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Complementing recent progress on the additivity conjecture of quantum information theory, show-
ing that the minimum output p-Rényi entropies of channels are not generally additive for p > 1, we
demonstrate here by a careful random selection argument that also at p = 0, and consequently for
sufficiently small p, there exist counterexamples.

An explicit construction of two channels from 4 to 3 dimensions is given, which have non-
multiplicative minimum output rank; for this pair of channels, numerics strongly suggest that the
p-Rényi entropy is non-additive for all p . 0.11. We conjecture however that violations of additivity
exist for all p < 1.

I. INTRODUCTION AND DEFINITIONS

For a quantum channel (i.e. a completely positive and trace preserving linear map) N between finite quantum
systems, and p ≥ 0, define

Smin
p (N ) := min

ρ

1
1− p

log Tr(N (ρ))p,

where the minimisation is over all states (normalised density operators) on the input space of N . The quantity
Sp(σ) = 1

1−p log Trσp is known as p-Rényi entropy of the state σ (0 < p <∞ and p 6= 1), with the definition extended
to p = 0, 1,∞ by taking limits; S1(σ) = S(σ) = −Trσ log σ is the von Neumann entropy. S∞(σ) = − log ‖σ‖∞ is the
min-entropy, and S0(σ) = log rankσ. Due to the concavity of the Rényi entropies in ρ, the minimum in the above
definition is attained at a pure input state ρ = |ψ〉〈ψ|.

The additivity problem is the question whether for all channels N1 and N2, it holds that

Smin
p (N1 ⊗N2)

?= Smin
p (N1) + Smin

p (N2). (1)

Note that the direction “≤” here is trivial, so proofs and counterexamples have to concentrate on the direction “≥”.
This was indeed proved for special channels and some p; for example, it is known for p ≥ 1 if one of the channels
is entanglement-breaking [1, 2], unital on a qubit space [3], or depolarising of any dimension [4]; in addition for a
number of other cases. King [5] has furthermore shown that it holds for p < 1 if one of the channels is entanglement-
breaking. Holevo and Werner [6] exhibited the first counterexamples to eq. (1), for p > 4.79. It was demonstrated
recently [7, 8] that for every p > 1 there exist channels violating eq. (1).

Here we show that eq. (1) is also false at p = 0, and by continuity of Sp in p, it is thus violated for all p ≤ p0

with some small but positive p0. Since S0(σ) is the logarithm of the rank of the density matrix σ, so Smin
0 (N ) is

the logarithm of the minimum output rank of the channel, i.e. of the smallest rank of an output state. In the next
Section we prove our main existence result of counterexamples, in Section III we exhibit an explicit example, and in
Section IV we explore up to which p < 1 we can violate additivity of Smin

p .

II. MAIN RESULT

Theorem 1 If dA > 2, dB > 2 and dAdB is even then there exist quantum channelsN1,N2 with dA-dimensional input spaces
and dB-dimensional output spaces, such that

Smin
0 (N1) = Smin

0 (N2) = log dB ,
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but

Smin
0 (N1 ⊗N2) ≤ log(d2

B − 1) < 2 log dB .

Proof. Our approach is the following: let ρAB = (id ⊗ N )Ψ be a Choi-Jamiołkowski state of the channel N ,
with a particular choice of reference state |Ψ〉 ∈ A ⊗ B = CdA ⊗ CdB . Note that while usually people use a fixed
maximally entangled state, for the isomorphism it is sufficient that it is of maximal Schmidt rank. In [7, 8], additivity
counterexamples were found for p > 1 by choosing N randomly subject to a certain constraint. Our approach will
be instead to choose the Choi-Jamiołkowski state randomly, again subject to a certain constraint that helps guarantee
the additivity counterexample.

First note that N (ϕ) has maximal rank dB for every input state ϕ iff the orthogonal complement of ρ doesn’t
contain any product vectors, i.e. for all pure states |ϕ〉 ∈ A, |ψ〉 ∈ B,

Tr
(
ρAB(ϕ⊗ ψ)

)
6= 0. (2)

The easy justification of this is as follows: in Appendix A we show that the action of the channel N can be written

N (ϕ) = TrA
[
ρAB

(
ρ
−1/2
A U†ϕUρ

−1/2
A ⊗ 11

)]
, (3)

where · denotes the complex conjugate with respect to a fixed computational basis and U is a unitary depending on
Ψ (see Appendix A for details). Full rank of the output means that for all pure states ϕ, ψ,

0 6= Tr
(
N (ϕ)ψ

)
= Tr

[
ρAB

(
ρ
−1/2
A U†ϕUρ

−1/2
A ⊗ ψ

)]
∝ Tr

[
ρAB(ϕ′ ⊗ ψ)

]
,

where we used the above identity and the fact that ρ−1/2
A U†|ϕ〉 is, up to normalisation, another pure state |ϕ′〉. Note

that any unitary U on A will serve to create a channel, so we shall fix it to be the identity from now on – this is only
a matter of redefining ΨAB , which we can do if only given ρAB .

