
Quantum walk speedup of backtracking
algorithms

Ashley Montanaro

School of Mathematics, University of Bristol

8 December 2015

arXiv:1509.02374

Constraint satisfaction problems

This talk is about a quantum algorithm for solving general
constraint satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to the variables
that satisfies all the constraints, or list all such
assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A fundamental example: boolean satisfiability with at
most 3 variables per clause (3-SAT).

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Constraint satisfaction problems

This talk is about a quantum algorithm for solving general
constraint satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to the variables
that satisfies all the constraints, or list all such
assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A fundamental example: boolean satisfiability with at
most 3 variables per clause (3-SAT).

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Constraint satisfaction problems

This talk is about a quantum algorithm for solving general
constraint satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to the variables
that satisfies all the constraints, or list all such
assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A fundamental example: boolean satisfiability with at
most 3 variables per clause (3-SAT).

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Constraint satisfaction problems

This talk is about a quantum algorithm for solving general
constraint satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to the variables
that satisfies all the constraints, or list all such
assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A fundamental example: boolean satisfiability with at
most 3 variables per clause (3-SAT).

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Constraint satisfaction problems

This talk is about a quantum algorithm for solving general
constraint satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to the variables
that satisfies all the constraints, or list all such
assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A fundamental example: boolean satisfiability with at
most 3 variables per clause (3-SAT).

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

A naı̈ve algorithm

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Imagine we want to find all satisfying assignments. One naı̈ve
way of doing this is exhaustive search:

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A less naı̈ve algorithm

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Some paths in this tree are disallowed early on. . .

For example, if we set x1 = 0, x2 = 0, we already know the
formula is false.

We can modify the above algorithm to explore a smaller
tree by checking whether the formula is true (or false) at
internal nodes in the tree.

Following an edge corresponds to substituting the
specified value of the parent variable into the formula.

At each vertex, we determine which variable to choose
next using a heuristic.

A less naı̈ve algorithm

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Some paths in this tree are disallowed early on. . .

For example, if we set x1 = 0, x2 = 0, we already know the
formula is false.

We can modify the above algorithm to explore a smaller
tree by checking whether the formula is true (or false) at
internal nodes in the tree.

Following an edge corresponds to substituting the
specified value of the parent variable into the formula.

At each vertex, we determine which variable to choose
next using a heuristic.

A less naı̈ve algorithm

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Some paths in this tree are disallowed early on. . .

For example, if we set x1 = 0, x2 = 0, we already know the
formula is false.

We can modify the above algorithm to explore a smaller
tree by checking whether the formula is true (or false) at
internal nodes in the tree.

Following an edge corresponds to substituting the
specified value of the parent variable into the formula.

At each vertex, we determine which variable to choose
next using a heuristic.

A less naı̈ve algorithm

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Some paths in this tree are disallowed early on. . .

For example, if we set x1 = 0, x2 = 0, we already know the
formula is false.

We can modify the above algorithm to explore a smaller
tree by checking whether the formula is true (or false) at
internal nodes in the tree.

Following an edge corresponds to substituting the
specified value of the parent variable into the formula.

At each vertex, we determine which variable to choose
next using a heuristic.

A less naı̈ve algorithm
(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Imagine we use the following heuristic: branch on an arbitrary
variable in a shortest clause.

Then we can get the following smaller tree:

x1

x2 x2

x3 x3 x4

0 1

0 1 0 1

0 1 0 1 0 1

This algorithm is a simple variant of the DPLL algorithm,
which forms the basis of many of the most efficient SAT
solvers used in practice.

A less naı̈ve algorithm
(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Imagine we use the following heuristic: branch on an arbitrary
variable in a shortest clause.

Then we can get the following smaller tree:

x1

x2 x2

x3 x3 x4

0 1

0 1 0 1

0 1 0 1 0 1

This algorithm is a simple variant of the DPLL algorithm,
which forms the basis of many of the most efficient SAT
solvers used in practice.

