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Abstract

We develop two analytic lower bounds on the probability of success p of identifying
a state picked from a known ensemble of pure states: a bound based on the pairwise
inner products of the states, and a bound based on the eigenvalues of their Gram
matrix. We use the latter to lower bound the asymptotic distinguishability of ensembles
of n random quantum states in d dimensions, where n/d approaches a constant. In
particular, for almost all ensembles of n states in n dimensions, p > 0.72. An application
to distinguishing Boolean functions (the “oracle identification problem”) in quantum
computation is given.

1 Introduction

A fundamental property of quantum mechanics is that non-orthogonal pure quantum states
may not be distinguished perfectly. This leads to the following quantum detection problem:
given an unknown quantum state |ψ?〉, picked from a known set E with known a priori prob-
abilities, find the “optimal” measurement Mopt to determine |ψ?〉. Several different criteria
for optimality may been considered [12, 5, 6]; here we only concern ourselves with opti-
mising the probability of success P opt, and in particular the related state distinguishability
problem of finding P opt without necessarily finding Mopt. Efficient optimisation techniques
can be used to estimate P opt numerically [7]; however, the problem of finding an analytic
expression for P opt seems intractable. We are therefore led to attempting to produce bounds
on P opt.

This note derives two lower bounds on P opt; one based on the pairwise distinguishability
of the states in E , and one based on the eigenvalues of their Gram matrix. We use the
latter, and a powerful result from random matrix theory (the Marčenko-Pastur law [18]), to
bound the probability of distinguishing a set of random quantum states, for a quite general
notion of randomness. This has an application to quantum computation in the so-called
oracle identification problem introduced by Ambainis et al [1], where we are given an n-bit
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Boolean function f picked from a known set of N functions, and must identify f with the
minimum number of queries to f . We show that, for all but an exponentially small fraction
of sets with N = 2n, a quantum computer can perform this task successfully in a constant
number of queries (with arbitrarily high probability), whereas classical computation requires
n queries for all such sets.

As showing that a set of quantum states are quite distinguishable forms an essential
part of proofs in many areas of quantum information theory, we hope that these results will
find application elsewhere.

The organisation of the paper is as follows. Section 2 introduces notation and our main
tool, the so-called “pretty good measurement”, before moving on to give the lower bounds
on P opt. An extension of the lower bounds to mixed states is considered. Section 3 applies
the bounds to a specific family of ensembles (those where all the states have constant inner
product). Section 4 describes the random matrix theory we will be using, and applies it
to the distinguishability of random quantum states. Section 5 gives the application to the
oracle identification problem, and the paper closes with some discussion in section 6.

2 Bounds on the distinguishability of quantum states

We consider an ensemble E containing n d-dimensional pure states |ψi〉 with their a priori
probabilities pi. We will use {|ψ′

i〉} to denote the set containing the same states, renor-
malised to reflect their probabilities (i.e. |ψ′

i〉 =
√
pi|ψi〉). Given an unknown state |ψ?〉,

picked in accordance with these probabilities, the quantity we are interested in is the av-
erage probability of success for a given generalised measurement to distinguish which state
we were given. For a measurement M (given by a set of positive operators {Mi} summing
to the identity), let this probability be denoted by PM (E). Then we have

PM (E) =
∑

i

〈ψ′
i|Mi|ψ′

i〉 =
∑

i

pi〈ψi|Mi|ψi〉 (1)

Mopt(E) will denote the measurement with the optimal probability of success, and in an
abuse of notation P opt(E) will denote this optimal probability. We call this the optimal
probability of distinguishing the states in E .

We use three matrix norms: the 1-norm ‖A‖1 =
∑

i,j |Aij |, the Euclidean (Frobenius)

norm ‖A‖2 =
√

∑

i,j |Aij|2, and the trace norm ‖A‖tr = tr
√
A†A =

∑

i σi(A), where σi(A)

denotes the i’th singular value of A. We will often use the d × n state matrix S = S(E) =
(|ψ′

1〉, ..., |ψ′
n〉) whose i’th column is the state |ψ′

i〉. Then G = S†S gives the n × n Gram
matrix [14] encoding all the inner products between the renormalised states in E . If n < d,
G will have d− n zero eigenvalues. Note that every rectangular matrix M with ‖M‖2 = 1
is a state matrix. ρ will represent the density matrix of the ensemble:

ρ =

n
∑

i=1

|ψ′
i〉〈ψ′

i| (2)

It is well-known [15] that G and ρ have the same non-zero eigenvalues.

2



2.1 Use of the “pretty good measurement”

We will use a specific measurement to provide bounds on P opt(E), which is “canonical” in
the sense that it performs reasonably well for any ensemble E . This is the so-called pretty
good measurement (PGM), which was independently identified by several authors (e.g. [9],
[10]) and has a number of useful properties. It is usually defined as a set of projectors
{|νi〉〈νi|} onto “measurement vectors” |νi〉, where |νi〉 = ρ−1/2|ψ′

i〉 (the inverse only being
taken on the support of ρ). However, it may also be defined implicitly, which brings out its
“canonical” nature.

