
A composition theorem for decision tree complexity

Ashley Montanaro∗

Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, UK.

May 23, 2013

Abstract

We completely characterise the complexity in the decision tree model of computing composite
relations of the form h = g ◦ (f1, . . . , fn), where each relation f i is boolean-valued. Immediate
corollaries include a direct sum theorem for decision tree complexity and a tight characterisation
of the decision tree complexity of iterated boolean functions.

1 Introduction

The decision tree model captures the complexity of computing functions f : Xm → Y in a setting
where the quantity of interest is the number of queries to the input (see [1] for a good review of
the model). We are allowed to query individual elements xi ∈ X at unit cost, and seek to compute
f(x1, . . . , xm) using the minimal number of queries.

Here we will be interested in the decision tree complexity of composite functions, i.e. functions
of the form

h(x) = g(f1(x1), . . . , fn(xn)),

where xi ∈ Xmi . One strategy to compute h is first to replace g with the function ḡ given by
substituting the values taken by any constant functions f i into g, and then to compute ḡ using
efficient algorithms for f1, . . . , fn as black boxes. In other words, we use an efficient algorithm for
computing ḡ(y1, . . . , yn), and replace each query to a variable yi with the evaluation of f i(xi) using
an optimal algorithm. As the xi inputs are independent, it is natural to conjecture that this is in fact
always the most efficient way to compute g. However, a moment’s thought shows that this cannot
be the case in general: indeed, consider the function h(x) = g(f(x)), where f : {0, 1}n → {0, 1}n
is the identity function f(x) = x, and g : {0, 1}n → {0, 1} is the function extracting the first bit
of the input, g(y) = y1. Then f requires n queries to be computed, whereas h can be computed
with 1 query. Another simple, but arguably less trivial, example of this phenomenon is illustrated
in Figure 1 below; the key point in this example is that the worst-case input to the functions f i

may not produce an output which is a worst-case input to g.

We will show that, nevertheless, the simple algorithm above is optimal if the functions f i are
boolean-valued, i.e. when Y = {0, 1}. In fact, we prove such a result for the generalisation of the
decision tree model to computing relations. A decision tree computes a relation f ⊆ Xm × Y if,
on input x ∈ Xm, it outputs y such that (x, y) ∈ f (see Section 1.2 for a formal definition of the
model). We call this result a composition theorem for decision tree complexity.

∗am994@cam.ac.uk

1

x1

0 x2

1 2

(a) Optimal tree for f

y1

y2 1 2

0 1 2

(b) Optimal tree for g

x1

x3 x2

0 x4 1 2

1 2

(c) Optimal tree for h

Figure 1: Let f : {0, 1}2 → {0, 1, 2} and g : {0, 1, 2}2 → {0, 1, 2} be defined by the decision trees
above (where edges correspond to elements of {0, 1} or {0, 1, 2} in ascending order from left to
right). Set h(x1, x2, x3, x4) = g(f(x1, x2), f(x3, x4)). Then f and g require 2 queries each to be
computed, but h can be computed using only 3.

1.1 Related work

This work can be seen as fitting into the framework of “direct sum” results in query complexity,
in which there has been significant recent interest (see the thesis [2] for a good review). The basic
aim of such work is to show that, given n independent computational problems, the most efficient
way to solve them all is simply to use an optimal algorithm for each problem separately. While
this claim is intuitively obvious, it is not necessarily easy to prove, and in some cases is even false;
see [2] for some examples.

In particular, Jain, Klauck and Santha have shown [5] such a direct sum theorem for determin-
istic and randomised decision tree complexity. As discussed in [5], previous work had dismissed
this question as uninteresting, but the proof is not immediate. In the deterministic case, the result
of [5] is proven by showing that, given a decision tree T computing n independent outputs, one
can produce n independent trees Ti, one for each output, and lower bounding the depth of T in
terms of the depth of the trees Ti. This approach does not seem suitable for proving a composition
theorem, as given a tree computing h, it is not necessarily possible to produce individual trees for
f1, . . . , fn. On the other hand, the composition theorem given here in fact implies a direct sum
theorem for decision tree complexity (see Section 2.1 for this and other corollaries).

Similar, but more complicated, composition theorems to the present work have been proven for
quantities which are important in the study of quantum query complexity. Høyer, Lee and Špalek [3]
proved that the so-called non-negative weight adversary bound (which we will not define here;
see [3] for details) obeys a composition theorem. Interestingly, their proof is based on generalising
the query model to weighted queries, similarly to the approach taken here. A composition theorem
was later proven for the general adversary bound (in two parts; a lower bound by Høyer, Lee and
Špalek [4], and an upper bound by Reichardt [7]), which was then used by Reichardt to infer a
composition theorem for quantum query complexity [8].

