Applications of hypercontractivity in quantum information

Ashley Montanaro
Department of Computer Science,
University of Bristol

23 February 2015

Some applications

Boolean cube

- Communication complexity separations [Gavinsky et al. '07]
- Bounds on nonlocal games [Buhrman et al. '11] [Defant et al. '10, Pellegrino+Seoane-Sepúlveda '12, AM '12]
- Quantum query complexity bounds [Ambainis+de Wolf '12]

Some applications

Boolean cube

- Communication complexity separations [Gavinsky et al. '07]
- Bounds on nonlocal games [Buhrman et al. '11] [Defant et al. '10, Pellegrino+Seoane-Sepúlveda '12, AM '12]
- Quantum query complexity bounds [Ambainis+de Wolf '12]

Real n-sphere

- Communication complexity separations [Klartag+Regev '11]
- Biases of local measurements [Lancien+Winter '11, AM '12]

Some applications

Boolean cube

- Communication complexity separations [Gavinsky et al. '07]
- Bounds on nonlocal games [Buhrman et al. '11] [Defant et al. '10, Pellegrino+Seoane-Sepúlveda '12, AM '12]
- Quantum query complexity bounds [Ambainis+de Wolf '12]

Real n-sphere

- Communication complexity separations [Klartag+Regev '11]
- Biases of local measurements [Lancien+Winter '11, AM '12]

Noncommutative generalisations

- Limits of quantum random access codes [Ben-Aroya et al. '08]
- Rapid mixing of quantum channels [Kastoryano+Temme '13]

Hypercontractivity on the boolean cube

Consider functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

- Set $\|f\|_{p}=\left(\frac{1}{2^{n}} \sum_{x}|f(x)|^{p}\right)^{1 / p}$.
- For $\rho \in[0,1]$, define the noise operator T_{ρ} as follows:

$$
\left(T_{\rho} f\right)(x)=\mathbb{E}_{y \sim e^{x}}[f(y)],
$$

where the expectation is over strings $y \in\{0,1\}^{n}$ obtained from x by flipping each bit of x with independent probability $\epsilon=(1-\rho) / 2$.

Hypercontractivity on the boolean cube

Consider functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

- Set $\|f\|_{p}=\left(\frac{1}{2^{n}} \sum_{x}|f(x)|^{p}\right)^{1 / p}$.
- For $\rho \in[0,1]$, define the noise operator T_{ρ} as follows:

$$
\left(T_{\rho} f\right)(x)=\mathbb{E}_{y \sim \wedge_{x}}[f(y)],
$$

where the expectation is over strings $y \in\{0,1\}^{n}$ obtained from x by flipping each bit of x with independent probability $\epsilon=(1-\rho) / 2$.

Hypercontractive inequality [Bonami '70] [Gross '75] [Beckner '75] [...]
For any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, and any p and q such that
$1 \leqslant p \leqslant q \leqslant \infty$ and $\rho \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|T_{\rho} f\right\|_{q} \leqslant\|f\|_{p}
$$

One-way communication complexity

- Alice and Bob want to determine some property $f(x, y)$ of their distributed inputs x, y, using the minimal amount of communication.
- All communication goes from Alice to Bob.

One-way communication complexity

- Alice and Bob want to determine some property $f(x, y)$ of their distributed inputs x, y, using the minimal amount of communication.
- All communication goes from Alice to Bob.

Question: Can quantum communication be more efficient than classical communication?

One-way communication complexity

Theorem [Bar-Yossef, Jayram and Kerenidis '08]
There is a family of relational problems that can be solved with $O(\log n)$ qubits of quantum communication, but requires $\Omega(\sqrt{n})$ bits of classical communication.

One-way communication complexity

Theorem [Bar-Yossef, Jayram and Kerenidis '08]
There is a family of relational problems that can be solved with $O(\log n)$ qubits of quantum communication, but requires $\Omega(\sqrt{n})$ bits of classical communication.

- Original proof used information theory methods.
- [Gavinsky et al. '08] improved this to prove a similar separation for a related partial boolean function. Their proof used hypercontractivity.
- [Buhrman, Regev, Scarpa, de Wolf '11] includes a hypercontractive proof of the (simpler) result above.

The Hidden Matching problem

The problem we consider is defined as follows:

- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets a perfect matching M on $[n]$, i.e. a partition of $\{1, \ldots, n\}$ into pairs.
- Goal: output (i, j, b) such that $(i, j) \in M$ and $b=x_{i} \oplus x_{j}$.

The Hidden Matching problem

The problem we consider is defined as follows:

- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets a perfect matching M on $[n]$, i.e. a partition of $\{1, \ldots, n\}$ into pairs.
- Goal: output (i, j, b) such that $(i, j) \in M$ and $b=x_{i} \oplus x_{j}$.

Claim [Buhrman, Regev, Scarpa, de Wolf '11]
If x and M are picked uniformly at random, any classical (wlog deterministic) protocol for Hidden Matching with c bits of communication has

$$
\operatorname{Pr}\left[b=x_{i} \oplus x_{j}\right] \leqslant \frac{1}{2}+O\left(\frac{c}{\sqrt{n}}\right) .
$$

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.
- Set $\beta_{i j}=\mid \mathbb{E}_{x \in A}\left[(-1)^{\left.x_{i}+x_{j}\right]}\right]$: Bob's advantage over guessing.

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.
- Set $\beta_{i j}=\mid \mathbb{E}_{x \in A}\left[(-1)^{\left.x_{i}+x_{j}\right]}\right]$: Bob's advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. '07]

$$
\sum_{i<j} \beta_{i j}^{2}=O\left(\left(\log \frac{2^{n}}{|A|}\right)^{2}\right)
$$

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.
- Set $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[(-1)^{x_{i}+x_{j}}\right]\right|$ Bob's advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. '07]

$$
\sum_{i<j} \beta_{i j}^{2}=O\left(\left(\log \frac{2^{n}}{|A|}\right)^{2}\right)
$$

Proof sketch of claim:

- $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[\chi_{\{i, j\}}(x)\right]\right|=\left(2^{n} /|A|\right)|\hat{f}(\{i, j\})|$.