To this end, consider an arbitrary measurement M for E that consists of a set of n rank
1 projectors onto unnormalised measurement vectors |µi〉, where each measurement vector
corresponds to a state |ψ′

i〉 in the ensemble. (In fact, it turns out that the optimal mea-
surement for an ensemble of pure states always falls into this category [7].) The probability
of getting measurement outcome i and receiving state j is then |〈µi|ψ′

j〉|2, and the overall

probability of success of this measurement is
∑n

i=1 |〈µi|ψ′
i〉|2. We may thus encode all the

inner products (and hence the probabilities) in a matrix P , where Pij = 〈µi|ψ′
j〉; and rather

than looking for an optimal measurement M , we can rephrase our task as looking for an
optimal matrix P that corresponds to a valid measurement.

We have the following requirement on P , from the fact that M must be a valid POVM.

(P †P )ij =

n
∑

k=1

〈ψ′
i|µk〉〈µk|ψ′

j〉 = 〈ψ′
i|
(

n
∑

k=1

|µk〉〈µk|
)

|ψ′
j〉 = Gij = (S†S)ij (3)

A natural way to produce a matrix P that satisfies this condition from any given S is to
take P =

√
G, the positive semidefinite square root of G. The PGM turns out to be a

measurement corresponding to this matrix P , for, if Pij = 〈νi|ψ′
j〉, then

(P 2)ij =

n
∑

k=1

〈ψ′
i|ρ−1/2|ψ′

k〉〈ψ′
k|ρ−1/2|ψ′

j〉 = 〈ψ′
i|
(

ρ−1/2
n
∑

k=1

|ψ′
k〉〈ψ′

k|ρ−1/2

)

|ψ′
j〉 = Gij (4)

The probability of success for the PGM is thus given by P pgm(E) =
∑n

i=1(
√
G)2ii. Barnum

and Knill have proved [3] that the PGM has the further property that it is almost optimal
in the following sense.

Theorem 2.1. (Barnum, Knill) [3] P pgm(E) ≥ P opt(E)2.

So there is the overall relationship P opt(E)2 ≤ P pgm(E) ≤ P opt(E). For completeness,
we include (in Appendix A) a simplified proof of Barnum and Knill’s result in the case of
pure states.

2.2 Bounds from the pairwise inner products

A set of states that are pairwise almost orthogonal are pairwise almost distinguishable. It
thus seems intuitively clear that, given such a set, the probability of success in distinguishing

3



one state from all the others must also be high. However, this intuition is wrong. This was
noted by Jozsa and Schlienz [15], who showed that the inner products of an ensemble of
states may all be reduced, while simultaneously reducing the von Neumann entropy of the
ensemble (which gives a measure of overall distinguishability). This effect also manifests
itself in quantum fingerprinting [4]. Here, d-dimensional states are “compressed” to log d-
dimensional “fingerprint” states that can be distinguished pairwise. However, given such
a fingerprint the corresponding original state may not be identified, as this would violate
Holevo’s theorem [13].

Nevertheless, for certain ensembles the pairwise inner products can give a good lower
bound on the overall distinguishability, as noted by several authors [9, 3]. In this section,
we derive such a bound. Our approach is based on that of Hausladen et al. [9], who found
a parabola forming a lower bound on the square root function, which is useful because of
the following lemma.

Lemma 2.2. If the function
√
x is bounded below by f(x) = ax + bx2 for x ≥ 0, then

(
√
G)ii ≥ aGii + b

∑n
j=1 |Gij |2.

Proof. G is a positive semidefinite matrix and thus may be diagonalised: G = UDU †,
where D = diag({λi}) and U = (uij) is unitary. Working out the matrix algebra shows
that (

√
G)ii =

∑n
k=1

√
λk|uik|2, so (

√
G)ii ≥ ∑n

k=1 f(λk)|uik|2 = f(G)ii. But f(G)ii =
(aG+ bG2)ii = aGii + b

∑n
j=1GijGji = aGii + b

∑n
j=1 |Gij |2.

Our goal will be to find a and b to parametrise f such that aGii + b
∑n

j=1 |Gij |2 is
maximised. It is clear that, for this to be maximised, f(r) must equal

√
r for some r (or we

could just increase a or b). So we will pick a and b such that f(r) =
√
r and f ′(r) = 1

2
√

r

(i.e. the curves are tangent at this point). This leads to the simultaneous equations

ar + br2 =
√
r, a+ 2br =

1

2
√
r

(5)

Solving for a and b gives the optimal values

a =
3

2
√
r
, b = − 1

2r3/2
(6)

To see that f(x) actually is a lower bound for
√
x for any positive value of r (with these

values for a and b), note that the only solutions to the related equation f(x)2 = x are
x = 0, x = r, or x = 4r. As f(4r) is negative, we have that f(x) =

√
x if and only if

x = 0 or x = r. So the only remaining possibility is that f(x) >
√
x for all 0 < x < r.

Plugging in a suitable value of x (e.g. r/2) shows that this is not the case. The expression
aGii + b

∑n
j=1 |Gij |2 may now be expressed solely in terms of r. Optimising this for r gives

that the maximum is found at the point

r =

∑n
j=1 |Gij |2

Gii
(7)
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Returning to the original inequality, we have

(
√
G)ii ≥

3

2
√
r
Gii −

1

2r3/2

n
∑

j=1

|Gij |2 ⇒ (
√
G)2ii ≥

G3
ii

∑n
j=1 |Gij |2

(8)

We thus have the following bound on the probability of distinguishing the states in E .