A less naı̈ve algorithm
(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3)

Imagine we use the following heuristic: branch on an arbitrary
variable in a shortest clause.

Then we can get the following smaller tree:

x1

x2 x2

x3 x3 x4

0 1

0 1 0 1

0 1 0 1 0 1

This algorithm is a simple variant of the DPLL algorithm,
which forms the basis of many of the most efficient SAT
solvers used in practice.

General backtracking framework

Suppose we want to solve a constraint satisfaction problem on
n variables, each picked from [d] := {0, . . . , d − 1}.

Write D := ([d] ∪ {∗})n, where ∗ means “not assigned yet”.

Assume we have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

Also assume we have access to a heuristic

h : D→ {1, . . . ,n}

which returns the next index to branch on from a given
partial assignment.

Also allows randomised heuristics, as distributions over
deterministic functions h.

General backtracking framework

Suppose we want to solve a constraint satisfaction problem on
n variables, each picked from [d] := {0, . . . , d − 1}.

Write D := ([d] ∪ {∗})n, where ∗ means “not assigned yet”.

Assume we have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

Also assume we have access to a heuristic

h : D→ {1, . . . ,n}

which returns the next index to branch on from a given
partial assignment.

Also allows randomised heuristics, as distributions over
deterministic functions h.

General backtracking framework

Suppose we want to solve a constraint satisfaction problem on
n variables, each picked from [d] := {0, . . . , d − 1}.

Write D := ([d] ∪ {∗})n, where ∗ means “not assigned yet”.

Assume we have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

Also assume we have access to a heuristic

h : D→ {1, . . . ,n}

which returns the next index to branch on from a given
partial assignment.

Also allows randomised heuristics, as distributions over
deterministic functions h.

General backtracking framework

Suppose we want to solve a constraint satisfaction problem on
n variables, each picked from [d] := {0, . . . , d − 1}.

Write D := ([d] ∪ {∗})n, where ∗ means “not assigned yet”.

Assume we have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

Also assume we have access to a heuristic

h : D→ {1, . . . ,n}

which returns the next index to branch on from a given
partial assignment.

Also allows randomised heuristics, as distributions over
deterministic functions h.

General backtracking framework

Backtracking algorithm
Return bt(∗n), where bt is the following recursive procedure:
bt(x):

1 If P(x) is true, output x and return.
2 If P(x) is false, return.
3 Set j = h(x).
4 For each w ∈ [d]:

1 Set y to x with the j’th entry replaced with w.
2 Call bt(y).

This algorithm runs in time at most O(dn), but on some
instances its runtime can be substantially lower.

Results: detection

Theorem (informal)
Let T be an upper bound on the number of vertices in the
backtracking tree.

Then there is a bounded-error quantum algorithm which,
given T, evaluates P and h O(

√
Tn) times each, outputs true if

there exists x such that P(x) is true, and outputs false
otherwise.

The algorithm uses poly(n) space and O(1) auxiliary
operations per use of P and h.

We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.

Results: detection

Theorem (informal)
Let T be an upper bound on the number of vertices in the
backtracking tree.

Then there is a bounded-error quantum algorithm which,
given T, evaluates P and h O(

√
Tn) times each, outputs true if

there exists x such that P(x) is true, and outputs false
otherwise.

The algorithm uses poly(n) space and O(1) auxiliary
operations per use of P and h.

We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.

Results: search

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, there is a bounded-error quantum algorithm which
outputs x0 using P and h O(

√
Tn log3 n) times each.

In both cases the algorithm uses poly(n) space and O(1)
auxiliary operations per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.

Note that the algorithm does not need to know T.

Results: search

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, there is a bounded-error quantum algorithm which
outputs x0 using P and h O(

√
Tn log3 n) times each.

In both cases the algorithm uses poly(n) space and O(1)
auxiliary operations per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.

Note that the algorithm does not need to know T.

Results: search

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, there is a bounded-error quantum algorithm which
outputs x0 using P and h O(

√
Tn log3 n) times each.