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.
- Set $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[(-1)^{x_{i}+x_{j}}\right]\right|$ Bob's advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. '07]

$$
\sum_{i<j} \beta_{i j}^{2}=O\left(\left(\log \frac{2^{n}}{|A|}\right)^{2}\right)
$$

Proof sketch of claim:

- $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[\chi_{\{i, j\}}(x)\right]\right|=\left(2^{n} /|A|\right)|\hat{f}(\{i, j\})|$.

$$
\sum_{i<j} \beta_{i j}^{2}=\frac{2^{2 n}}{|A|^{2}} \sum_{i<j} \hat{f}(\{i, j\})^{2}
$$

Proof ingredients

- A typical short message from Alice specifies a large subset $A \subseteq\{0,1\}^{n}$ of her possible inputs.
- The best Bob can do to guess $x_{i} \oplus x_{j}$ is output the value of this function that occurs most often among $x \in A$.
- Set $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[(-1)^{x_{i}+x_{j}}\right]\right|$ Bob's advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. '07]

$$
\sum_{i<j} \beta_{i j}^{2}=O\left(\left(\log \frac{2^{n}}{|A|}\right)^{2}\right)
$$

Proof sketch of claim:

- $\beta_{i j}=\left|\mathbb{E}_{x \in A}\left[\chi_{\{i, j\}}(x)\right]\right|=\left(2^{n} /|A|\right)|\hat{f}(\{i, j\})|$.

$$
\sum_{i<j} \beta_{i j}^{2}=\frac{2^{2 n}}{|A|^{2}} \sum_{i<j} \hat{f}(\{i, j\})^{2} \leqslant \frac{2^{2 n}}{\delta^{2}|A|^{2}}\left(\frac{|A|}{2^{n}}\right)^{2 /(1+\delta)}
$$

for any $0 \leqslant \delta \leqslant 1$, using KKL. Then minimise over δ.

Nonlocal games

A simple and natural way of exploring the power of quantum correlations is via nonlocal games.

- Alice and Bob get inputs x, y, respectively, drawn from some known distribution π.
- They win the game if their outputs a, b satisfy a known predicate $V(x, y, a, b)$.

Nonlocal games

A simple and natural way of exploring the power of quantum correlations is via nonlocal games.

- Alice and Bob get inputs x, y, respectively, drawn from some known distribution π.
- They win the game if their outputs a, b satisfy a known predicate $V(x, y, a, b)$.
- The players are allowed to communicate before the game starts, to agree a strategy, but cannot communicate during the game.

Nonlocal games

Let the optimal probability of winning G be denoted by:

- $\omega(G)$, if the players are classical;
- $\omega^{*}(G)$, if the players are allowed to share entanglement.

Nonlocal games

Let the optimal probability of winning G be denoted by:

- $\omega(G)$, if the players are classical;
- $\omega^{*}(G)$, if the players are allowed to share entanglement.

The CHSH game shows that, for some games, $\omega^{*}(G)>\omega(G)$.

- Inputs x, y are chosen uniformly from $\{0,1\}$.
- The players win if their outputs $a, b \in\{0,1\}$ satisfy $a \oplus b=x y$.
$\omega(\mathrm{CHSH})=3 / 4$, but $\omega^{*}(\mathrm{CHSH})=\cos ^{2}(\pi / 8) \approx 0.85$.

Nonlocal games

Let the optimal probability of winning G be denoted by:

- $\omega(G)$, if the players are classical;
- $\omega^{*}(G)$, if the players are allowed to share entanglement.

The CHSH game shows that, for some games, $\omega^{*}(G)>\omega(G)$.

- Inputs x, y are chosen uniformly from $\{0,1\}$.
- The players win if their outputs $a, b \in\{0,1\}$ satisfy $a \oplus b=x y$.
$\omega(\mathrm{CHSH})=3 / 4$, but $\omega^{*}(\mathrm{CHSH})=\cos ^{2}(\pi / 8) \approx 0.85$.

Question

How large can the gap between $\omega^{*}(G)$ and $\omega(G)$ be?

Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf '11]

Let n be an integer power of 2 . Then there are two nonlocal games HM and KV such that:

- $\omega(\mathrm{HM})=1 / 2+O((\log n) / \sqrt{n})$, and $\omega^{*}(\mathrm{HM})=1$.

Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf '11]

Let n be an integer power of 2 . Then there are two nonlocal games HM and KV such that:

- $\omega(\mathrm{HM})=1 / 2+O((\log n) / \sqrt{n})$, and $\omega^{*}(\mathrm{HM})=1$.
- $\omega(\mathrm{KV})=O\left(1 / n^{1-o(1)}\right)$, and $\omega^{*}(\mathrm{KV}) \geqslant 4 / \log ^{2} n$.

Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf '11]

Let n be an integer power of 2 . Then there are two nonlocal games HM and KV such that:

- $\omega(\mathrm{HM})=1 / 2+O((\log n) / \sqrt{n})$, and $\omega^{*}(\mathrm{HM})=1$.
- $\omega(\mathrm{KV})=O\left(1 / n^{1-o(1)}\right)$, and $\omega^{*}(\mathrm{KV}) \geqslant 4 / \log ^{2} n$.
- The quantum protocols use entangled states on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
- These separations are close to optimal.

Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf '11]

Let n be an integer power of 2 . Then there are two nonlocal games HM and KV such that:

- $\omega(\mathrm{HM})=1 / 2+O((\log n) / \sqrt{n})$, and $\omega^{*}(\mathrm{HM})=1$.
- $\omega(\mathrm{KV})=O\left(1 / n^{1-o(1)}\right)$, and $\omega^{*}(\mathrm{KV}) \geqslant 4 / \log ^{2} n$.
- The quantum protocols use entangled states on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
- These separations are close to optimal.

The proofs of the classical lower bounds both use hypercontractivity:

- The HM game is a translation of Hidden Matching to the setting of nonlocal games.
- The KV game is based on work of [Khot and Vishnoi '05] on the unique games conjecture.

Multiplayer nonlocal games

We can generalise the framework of nonlocal games to $k>2$ players, each receiving an input from $\{1, \ldots, n\}$.

A particularly interesting such class of games is XOR games: games where each output a_{i} is a single bit, and whether the players win depends only on $a_{1} \oplus a_{2} \oplus \cdots \oplus a_{k}$.

Multiplayer nonlocal games

We can generalise the framework of nonlocal games to $k>2$ players, each receiving an input from $\{1, \ldots, n\}$.

A particularly interesting such class of games is XOR games: games where each output a_{i} is a single bit, and whether the players win depends only on $a_{1} \oplus a_{2} \oplus \cdots \oplus a_{k}$.

Question

What is the hardest k-player XOR game for classical players?

Previously known results

Define the (classical) bias $\beta(G)=\omega(G)-\frac{1}{2}$.
Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists an XOR game G for which $\beta(G) \leqslant n^{-(k-1) / 2}$ [Ford and Gál '05].
- Any XOR game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

Previously known results

Define the (classical) bias $\beta(G)=\omega(G)-\frac{1}{2}$.
Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists an XOR game G for which $\beta(G) \leqslant n^{-(k-1) / 2}$ [Ford and Gál '05].
- Any XOR game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

A recent and substantial improvement:
Theorem [Defant, Popa and Schwarting '10] [Pellegrino and
Seoane-Sepúlveda '12]
There exists a universal constant $c>0$ such that, for any XOR game G as above, $\beta(G)=\Omega\left(k^{-c} n^{-(k-1) / 2}\right)$.

