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Abstract

In this note we study the number of quantum queries required to identify an unknown
multilinear polynomial of degree d in n variables over a finite field Fq. Any bounded-error
classical algorithm for this task requires Ω(nd) queries to the polynomial. We give an exact
quantum algorithm that uses O(nd−1) queries for constant d, which is optimal. In the case
q = 2, this gives a quantum algorithm that uses O(nd−1) queries to identify a codeword picked
from the binary Reed-Muller code of order d.

1 Introduction

A central problem in computational learning theory is to determine the complexity of identifying
an unknown function of a certain type, given access to that function via an oracle. We say that a
class F of functions can be learned using t queries if any function f ∈ F can be identified with t
uses of f (perhaps allowing some probability of error). It is known that some classes of functions
can be learned more efficiently by quantum algorithms than is possible classically. In particular,
one of the earliest results in the field of quantum computation is that the class of linear functions
Fn2 → F2 (also known as Hadamard codewords) can be learned using a single quantum query [2],
whereas Ω(n) queries are required classically. Here we generalise this result to quantum learning
of multilinear functions over general finite fields.

Let Fq denote the finite field with q = pr elements for some prime p. Every function f : Fnq → Fq
can be represented as a polynomial in n variables over Fq. f is said to be a degree d polynomial if
it can be written as a polynomial whose every term is of total degree at most d. For example, the
function f : F3

5 → F5 defined by f(x) = 2x1 + 4x21x2 + x1x2x3 is a degree 3 polynomial. The set of
polynomials of degree d in n variables over Fq is known as the (generalised) Reed-Muller code of
order d over Fq.

We say that a degree d polynomial f : Fnq → Fq is multilinear if it can be written as

f(x) =
∑

S⊆[n],|S|≤d

αS
∏
i∈S

xi

for some coefficients αS ∈ Fq, where [n] denotes the set {1, . . . , n}. Note that in the case S = ∅ we
define

∏
i∈S xi = 1. For example, any multilinear polynomial of degree 3 can be written as

f(x) = α∅ +
∑
i

α{i}xi +
∑
i<j

α{i,j}xixj +
∑
i<j<k

α{i,j,k}xixjxk.
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Technically, such functions are multiaffine rather than multilinear, as they are affine in each variable;
however, we use the “multilinear” terminology for consistency with prior work. In particular, note
that in this terminology, linear functions f : Fnq → Fq (i.e. functions such that f(x+y) = f(x)+f(y))
are equivalent to degree 1 multilinear polynomials with no constant term. In the important special
case q = 2 (Boolean functions), every function f : Fn2 → F2 is multilinear.

Given the ability to query a multilinear degree d polynomial f on arbitrary x ∈ Fnq , we would
like to determine (learn) f using the smallest possible number of queries. A straightforward classical
algorithm can solve this problem by querying f(x) for all strings x ∈ Fnq that contain only 0 and
1, and such that |x| ≤ d. (We write |x| for the Hamming weight of x ∈ Fnq , i.e. the number of
non-zero components.) To see this, first consider the special case where for some k, αS = 0 for all
S such that |S| < k. Then knowing f(x) for all x of the above form such that |x| = k is sufficient
to determine all of the degree k coefficients of f (note that this relies on f being multilinear). More
generally, let fk denote the degree k part of f , i.e.

fk(x) =
∑

S⊆[n],|S|=k

αS
∏
i∈S

xi.

For any k, once f` is known for all ` ≤ k, the degree k + 1 coefficients can be determined from the
inputs of Hamming weight k + 1: whenever f is queried on x, subtract

∑k
`=0 f`(x) from the result

to simulate that αS = 0 for all S such that |S| ≤ k. The algorithm can therefore learn f with
certainty using 1 + n+

(
n
2

)
+
(
n
3

)
+ · · ·+

(
n
d

)
queries, which is O(nd) for constant d. In the special

case of functions f : Fn2 → F2, all polynomials are multilinear. This implies that the class of all
degree d polynomials f : Fn2 → F2 can be learned using O(nd) queries.

It is also easy to see that the above algorithm is exactly optimal in an information-theoretic
sense. As the number of distinct multilinear degree d polynomials of n variables over Fq is equal to

q1+n+(n2)+(n3)+···+(nd),

and as a classical query to f only provides log2 q bits of information, any classical algorithm must
make 1 + n +

(
n
2

)
+
(
n
3

)
+ · · · +

(
n
d

)
= Ω(nd) queries to f in order to identify it with certainty. A

similar bound can be proven for bounded-error algorithms. Indeed, let f be picked uniformly at
random, and consider an algorithm (without loss of generality deterministic) that makes at most c
queries to f before it outputs an answer. Such an algorithm can output the correct answer for at

most qc functions f , and hence succeeds with probability at most qc−(1+n+(n2)+(n3)+···+(nd)).