In both cases the algorithm uses poly(n) space and O(1)
auxiliary operations per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.

Note that the algorithm does not need to know T.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum algorithm
for search in the backtracking tree, based on a nested
version of Grover search. The quantum speedups obtained
depend on the instance and can be up to quadratic.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a quadratic
separation for all trees.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum algorithm
for search in the backtracking tree, based on a nested
version of Grover search. The quantum speedups obtained
depend on the instance and can be up to quadratic.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a quadratic
separation for all trees.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum algorithm
for search in the backtracking tree, based on a nested
version of Grover search. The quantum speedups obtained
depend on the instance and can be up to quadratic.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a quadratic
separation for all trees.

Search in the backtracking tree

Idea: Use quantum search to find marked elements in the tree
produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find marked elements in the tree
produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find marked elements in the tree
produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.

We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find marked elements in the tree
produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find marked elements in the tree
produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Using the walk

We apply phase estimation to RBRA on state |r〉 with precision
O(1/

√
Tn), where n is an upper bound on the depth of the

tree, and accept if the eigenvalue is 1.

Claim (special case of [Belovs ’13])
If there is a marked vertex, RBRA has a normalised
eigenvector with eigenvalue 1 and overlap > 1

2 with |r〉.

If there is no marked vertex, ‖Pχ|r〉‖2 6 1
4 , where Pχ is the

projector onto the space spanned by eigenvectors of RBRA
with eigenvalue e2iθ, for |θ| 6 1/(2

√
Tn).

It follows that we can use the above subroutine to detect a
marked vertex with O(

√
Tn) uses of RBRA.

Using the walk

We apply phase estimation to RBRA on state |r〉 with precision
O(1/

√
Tn), where n is an upper bound on the depth of the

tree, and accept if the eigenvalue is 1.

Claim (special case of [Belovs ’13])
If there is a marked vertex, RBRA has a normalised
eigenvector with eigenvalue 1 and overlap > 1

2 with |r〉.

If there is no marked vertex, ‖Pχ|r〉‖2 6 1
4 , where Pχ is the

projector onto the space spanned by eigenvectors of RBRA
with eigenvalue e2iθ, for |θ| 6 1/(2

√
Tn).

It follows that we can use the above subroutine to detect a
marked vertex with O(

√
Tn) uses of RBRA.

Using the walk

We apply phase estimation to RBRA on state |r〉 with precision
O(1/

√
Tn), where n is an upper bound on the depth of the

tree, and accept if the eigenvalue is 1.

Claim (special case of [Belovs ’13])
If there is a marked vertex, RBRA has a normalised
eigenvector with eigenvalue 1 and overlap > 1

2 with |r〉.

If there is no marked vertex, ‖Pχ|r〉‖2 6 1
4 , where Pχ is the

projector onto the space spanned by eigenvectors of RBRA
with eigenvalue e2iθ, for |θ| 6 1/(2

√
Tn).

It follows that we can use the above subroutine to detect a
marked vertex with O(

√
Tn) uses of RBRA.

Using the walk

We apply phase estimation to RBRA on state |r〉 with precision
O(1/

√
Tn), where n is an upper bound on the depth of the

tree, and accept if the eigenvalue is 1.

Claim (special case of [Belovs ’13])
If there is a marked vertex, RBRA has a normalised
eigenvector with eigenvalue 1 and overlap > 1

2 with |r〉.

If there is no marked vertex, ‖Pχ|r〉‖2 6 1
4 , where Pχ is the

projector onto the space spanned by eigenvectors of RBRA
with eigenvalue e2iθ, for |θ| 6 1/(2

√
Tn).

It follows that we can use the above subroutine to detect a
marked vertex with O(

√
Tn) uses of RBRA.

From detection to search

We can use the above detection procedure as a subroutine
to find marked elements in the tree, via binary search.

We first apply the procedure to the whole tree. If it
outputs “marked element exists” we apply it to the
subtree rooted at each of the children of the root in turn
and repeat.