Previously known results

Define the (classical) bias $\beta(G)=\omega(G)-\frac{1}{2}$.
Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists an XOR game G for which $\beta(G) \leqslant n^{-(k-1) / 2}$ [Ford and Gál '05].
- Any XOR game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

A recent and substantial improvement:
Theorem [Defant, Popa and Schwarting '10] [Pellegrino and
Seoane-Sepúlveda '12]
There exists a universal constant $c>0$ such that, for any XOR game G as above, $\beta(G)=\Omega\left(k^{-c} n^{-(k-1) / 2}\right)$.

This result can be proven using hypercontractivity.

XOR games and multilinear forms

A homogeneous polynomial $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is said to be a multilinear form if it can be written as

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

for some multidimensional array $\hat{f} \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$.

XOR games and multilinear forms

A homogeneous polynomial $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is said to be a multilinear form if it can be written as

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

for some multidimensional array $\hat{f} \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$.
Any XOR game $G=(\pi, V)$ corresponds to a multilinear form f :

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \pi_{i_{1}, \ldots, i_{k}} V_{i_{1}, \ldots, i_{k}}^{\prime} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k} .
$$

- $x_{\ell}^{j} \in\{ \pm 1\}$: what the j^{\prime} th player outputs given input ℓ.
- $V_{i_{1}, \ldots, i_{k}}^{\prime}:+1$ or -1 depending on the input.

The bias $\beta(G)$ is precisely $\|f\|_{\infty}:=\max _{x \in\{ \pm 1\}^{n}}|f(x)|$.

A powerful inequality

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]
For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty}
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.

A powerful inequality

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]
For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty}
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing $p=2 k /(k+1)$.

A powerful inequality

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty}
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing $p=2 k /(k+1)$.
Proof is by a delicate induction on k, for k a power of 2 .

- Inductive step goes from $k \rightarrow k / 2$ via Hölder's inequality, relating $\|\hat{f}\|_{2 k /(k+1)}$ to ℓ_{2} norms of restricted versions of f.
- Hypercontractivity lets us relate ℓ_{2} norms to $\frac{2 k}{k+2}$-norms.

Moving to the real n-sphere

- Let $S^{n}:=\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$ be the real n-sphere.

Moving to the real n-sphere

- Let $S^{n}:=\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$ be the real n-sphere.
- Any smooth function $f: S^{n} \rightarrow \mathbb{R}$ can be expanded in terms of spherical harmonics: $f=\sum_{k} Y_{k}$, for degree k polynomials Y_{k} such that

$$
\int Y_{j}(x) Y_{k}(x) d x=0
$$

for $j \neq k$.

Moving to the real n-sphere

- Let $S^{n}:=\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$ be the real n-sphere.
- Any smooth function $f: S^{n} \rightarrow \mathbb{R}$ can be expanded in terms of spherical harmonics: $f=\sum_{k} Y_{k}$, for degree k polynomials Y_{k} such that

$$
\int Y_{j}(x) Y_{k}(x) d x=0
$$

for $j \neq k$.

- Set $\|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{1 / p}$.

Moving to the real n-sphere

- Let $S^{n}:=\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$ be the real n-sphere.
- Any smooth function $f: S^{n} \rightarrow \mathbb{R}$ can be expanded in terms of spherical harmonics: $f=\sum_{k} Y_{k}$, for degree k polynomials Y_{k} such that

$$
\int Y_{j}(x) Y_{k}(x) d x=0
$$

for $j \neq k$.

- Set $\|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{1 / p}$.
- Parseval's equality: $\|f\|_{2}^{2}=\Sigma_{k}\left\|Y_{k}\right\|_{2}^{2}$.

Hypercontractivity on the real n-sphere

- For $\rho \in[0,1]$, define the Poisson semigroup P_{ρ} as follows:

$$
\left(P_{\rho} f\right)(x)=\sum_{k \geqslant 0} \rho^{k} Y_{k}(x) .
$$

Hypercontractivity on the real n-sphere

- For $\rho \in[0,1]$, define the Poisson semigroup P_{ρ} as follows:

$$
\left(P_{\rho} f\right)(x)=\sum_{k \geqslant 0} \rho^{k} Y_{k}(x) .
$$

- Alternatively:

$$
\left(P_{\rho} f\right)(x)=\left(1-\rho^{2}\right) \int|x-\rho y|^{-(n+1)} f(y) d y
$$

Hypercontractivity on the real n-sphere

- For $\rho \in[0,1]$, define the Poisson semigroup P_{ρ} as follows:

$$
\left(P_{\rho} f\right)(x)=\sum_{k \geqslant 0} \rho^{k} Y_{k}(x) .
$$

- Alternatively:

$$
\left(P_{\rho} f\right)(x)=\left(1-\rho^{2}\right) \int|x-\rho y|^{-(n+1)} f(y) d y
$$

Hypercontractive inequality [Beckner '92]

For any $f: S^{n} \rightarrow \mathbb{R}$, and any p and q such that $1 \leqslant p \leqslant q \leqslant \infty$ and $\rho \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|P_{\rho} f\right\|_{q} \leqslant\|f\|_{p}
$$

Hypercontractivity on the real n-sphere

As this framework is so similar to the case of the boolean cube, many corollaries carry across without change. For example:

Corollary
For any degree d polynomial $f: S^{n} \rightarrow \mathbb{R}$, and any $q \geqslant 2$,

$$
\|f\|_{q} \leqslant(q-1)^{d / 2}\|f\|_{2}
$$

Proof is exactly the same as on the boolean cube.

Communication complexity separation

- We have seen that one-way quantum communication is more powerful than one-way classical communication.
- What about one-way quantum vs. two-way classical?

Communication complexity separation

- We have seen that one-way quantum communication is more powerful than one-way classical communication.
- What about one-way quantum vs. two-way classical?

Theorem [Klartag+Regev '11]

There is a partial function which can be computed with an $O(\log n)$-qubit message from Alice to Bob, but for which every classical two-way protocol requires $\Omega\left(n^{1 / 3}\right)$ bits of communication.

Communication complexity separation

- We have seen that one-way quantum communication is more powerful than one-way classical communication.
- What about one-way quantum vs. two-way classical?

Theorem [Klartag+Regev '11]

There is a partial function which can be computed with an $O(\log n)$-qubit message from Alice to Bob, but for which every classical two-way protocol requires $\Omega\left(n^{1 / 3}\right)$ bits of communication.

The problem:

- Alice gets a unit vector $v \in S^{n-1}$, Bob gets a subspace $H \subset \mathbb{R}^{n}$ of dimension $n / 2$.
- Promise: either $v \in H$ or $v \in H^{\perp}$.
- Task: determine which is the case.

Classical communication lower bound

Many technical steps...