So, our task is to find two states ρAB and σA′B′ on A⊗B with this property, such that ωAA′ BB′ = ρAB ⊗σA′B′ does
have a product state in its orthogonal complement; we’ll choose it to be the maximally entangled state ΦAA′ ⊗ ΦBB′ .
Then the condition we seek to enforce is

0 = Tr
(
(ρAB ⊗ σA′B′)(ΦAA′ ⊗ ΦBB′)

)
=

1
dAdB

Tr(ρ σ>),

where > signifies the matrix transpose. Note that the channel input will not be ΦAA′ , but rather the normalised
version of

(√
ρA ⊗

√
σA′

)
|Φ〉AA′ .

What we will do is simply pick ρ to be the (normalised) projection onto a dAdB/2-dimensional random subspace,
drawn according to the unitary invariant measure on AB, and σ> the (normalised) projection onto the orthogonal
complement of ρ:

ρ =
2

dAdB
Π, σ =

2
dAdB

(11−Π>).

This enforces the condition Tr(ρ σ>) = 0 deterministically, while both the supporting subspaces of ρ and σ are
individually uniformly random. Thus we are done once we prove Lemma 2, stated below, since it implies for
large enough dA and dB , that with probability 1 neither the orthogonal complement of ρ nor that of σ (which are
themselves uniformly random subspaces) contains a product vector. ut

Lemma 2 Let Π be a uniformly random projector in CdA ⊗ CdB of rank dE such that dAdB > dA + dB + dE − 2. Then,

Pr
Π

{
∃ϕA ∈ CdA , ϕB ∈ CdB Tr

(
(ϕA ⊗ ϕB)Π

)
= 1

}
= 0. (4)

In words: the probability that a random subspace of “small” dimension contains a product state, is zero.

Proof. Note that if dAdB is even then dE = dAdB/2 is an integer, and so the inequality (dA − 2)(dB − 2) > 0 can be
rearranged to obtain dAdB > dA + dB + dE − 2, thus justifying the application to Theorem 1.
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Geometrically, we want to show that the probability for a random subspace of dimension dE to contain a product
state, is zero. Using the isomorphism between bipartite vectors and dA×dB-matrices (which identifies Schmidt rank
with matrix rank) [9], we can reformulate the task as describing the dE-dimensional subspaces of dA × dB-matrices
not containing any nonzero elements of rank 1. In other words, subspaces intersecting the determinantal variety of
vanishing 2× 2-minors only in the zero matrix. The dimension of this variety – known as the Segre embedding – is
easily seen to be dA + dB − 1, so a generic subspace of dimension dE ≤ dAdB − (dA + dB − 1) = (dA− 1)(dB − 1) will
not intersect it except trivially, by standard algebraic-geometric arguments [10, 11]; a more explicit argument for this
fact was given recently by Walgate and Scott [12]. ut

III. AN EXPLICIT CONSTRUCTION IN SMALL DIMENSION

Since our additivity violation takes the form of only a single zero eigenvalue in the two-copy output, it is strongest
when the channel dimensions are smallest. Indeed, violations for large dimension can be constructed from channels
from small dimension by tensoring the channel with a trivial channel, such as a completely depolarising channel.
Thus, we are most interested in finding counterexamples with small dimension.

One such counterexample, with dA = 4 and dB = 3 is described here. Based on the constructions in [9], and
indeed a slight variation of it, we show now – using the same methodology as above – how to construct two channels
Ni : B(C4) → B(C3) (i = 1, 2) such that

Smin
0 (N1) = Smin

0 (N2) = log 3, but Smin
0 (N1 ⊗N2) ≤ log 8 < 2 log 3.

These happen to be the smallest dimensions that satisfy Lemma 2.
As we have discussed above, we describe them via their Jamiołkowski states ρAB and σAB (with A and B being a

4- and 3-dimensional system, respectively) such that Tr ρσ> = 0 and neither ρ nor σ contains a product state in the
respective orthogonal complement of their supports.