P pgm(E) ≥
n
∑

i=1

〈ψ′
i|ψ′

i〉3
∑n

j=1 |〈ψ′
i|ψ′

j〉|2
=

n
∑

i=1

p2
i

∑n
j=1 pj |〈ψi|ψj〉|2

(9)

If all the states have equal a priori probabilities, the bound simplifies further to

P pgm(E) ≥ 1

n

n
∑

i=1

1
∑n

j=1 |〈ψi|ψj〉|2
(10)

Unlike previous bounds obtained by other authors for the probability of success of the PGM
[9, 3], the bound (9) is always positive and greater than or equal to

∑n
i=1 p

2
i , thus showing

that the PGM always does at least as well as the “non-measurement” of guessing which
state was received in accordance with their a priori probabilities.

2.3 Bounds from eigenvalues

The eigenvalues of a Hermitian matrix are closely related to its diagonal elements; indeed,
the former majorises the latter [14]. With this in mind, we look for a bound on the unknown
diagonal elements of

√
G in terms of the known eigenvalues {λi} of G.

Lemma 2.3. P pgm(E) ≥ 1
n

(
∑n

i=1

√
λi

)2
= 1

n‖S‖2
tr.

Proof. By the fact that the trace of a matrix is the sum of its eigenvalues, we have

n
∑

i=1

(
√
G)ii =

n
∑

i=1

√

λi (11)

⇒
(

n
∑

i=1

(
√
G)ii

)2

=

(

n
∑

i=1

√

λi

)2

(12)

⇒ n

n
∑

i=1

(
√
G)2ii ≥

(

n
∑

i=1

√

λi

)2

(13)

⇒ P pgm(E) ≥ 1

n

(

n
∑

i=1

√

λi

)2

(14)

where in (13) we used a Cauchy-Schwarz inequality, showing that equality can only be
attained in step (13) when all the (

√
G)ii are equal.
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Interestingly, this bound is the same as the fidelity of G with the maximally mixed state

I/n, where the fidelity F (ρ, σ) is defined as
(

tr
√

ρ1/2 σ ρ1/2
)2

[19].

It is worth noting that no upper bound on the success probability in terms of the eigen-
values alone can be found, for the following reason. Any set of eigenvalues {λi} summing to
1 can give rise to a Gram matrix G where Gii = λi, and Gij = 0 (for i 6= j). Such matrices
correspond to an ensemble E of perfectly distinguishable states where P pgm(E) = 1. As
future work, it would be interesting to determine whether an upper bound (or an improved
lower bound) could be produced by considering the diagonal entries of G as well as its
eigenvalues.

2.4 Distinguishing mixed states

It is natural to ask to what extent these lower bounds hold for the generalised problem of
distinguishing an ensemble E consisting of mixed states {ρi}. The following lemma allows
the problem to be related to that of distinguishing pure states.

Lemma 2.4. Let E be an ensemble of n d-dimensional mixed states {ρi} with a priori
probabilities {pi}, and having spectral decompositions ρi =

∑d
k=1 λik|vik〉〈vik|. Let F be an

ensemble of the nd pure states given by the eigenvectors {|vik〉} with a priori probabilities
{piλik}. Then P pgm(E) ≥ P pgm(F).

Proof. For mixed states, the PGM is defined by the following measurement operators {Mi}:

Mi = ρ−1/2ρ′iρ
−1/2, where ρ′i = piρi and ρ =

n
∑

i=1

ρ′i (15)

So the probability of success can be bounded as follows, where we use the renormalised
eigenvectors |v′ik〉 =

√
pi

√
λik|vik〉.

P pgm(E) =
n
∑

i=1

tr
(

ρ−1/2ρ′iρ
−1/2ρ′i

)

(16)

=
n
∑

i=1

tr

(

ρ−1/2

(

d
∑

k=1

|v′ik〉〈v′ik|
)

ρ−1/2

(

d
∑

l=1

|v′il〉〈v′il|
))

(17)

=

n
∑

i=1

d
∑

k,l=1

tr
(

ρ−1/2|v′ik〉〈v′ik|ρ−1/2|v′il〉〈v′il|
)

(18)

=
n
∑

i=1

d
∑

k,l=1

|〈v′ik|ρ−1/2|v′il〉|2 ≥
n
∑

i=1

d
∑

k=1

|〈v′ik|ρ−1/2|v′ik〉|2 = P pgm(F) (19)

Therefore, if the eigenvalues and eigenvectors of the states {ρi} are known, the lower
bounds given previously may be applied. If not, a weaker lower bound based only on
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the pairwise fidelities of the states may be given (where, as before, we set F (ρ, σ) =
(

tr
√

ρ1/2 σ ρ1/2
)2

).