Classical communication lower bound

Many technical steps. . . one key lemma:
Lemma (variant of [Klartag+Regev '11])
Assume $f: S^{n-1} \rightarrow \mathbb{R}$ has $\|f\|_{1}=1,\|f\|_{\infty}=M$. Expand $f=\sum_{k} Y_{k}$. Then

$$
\left\|Y_{k}\right\|_{2} \leqslant\left(\frac{2 e \ln M}{k}\right)^{k / 2}
$$

Classical communication lower bound

Many technical steps... one key lemma:
Lemma (variant of [Klartag+Regev '11])
Assume $f: S^{n-1} \rightarrow \mathbb{R}$ has $\|f\|_{1}=1,\|f\|_{\infty}=M$. Expand $f=\sum_{k} Y_{k}$. Then

$$
\left\|Y_{k}\right\|_{2} \leqslant\left(\frac{2 e \ln M}{k}\right)^{k / 2}
$$

Proof:

$$
\left\|Y_{k}\right\|_{2}=\left\|T_{\rho}^{-1} T_{\rho} Y_{k}\right\|_{2}=\rho^{-k}\left\|T_{\rho} Y_{k}\right\|_{2} \leqslant \rho^{-k}\left\|T_{\rho} f\right\|_{2} \leqslant \rho^{-k}\|f\|_{p}
$$

for $p=1+\rho^{2}$. Observing $\|f\|_{p} \leqslant M^{p-1}$ and optimising over p gives the claimed result.

Classical communication lower bound

Many technical steps. . . one key lemma:

Lemma (variant of [Klartag+Regev '11])

Assume $f: S^{n-1} \rightarrow \mathbb{R}$ has $\|f\|_{1}=1,\|f\|_{\infty}=M$. Expand $f=\sum_{k} Y_{k}$. Then

$$
\left\|Y_{k}\right\|_{2} \leqslant\left(\frac{2 e \ln M}{k}\right)^{k / 2}
$$

Proof:

$$
\left\|Y_{k}\right\|_{2}=\left\|T_{\rho}^{-1} T_{\rho} Y_{k}\right\|_{2}=\rho^{-k}\left\|T_{\rho} Y_{k}\right\|_{2} \leqslant \rho^{-k}\left\|T_{\rho} f\right\|_{2} \leqslant \rho^{-k}\|f\|_{p}
$$

for $p=1+\rho^{2}$. Observing $\|f\|_{p} \leqslant M^{p-1}$ and optimising over p gives the claimed result.

- [Klartag+Regev '11] used a different noise operator and a different hypercontractive inequality, but the eventual result is essentially the same.

Biases of local measurements

- Imagine we are given a quantum state promised to be either ρ or σ, with equal probability of each.
- We want to determine which state we have, but are forced to use just one fixed measurement for all ρ, σ.

Biases of local measurements

- Imagine we are given a quantum state promised to be either ρ or σ, with equal probability of each.
- We want to determine which state we have, but are forced to use just one fixed measurement for all ρ, σ.
- We use the uniform POVM U putting equal weight on each state $|\psi\rangle \in \mathbb{C}^{n}$.

Biases of local measurements

- Imagine we are given a quantum state promised to be either ρ or σ, with equal probability of each.
- We want to determine which state we have, but are forced to use just one fixed measurement for all ρ, σ.
- We use the uniform POVM U putting equal weight on each state $|\psi\rangle \in \mathbb{C}^{n}$.
- Set $\Delta=(\rho-\sigma) / 2$. Then the optimal success probability is

$$
\left.\left.\frac{1}{2}\left(1+n \int|\langle\psi| \Delta| \psi\right\rangle \right\rvert\, d \psi\right)=: \frac{1}{2}\left(1+\|\Delta\|_{U}\right) .
$$

Biases of local measurements

- Imagine we are given a quantum state promised to be either ρ or σ, with equal probability of each.
- We want to determine which state we have, but are forced to use just one fixed measurement for all ρ, σ.
- We use the uniform POVM U putting equal weight on each state $|\psi\rangle \in \mathbb{C}^{n}$.
- Set $\Delta=(\rho-\sigma) / 2$. Then the optimal success probability is

$$
\left.\left.\frac{1}{2}\left(1+n \int|\langle\psi| \Delta| \psi\right\rangle \right\rvert\, d \psi\right)=: \frac{1}{2}\left(1+\|\Delta\|_{u}\right) .
$$

Theorem [Ambainis+Emerson '07, Matthews et al. '09]
There is a universal constant C such that

$$
\|\Delta\|_{U} \geqslant C \sqrt{\operatorname{tr} \Delta^{2}}
$$

Proving this using hypercontractivity

The proof is based on the "fourth moment method":

$$
\left.\|\Delta\|_{u}=n \int|\langle\psi| \Delta| \psi\right\rangle \left\lvert\, d \psi \geqslant n \frac{\left(\int\langle\psi| \Delta|\psi\rangle^{2} d \psi\right)^{3 / 2}}{\left(\int\langle\psi| \Delta|\psi\rangle^{4} d \psi\right)^{1 / 2}}\right.
$$

Proving this using hypercontractivity

The proof is based on the "fourth moment method":

$$
\left.\|\Delta\|_{u}=n \int|\langle\psi| \Delta| \psi\right\rangle \left\lvert\, d \psi \geqslant n \frac{\left(\int\langle\psi| \Delta|\psi\rangle^{2} d \psi\right)^{3 / 2}}{\left(\int\langle\psi| \Delta|\psi\rangle^{4} d \psi\right)^{1 / 2}}\right.
$$

- It's easy to compute

$$
\int\langle\psi| \Delta|\psi\rangle^{2} d \psi=\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right) \Delta^{\otimes 2}=\frac{\operatorname{tr} \Delta^{2}}{n(n+1)} .\right.
$$

Proving this using hypercontractivity

The proof is based on the "fourth moment method":

$$
\left.\|\Delta\|_{u}=n \int|\langle\psi| \Delta| \psi\right\rangle \left\lvert\, d \psi \geqslant n \frac{\left(\int\langle\psi| \Delta|\psi\rangle^{2} d \psi\right)^{3 / 2}}{\left(\int\langle\psi| \Delta|\psi\rangle^{4} d \psi\right)^{1 / 2}}\right.
$$

- It's easy to compute

$$
\int\langle\psi| \Delta|\psi\rangle^{2} d \psi=\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right) \Delta^{\otimes 2}=\frac{\operatorname{tr} \Delta^{2}}{n(n+1)} .\right.
$$

- To bound the denominator, we use hypercontractivity.

Proving this using hypercontractivity

We go from the complex to the real unit sphere:

- Associate $|\psi\rangle$ with $\xi \in S^{2 n-1}$.

Proving this using hypercontractivity

We go from the complex to the real unit sphere:

- Associate $|\psi\rangle$ with $\xi \in S^{2 n-1}$.
- Claim: $f(\xi)=\langle\psi| \Delta|\psi\rangle$ is a degree-2 polynomial in ξ.