There is a more efficient algorithm if there is exactly one
marked element, using the fact that the eigenvector with
eigenvalue 1 encodes the entire path from the root to the
marked element.

From detection to search

We can use the above detection procedure as a subroutine
to find marked elements in the tree, via binary search.

We first apply the procedure to the whole tree. If it
outputs “marked element exists” we apply it to the
subtree rooted at each of the children of the root in turn
and repeat.

There is a more efficient algorithm if there is exactly one
marked element, using the fact that the eigenvector with
eigenvalue 1 encodes the entire path from the root to the
marked element.

From detection to search

We can use the above detection procedure as a subroutine
to find marked elements in the tree, via binary search.

We first apply the procedure to the whole tree. If it
outputs “marked element exists” we apply it to the
subtree rooted at each of the children of the root in turn
and repeat.

There is a more efficient algorithm if there is exactly one
marked element, using the fact that the eigenvector with
eigenvalue 1 encodes the entire path from the root to the
marked element.

From quantum tree search to accelerating
backtracking

We can now use this search algorithm to speed up the classical
backtracking algorithm:

Recall that we have access to P and h.

Represent each vertex in the tree by a string
(i1, v1), . . . , (i`, v`) giving the indices and values of the
variables set so far.

Then we can use P and h to determine the neighbours of
each vertex. This allows us to implement the Dx
operations (efficiently).

From quantum tree search to accelerating
backtracking

We can now use this search algorithm to speed up the classical
backtracking algorithm:

Recall that we have access to P and h.

Represent each vertex in the tree by a string
(i1, v1), . . . , (i`, v`) giving the indices and values of the
variables set so far.

Then we can use P and h to determine the neighbours of
each vertex. This allows us to implement the Dx
operations (efficiently).

From quantum tree search to accelerating
backtracking

We can now use this search algorithm to speed up the classical
backtracking algorithm:

Recall that we have access to P and h.

Represent each vertex in the tree by a string
(i1, v1), . . . , (i`, v`) giving the indices and values of the
variables set so far.

Then we can use P and h to determine the neighbours of
each vertex. This allows us to implement the Dx
operations (efficiently).

From quantum tree search to accelerating
backtracking

We can now use this search algorithm to speed up the classical
backtracking algorithm:

Recall that we have access to P and h.

Represent each vertex in the tree by a string
(i1, v1), . . . , (i`, v`) giving the indices and values of the
variables set so far.

Then we can use P and h to determine the neighbours of
each vertex. This allows us to implement the Dx
operations (efficiently).

Exponentially reduced average runtime
The above algorithm has an instance-dependent runtime: If
the classical algorithm uses time T on a given problem
instance, the quantum algorithm uses time O(

√
T poly(n)).

This can be leveraged to obtain exponential reductions in
expected runtime.

We consider a setting where the input is picked from
some distribution, and we are interested in the average
runtime of the algorithm, over the input distribution.

Claim
Pick a random 3-SAT instance on n variables by choosing m
random clauses, where Pr[m = m ′] ∝ 2−Cn3/2/

√
m ′ .

Then there exists a constant C such that the expected quantum
runtime is poly(n), but a simple backtracking algorithm has
expected runtime exponential in n.

Exponentially reduced average runtime
The above algorithm has an instance-dependent runtime: If
the classical algorithm uses time T on a given problem
instance, the quantum algorithm uses time O(

√
T poly(n)).

This can be leveraged to obtain exponential reductions in
expected runtime.

We consider a setting where the input is picked from
some distribution, and we are interested in the average
runtime of the algorithm, over the input distribution.

Claim
Pick a random 3-SAT instance on n variables by choosing m
random clauses, where Pr[m = m ′] ∝ 2−Cn3/2/

√
m ′ .

Then there exists a constant C such that the expected quantum
runtime is poly(n), but a simple backtracking algorithm has
expected runtime exponential in n.