Theorem 2.5. Let E be an ensemble of n d-dimensional mixed states {ρi} with a priori
probabilities {pi}. Then

P pgm(E) ≥
n
∑

i=1

p2
i tr(ρ2

i )
∑n

j=1 pjF (ρi, ρj)
(20)

Proof. From the bound (9) and Lemma 2.4, we have

P pgm(E) ≥
n
∑

i=1

d
∑

k=1

p2
i λ

2
ik

∑n
j=1

∑d
l=1 pjλjl|〈vik|vjl〉|2

(21)

=
n
∑

i=1

d
∑

k=1

p2
iλ

2
ik

∑n
j=1 pj〈vik|

(

∑d
l=1 λjl|vjl〉〈vjl|

)

|vik〉
(22)

=
n
∑

i=1

d
∑

k=1

p2
iλ

2
ik

∑n
j=1 pj〈vik|ρj |vik〉

(23)

≥
n
∑

i=1

d
∑

k=1

p2
iλ

2
ik

∑n
j=1 pjF (ρi, ρj)

=

n
∑

i=1

p2
i tr(ρ2

i )
∑n

j=1 pjF (ρi, ρj)
(24)

This bound gets progressively worse as the states in E get more mixed. One might
expect the following lower bound to hold for mixed states, as it is the obvious extension of
the bound (9) for pure states, but interestingly it does not.

P pgm(E) �
n
∑

i=1

p2
i

∑n
j=1 pjF (ρi, ρj)

(25)

A simple counterexample is given by the equiprobable ensemble consisting of the following
two three-dimensional states.

ρ1 =

(

1

2
0 0

0 1

2
0

0 0 0

)

, ρ2 =

(

1

2
0 0

0 0 0
0 0 1

2

)

(26)

3 The distinguishability of states with constant inner prod-

uct

An illustrative case to apply these bounds to is that of equiprobable states where the
pairwise inner products are all equal, so the states are all equally distinguishable from each
other. Consider an ensemble E with Gram matrix G, where Gii = 1/n and Gij = p/n for
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i 6= j (and p is a positive real constant). In this case, the inner product bound of section
2.2 gives the bound

P pgm(E) ≥ 1

1 + p2(n− 1)
= O(1/n) (27)

The eigenvalue bound, however, gives much better results. The symmetry of G shows
immediately that it has an eigenvector (1, 1, ..., 1); the corresponding eigenvalue is λ1 =
p + (1 − p)/n. The set of eigenvectors may be completed by taking any n − 1 vectors
orthogonal to (1, 1, ..., 1), which will be eigenvectors with eigenvalues λ2...n = (1−p)/n. We
therefore have

P pgm(E) ≥ 1

n

(

√

p+
1 − p

n
+ (n− 1)

√

1 − p

n

)2

(28)

≥ 1

n

(

(n− 1)2
(1 − p)

n

)

≥ (1 − p) − 2(1 − p)

n
(29)

so the probability of distinguishing these states approaches a constant as n → ∞. In fact,
one can show that inequality (28) is actually an equality giving the precise probability of
success P pgm(E) (this follows from showing that the diagonal entries of

√
G are all equal).

Such an ensemble therefore provides a kind of converse to the ensemble of states used in
quantum fingerprinting [4]: in this case, no matter how many states there are in the ensem-
ble, their joint distinguishability is of the same order as their pairwise distinguishability.
We will see below that this behaviour is not typical; however, it is perhaps not surprising,
because E can only be realised in n dimensions. To see this, note that G is non-singular, so
the states in E must be linearly independent.

4 The distinguishability of random quantum states

We will use Lemma 2.3 and some results from the theory of random matrices to put a lower
bound on the probability of distinguishing random quantum states. The expected value of
this lower bound will be obtained for a quite general notion of “randomness”, but in order
to get measure concentration results we will specialise to states distributed uniformly at
random (according to the Haar measure). The results hold in the asymptotic regime where
the number of states n and the dimension d approach a constant ratio.

4.1 A little random matrix theory

In this section, we will calculate the expected value of the trace norm of a random matrix.
The distribution of the trace norm (i.e. the sum of singular values) of a matrix M is clearly
related to that of the eigenvalues of the matrix MM †, which is known to statisticians as a
(complex) Wishart matrix. The distribution of the eigenvalues of a Wishart matrix is given
by the Marčenko-Pastur law [18], which is stated in the form we need in [2].
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Theorem 4.1. (Marčenko/Pastur law) [18]
Let Rr be a family of d × n matrices with n ≥ d and d/n → r ∈ (0, 1] as n, d → ∞, where
the entries of Rr are i.i.d. complex random variables with mean 0 and variance 1. Then,
as n, d → ∞, the eigenvalues of the rescaled matrix 1

nRrR
†
r tend to a limiting distribution

with density

pr(x) =

√

(x−A2)(B2 − x)

2πrx
(30)

for A2 ≤ x ≤ B2 (where A = 1 −√
r, B = 1 +

√
r), and density 0 elsewhere.

We will translate this to a similar statement about the singular values of Rr. The
following lemma is straightforward.

Lemma 4.2. Let Rr be a family of d × n matrices with k/m → r ∈ (0, 1] as n, d → ∞,
where k = min(n, d) and m = max(n, d), and the entries of Rr are i.i.d. complex random
variables with mean 0 and variance 1. Then, as n, d → ∞, the singular values of Rr/

√
m

tend to a limiting distribution with density

pr(y) =

√

(y2 −A2)(B2 − y2)

πry
(31)

for A ≤ y ≤ B (where A = 1 −√
r, B = 1 +

√
r), and density 0 elsewhere.

Proof. The lemma follows from Theorem 4.1 for n ≥ d by substituting y =
√
x. For n ≤ d,

note that the singular values of R are the same as those of RT , so the roles of n and d need
merely be interchanged.