Proving this using hypercontractivity

We go from the complex to the real unit sphere:

- Associate $|\psi\rangle$ with $\xi \in S^{2 n-1}$.
- Claim: $f(\xi)=\langle\psi| \Delta|\psi\rangle$ is a degree-2 polynomial in ξ.

So, by hypercontractivity,

$$
\left.\|f\|_{p}=\left.\left(\int|\langle\psi| \Delta| \psi\right\rangle\right|^{p}\right)^{1 / p} \leqslant(p-1)\left(\int\langle\psi| \Delta|\psi\rangle^{2}\right)^{1 / 2}
$$

Proving this using hypercontractivity

We go from the complex to the real unit sphere:

- Associate $|\psi\rangle$ with $\xi \in S^{2 n-1}$.
- Claim: $f(\xi)=\langle\psi| \Delta|\psi\rangle$ is a degree-2 polynomial in ξ.

So, by hypercontractivity,

$$
\left.\|f\|_{p}=\left.\left(\int|\langle\psi| \Delta| \psi\right\rangle\right|^{p}\right)^{1 / p} \leqslant(p-1)\left(\int\langle\psi| \Delta|\psi\rangle^{2}\right)^{1 / 2}
$$

Taking $p=4$ and substituting in gives an overall bound

$$
\|\Delta\|_{U} \geqslant\left(\frac{1}{9}-o(1)\right) \sqrt{\operatorname{tr} \Delta^{2}} .
$$

The multipartite case

What about if ρ, σ are multipartite states on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and we use as our measurement the uniform POVM on each party separately?

The multipartite case

What about if ρ, σ are multipartite states on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and we use as our measurement the uniform POVM on each party separately?

Theorem [Matthews et al. '09, Lancien+Winter '13]

$$
\|\Delta\|_{u} \geqslant C^{k / 2}\left(\sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right]\right)^{1 / 2}
$$

The multipartite case

What about if ρ, σ are multipartite states on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and we use as our measurement the uniform POVM on each party separately?

Theorem [Matthews et al. '09, Lancien+Winter '13]

$$
\|\Delta\|_{u} \geqslant C^{k / 2}\left(\sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right]\right)^{1 / 2}
$$

Claim: hypercontractivity gives us this result for free using multiplicativity of the $L_{p} \rightarrow L_{q}$ norm!

The multipartite case

What about if ρ, σ are multipartite states on $\left(\mathbb{C}^{n}\right)^{\otimes k}$, and we use as our measurement the uniform POVM on each party separately?

Theorem [Matthews et al. '09, Lancien+Winter '13]

$$
\|\Delta\|_{u} \geqslant C^{k / 2}\left(\sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right]\right)^{1 / 2}
$$

Claim: hypercontractivity gives us this result for free using multiplicativity of the $L_{p} \rightarrow L_{q}$ norm!

Compare the original proof...

In the particular case of all the seven permutations in $\mathfrak{A}, \sigma_{\mathcal{A}}=\mathrm{id}, \sigma_{\mathcal{B}}=(14), \sigma_{\mathcal{C}}=(23)$, $\sigma_{\mathcal{D}}=(1234), \sigma_{\mathcal{E}}=(1432), \sigma_{\mathcal{F}}=(12)(34)$ and $\sigma_{\mathcal{G}}=(14)(23)$, this becomes

$$
\begin{aligned}
& \begin{array}{c}
c_{3}, \ldots, g_{3} \\
b_{4}, d_{4}, \ldots, g_{4}
\end{array}
\end{aligned}
$$

where $\Gamma_{\mathcal{E}}$ denotes the partial transposition on \mathcal{E}.
We can rewrite this using the maximally entangled $\Phi_{\mathcal{F}} \mathcal{F}=\sum_{J f^{\prime}}|f f\rangle\left(f^{\prime} f^{\prime} \mid\right.$:
Letting $\mathcal{J}:=\mathcal{C} \otimes \mathcal{D} \otimes \mathcal{E} \otimes \mathcal{G}, P:=\left(\operatorname{Tr}_{\mathcal{A} \oplus \mathcal{B}} \Delta\right)^{\Gamma_{\ell}}$ and $R:=\left(P \otimes \mathbb{1}_{\mathcal{F}}\right)\left(\mathbf{1}_{\mathcal{J}} \otimes \Phi_{\mathcal{F} \otimes \mathcal{F}}\right)\left(P \otimes \mathbb{1}_{\mathcal{F}}\right)$, we notice that, for all $j, j^{\prime}, f, f^{\prime}, \bar{f}, \bar{f}^{\prime}$:

Likewise, letting $\mathcal{K}:=\mathcal{B} \otimes \mathcal{D} \otimes \mathcal{E} \otimes \mathcal{G}, Q:=\left(\operatorname{Tr}_{\mathcal{A} \mathcal{C}} \Delta\right)^{\Gamma_{\mathcal{E}}}$ and $S:=\left(Q \otimes \mathbf{1}_{\mathcal{F}}\right)\left(\mathbb{1}_{\mathcal{K}} \otimes \Phi_{\mathcal{F} \otimes \mathcal{F}}\right)\left(Q \otimes \mathbb{1}_{\mathcal{F}}\right)$, we have for all $k, k^{\prime}, f, f^{\prime}, \bar{f}, \overline{f^{\prime}}$:

$$
S_{k, f}^{k^{\prime}, f, \bar{f}, \bar{f}}=\sum_{k^{\prime \prime}} Q_{k, f}^{k^{\prime \prime}, \bar{f}^{\prime}} Q_{k^{\prime \prime}, \bar{f}}^{k^{\prime}, f}
$$

We now just have to make the following identifications

$$
\begin{aligned}
& \text { - } j:=\left(c_{2}, d_{2}, e_{1}, g_{2}\right), j^{\prime}:=\left(c_{2}, d_{4}, e_{3}, g_{2}\right), j^{\prime \prime}:=\left(c_{3}, d_{3}, e_{2}, g_{3}\right), \\
& \text { - } k:=\left(b_{4}, d_{4}, e_{3}, g_{4}\right), k^{\prime}:=\left(b_{4}, d_{2}, e_{1}, g_{4}\right), k^{\prime \prime}:=\left(b_{1}, d_{1}, e_{4}, g_{1}\right), \\
& \text { - } f:=f_{2}, f^{\prime}:=f_{4}, \bar{f}:=f_{1}, \vec{f}^{\prime}:=f_{3},
\end{aligned}
$$

and to notice that we can actually sum over $j^{\prime \prime}$ and $k^{\prime \prime}$ independently. We thus get:

