $\Gamma = \Sigma^0_1$;
Further Results

Theorem (L.S.)

If there exists a non-trivial mouse M with measurable cardinal κ satisfying the theory \mathcal{T}, then $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for the following combinations of \mathcal{T} and Γ:

1. $\mathcal{T} = \text{"cleverness + there exists a clever mouse,"} \Gamma = \Sigma^0_1$;
2. $\mathcal{T} = \text{KP + Σ_1 - Sep,} \Gamma = \Sigma^0_2$;
Further Results

Theorem (L.S.)

If there exists a non-trivial mouse M with measurable cardinal κ satisfying the theory T, then $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for the following combinations of T and Γ:

1. $T =$ “cleverness + there exists a clever mouse,” $\Gamma = \Sigma^0_1$;
2. $T = \text{KP} + \Sigma^1_1 - \text{Sep}, \Gamma = \Sigma^0_2$;
3. $T = \Sigma^2_2 - \text{KP} + \Sigma^2_2 - \text{Sep}, \Gamma = \Sigma^0_3$;
Further Results

Theorem (L.S.)

If there exists a non-trivial mouse \mathcal{M} with measurable cardinal κ satisfying the theory T, then $\text{Det}(\omega^2 - \Pi^1_1 + \Gamma)$ for the following combinations of T and Γ:

1. $T = \text{"cleverness + there exists a clever mouse," } \Gamma = \Sigma^0_1$;
2. $T = \text{KP + } \Sigma^1_1 - \text{Sep}, \Gamma = \Sigma^0_2$;
3. $T = \Sigma^2_2 - \text{KP + } \Sigma^2_2 - \text{Sep}, \Gamma = \Sigma^0_3$;
4. $T = \text{ZFC}^- + P^\alpha(\kappa) \text{ exists, } \Gamma = \Sigma^0_{1+\alpha+3} \text{ for computable } \alpha$;
Further Results

Theorem (L.S.)

If there exists a non-trivial mouse \mathcal{M} with measurable cardinal κ satisfying the theory T, then $\text{Det}(\omega^2 - \Pi_1^1 + \Gamma)$ for the following combinations of T and Γ:

1. $T = "\text{cleverness} + \text{there exists a clever mouse},"$ $\Gamma = \Sigma_1^0$;
2. $T = \text{KP} + \Sigma_1 - \text{Sep},$ $\Gamma = \Sigma_2^0$;
3. $T = \Sigma_2 - \text{KP} + \Sigma_2 - \text{Sep},$ $\Gamma = \Sigma_3^0$;
4. $T = \text{ZFC}^- + \mathcal{P}^\alpha(\kappa)$ exists, $\Gamma = \Sigma_{1+\alpha+3}^0$ for computable α;
5. $T = \text{ZFC},$ $\Gamma = \Delta_1^1$.
Open Questions

What other \mathcal{T}, Γ can we obtain similar results for?

It looks like we should be able to generalise a proof of Montalban and Shore for $\mathcal{T} = \Sigma_n \text{-}KP + \Sigma_n \text{-}Sep$, $\Gamma = n \text{-}\Pi_3^0$. This would take us all the way up to ZFC^- mice.
Open Questions

1. What other T, Γ can we obtain similar results for?
 It looks like we should be able to generalise a proof of Montalban and Shore for $T = \Sigma_n \text{- KP} + \Sigma_n \text{- Sep}$, $\Gamma = n \text{- } \Pi^0_3$. This would take us all the way up to ZFC^- mice.

2. (More importantly) can we obtain reversals or even just limitative results?

None of the above implies:

$$\exists M (M \models \Sigma_1 \text{- KP} + \Sigma_1 \text{- Sep} + M \text{ is iterable}) \not\Rightarrow \text{Det}(\omega^2 - \Pi^1_1 + \Sigma^0_3)$$
Open Questions

1. What other T, Γ can we obtain similar results for?
 It looks like we should be able to generalise a proof of Montalban and Shore for $T = \Sigma_n$ - KP + Σ_n - Sep, $\Gamma = n$ - Π_3. This would take us all the way up to ZFC$^-$ mice.

2. (More importantly) can we obtain reversals or even just limitative results?
 None of the above implies:
 \[\exists M (M \models \Sigma_1$ - KP + Σ_1 - Sep + M is iterable) \not\Rightarrow \text{Det}(\omega^2 - \Pi_1^1 + \Sigma_3^0) \]

3. Are generalised-recursive sets good for anything else? Are there interesting differences from ordinary recursive sets?
Thanks!

Chris Le Sueur (University of Bristol) Determinacy of $\omega^2 - \Pi^1_1 + \Gamma$ 9th April 2014 35 / 35