Lemma 4.3. Let Rr be a family of d × n matrices with k/m → r ∈ (0, 1] as n, d → ∞,
where k = min(n, d) and m = max(n, d), and the entries of Rr are i.i.d. complex random
variables with mean 0 and variance 1. Then, as n, d→ ∞, the expected trace norm of Rr is

E(‖Rr‖tr) =
m3/2

π

∫ B

A

√

(y2 −A2)(B2 − y2) dy (32)

where A = 1 −√
r, B = 1 +

√
r.

Proof. With probability 1, Rr will have k non-zero singular values. Let σi(Rr) denote the
value of the i’th (unsorted) singular value of Rr, for arbitrary i between 1 and k. We have

E(‖Rr‖tr) = (k
√
m) E(σi(Rr/

√
m)) = k

√
m

∫ B

A
y pr(y) dy (33)

and using Lemma 4.2 gives the desired result.

This turns out to be an elliptic integral which cannot be expressed in terms of elementary
functions [8]. However, it is possible to produce a good lower bound, which is tight in the
case r = 1:
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Lemma 4.4.

E(‖Rr‖tr) ≥ k
√
m

√

1 − r

(

1 − 64

9π2

)

(34)

with equality when r = 1.

Proof. See Appendix B.

4.2 Random quantum states

Knowing the expected value of the trace norm immediately allows us to say something
about the expected distinguishability of an ensemble of random quantum states, for a quite
general notion of randomness.

Theorem 4.5. Let E be an ensemble of n equiprobable d-dimensional quantum states {|ψi〉}
with n/d → r ∈ (0,∞) as n, d → ∞, and let the components of |ψi〉 in some basis be i.i.d.
complex random variables with mean 0 and variance 1/d. Then

E(P pgm(E)) ≥
{

1
r

(

1 − 1
r

(

1 − 64
9π2

))

if n ≥ d
1 − r

(

1 − 64
9π2

)

otherwise
(35)

and in particular E(P pgm(E)) > 0.720 when n ≤ d.

Proof. The matrix R =
√
ndS(E) fulfils the criteria for the Marčenko-Pastur law (4.1), as

its entries are complex random variables with mean 0 and variance 1. We therefore have

E(P pgm(E)) ≥ E

(

1

n
‖S(E)‖2

tr

)

≥ 1

n
E(‖S(E)‖tr)

2 =
1

n2d
E(‖R‖tr)

2 (36)

and plugging in the lower bound on the expected trace norm of R from Lemma 4.4 gives
the required result.

We can immediately apply this result to the distinguishability of random quantum states
uniformly distributed on the complex unit sphere in d dimensions. A uniformly random
quantum state may be produced by creating a vector v, each of whose components are
complex Gaussians (say vi ∼ Ñ(0, 1/d)), and normalising the result. By the law of large
numbers, as d→ ∞, the norm of the resulting vector will approach 1, so the normalisation
step becomes unnecessary. (This can be formalised and is known as Poincaré’s lemma [16].)
Therefore, an ensemble of uniformly random states meets the criteria for Theorem 4.5, so
we can lower bound its expected distinguishability.

In fact, in this case, we may exploit the concentration of measure effects characteristic
of high-dimensional spaces to show that for high d almost all ensembles of n ≤ d states are
quite distinguishable. As with the recent paper [20], our tool will be Levy’s Lemma [17]:
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Lemma 4.6. (Levy’s Lemma) [17]
Given a function f : Sd 7→ R defined on the d-dimensional real hypersphere Sd, and a point
p on the hypersphere chosen uniformly at random,

Pr[|f(p) − E(f)| ≥ ǫ] ≤ 2 exp

(−2C(d+ 1)ǫ2

η2

)

(37)

where η is the Lipschitz constant of f , η = supx,y |f(x)−f(y)|/‖x−y‖2, and C is a positive
constant that may be taken to be 1/(18π3).

This is useful for us because a state matrix is precisely such a point on a hypersphere:

Lemma 4.7. Let E be an ensemble of n equiprobable d-dimensional quantum states picked
uniformly at random. Then, for large d, the state matrix S(E) defines a point picked uni-
formly at random on the sphere in nd complex dimensions (equivalently, the real sphere
S2nd−1 in 2nd dimensions).

Proof. As noted previously, by the properties of quantum states distributed uniformly at
random, for high d the elements of S(E) will be complex Gaussians with mean 0 and variance
1/nd. The lemma follows.

Lemma 4.8. Let S be an n × d matrix with ‖S‖2 = 1, and define f(S) = 1
n‖S‖2

tr. Then
the Lipschitz constant η of f satisfies η ≤ 2.

Proof. See Appendix C.

Plugging this function f and this value of η into Levy’s Lemma gives the following
theorem.

Theorem 4.9. Let E be an ensemble of n d-dimensional quantum states picked uniformly
at random. Set p = E(P pgm(E)) = 1

r

(

1 − 1
r

(

1 − 64
9π2

))

if n ≥ d, and p = 1 − r
(

1 − 64
9π2

)

otherwise. Then

Pr[P pgm(E) ≤ p− ǫ] ≤ 2 exp

(−C(2nd+ 1)ǫ2

2

)

(38)

where C = 1/(18π3).