$$
\begin{aligned}
& \operatorname{Tr} \Delta^{\otimes 4}\left(U_{\sigma_{\mathcal{A}}} \otimes \cdots \otimes U_{\sigma_{\hat{\psi}}}\right)=\sum_{c_{1}, f_{1}} R_{c_{2}, d_{2} f_{1}, g_{2}, f_{2}, f_{1}}^{c_{2}, d_{1}, e_{3}, g_{2} f_{4}, f_{3}} S_{b_{4}, d_{4}, e_{3}, s_{4}, f_{4}, f_{3}}^{h_{1}, d_{2}, c_{1}, g_{1}, f_{2}, f_{1}} \\
& c_{2}, d_{2}, f_{2}, g_{2} \\
& { }_{4}^{4_{4}, d_{4}, f_{4}, 4}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
c_{1}, f_{1} \\
d_{2}, f_{2}
\end{array} \\
& \begin{array}{l}
\mathrm{c}_{3}, f_{3} \\
d_{4}, f_{4}
\end{array} \\
& =\operatorname{Tr}_{\mathcal{D} \mathscr{E} \& \mathcal{F} \in \mathcal{F}}\left(\operatorname{Tr}_{\mathcal{C} G \mathcal{G}} R\right)\left(\operatorname{Tr}_{\mathcal{B} \mathcal{G}} S\right) \text {. }
\end{aligned}
$$

Defining $\bar{P}:=\left(P \otimes \mathbb{1}_{\mathcal{F}}\right)\left(\mathbb{1}_{\mathcal{J}} \otimes \sum_{f}|f f\rangle\right)$ and $\bar{Q}:=\left(Q \otimes \mathbb{1}_{\mathcal{F}}\right)\left(\mathbb{1}_{\mathcal{J}} \otimes \sum_{f}|f f\rangle\right)$, we see that $R=\bar{P} \bar{P}^{\dagger}$ and $S=\bar{Q} \bar{Q}^{\dagger}$. Hence R and S are positive semidefinite, and so are $\operatorname{Tr}_{C \mathscr{C}} R$ and $\operatorname{Tr}_{B \mathcal{G}} S$. Thus, using the fact that, for positive semidefinite V and $W, \operatorname{Tr} V W \leq(\operatorname{Tr} V)(\operatorname{Tr} W)$, we obtain

On right hand side,

$$
\begin{aligned}
& \operatorname{Tr} R=\operatorname{Tr}_{\mathcal{C} \circledast \mathcal{D} \circledast \mathcal{E} \circledast \mathcal{F}_{\mathscr{G}}} P^{2} \\
& =\operatorname{Tr}_{C \oplus D \otimes E \otimes F \Theta \mathcal{G}}\left(\left(\operatorname{Tr}_{\mathcal{A} \Theta \mathcal{B}} \Delta\right)^{\Gamma_{E}}\right)^{2} \\
& =\operatorname{Tr}_{\mathbb{C}_{\mathcal{E}} \mathcal{D} E \in \mathbb{F} \mathscr{G}}\left(\operatorname{Tr}_{\mathcal{A} B \mathcal{B}} \Delta\right)^{2} \text {. }
\end{aligned}
$$

and likewise, $\operatorname{Tr} S=\operatorname{Tr}_{\mathcal{B} \circledast D \odot E \otimes \mathcal{F} \& \mathcal{G}}\left(\operatorname{Tr}_{\mathcal{A} S \mathcal{C}} \Delta\right)^{2}$. So, we eventually arrive at

With this inequality as a tool, we can now return to our initial problem: For all $\frac{\pi}{\in} \mathfrak{A}^{K}=$ $\{\mathrm{id},(14),(23),(1234),(1432),(12)(34),(14)(23)\}^{K}$, we can define the following factors of the global Hilbert space \mathcal{H} :

$$
\begin{aligned}
& \mathcal{A}(\underline{\pi}):=\bigotimes_{j \mathrm{st.} \pi_{j}=\mathrm{id}} \mathcal{H}_{j}, \quad \mathcal{B}(\underline{\pi}):=\bigotimes_{j \text { s.t. } \pi_{j}=(14)} \mathcal{H}_{j}, \quad \mathcal{C}(\underline{\pi}):=\bigotimes_{j \text { s.t } \pi_{j}=(23)} \mathcal{H}_{j}, \\
& \mathcal{D}(\mathbb{I}):=\bigotimes_{j \text { st. } \pi_{j}=(1234)} \mathcal{H}_{j}, \quad \mathcal{E}(\mathbb{I}):=\bigotimes_{j \text { st. } \pi_{j}=(1432)} \mathcal{H}_{j}, \\
& \mathcal{F}(\mathbb{I}):=\bigotimes_{j \mathrm{st.} \pi_{j}=(12)(34)} \mathcal{H}_{j}, \quad \mathcal{G}(\mathbb{\pi}):=\bigotimes_{j \text { s.t } \pi_{j}=(14)(23)} \mathcal{H}_{j},
\end{aligned}
$$

so that clearly, $\mathcal{H}=\mathcal{A}(\underline{\pi}) \otimes \mathcal{B}(\underline{\pi}) \otimes \mathcal{C}(\underline{\pi}) \otimes \mathcal{D}(\underline{\pi}) \otimes \mathcal{E}(\underline{\pi}) \otimes \mathcal{F}(\underline{\pi}) \otimes \mathcal{G}(\underline{\pi})$. Hence, using successively the two inequalities (A1) and (A2), we have:

$$
\begin{aligned}
& \leq \sum_{\underline{\sigma} \in \mathcal{E}_{i}^{K}}\left\{\frac{1}{2}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\sigma^{L}\right) S \mathcal{B}\left(\underline{\sigma}^{L}\right)} \Delta\right)^{2}\right]\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{\sigma}^{L}\right) \boldsymbol{S C}\left(\sigma^{L}\right)} \Delta\right)^{2}\right]\right. \\
& \left.+\frac{1}{2}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{q}^{R}\right) \otimes \mathcal{B}\left(\underline{q}^{A}\right)} \Delta\right)^{2}\right]\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{\sigma}^{R}\right) \circlearrowleft \mathcal{C}\left(\underline{q}^{A}\right)} \Delta\right)^{2}\right]\right\} \\
& =\sum_{\underline{\sigma} \in \mathcal{E}_{4}^{K}}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{\sigma}^{L}\right) \otimes \mathcal{B}\left(\underline{\Omega}^{L}\right)} \Delta\right)^{2}\right]\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{\Omega}^{L}\right) \oplus \mathcal{C}\left(\underline{\Omega}^{L}\right)} \Delta\right)^{2}\right] \\
& \leq \sum_{\underline{\sigma} \in \mathbb{B}_{4}^{K}}\left\{\frac{1}{2}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{q}^{L}\right) \otimes \mathcal{B}\left(\underline{q}^{L}\right)} \Delta\right)^{2}\right]^{2}+\frac{1}{2}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\underline{q}^{L}\right) \mathcal{S C}\left(\underline{q}^{L}\right)} \Delta\right)^{2}\right]^{2}\right\} \\
& =\sum_{\Omega \in \mathcal{B}_{4}^{K}}\left[\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{A}\left(\Omega^{2}\right) \in \mathcal{B}\left(\underline{\Omega}^{2}\right)} \Delta\right)^{2}\right]^{2},
\end{aligned}
$$

where in the last lines we have made use of the symmetry between σ^{L} and σ^{R} on the one hand, and that between $\mathcal{B}\left(\sigma^{L}\right)$ and $\mathcal{C}\left(\sigma^{L}\right)$ on the other, when $\underline{\sigma}$ ranges over $\overline{\mathfrak{G}}_{4}^{K}$.