1.2 Relations and decision trees

We use essentially the standard model of decision trees (see e.g. [1] for definitions, and [5] for the
extension to relations). Fix finite sets X and Y , and integer m. A decision tree T is a rooted |X|-
ary tree whose internal vertices are labelled with indices between 1 and n, whose edges are labelled
with elements of X, and whose leaves are labelled with elements of Y . T computes a function
fT : Xn → Y as follows: starting with the root, it queries the input variable indexed by the label

2

of the current vertex and, depending on the outcome, evaluates the corresponding subtree. When
a leaf is reached, the tree outputs the label of that leaf. The depth of T is the maximal length of
a path from the root to a leaf (i.e. the worst-case number of queries used on any input).

We will consider the complexity of computing relations in the decision tree model. Let f ⊆
Xn × Y . We write dom f = {x : ∃y, (x, y) ∈ f} and range f = {y : ∃x, (x, y) ∈ f}, and also
f(x) = {y : (x, y) ∈ f}, f−1(y) = {x : (x, y) ∈ f}. f is said to be a partial function if |f(x)| = 1
for all x ∈ dom f ; in this case, we abuse notation and write f(x) for the single element within the
set f(x). f is a total function if in addition dom f = Xn. We say that f is constant if there exists
y ∈ Y such that f−1(y) = dom f , and trivial if, for all y ∈ Y , f−1(y) = dom f . Note that trivial
relations are constant, and that the empty relation f = ∅ is trivial.

We say that a decision tree T computes a relation f if, for all x ∈ dom f , on input x, T outputs
y such that (x, y) ∈ f , i.e. fT (x) ∈ f(x) for all x ∈ dom f . If this holds, we say that fT is consistent
with f . The decision tree complexity D(f) is the minimal depth over all decision trees computing
f . This quantity is also known as the exact (classical) query complexity of f .

This can be generalised to define a weighted variant of decision tree complexity D(f, [w1, . . . , wn]),
which is equal to the minimal worst-case number of queries required to compute f , given that query-
ing the i’th element of the input costs wi queries. This can again be expressed as the minimal depth
of a decision tree computing f with weights w1, . . . , wn on the inputs, where the depth of a de-
cision tree T with weights on the inputs is simply the maximal sum of the weights of the inputs
specified by the labels of vertices of T , on any path from the root to a leaf. The usual decision tree
complexity is recovered by setting D(f) = D(f, [1, . . . , 1]).

For f ⊆ Xn×Y , let fi←b ⊆ Xn×Y be the modification of f we obtain by substituting b as the
i’th input to f . That is,

fi←b = {(x, y) ∈ f : xi = b}.

We can use this definition to write down the following characterisation of weighted decision tree
complexity (indeed, this could even be seen as its definition).

Fact 1. Let f ⊆ Xn × Y , and w1, . . . , wn ∈ N. Then D(f, [w1, . . . , wn]) = 0 if and only if f is
constant. If f is not constant,

D(f, [w1, . . . , wn]) = min
i∈[n]

max
b∈X

D(fi←b, [w1, . . . , wn]) + wi.

Proof. If f is constant, the tree can simply output y such that f−1(y) = dom f using no queries.
On the other hand, if there exists a tree that computes f and makes no queries, then there is only
one fixed value y that is output by the tree; so for all x ∈ dom f , (x, y) ∈ f ; so f−1(y) = dom f .
If f is not constant, then for any i, we can produce a tree computing f with weights w1, . . . , wn

by first querying the i’th variable, obtaining outcome b, then using an optimal tree for fi←b with
weights w1, . . . , wn. This proves the “≤” part. For the “≥” part, given a tree computing f which
makes its first query to the i’th variable, where i achieves the minimum above, we can obtain a
tree for computing fi←b, for any b ∈ X, by simulating this tree, replacing the first query with the
constant b and hence saving weight wi.

In the above fact, and the rest of the paper, we write [n] for {1, . . . , n}.