Resorting to the supporting subspaces of ρ and σ>, denoted R,S < A⊗B, respectively, we have nothing to do but
choose them to be orthogonal and of dimension 6, such that neither contains a product state.

Using the customary notation of vectors in C4×C3 as 3× 4 matrices [9], and with ω = e2πi/3, we let R be spanned
by  1

1 0 0

 ,
 1

1
1 0

 ,
 1

ω
ω2 0

 ,
 0 1

ω2

ω

 ,
 0 0 1

−1

 , and

 0 0 1
0

−1

 ;

whereas S is spanned by 1
−1 0 0

 ,
 1

ω2

ω 0

 ,
 0 1

1
1

 ,
 0 1

ω
ω2

 ,
 0 0 1

1

 , and

 0 0 1
0
1

 .
Since these twelve vectors are clearly orthogonal, the subspaces R and S are each of dimension 6, and orthogonal

to each other; the proof that they don’t contain a product state is as follows: the first five vectors of R and S span
respective 5-dimensional subspaces R0 and S0. Notice that they are entirely symmetric to each other, and that they
don’t contain product states by the arguments of [9]. Also, the sixth vector is clearly not product in either case.
Hence, to obtain a product vector in R, say (the argument for S is very similar), we need to form the sum of the sixth
vector with an element from R0:

M = α

 1
1 0 0

 + β

 1
1

1 0

 + γ

 1
ω
ω2 0

 + δ

 0 1
ω2

ω

 + ε

 0 0 1
−1


+

 0 0 1
0

−1


=

 β + γ δ ε 1
α β + ωγ ω2δ −ε
−1 α β + ω2γ ωδ
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For this to be a product vector, all its 2 × 2-minors have to vanish, but we need to look at only a few to obtain a
contradiction: the minors {1, 2}×{3, 4}, {1, 3}×{2, 4} and {2, 3}×{1, 4} imply 0 = −ε2−ω2δ = ωδ2−α = ωαδ− ε,
which in turn allow us to express all other variables in terms of ε:

δ = −ωε2, α = ωδ2 = ε4, ε = ωαδ = −ω2ε6,

leaving for ε only the possibilities of being 0 or a fifth root of −ω2. If ε = 0, so are α and δ, and in this case the
{1, 3} × {1, 3}-minor is non-vanishing. Hence we continue with ε5 = −ω2, and look at the minors {1, 3} × {1, 4},
{1, 2} × {2, 4} and {1, 3} × {3, 4}: these yield the constraints

0 = (β + γ)ωδ + 1 = −δε− (β + ωγ) = ωδε− (β + ω2γ),

in other words

β + γ = −ω2/δ = ω/ε2 = −ω2ε3, β + ωγ = −δε = ωε3, β + ω2γ = ωδε = −ω2ε3,

which implies γ = 0 and β = −ω2ε3 from the 1st and 3rd equation, but then the 2nd contradicts by demanding
β = ωε3.

Hence, in conclusion, R cannot contain a product state, and the argument for S is similar in nature. ut

IV. LARGER RÉNYI PARAMETER

Now we can use the explicit pair of channels constructed in the previous section to look for larger values of p for
which additivity of Smin

p is violated. The simplest thing is to take the Choi-Jamiołkowski states to be the normalised
projections onto the subspaces R and S, respectively. However, we may clearly take any state of rank 6 supported on
the respective subspace to obtain a bona fide generalised Choi-Jamiołkowski state. We performed some numerics in
both cases: for the first (Jamiołkowski states proportional to the subspace projections), using S

(
(N ⊗ N ′)Φ3

)
as an

upper bound of Smin
p (N ⊗N ′) and numerical calculations of Smin

p (N ) and Smin
p (N ′), we see violations of additivity

for values of p up to ≈ 0.096.
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FIG. 1: Plots of the output entropy of the tensor product channel with the input state corresponding to the maximally entangled
state (red line, shallow slope), versus the numerically obtained minimum when restricted to tensor product input states (blue
line, steep slope). On the left the Choi-Jamio lkowski states are simply the normalised projections of the subspaces R and S;
on the right, one choses appropriately weighted density operators with support R and S, respectively.