Using similar techniques, one can find a lower bound for quantum query algorithms [8]. In the
standard quantum query model, the algorithm accesses f via the unitary operation Of |x〉|y〉 =
|x〉|y+ f(x)〉, where x ∈ Fnq , y ∈ Fq. We formalise a lower bound on the number of queries required
to identify f in this model as the following proposition1.

Proposition 1. Let f : Fnq → Fq be a multilinear degree d polynomial over Fq. Then any quantum

query algorithm which learns f with bounded error must make Ω(nd−1) queries to f .

Proof. Each query can be seen as a round of a communication process, where in each round the
algorithm sends the registers |x〉 and |y〉 to the oracle, using (n+1) log2 q qubits of communication;
the oracle then performs the map |x〉|y〉 7→ |x〉|y+ f(x)〉 and returns the registers to the algorithm.
Let f be picked uniformly at random from the set of degree d multilinear polynomials, let X

1In the case q = 2, this lower bound can also be obtained from independent results of Farhi et al [6] and Servedio
and Gortler [13].
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be the corresponding random variable, and let Y be the random variable corresponding to the
function which is output by the algorithm. By Holevo’s theorem [7] (see also [3]), after r rounds of
communication, the mutual information between X and Y satisfies the upper bound

I(X : Y ) ≤ 2r(n+ 1) log2 q.

On the other hand, Fano’s inequality [4] states that the probability Pe of identifying f incorrectly
satisfies the lower bound

Pe ≥ 1− I(X : Y ) + 1

log2

(
q1+n+(n2)+(n3)+···+(nd)

) ,
which thus implies that

Pe ≥ 1− 2r(n+ 1) + 1/ log2 q

1 + n+
(
n
2

)
+
(
n
3

)
+ · · ·+

(
n
d

) .
For this quantity to be upper bounded by a constant, we must have r = Ω(nd−1).

The main result of this note is that this asymptotic scaling can actually be achieved.

Theorem 2. Let f : Fnq → Fq be a multilinear degree d polynomial over Fq. Then there is an exact

quantum algorithm which learns f with certainty using 1 +
∑d

i=1 2i−1
(
n
i−1
)

queries to f , which is

O(nd−1) for constant d.

The case d = 1, q = 2 of this result was previously proven by Bernstein and Vazirani [2], while
a bounded-error quantum algorithm using O(n) queries for the case d = 2, q = 2 was more recently
given by Rötteler [12]; by contrast, the algorithm given here is exact and works for all d and all
fields Fq. In related work, a quantum algorithm for estimating quadratic forms over the reals using
O(n) queries had previously been given by Jordan [9, Appendix D].

2 Proof of Theorem 2

The only quantum ingredient we will need to prove Theorem 2 is the following lemma, which is
implicit in [1, 5] and is a simple extension of the Bernstein-Vazirani algorithm [2] for identifying
linear functions over F2.

Lemma 3 ([1, 5]). Let f : Fnq → Fq be linear, and let g : Fnq → Fq be the function g(x) = f(x) + β
for some constant β ∈ Fq. Then f can be determined exactly using one quantum query to g.

For completeness, we give a full proof of Lemma 3 in Appendix A.

We will derive a quantum algorithm to learn an unknown multilinear degree d polynomial f
by introducing a linear function fS of n variables which can be produced using a relatively small
number of queries to f , and from which f can be determined using Lemma 3. This technique is
somewhat similar to the approach used to learn quadratic polynomials with bounded error in the
work [12]. A related function was previously used by Kaufman and Ron [10] to produce an efficient
classical tester for low-degree polynomials over finite fields.