3

1.3 Composition of relations

For i ∈ [n], let f i ⊆ Xmi×Y , and g ⊆ Y n×Z. Set m =
∑n

i=1mi. The composition g ◦ (f1, . . . , fn)
is defined as

{(x, z) ∈ Xm × Z : ∃y ∈ Y n,∀i (xi, yi) ∈ f i ∧ (y, z) ∈ g},

where we write x = (x1, . . . , xn), with xi ∈ Xmi . If f and g are total functions, this simply says
that for all x ∈ Xm,

h(x) = g(f1(x1), . . . , fn(xn)).

In words, an algorithm to compute the relation h on input x has to output an arbitrary z such that
z ∈ g(y), for some y such that for all i, yi ∈ f i(xi).

Assume that f i is non-trivial for all i. If some of the relations f i are constant (i.e. (f i)−1(bi) =
dom f i, for some bi ∈ Y), this expression for h can be simplified by removing these inputs and
modifying g appropriately. Write ḡ for the relation obtained by fixing constants to the inputs to g,
where possible. In other words, if S ⊆ [n] is the set of indices i such that f i is not constant, then

ḡ = {(y, z) ∈ g : yi = bi, i /∈ S},

h = ḡ ◦ (f1, . . . , fn) = {(x, z) ∈ Xm × Z : ∃y ∈ Y n,∀i ∈ S, (xi, yi) ∈ f i ∧ (y, z) ∈ ḡ}.

2 A composition theorem

We are finally ready to state and prove our main result.

Theorem 2. Fix n ∈ N and finite sets X, Z. Let g ⊆ {0, 1}n × Z, and for 1 ≤ i ≤ n, let
f i ⊆ Xmi × {0, 1} be non-trivial. Set m =

∑
imi. Define h ⊆ Xm × Z by

h = g ◦ (f1, . . . , fn).

Also let ḡ be the relation given by fixing constant inputs to g. That is, for each i, if (f i)−1(bi) =
dom f i, then g is replaced with gi←bi (as f i is non-trivial, there is exactly one such bi). Then

D(h) = D(ḡ, [D(f1), . . . , D(fn)]).

Proof. To see that D(h) ≤ D(ḡ, [D(f1), . . . , D(fn)]), observe that the algorithm discussed in the
introduction achieves this complexity. Formally, we compute h as follows: first form a new relation
ḡ by replacing constant relations f i with corresponding constants as inputs to g; then use an optimal
tree for computing ḡ with weights D(f1), . . . , D(fn), replacing each query to the i’th variable with
the use of an optimal tree for f i. The more interesting part is the corresponding lower bound, the
proof of which proceeds by induction on D(h).

For the base case, we need to show that if D(h) = 0, then D(ḡ, [D(f1), . . . , D(fn)]) = 0. This
claim is intuitively obvious for functions, where the contrapositive can be proven as follows. If ḡ
is not constant, then there exist distinct inputs y, y′ ∈ {0, 1}n such that ḡ(y) 6= ḡ(y′), where for
each i such that f i is constant (say f i(xi) = ci for all xi), yi = y′i = ci. For each i such that f i is
not constant, as f i is boolean-valued it can in fact achieve every possible value, so there exist ai,
bi such that f i(ai) = yi, f

i(bi) = y′i; thus h(a1, . . . , an) 6= h(b1, . . . , bn), so h is not constant. In the
more general case where f1, . . . , fn and g are relations, the notion of composition is less intuitive
and we therefore proceed carefully in what follows.

4

So set h = g ◦ (f1, . . . , fn) and assume that D(h) = 0. Then h is constant. By definition, this
implies that there exists z such that the following holds: For all x = (x1, . . . , xn) such that there
exist y′ ∈ {0, 1}n and z′ ∈ Z with (xi, y′i) ∈ f i for all i and (y′, z′) ∈ g, there exists y ∈ {0, 1}n
such that (xi, yi) ∈ f i for all i and (y, z) ∈ g. Let S = {i : f i is not constant}. For all i ∈ S,
let ai, bi ∈ Xmi be picked such that (ai, 0) ∈ f , (ai, 1) /∈ f , (bi, 0) /∈ f and (bi, 1) ∈ f . As
f i is boolean-valued and not constant, such elements ai, bi exist. Further, for all i /∈ S, let ci
satisfy (f i)−1(ci) = dom f i. As f i is not trivial, ci is unique and there exists di ∈ Xmi such that
(di, ci) ∈ f i, but (di, c′i) /∈ f i for c′i 6= ci.