Exponentially reduced average runtime
The above algorithm has an instance-dependent runtime: If
the classical algorithm uses time T on a given problem
instance, the quantum algorithm uses time O(

√
T poly(n)).

This can be leveraged to obtain exponential reductions in
expected runtime.

We consider a setting where the input is picked from
some distribution, and we are interested in the average
runtime of the algorithm, over the input distribution.

Claim
Pick a random 3-SAT instance on n variables by choosing m
random clauses, where Pr[m = m ′] ∝ 2−Cn3/2/

√
m ′ .

Then there exists a constant C such that the expected quantum
runtime is poly(n), but a simple backtracking algorithm has
expected runtime exponential in n.

Exponentially reduced average runtime
The above algorithm has an instance-dependent runtime: If
the classical algorithm uses time T on a given problem
instance, the quantum algorithm uses time O(

√
T poly(n)).

This can be leveraged to obtain exponential reductions in
expected runtime.

We consider a setting where the input is picked from
some distribution, and we are interested in the average
runtime of the algorithm, over the input distribution.

Claim
Pick a random 3-SAT instance on n variables by choosing m
random clauses, where Pr[m = m ′] ∝ 2−Cn3/2/

√
m ′ .

Then there exists a constant C such that the expected quantum
runtime is poly(n), but a simple backtracking algorithm has
expected runtime exponential in n.

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Summary and open problems

If we have a classical backtracking algorithm whose tree
has T vertices, there is a quantum algorithm which finds a
solution in time O(

√
T poly(n)).

This algorithm speeds up DPLL, the basis of many of the
fastest SAT solvers used in practice.

Open problems:

What if the classical algorithm is lucky and finds a
solution early on?

Can we improve the runtime for finding a marked
element to the optimal O(

√
Tn)?

If there are k marked elements, can we find one of them in
time O(

√
Tn/k)?

What else can we do using the electrical circuit framework
of [Belovs ’13]?

Thanks!

Pic: WikipediaPic: Wikipedia

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.

Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.
Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)). Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.
But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.
Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.

Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)). Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.
But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.
Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.
Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)).

Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.
But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.
Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.
Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)). Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.
But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.
Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.
Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)). Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.

But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

From quadratic to exponential speedups?
For example:

Let T(X) denote the number of vertices in the
backtracking tree on input X.
Assume PrX[T(X) = t] 6 Ctβ for all t and some C, β.
Also assume PrX[T(X) = t] > Dtβ, for some D, for M
different values t, where M = exp(O(n)). Then

EX[T(X)] >
M∑

t=1

Dtβ · t = Ω(Mβ+2).

So for β > −2 the average classical complexity is large.
But, if −2 < β < −3/2, the average number of steps used
by the quantum backtracking algorithm is

EX[O(
√

T(X)poly(n))] 6
∑
t>1

O(
√

t · tβ poly(n)) = poly(n).

Proof: marked element case

Claim
Let x0 be a marked element. Then

|φ〉 =
√

n|r〉+
∑

x6=r,x;x0

(−1)`(x)|x〉

is an eigenvector of RBRA with eigenvalue 1, where `(x) is the
distance of x from the root.

Proof:
Each state |ψx〉 (x 6= r, x 6= x0) has uniform support on
either 0 or 2 vertices on the path from r to x0.
So, for all such states, 〈φ|ψx〉 = 0.
Also,

〈r|φ〉
‖|φ〉‖

>
1√
2
.

Proof: marked element case

Claim
Let x0 be a marked element. Then

|φ〉 =
√

n|r〉+
∑

x6=r,x;x0

(−1)`(x)|x〉

is an eigenvector of RBRA with eigenvalue 1, where `(x) is the
distance of x from the root.

Proof:
Each state |ψx〉 (x 6= r, x 6= x0) has uniform support on
either 0 or 2 vertices on the path from r to x0.

So, for all such states, 〈φ|ψx〉 = 0.
Also,

〈r|φ〉
‖|φ〉‖

>
1√
2
.