For any k-subset S ⊆ [n], let Sj denote the j’th element of S, where S is considered as an
increasing sequence of integers. For i ∈ [n], let ei denote the i’th element in the standard basis for
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the vector space Fnq . For any f : Fnq → Fq and any subset S ⊆ [n], define the function fS : Fnq → Fq
as follows:

fS(x) =
∑

β1,...,βk∈{0,1}

(−1)k−
∑k

i=1 βi f

x+
k∑
j=1

βjeSj

 ,

where the inner sum is over Fnq and the outer sum is over Fq. For example, for S = {1, 2},
fS(x) = f(x)− f(x+ e1)− f(x+ e2) + f(x+ e1 + e2). When q = 2, fS(x) sums f over the affine
subspace of Fn2 positioned at x and spanned by {ei : i ∈ S}. It is clear that a query to fS can be
simulated using 2k queries to f . One way of understanding fS is in terms of discrete derivative
operators. If we define the discrete derivative of f in direction i ∈ [n] as (∆if)(x) = f(x+ei)−f(x),
then fS(x) = (∆S1∆S2 . . .∆Sk

f)(x). In other words, fS is the function obtained by taking the
derivative of f with respect to all of the variables in S.

We will be interested in querying fS for sets S of size d− 1. In this case, we have the following
characterisation for multilinear polynomials f .

Lemma 4. Let f : Fnq → Fq be a multilinear polynomial of degree d with expansion

f(x) =
∑

T⊆[n],|T |≤d

αT
∏
i∈T

xi.

Then, for any S such that |S| = d− 1,

fS(x) = αS +
∑
k/∈S

αS∪{k}xk.

Lemma 4 follows easily from expressing fS in terms of discrete derivatives; we also give a simple
direct proof in Appendix B. We are now ready to describe a quantum algorithm which uses fS to
learn the degree d component of f .

Algorithm 1: Learning the degree d component of f

foreach S ⊆ [n] such that |S| = d− 1 do
Use one query to fS to learn the coefficients αS∪{k}, for all k /∈ S;

end
Output the function fd defined by fd(x) =

∑
S⊆[n],|S|=d αS

∏
i∈S xi;

Correctness of this algorithm follows from Lemmas 3 and 4. By Lemma 4, for any S such that
|S| = d − 1, knowledge of the degree 1 component of fS is sufficient to determine αS∪{k} for all
k /∈ S. Therefore, knowing the degree 1 part of fS for all S ⊆ [n] such that |S| = d− 1 is sufficient
to completely determine all degree d coefficients of f . By Lemma 3, for any S with |S| = d − 1,
the degree 1 component of fS can be determined with one quantum query to fS . This implies that
Algorithm 1 completely determines the degree d component of f using

(
n
d−1
)

queries to fS , each of

which uses 2d−1 queries to f .

Once the degree d component of f has been learned, f can be reduced to a degree d − 1
polynomial by crossing out the degree d part whenever the oracle for f is called. That is, whenever
the oracle is called on x, we subtract fd(x) from the result (recall fd is the degree d part of f), at
no extra query cost. Inductively, f can be determined completely using

2d−1
(

n

d− 1

)
+ 2d−2

(
n

d− 2

)
+ · · ·+ 2n+ 1 + 1
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queries; the last query is to determine the constant term α∅, which can be achieved by classically
querying f(0n). The number of queries used is therefore O(nd−1) for constant d, completing the
proof of Theorem 2.
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A Quantum learning of linear functions

In order to prove Lemma 3, we will use the quantum Fourier transform (QFT) over general finite
fields. This was originally defined by de Beaudrap, Cleve and Watrous [1] and independently by
van Dam, Hallgren and Ip [5]. The QFT over Fq is defined as the unitary operation

Qq|x〉 =
1
√
q

∑
y∈Fq

ωTr(xy)|y〉,

where ω = e2πi/p (recall q = pr) and the trace function Tr : Fq → Fp is defined by Tr(x) :=

x+ xp + xp
2

+ · · ·+ xp
r−1

. If q is prime (i.e. r = 1), then of course Tr(x) = x. The trace is linear:
Tr(x+y) = Tr(x)+Tr(y) (see [11] for the proof of this and other standard facts about finite fields).
This allows the n-fold tensor product of QFTs to be written concisely as

Q⊗nq |x〉 =
1

qn/2

∑
y∈Fn

q

ωTr(x·y)|y〉,

where x · y =
∑n

i=1 xiyi, the sum being taken over Fq.
For any function f : Fq → Fq, let Uf be the unitary operator that maps |x〉 7→ ωTr(f(x))|x〉.

Given access to f , Uf can be implemented using a standard phase kickback trick as follows.

Lemma 5 ([1, 5]). Uf can be implemented using one query to f .