Figure 1 shows numerical evidence that ensembles E of quantum states picked uniformly
at random appear to have a value of P pgm(E) close to this lower bound, even when the states
are (relatively) low-dimensional.

5 Application to oracle identification

The oracle identification problem may be defined as follows [1]. Given an unknown n-bit
Boolean function f : {0, 1}n 7→ {0, 1} (the oracle), picked uniformly at random from a
known set F of functions, identify f with the minimum number of uses of f . Set N = |F |
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Figure 1: Asymptotic bound on P pgm(E) vs. numerical results (averaged over 10 runs) for
ensembles of n = 50r 50-dimensional uniformly random states.

and D = 2n. Clearly, classical computation cannot identify f with fewer than log2N queries
in the worst case (as each query may reduce the search space by at most half). However,
quantum computation can sometimes do better. On a quantum computer, we can encode
the oracle as an n qubit unitary operator Uf , defined by the action Uf |x〉 7→ (−1)f(x)|x〉.
Now if the uniform superposition 1

2n−1

∑2n−1
x=0 |x〉 is input to the oracle, the following oracle

state will be be produced:

|ψf 〉 =
1

2n−1

2n−1
∑

x=0

(−1)f(x)|x〉 (39)

In some cases, a single quantum query to Uf may be enough to identify f with certainty.
This will be the case if 〈ψf |ψg〉 = 0 for all f 6= g (although this is not a necessary condition).
The satisfaction of this orthogonality condition may be expected to be a rare event, and is
certainly impossible when N > D. However, if we are content with a small probability of
error, the situation is better: we will show here that, in particular, almost all sets of N = D
oracles may be distinguished almost certainly in a constant number of quantum queries.

The oracle identification problem was introduced and studied by Ambainis et al [1], who
(among other results) developed a hybrid quantum-classical algorithm for the random oracle
case with which we concern ourselves here. However, the upper bound they obtained in the
case where N = D is only O(log2N) queries, which is no better than classical computation.

Lemma 5.1. Let E be an ensemble of N D-dimensional oracle states corresponding to
Boolean functions picked uniformly at random (call these random oracle states). Then the
rescaled state matrix

√
NDS(E) defines a point picked uniformly at random on the ND-

dimensional hypercube {−1, 1}ND.

Proof. Each component of each state will be ±1/
√
ND, with equal probability of each.

12



√
NDS(E) therefore meets the required conditions for the Marčenko-Pastur law (4.1),

so we may say immediately

Lemma 5.2. Let E be an ensemble of N D-dimensional random oracle states, and set
r = N/D. Then

E(P pgm(E)) ≥
{

1
r

(

1 − 1
r

(

1 − 64
9π2

))

if N ≥ D
1 − r

(

1 − 64
9π2

)

otherwise
(40)

and in particular E(P pgm(E)) ≥ 0.720 when N ≤ D.

Like the sphere, the high-dimensional hypercube exhibits the concentration of measure
phenomenon, and we can write down a similar result to Levy’s Lemma [17]:

Lemma 5.3. (Concentration of measure on the cube) [17]
Given a function f : {−1, 1}d 7→ R defined on a d-dimensional hypercube, and a point p on
the hypercube chosen uniformly at random,

Pr[|f(p) − E(f)| ≥ ǫ] ≤ 2 exp

(−2ǫ2

dη2

)

(41)

where η is the Lipschitz constant of f with respect to the Hamming distance, η = supx,y |f(x)−
f(y)|/d(x, y).

Lemma 5.4. Let H be a point on the nd-dimensional hypercube written down as an n× d
{−1, 1}-matrix, and let f(H) = 1

n2d
‖H‖2

tr. Then the Lipschitz constant η of f satisfies
η ≤ 4/nd.

Proof. See Appendix C.

Plugging this value of η into Lemma 5.3 gives

Theorem 5.5. Let E be an ensemble of N D-dimensional random oracle states. Set p =
E(P pgm(E)) = 1

r

(

1 − 1
r

(

1 − 64
9π2

))

if N ≥ D, and p = 1 − r
(

1 − 64
9π2

)

otherwise, where
r = N/D. Then

Pr[P pgm(E) ≤ p− ǫ] ≤ 2 exp

(−2NDǫ2

16

)

(42)

and we have our desired result: with 1 query, all but an exponentially small fraction
of the possible sets of N N -dimensional random oracle states may be distinguished with a
constant probability bounded away from 1/2 (in fact, to get a probability of success greater
than 1/2, we may take r = N/D to be as high as ∼ 1.66). A constant number of repetitions
allows this probability to be boosted to be arbitrarily high.
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6 Discussion

This work can be seen as part of an overall programme of understanding the behaviour of
random quantum states [21, 20, 11, 22].