For s : S → {0, 1}, let the string y(s) ∈ {0, 1}n be defined as follows: y(s)i = s(i) for i ∈ S, and
y(s)i = ci for i /∈ S. For each distinct input x ∈ {0, 1}m whose i’th block is equal to ai or bi (for
i ∈ S) or di (for i /∈ S), a different string y(s) is obtained, and if (x, y) ∈ (f1, . . . , fn), y = y(s). In
particular, by choosing s appropriately one can produce any y ∈ dom ḡ. As there is exactly one y
such that (x, y) ∈ (f1, . . . , fn), and h is constant, (y, z) ∈ g. Thus, for all y ∈ dom ḡ, (y, z) ∈ ḡ.
Hence ḡ is constant and D(ḡ, [D(f1), . . . , D(fn)]) = 0 as required.

For the inductive step, assume that D(h) = D(ḡ, [D(f1), . . . , D(fn)]) for all relations h =
g ◦ (f1, . . . , fn) such that f i is non-trivial for all i, and such that D(h) ≤ k, for some k. Now let
h = g ◦ (f1, . . . , fn) satisfy D(h) = k + 1. As h is not constant, by Fact 1

D(h) = min
i∈[m]

max
b∈X

D(hi←b) + 1

= min
i∈[n]

min
j∈[mi]

max
b∈X

D(g ◦ (f1, . . . , f i
j←b, . . . , f

n)) + 1.

As f i is non-trivial for all i, for any pair i, j there exists b′ such that f i
j←b′ is non-trivial. Thus,

for b achieving the above maximum, f i
j←b is non-trivial. Let i, j be the indices achieving the above

minimum. Then, by the inductive hypothesis,

max
b∈X

D(g ◦ (f1, . . . , f i
j←b, . . . , f

n)) = max
b∈X

D(¯̄g, [D(f1), . . . , D(f i
j←b), . . . , D(fn)]),

where ¯̄g is the relation obtained by substituting bk as the k’th input to g, for all k 6= i such that
(fk)−1(bk) = dom fk, and also substituting bi as the i’th input to g if (f i

j←b)
−1(bi) = dom f i

j←b.
We thus have

D(h) = max
b∈X

D(¯̄g, [D(f1), . . . , D(f i
j←b), . . . , D(fn)]) + 1

= D(¯̄g, [D(f1), . . . ,max
b∈X

D(f i
j←b), . . . , D(fn)]) + 1,

where the second equality holds because decreasing any of the weights cannot increase the decision
tree complexity. First assume that, for b achieving the maximum, f i

j←b is not constant. Then ¯̄g = ḡ
and

D(h) = D(ḡ, [D(f1), . . . ,max
b∈X

D(f i
j←b), . . . , D(fn)]) + 1

≥ D(ḡ, [D(f1), . . . , D(f i)− 1, . . . , D(fn)]) + 1

≥ D(ḡ, [D(f1), . . . , D(fn)])

as required. The first inequality follows from D(f i) ≤ maxb∈X D(f i
j←b) + 1, while the second holds

because, to find a decision tree T which computes ḡ with weight D(f i) on the i’th variable, we
can just use an optimal decision tree T ′ for ḡ with weight D(f i)− 1 on the i’th variable. As T ′ is

5

optimal, we only encounter the i’th variable at most once on any path from the root to a leaf, so
the depth of T is upper bounded by the depth of T ′, plus 1.

On the other hand, now assume that, for b achieving the maximum, f i
j←b is constant. Then

it must hold that D(f i) = 1 (if f i were already constant, querying any of the variables on which
it depends would not achieve the overall minimum; if f i is not constant, and there exists b′ ∈ X
such that f i

j←b′ is not constant, such a b′ would achieve the maximum over b; hence D(f i) =

1). So we can produce a decision tree for ḡ with weights D(f1), . . . , D(fn) by computing f i

using one query to the j’th variable and then using an optimal decision tree for ¯̄g with weights
D(f1), . . . , D(f i−1), 0, D(f i+1), . . . , D(fn). Thus

D(ḡ, [D(f1), . . . , D(fn)]) ≤ max
b∈X

D(¯̄g, [D(f1), . . . , D(f i
j←b), . . . , D(fn)]) + 1 = D(h)

as required, completing the proof.

2.1 Corollaries

We finish by noting a few simple corollaries of Theorem 2 that can be useful in amplifying sepa-
rations between decision tree complexity and other complexity measures. We begin by considering
the case where all the relations f i are the same.

Corollary 3. Fix f ⊆ Xk×{0, 1} and g ⊆ {0, 1}n×Z. Define h ⊆ Xnk×Z as h = g◦(f, f, . . . , f).
Then D(h) = D(f)D(g).