For the second, it turns out that a very good choice is to have ρAB and σA′B′ to be diagonal in the above bases of
R and S, respectively, with specific probability weights obtained by another numerical search. The weights of the
basis vectors of R and S, in the above order, are

0.172776, 0.118738, 0.199229, 0.136705, 0.306899, 0.0656529, and
0.344911, 0.124908, 0.120721, 0.156968, 0.162754, 0.089738,

respectively. This results in a numerical violation of additivity for p up to ≈ 0.112. We see no reason to believe that
this value should be the limit of additivity violations.
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To obtain a rigorous interval [0; p0] of violations of additivity, we turn to the ideas of measure concentration ex-
plored in [13] in the context of quantum information theory. We will not make everything explicit, but the idea is
as follows: we need to put rather tight lower bounds on Smin

p of the two individual channels; in fact, each of the
two channels N , N ′ is individually random from the class of channels with Stinespring dilations A ↪→ B ⊗ CdAdB/2

(random meaning: according to the unitary invariant measure onB⊗CdAdB/2). For the output properties of each the
channels, only the embedded dA-dimensional subspace S, S′ < B⊗CdAdB/2 is relevant, which is a random subspace
in the same sense [13].

Now in [13], Lemmas III.4 and III.6, it is shown that the spectrum of all states in a random subspace S < B ⊗
CdAdB/2 is tightly concentrated around the value 1/dB , for large enough dimensions dA and dB such that dA � dB ≥
Ω(log dA). I.e., with high probability the minimum Schmidt coefficient of any state in S, S′ is, say, ≥ 1

2
1
dB

. In other
words, the output states of the channels have spectrum bounded away from 0 by this amount. Then for 0 ≤ p < 1,
clearly,

Smin
p (N ), Smin

p (N ′) >
1

1− p
log

(
dB

(
1

2dB

)p)
= log dB +

p

1− p
log

1
2

= log dB −
p

1− p
.

However,

Smin
p

(
N ⊗N ′) ≤ Smin

0

(
N ⊗N ′) ≤ log

(
d2
B − 1

)
= 2 log dB + log

(
1− 1

d2
B

)
.

In conclusion, a violation is obtained as soon as

2p
1− p

≤ − log
(

1− 1
d2
B

)
,

which follows if p ≤ 1
1+2 ln 2d2B

. We omit here any estimate of the dB required in the above concentration of reduced
state spectrum, which depends on the exact constants one uses in the probability bounds, but it is possible by this
approach to get p0 in the range of 10−3 to 10−2.

There is yet another way to get rigorous estimates of p0 for every example, like for the explicit construction in the
previous section. Namely, get a lower bound on the minimum minimal eigenvalue of an output state of the single
copy channel N , which can be relaxed to a convex optimisation problem, and then use the argument above.

In detail, consider the usual Choi-Jamiołkowski operator of the channel, ΩAB = (id⊗N )Γ, with |Γ〉 =
∑dA

i=1 |i〉|i〉.
Then, N (ϕ) = TrA

[
ΩAB(ϕ⊗ 11)

]
(see Appendix A), and

min
ϕ
λmin

(
N (ϕ)

)
= min

ϕ,ψ
Tr

[
ΩAB(ϕ⊗ ψ)

]
= min
ρ separable

Tr
[
ΩABρ

]
≥ min
ρ PPT

Tr
[
ΩABρ

]
.

The latter is a semidefinite program, so duality theory will yield rigorous lower bounds on the minimum minimal
eigenvalue of an output state. Doing that for our example in Section III, yields again a rather poor bound for p0 of
the order 10−2.

V. DISCUSSION

After the disproof of the additivity conjecture for Smin
p at p > 1, and the close shave by which the original and

main conjecture at p = 1 has escaped, some hope was raised that one could prove additivity for p < 1, and hence
by taking the limit for p = 1. This suggestion didn’t seem so unreasonable after King [5] showed additivity if one
of the channels is entanglement-breaking. Also, it can be seen quite easily that arbitrary numbers of copies of the
Holevo-Werner channel [6] obey additivity for p ≤ 1, via the result of [14]. In this respect the log of the minimum
output rank, Smin

0 , took prominence as an important test case, and the finding of a counterexample here is putting
into doubt possible programmes to prove the “standard additivity conjectures” by approaching p = 1 from below.

We feel that, with the minimum output rank not multiplicative, it is rather unlikely that any of the Smin
p for p < 1

should be additive. It is to be noted however, that the present technique doesn’t really yield massive violations of
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additivity, even at p = 0, and presumably less so at other 0 < p < 1. This is in contrast to what one observes at
p > 1 [7, 8], but it can be understood pretty well in terms of control by the random selection to engineer a certain
conspiracy between the two channels: while for p > 1 we only need to fix one large eigenvalue of the two-copy
output corresponding to the maximally entangled input state, at p < 1 (and most extremely so at p = 0) all non-
zero eigenvalues are relevant, and even to make d of them zero exhausts the possibilities of the random selection
performing well on the single-copy level. It is amusing to note, however, that we still exploit the peculiar symmetries,
and indeed the multiplicativity, of the maximally entangled state to construct a violation.