There is a fundamental correspondence between the mixed state obtained from an equal
mixture of uniformly random pure states, and that produced by starting with a larger
system in a uniformly random pure state, and tracing out part of the system. Consider a
d-dimensional state

ρn,d =
1

n

n
∑

i=1

|ψi〉〈ψi| (43)

where each state in the set E = {|ψi〉} is picked uniformly at random. We can think of ρn,d

as being produced from the following dn-dimensional state (which we consider to live in a
Hilbert space Hd ⊗Hn) by tracing out the second subsystem:

|υ〉 =
1√
n

n−1
∑

k=0

|υk〉|k〉 =
1√
n

n−1
∑

k=0

d−1
∑

l=0

αkl|l〉|k〉 (44)

for some coefficients αkl. As mentioned previously, the αkl will be approximately normally
distributed as Ñ(0, 1/d). So, because of the normalisation factor at the front of the sum, the
overall state |υ〉 has coefficients which are normally distributed and scaled as Ñ(0, 1/dn).
Therefore, this state is picked from the uniform distribution on the unit sphere in Cdn.
Popescu, Short and Winter [20] obtained an upper bound on the expected trace distance
of such a state ρn,d from the maximally mixed state I/d, and used this to show that for
n≫ d, ρ ≈ I/d.

Because the non-zero eigenvalues of the Gram matrix of (rescaled) states in E are the
same as the eigenvalues of ρn,d [15], this paper can be seen as obtaining a similar result
to [20] for the fidelity of ρn,d with the maximally mixed state, via quite different methods.
However, the bound is tighter for n close to d, and the notion of “randomness” of the states
{|ψi〉} is more general (which is simply a side-effect of relying on the powerful Marčenko-
Pastur law).
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Appendices

A The PGM is close to optimal

Theorem 2.1. (Barnum, Knill) [3] P pgm(E) ≥ P opt(E)2.

Proof. Consider an arbitrary POVM R consisting of measurement operators {Ri}, and an
arbitrary ensemble E of renormalised states {|ψ′

i〉}, with a priori probabilities pi, where as
before |ψ′

i〉 =
√
pi|ψi〉 and ρ =

∑n
i=1 |ψ′

i〉〈ψ′
i|. Assume wlog that Ri = |µi〉〈µi| for some

vectors |µi〉, as the optimal measurement will always be of this form [7]. Then

PR(E) =

n
∑

i=1

〈ψ′
i|Ri|ψ′

i〉 =

n
∑

i=1

|〈ψ′
i|µi〉|2 =

n
∑

i=1

|〈ψ′
i|ρ−1/4ρ1/4|µi〉|2 (45)

≤
n
∑

i=1

〈ψ′
i|ρ−1/2|ψ′

i〉〈µi|ρ1/2|µi〉 (46)

≤

√

√

√

√

√

(

n
∑

i=1

〈ψ′
i|ρ−1/2|ψ′

i〉2
)





n
∑

j=1

〈µj |ρ1/2|µj〉2


 (47)

≤

√

√

√

√

n
∑

i=1

〈ψ′
i|ρ−1/2|ψ′

i〉2 =
√

P pgm(E) (48)

The first and second inequalities are Cauchy-Schwarz inequalities, and the third follows
because the vectors {ρ1/2|µi〉} can easily be seen to define an ensemble with density matrix
ρ:

n
∑

i=1

ρ1/2|µi〉〈µi|ρ1/2 = ρ1/2

(

n
∑

i=1

|µi〉〈µi|
)

ρ1/2 = ρ (49)

and we therefore have
∑n

i=1〈µi|ρ1/2|µi〉2 ≤ 1, as this is the probability of success of the
measurement R applied to this ensemble.

B Proof of Lemma 4.4

In this appendix we will prove a lemma which immediately implies Lemma 4.4. See [8] for
the facts used about elliptic integrals and hypergeometric series.

Lemma B.1. Let 0 ≤ r ≤ 1 and A = 1 −√
r, B = 1 +

√
r. Then

∫ B

A

√

(y2 −A2)(B2 − y2) dy ≥ rπ

√

1 − r

(

1 − 64

9π2

)

(50)

with equality at r = 0, r = 1.
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Proof. We have

f(r) =

∫ B

A

√

(y2 −A2)(B2 − y2) dy (51)

=
B

3

(

(A2 +B2)E

(√
B2 −A2

B2

)

− 2A2K

(√
B2 −A2

B2

))

(52)

=
2(1 +

√
r)

3

(

(1 + r)E

(

2r1/4

1 +
√
r

)

− (1 −
√
r)2K

(

2r1/4

1 +
√
r

))

(53)

where K(r) and E(r) are the complete elliptic integrals of the first and second kind, respec-
tively:

K(r) =

∫ 1

0

dx
√

(1 − x2)(1 − r2x2)
, E(r) =

∫ 1

0

√
1 − r2x2

√
1 − x2

dx (54)

Note that f(r) may be evaluated explicitly for r = 0 and r = 1, giving 0 and 8/3 respectively.
Now we may apply a standard change of variables (Landen’s transformation) to both elliptic
integrals, giving

f(r) =
2(1 +

√
r)

3

(

1 + r

1 +
√
r

(

2E(
√
r) − (1 − r)K(

√
r)
)

− (1 −
√
r)2(1 +

√
r)K(

√
r)

)

=
4

3

(

(1 + r)E(
√
r) − (1 − r)K(

√
r)
)

(55)

We now move to the representation of K(r) and E(r) as hypergeometric series, which are
defined as follows (using the notation an̄ = a(a+ 1) · · · (a+ n− 1)).