Proof. If f is constant, then D(h) = 0. Otherwise, take f1 = · · · = fn = f in Theorem 2. Then
D(h) = D(g, [D(f), . . . , D(f)]) = D(f)D(g).

Second, we observe that the composition theorem can be used to characterise the decision tree
complexity of an iterated boolean function, via the following corollary.

Corollary 4. For any f : {0, 1}n → {0, 1}, let the k-fold iteration of f , f (k) : {0, 1}nk → {0, 1}, be

defined as follows. Set f (1) = f , and for k ≥ 2, split the input x ∈ {0, 1}nk
into blocks x1, . . . , xn

of nk−1 bits each, and set f (k)(x) = f(f (k−1)(x1), . . . , f (k−1)(xn)). Then D(f (k)) = D(f)k.

Proof. If f is constant, then D(f (k)) = 0 = D(f)k. Otherwise, by Theorem 2, for k ≥ 2, D(f (k)) =
D(f, [D(f (k−1)), . . . , D(f (k−1))]) = D(f)D(f (k−1)). The claim follows by induction.

Nisan and Szegedy used an iterated version of the “not all equal” function on 3 bits to prove an
asymptotic separation between decision tree complexity and polynomial degree [6], based on lower
bounding decision tree complexity by sensitivity. Corollary 4 gives a direct proof of their decision
tree lower bound.

Finally, we obtain the following special case of a direct sum result of Jain, Klauck and Santha [5].

Corollary 5. For any non-trivial f1, . . . , fn ⊆ Xk × {0, 1}, let h ⊆ Xkn × {0, 1}n be defined by
h = (f1, f2, . . . , fn). Then D(h) =

∑
i∈[n]D(f i).

Proof. Take g(y1, . . . , yn) = (y1, . . . , yn) in Theorem 2. Then D(h) = D(ḡ, [D(f1), . . . , D(fn)]). Let
S = {i : f i is not constant}. Then D(ḡ, [D(f1), . . . , D(fn)]) =

∑
i∈S D(f i) =

∑
i∈[n]D(f i).

The proof technique of [5] allows the range of each relation f i to be arbitrary, rather than being
restricted to {0, 1} as here.

6

3 Outlook

We have completely characterised the decision tree complexity of composed relations of the form
h = g ◦ (f1, . . . , fn) in the setting where each relation f i has range {0, 1}. It is natural to speculate
whether one can still prove some form of composition result if this restriction is relaxed. Although
the counterexamples given in the Introduction show that there can be no immediate analogue of
Theorem 2 that holds in general, it might be the case that one could formulate a valid (albeit
presumably more complicated) generalisation. Considering the direct sum result of Jain, Klauck
and Santha [5] (where g is fixed, but the relations f i are arbitrary) and the counterexamples of the
Introduction, any such result would need to be phrased in terms of some joint property of g and
the relations f i.

Acknowledgements

I would like to thank Graeme Mitchison and Toby Cubitt for helpful discussions and comments on
this work, and an anonymous referee for inspiring it. I would also like to thank several anonymous
referees for their helpful comments on a previous version.

References

[1] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288:21–43, 2002.

[2] A. Drucker. The Complexity of Joint Computation. PhD thesis, MIT, 2012.

[3] P. Høyer, T. Lee, and R. Špalek. Tight adversary bounds for composite functions, 2005.
quant-ph/0509067.

[4] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proc. 39th

Annual ACM Symp. Theory of Computing, pages 526–535, 2007. quant-ph/0611054.

[5] R. Jain, H. Klauck, and M. Santha. Optimal direct sum results for deterministic and randomized
decision tree complexity. Inf. Proc. Lett., 110(20):893–897, 2010. arXiv:1004.0105.

[6] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computa-
tional Complexity, 4(4):301–313, 1994.

[7] B. Reichardt. Span programs and quantum query complexity: The general adversary bound is
nearly tight for every boolean function. In Proc. 50th Annual Symp. Foundations of Computer
Science, pages 544–551, 2009. arXiv:0904.2759.

[8] B. Reichardt. Reflections for quantum query algorithms. In Proc. 22nd ACM-SIAM Symp.
Discrete Algorithms, pages 560–569, 2011. arXiv:1005.1601.

7

quant-ph/0509067
quant-ph/0611054
arXiv:1004.0105
arXiv:0904.2759
arXiv:1005.1601

	Introduction
	Related work
	Relations and decision trees
	Composition of relations

	A composition theorem
	Corollaries

	Outlook