It is our hope that the present work will spark the search for further counterexamples, potentially finding a unified
principle behind the constructions for p > 1 and p < 1 – and eventually helping to decide the original additivity
conjecture(s) at p = 1. Note that the construction presented here and in [7, 8] share already a couple of important
traits. First, the candidate channels are individually random from the unitary invariant ensemble of Stinespring
dilations with fixed input, output and environment dimensions – to get strong lower bounds on the minimum
output entropy. Second, the pair of channels is chosen to be in some fixed relation to each other, so as to make the
output state corresponding to the maximally entangled input (or, in our case, something very close to it) special;
for p > 1 we want it to have an unusually large eigenvalue (which is why we choose the channels to be complex
conjugate to each other), here we want an eigenvalue to vanish (which is why we impose orthogonality on the Choi-
Jamiołkowski states). The possible extension or unification of the constructions thus is not so much how they are
individually selected, but has to address the way the two channels are related to each other.

Note added. After this work was presented at the AQIS’07 workshop in Kyoto (September 2007), Duan and
Shi [15] used the methodology of our explicit construction in their surprising results on quantum zero-error capacity;
they also exhibit a single channel from 4 to 4 dimensions violating additivity of Smin

0 – as opposed to our using the
tensor product of two different channels – in the sense that Smin

0

(
N⊗2

)
< 2Smin

0 (N ).
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APPENDIX A: CHOI-JAMIOLKOWSKI STATES

Here we give a detailed explanation of eq. (3) by describing how the channel can be recovered from our non-
standard Choi-Jamiołkowski operator.

Recall how to reconstruct the channel from the “standard” Choi-Jamiołkowski operator ΩAB = (id⊗N )Γ, where
|Γ〉 =

∑d
i=1 |i〉|i〉. The key is the identity

N (ϕ) = TrA
[
ΩAB

(
ϕ⊗ 11

)]
,

with the complex conjugation with respect to the basis {|i〉}di=1 denoted by ·.
Now, if we have any entangled state |Ψ〉 of maximal Schmidt rank, it has a Schmidt form

|Ψ〉 =
d∑
i=1

√
λi|ei〉A|fi〉B ,

with local bases {|ei〉A}di=1 and {|fi〉B}di=1, and strictly positive Schmidt coefficients λi > 0. This means that ΨA =
TrB ΨAB =

∑
i λi|ei〉〈ei| has full rank (in particular it is invertible), so its inverse is well-defined, and(

Ψ−1/2
A ⊗ 11

)
|Ψ〉AB =

∑
i

|ei〉|fi〉.
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Thus, introducing the unitary basis change U : |ei〉 7→ |fi〉, we finally get(
UΨ−1/2

A ⊗ 11
)
|Ψ〉AB =

∑
i

|fi〉|fi〉 =
∑
i

|i〉|i〉 = |Γ〉,

due to the U ⊗ U -invariance of |Γ〉.
So, since the mapping from Ψ to Γ only acts onAwhile the Choi-Jamiołkowski mapping acts only onB, and using

the fact that ρA = ΨA for the generalised Choi-Jamiołkowski state ρAB = (id ⊗N )ΨAB , we finally find that we can
recover the “standard” operator ΩAB as

ΩAB =
(
UΨ−1/2

A ⊗ 11
)
ρAB

(
Ψ−1/2
A U† ⊗ 11

)
.

In other words, using the above identities, the channel can be written

N (ϕ) = TrA
[
ΩAB

(
ϕ⊗ 11

)]
= TrA

[(
UΨ−1/2

A ⊗ 11
)
ρAB

(
Ψ−1/2
A U† ⊗ 11

) (
ϕ⊗ 11

)]
= TrA

[
ρAB

(
ρ
−1/2
A U†ϕUρ

−1/2
A ⊗ 11

)]
,

(A1)

which is eq. (3) needed in the proof of Theorem 1. ut
Different U correspond to choosing different initial reference states Ψ with the same Schmidt spectrum, with

respect to which to formulate the Choi-Jamiołkowski isomorphism. Since in our random selection argument we
don’t mention Ψ to begin with, we are free to put the unitary to U = 11.
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