2F1(a, b; c; r) =

∞
∑

n=0

an̄bn̄

cn̄n!
rn (56)

K(r) = (π/2) 2F1(1/2, 1/2; 1; r
2) , E(r) = (π/2) 2F1(−1/2, 1/2; 1; r2) (57)

This has the advantage that, by a transformation rule due to Gauss, we can rewrite f(r)
as a single hypergeometric series.

f(r) =
2π

3
((1 + r) 2F1(−1/2, 1/2; 1; r) − (1 − r) 2F1(1/2, 1/2; 1; r)) (58)

= πr 2F1(−1/2, 1/2; 2; r) (59)

Returning to the original inequality, our task has been simplified to showing that

g(r) = 2F1(−1/2, 1/2; 2; r)2 ≥ 1 − r

(

1 − 64

9π2

)

(60)
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Evaluating g(r) at 0 and 1 makes it clear that this is equivalent to showing that g(r) is
concave for 0 ≤ r ≤ 1, which would follow from showing the second derivative g′′(r) to be
negative in this region. From the rules governing differentiation of hypergeometric series,
it is easy to show that

g′′(r) =
1

32

(

2F1(1/2, 3/2; 3; r)
2 − 2 2F1(−1/2, 1/2; 2; r)2F1(3/2, 5/2; 4; r)

)

(61)

The following hypergeometric transformation allows this to be simplified.

2F1(a, b; c; r) = (1 − r)c−a−b
2F1(c− a, c− b; c; r) (62)

⇒ g′′(r) =
1

32

(

(1 − r)22F1(5/2, 3/2; 3; r)
2 (63)

− 2(1 − r)2 2F1(5/2, 3/2; 2; r) 2F1(3/2, 5/2; 4; r)
)

(64)

We will show that 2F1(5/2, 3/2; 3; r)
2 ≤ 2F1(5/2, 3/2; 2; r) 2F1(5/2, 3/2; 4; r) for all positive

r, implying that g′′(r) is negative in this region. We write out the two hypergeometric series
explicitly:

2F1(5/2, 3/2; 3; r)
2 =

∞
∑

m,n=0

kmkn

3m̄3n̄
, where kn =

(5/2)n̄(3/2)n̄

n!
rn(65)

2F1(5/2, 3/2; 2; r) 2F1(5/2, 3/2; 4; r) =

∞
∑

m,n=0

kmkn

4m̄2n̄
(66)

=
∞
∑

m,n=0

kmkn

3m̄3n̄

(

3

3 +m

)(

2 + n

2

)

(67)

=

∞
∑

m=0

k2
m

3m̄3m̄

(

6 + 3m

6 + 2m

)

+

∞
∑

m,n=0
m>n

kmkn

3m̄3n̄

(

3(2 + n)

2(3 +m)
+

3(2 +m)

2(3 + n)

)

(68)

≥
∞
∑

m=0

k2
m

3m̄3m̄
+

∞
∑

m,n=0
m>n

2kmkn

3m̄3n̄
= 2F1(5/2, 3/2; 3; r)

2 (69)

where elementary methods can be used to show that the bracketed last term in eqn. (68)
is at least 2 for any non-negative m and n. This completes the proof of the lemma.

C Lipschitz constants

This appendix contains derivations of the Lipschitz constants of the functions used for the
concentration of measure results.
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Figure 2: Error in approximation to elliptic integral (50) for 0 ≤ r ≤ 1.

Lemma 4.8. Let S be an n × d matrix with ‖S‖2 = 1, and define f(S) = 1
n‖S‖2

tr. Then
the Lipschitz constant η of f satisfies η ≤ 2.

Proof. Let k = min(n, d). We have

η = sup
S,T

|f(S) − f(T )|
‖S − T‖2

= sup
S,T

| ‖S‖2
tr − ‖S‖2

tr |
n‖S − T‖2

(70)

= sup
S,T

(‖S‖tr + ‖T‖tr

n

) | ‖S‖tr − ‖S‖tr |
‖S − T‖2

(71)

≤ sup
S,T

(‖S‖tr + ‖T‖tr

n

) ‖S − T‖tr

‖S − T‖2
(72)

≤ sup
S,T

√
k (‖S‖tr + ‖T‖tr)

n
≤ 2k/n ≤ 2 (73)

The first inequality is a triangle inequality, and the second two are derived from

‖S‖tr =

k
∑

i=1

σi(S) ≤

√

√

√

√k

k
∑

i=1

σ2
i (S) ≤

√
k‖S‖2 (74)

which in turn uses a Cauchy-Schwarz inequality.

Lemma 5.4. Let S be a point on the nd-dimensional hypercube written down as an n× d
{−1, 1}-matrix, and let f(S) = 1

n2d‖S‖2
tr. Then the Lipschitz constant η of f (with respect

to the Hamming distance) satisfies η ≤ 4/nd.

Proof. The proof is very similar to that of Lemma 4.8. As before, let k = min(n, d). We
have
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η = sup
S,T

|f(S) − f(T )|
d(S, T )

= sup
S,T

1

n2d

| ‖S‖2
tr − ‖S‖2

tr |
d(S, T )

(75)

≤ sup
S,T

(‖S‖tr + ‖T‖tr

n2d

) ‖S − T‖tr
1
2‖S − T‖1

(76)

≤ sup
S,T

2
√
k (‖S‖tr + ‖T‖tr)

n2d
≤ 4k/n2d ≤ 4/nd (77)

where, extending inequality (74), we use ‖S‖tr ≤
√
k‖S‖2 ≤

√
k‖S‖1.
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