Noncommutative generalisations

There are at least two sensible ways in which one could generalise the hypercontractive inequality on the boolean cube to a noncommutative setting:

- Matrix-valued functions on the boolean cube:

$$
f:\{0,1\}^{n} \rightarrow M_{d}
$$

- Linear operators on $\left(\mathbb{C}^{2}\right)^{\otimes n}$ (the space of n qubits).

Both of these ideas work and lead to interesting consequences.

Matrix-valued functions

The hypercontractive inequality when $q=2$:

$$
\sum_{S \subseteq[n]}(p-1)^{|S|} \hat{f}(S)^{2} \leqslant\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}|f(x)|^{p}\right)^{2 / p}
$$

for any $1 \leqslant p \leqslant 2$.

Matrix-valued functions

The hypercontractive inequality when $q=2$:

$$
\sum_{S \subseteq[n]}(p-1)^{|S|} \hat{f}(S)^{2} \leqslant\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}|f(x)|^{p}\right)^{2 / p}
$$

for any $1 \leqslant p \leqslant 2$. In the matrix-valued case we have:
Theorem [Ben-Aroya, Regev and de Wolf '08]

$$
\sum_{S \subseteq[n]}(p-1)^{|S|}\|\hat{f}(S)\|_{p}^{2} \leqslant\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}\|f(x)\|_{p}^{p}\right)^{2 / p}
$$

for any $1 \leqslant p \leqslant 2$, where $\|\cdot\|_{p}$ is the Schatten p-norm and

$$
\hat{f}(S)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x)
$$

are now matrices.

Applications

One example: proving limitations on quantum random access codes [Ben-Aroya, Regev, de Wolf '08].

- We want to encode $x \in\{0,1\}^{n}$ in a state $\rho \in M_{2^{m}}$ such that we can recover any k of the n bits with high probability.

Applications

One example: proving limitations on quantum random access codes [Ben-Aroya, Regev, de Wolf '08].

- We want to encode $x \in\{0,1\}^{n}$ in a state $\rho \in M_{2^{m}}$ such that we can recover any k of the n bits with high probability.
- Claim: even predicting $\bigoplus_{i \in S} x_{i}$, for an arbitrary k-subset S, is difficult on average.

Applications

One example: proving limitations on quantum random access codes [Ben-Aroya, Regev, de Wolf '08].

- We want to encode $x \in\{0,1\}^{n}$ in a state $\rho \in M_{2^{m}}$ such that we can recover any k of the n bits with high probability.
- Claim: even predicting $\bigoplus_{i \in S} x_{i}$, for an arbitrary k-subset S, is difficult on average.
- If $f:\{0,1\}^{n} \rightarrow M_{2^{m}}$ is our encoding function, the success probability is controlled by

$$
\left\|\mathbb{E}_{x, \oplus_{i \in S} x_{i}=0}\left[M_{x}\right]-\mathbb{E}_{x, \oplus_{i \in S} x_{i}=1}\left[M_{x}\right]\right\|_{1}=\|\hat{f}(S)\|_{1}
$$

Applications

One example: proving limitations on quantum random access codes [Ben-Aroya, Regev, de Wolf '08].

- We want to encode $x \in\{0,1\}^{n}$ in a state $\rho \in M_{2^{m}}$ such that we can recover any k of the n bits with high probability.
- Claim: even predicting $\bigoplus_{i \in S} x_{i}$, for an arbitrary k-subset S, is difficult on average.
- If $f:\{0,1\}^{n} \rightarrow M_{2^{m}}$ is our encoding function, the success probability is controlled by

$$
\left\|\mathbb{E}_{x, \oplus_{i \in S} x_{i}=0}\left[M_{x}\right]-\mathbb{E}_{x, \bigoplus_{i \in S} x_{i}=1}\left[M_{x}\right]\right\|_{1}=\|\hat{f}(S)\|_{1}
$$

- Claim:

$$
\mathbb{E}_{S \sim\binom{[n]}{k}}\left[\|\hat{f}(S)\|_{1}\right] \leqslant C\left(\frac{C^{\prime} m}{n}\right)^{k / 2}
$$

Proof: use hypercontractive inequality with carefully chosen p.

A different notion of noncommutativity

- Instead of functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, we consider Hermitian operators on the space of n qubits.
- Then a natural generalisation of the noise operator on one bit is the qubit depolarising channel:

$$
\mathcal{D}_{\rho}(M)=(1-\rho)(\operatorname{tr} M) \frac{I}{2}+\rho M
$$

A different notion of noncommutativity

- Instead of functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, we consider Hermitian operators on the space of n qubits.
- Then a natural generalisation of the noise operator on one bit is the qubit depolarising channel:

$$
\mathcal{D}_{\rho}(M)=(1-\rho)(\operatorname{tr} M) \frac{I}{2}+\rho M
$$

Hypercontractive inequality [King '12] [AM+Osborne '10]
For any Hermitian operator $M \in \mathcal{B}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$, and any p and q such that $1 \leqslant p \leqslant q \leqslant \infty$ and $\rho \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|\mathcal{D}_{\rho}^{\otimes n} M\right\|_{q} \leqslant\|M\|_{p} .
$$

A different notion of noncommutativity

- Instead of functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, we consider Hermitian operators on the space of n qubits.
- Then a natural generalisation of the noise operator on one bit is the qubit depolarising channel:

$$
\mathcal{D}_{\rho}(M)=(1-\rho)(\operatorname{tr} M) \frac{I}{2}+\rho M
$$

Hypercontractive inequality [King '12] [AM+Osborne '10]

For any Hermitian operator $M \in \mathcal{B}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$, and any p and q such that $1 \leqslant p \leqslant q \leqslant \infty$ and $\rho \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|\mathcal{D}_{\rho}^{\otimes n} M\right\|_{q} \leqslant\|M\|_{p}
$$

> ([King '12] actually proves hypercontractivity for all semigroups of unital qubit channels)

Application: norm and tail bounds

- Many (though not all!) of the corollaries of hypercontractivity on the boolean cube go through immediately.