Proof. To implement Uf , append an ancilla register |y〉, y ∈ Fq, in the initial state |1〉. Apply Q−1q
to this register to produce

1
√
q

∑
y∈Fq

ω−Tr(y)|y〉,

then apply Of to both registers (recall Of |x〉|y〉 = |x〉|y + f(x)〉). For any x ∈ Fq, the initial state
|x〉|1〉 is mapped to

1
√
q
|x〉
∑
y∈Fq

ω−Tr(y)|y + f(x)〉 =
1
√
q
|x〉
∑
y∈Fq

ω−Tr(y−f(x))|y〉 = ωTr f(x)|x〉 1
√
q

∑
y∈Fq

ω−Tr(y)|y〉,

where we use the linearity of the trace function. As the second register is left unchanged by Of , it
can be ignored.

We are now ready to prove Lemma 3.
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Lemma 3 ([1, 5]). Let f : Fnq → Fq be linear, and let g : Fnq → Fq be the function g(x) = f(x) + β
for some constant β ∈ Fq. Then f can be determined exactly using one quantum query to g.

Proof. First observe that f will be linear if and only if f(x) = a · x =
∑n

i=1 aixi for some a ∈ Fnq .
Create the state

|ψg〉 :=
1

qn/2

∑
x∈Fn

q

ωTr(a·x+β)|x〉

via the technique of Lemma 5, using one query to g. Now apply the n-fold tensor product of the
inverse quantum Fourier transform to produce

(Q−1q )⊗n|ψg〉 =
1

qn

∑
x∈Fn

q

ωTr(a·x+β)
∑
y∈Fn

q

ω−Tr(x·y)|y〉 =
1

qn
ωTr(β)

∑
y∈Fn

q

∑
x∈Fn

q

ωTr((a−y)·x)

 |y〉.
Note that β has been relegated to an unobservable global phase, and the sum over x will be zero
unless y = a, in which case it will equal qn. A measurement in the computational basis therefore
yields a with certainty, which suffices to determine f .

B Proof of Lemma 4

We finally prove Lemma 4, which we restate for convenience.

Lemma 4. Let f : Fnq → Fq be a multilinear polynomial of degree d with expansion

f(x) =
∑

T⊆[n],|T |≤d

αT
∏
i∈T

xi.

Then, for any S such that |S| = d− 1,

fS(x) = αS +
∑
k/∈S

αS∪{k}xk.

Proof. For brevity, write |β| =
∑d−1

i=1 βi. Let δxy be the Dirac delta function (δxy = 1 if x = y, and
δxy = 0 otherwise). By the definition of fS , for any x ∈ Fnq we have

fS(x) =
∑

β1,...,βd−1∈{0,1}

(−1)d−1−|β|
∑

T⊆[n],|T |≤d

αT
∏
i∈T

xi +
d−1∑
j=1

βj(eSj )i


= (−1)d−1

∑
T⊆[n],|T |≤d

αT
∑

β1,...,βd−1∈{0,1}

(−1)|β|
∏
i∈T

xi +

d−1∑
j=1

βjδSji

 .

Now note that for all T such that S * T , the sum over β1, . . . , βd−1 will equal 0. This is because
in this case there must exist an index j ∈ [d− 1] such that Sj /∈ T , so for this j, βj does not appear
in the product over T . So, after summing over the βi such that i 6= j, we are left with the sum
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∑
βj∈{0,1}(−1)βjKT for some constant KT ; this evaluates to 0 for any KT . As |S| = d − 1 and

|T | ≤ d, this implies that we can rewrite fS(x) as

fS(x) = (−1)d−1αS
∑

β1,...,βd−1∈{0,1}

(−1)|β|
∏
i∈S

xi +
d−1∑
j=1

βjδSji


+ (−1)d−1

∑
k/∈S

αS∪{k}
∑

β1,...,βd−1∈{0,1}

(−1)|β|
∏

i∈S∪{k}

xi +
d−1∑
j=1

βjδSji


= (−1)d−1αS

∑
β1,...,βd−1∈{0,1}

(−1)|β|
d−1∏
i=1

(xSi + βi)

+ (−1)d−1
∑
k/∈S

αS∪{k}
∑

β1,...,βd−1∈{0,1}

(−1)|β|xk

d−1∏
i=1

(xSi + βi)

= (−1)d−1

d−1∏
i=1

 ∑
βi∈{0,1}

(−1)βi(xSi + βi)

(αS +
∑
k/∈S

αS∪{k}xk

)

= αS +
∑
k/∈S

αS∪{k}xk

as claimed.
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