Proof: marked element case

Claim
Let x0 be a marked element. Then

|φ〉 =
√

n|r〉+
∑

x6=r,x;x0

(−1)`(x)|x〉

is an eigenvector of RBRA with eigenvalue 1, where `(x) is the
distance of x from the root.

Proof:
Each state |ψx〉 (x 6= r, x 6= x0) has uniform support on
either 0 or 2 vertices on the path from r to x0.
So, for all such states, 〈φ|ψx〉 = 0.

Also,
〈r|φ〉
‖|φ〉‖

>
1√
2
.

Proof: marked element case

Claim
Let x0 be a marked element. Then

|φ〉 =
√

n|r〉+
∑

x6=r,x;x0

(−1)`(x)|x〉

is an eigenvector of RBRA with eigenvalue 1, where `(x) is the
distance of x from the root.

Proof:
Each state |ψx〉 (x 6= r, x 6= x0) has uniform support on
either 0 or 2 vertices on the path from r to x0.
So, for all such states, 〈φ|ψx〉 = 0.
Also,

〈r|φ〉
‖|φ〉‖

>
1√
2
.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

ΠA, ΠB project onto the invariant subspaces of RA and RB.

These spaces are spanned by vectors of the form |ψ⊥
x 〉 for

x ∈ A, x ∈ B respectively.

Here |ψ⊥
x 〉 is orthogonal to |ψx〉 and has support only on

{|x〉} ∪ {|y〉 : x→ y}; in addition to |r〉 in the case of RB.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

ΠA, ΠB project onto the invariant subspaces of RA and RB.

These spaces are spanned by vectors of the form |ψ⊥
x 〉 for

x ∈ A, x ∈ B respectively.

Here |ψ⊥
x 〉 is orthogonal to |ψx〉 and has support only on

{|x〉} ∪ {|y〉 : x→ y}; in addition to |r〉 in the case of RB.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

ΠA, ΠB project onto the invariant subspaces of RA and RB.

These spaces are spanned by vectors of the form |ψ⊥
x 〉 for

x ∈ A, x ∈ B respectively.

Here |ψ⊥
x 〉 is orthogonal to |ψx〉 and has support only on

{|x〉} ∪ {|y〉 : x→ y}; in addition to |r〉 in the case of RB.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

Consider the vector

|η〉 = |r〉+
√

n
∑
x6=r

|x〉.

On each subspace Hx, x ∈ A, |η〉 ∝ |ψx〉, so ΠA|η〉 = 0.
Similarly ΠB|η〉 = |r〉.
By the effective spectral gap lemma,

‖Pχ|r〉‖ = ‖PχΠB|η〉‖ 6 χ‖|η〉‖ 6 χ
√

Tn.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

Consider the vector

|η〉 = |r〉+
√

n
∑
x6=r

|x〉.

On each subspace Hx, x ∈ A, |η〉 ∝ |ψx〉, so ΠA|η〉 = 0.
Similarly ΠB|η〉 = |r〉.

By the effective spectral gap lemma,

‖Pχ|r〉‖ = ‖PχΠB|η〉‖ 6 χ‖|η〉‖ 6 χ
√

Tn.

Proof: no marked element case

Effective spectral gap lemma [Lee et al. ’11]

Set RA = 2ΠA − I, RB = 2ΠB − I. Let Pχ be the projector onto the
span of the eigenvectors of RBRA with eigenvalues e2iθ such
that |θ| 6 χ. Then, for any |ψ〉 such that ΠA|ψ〉 = 0, we have

‖PχΠB|ψ〉‖ 6 χ‖|ψ〉‖.

Consider the vector

|η〉 = |r〉+
√

n
∑
x6=r

|x〉.

On each subspace Hx, x ∈ A, |η〉 ∝ |ψx〉, so ΠA|η〉 = 0.
Similarly ΠB|η〉 = |r〉.
By the effective spectral gap lemma,

‖Pχ|r〉‖ = ‖PχΠB|η〉‖ 6 χ‖|η〉‖ 6 χ
√

Tn.