Application: norm and tail bounds

- Many (though not all!) of the corollaries of hypercontractivity on the boolean cube go through immediately.
- The right analogue of degree d polynomials turns out to be d-local operators on $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

Norm and tail bounds

Let M be a d-local Hermitian operator on n qubits such that $\|M\|_{2}=1$. Then:

- $\|M\|_{q} \leqslant(q-1)^{d / 2}$ for all $q \geqslant 2$.

Application: norm and tail bounds

- Many (though not all!) of the corollaries of hypercontractivity on the boolean cube go through immediately.
- The right analogue of degree d polynomials turns out to be d-local operators on $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

Norm and tail bounds

Let M be a d-local Hermitian operator on n qubits such that $\|M\|_{2}=1$. Then:

- $\|M\|_{q} \leqslant(q-1)^{d / 2}$ for all $q \geqslant 2$.

$$
\frac{\left|\left\{i:\left|\lambda_{i}\right| \geqslant t\right\}\right|}{2^{n}} \leqslant \exp \left(-d t^{2 / d} /(2 e)\right)
$$

A weaker (but much simpler) version of quantum central limit theorems, e.g. [Hartmann et al. '04].

Application: norm and tail bounds

- Many (though not all!) of the corollaries of hypercontractivity on the boolean cube go through immediately.
- The right analogue of degree d polynomials turns out to be d-local operators on $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

Norm and tail bounds

Let M be a d-local Hermitian operator on n qubits such that $\|M\|_{2}=1$. Then:

- $\|M\|_{q} \leqslant(q-1)^{d / 2}$ for all $q \geqslant 2$.

$$
\frac{\left|\left\{i:\left|\lambda_{i}\right| \geqslant t\right\}\right|}{2^{n}} \leqslant \exp \left(-d t^{2 / d} /(2 e)\right)
$$

A weaker (but much simpler) version of quantum central limit theorems, e.g. [Hartmann et al. '04].

- Question: is there a quantum version of the KKL theorem?

Application: rapid mixing

- A quantum Markov process is a family of channels of the form

$$
\mathcal{E}_{t}(\rho)=e^{t \mathcal{L}}
$$

- We want to find the mixing time of \mathcal{E} : the minimum t such that

$$
\left\|\mathcal{E}_{t}(\rho)-\sigma\right\|_{1} \leqslant \epsilon
$$

for all ρ, where $\sigma=\lim _{t \rightarrow \infty} \mathcal{E}_{t}(\rho)$.

Application: rapid mixing

- A quantum Markov process is a family of channels of the form

$$
\mathcal{E}_{t}(\rho)=e^{t \mathcal{L}}
$$

- We want to find the mixing time of \mathcal{E} : the minimum t such that

$$
\left\|\mathcal{E}_{t}(\rho)-\sigma\right\|_{1} \leqslant \epsilon
$$

for all ρ, where $\sigma=\lim _{t \rightarrow \infty} \mathcal{E}_{t}(\rho)$.
[Kastoryano+Temme '13]: hypercontractive (\equiv log-Sobolev) inequalities imply significantly improved mixing time bounds.

- e.g. an exponential improvement over a more naïve bound for the d-dimensional depolarising channel.

Conclusions

A little bit of noise can be very powerful...

Conclusions

A little bit of noise can be very powerful...

Further reading

AM, Some applications of hypercontractive inequalities in quantum information theory
JMP, vol. 53, 122206, 2012
arXiv:1208.0161
and references therein.

Conclusions

A little bit of noise can be very powerful...

Further reading

AM, Some applications of hypercontractive inequalities in quantum information theory
JMP, vol. 53, 122206, 2012
arXiv:1208.0161
and references therein.

Thanks!

A special case of a conjecture

The following beautiful conjecture (a generalisation of KKL) would imply efficient simulations of quantum query algorithms by classical algorithms on most inputs:

Conjecture [Aaronson and Ambainis '11]
For all degree d polynomials $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$, there exists j such that $I_{j}(f) \geqslant \operatorname{poly}(\operatorname{Var}(f) / d)$.

- The above result proves the special case of this conjecture where f is a multilinear form whose coefficients are all equal (in absolute value).
- Few other special cases known. One example: symmetric functions f [Bačkurs '12].

The Khot-Vishnoi game

- Parametrised by $N=2^{n}$ and $\eta \in[0,1 / 2]$.
- Let H be subgroup of \mathbb{Z}_{2}^{N} containing Hadamard codewords (strings x such that $x_{z}=z \oplus s$ for some $\left.s \in\{0,1\}^{n}\right)$.
- Alice gets uniformly random coset of H defined by a bit-string x.
- Bob gets coset defined by $y=x \oplus e$, where $e_{i}=1$ with independent probability η.
- Alice outputs $a \in H \oplus x$, Bob outputs $b \in H \oplus y$ such that $a \oplus b=e$.
- The number of possible inputs to each player is N / n and the number of possible outputs for each player is n.

Communication complexity separation

An $O(\log n)$-qubit quantum protocol is easy; the difficult part is proving the classical lower bound.
The key technical component:

Lemma (informal) [Klartag+Regev '11]

Let $A \subseteq S^{n-1}$ have measure $\sigma(A) \geqslant e^{-n^{1 / 3}}$. Pick an $(n-1)$-dimensional subspace H uniformly at random. Then $\sigma_{H}(A \cap H) \approx \sigma(A)$ with high probability.

- Via an inductive argument, this is used to show that for any subsets A, B such that $\sigma(A), \sigma(B) \geqslant e^{-C n^{1 / 3}}$,

$$
\sigma((A \times B) \cap \mathcal{J}) \geqslant C^{\prime} \sigma(A) \sigma(B)
$$

- $A \times B$ is a rectangle representing the inputs identified by Alice and Bob's communication so far; \mathcal{J} is the set of inputs for which they should output "yes".

A key technical lemma

Lemma [Klartag+Regev '11]

Let f, g satisfy $\int f(x) d x=\int g(x) d x=1$. Then

$$
\int f(x) g(y) d_{\perp}(x, y)=1+O\left(\frac{\log \|f\|_{\infty} \log \|g\|_{\infty}}{n}\right)
$$

where the integral is taken over orthonormal vectors x, y.
Expand f and g in terms of spherical harmonics Y_{k}, Y_{k}^{\prime}, then

$$
\int f(x) g(y) d_{\perp}(x, y)=\sum_{k \geqslant 0} \mu_{k} \int Y_{k}(x) Y_{k}^{\prime}(x) d x
$$

for some $\left\{\mu_{k}\right\}$ such that $\mu_{0}=1,\left|\mu_{k}\right| \leqslant\left(C \frac{k}{n}\right)^{k / 2}$. So

$$
\left|\int f(x) g(y) d_{\perp}(x, y)-1\right| \leqslant \sum_{k \geqslant 0} \mid \mu_{k}\| \| Y_{k}\left\|_{2}\right\| Y_{k}^{\prime} \|_{2} .
$$

