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Some applications

Boolean cube
Communication complexity separations [Gavinsky et al. ’07]

Bounds on nonlocal games [Buhrman et al. ’11] [Defant et al.
’10, Pellegrino+Seoane-Sepúlveda ’12, AM ’12]

Quantum query complexity bounds [Ambainis+de Wolf ’12]

Real n-sphere
Communication complexity separations [Klartag+Regev ’11]

Biases of local measurements [Lancien+Winter ’11, AM ’12]

Noncommutative generalisations
Limits of quantum random access codes [Ben-Aroya et al. ’08]

Rapid mixing of quantum channels [Kastoryano+Temme ’13]
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Hypercontractivity on the boolean cube
Consider functions f : {0, 1}n → R.

Set ‖f‖p =
( 1

2n

∑
x |f (x)|

p)1/p
.

For ρ ∈ [0, 1], define the noise operator Tρ as follows:

(Tρf )(x) = Ey∼εx[ f (y) ],

where the expectation is over strings y ∈ {0, 1}n obtained
from x by flipping each bit of x with independent
probability ε = (1 − ρ)/2.

Hypercontractive inequality [Bonami ’70] [Gross ’75] [Beckner

’75] [. . . ]

For any f : {0, 1}n → R, and any p and q such that

1 6 p 6 q 6 ∞ and ρ 6
√

p−1
q−1 ,

‖Tρf‖q 6 ‖f‖p.
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One-way communication complexity

Alice and Bob want to determine some property f (x, y) of
their distributed inputs x, y, using the minimal amount of
communication.

All communication goes from Alice to Bob.

A B

x y

f (x, y)

Question: Can quantum communication be more efficient than
classical communication?
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One-way communication complexity

Theorem [Bar-Yossef, Jayram and Kerenidis ’08]

There is a family of relational problems that can be solved
with O(log n) qubits of quantum communication, but requires
Ω(
√

n) bits of classical communication.

Original proof used information theory methods.

[Gavinsky et al. ’08] improved this to prove a similar
separation for a related partial boolean function. Their
proof used hypercontractivity.

[Buhrman, Regev, Scarpa, de Wolf ’11] includes a
hypercontractive proof of the (simpler) result above.
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The Hidden Matching problem

The problem we consider is defined as follows:
Alice gets x ∈ {0, 1}n.
Bob gets a perfect matching M on [n], i.e. a partition of
{1, . . . ,n} into pairs.
Goal: output (i, j, b) such that (i, j) ∈M and b = xi ⊕ xj.

Claim [Buhrman, Regev, Scarpa, de Wolf ’11]

If x and M are picked uniformly at random, any classical
(wlog deterministic) protocol for Hidden Matching with c bits
of communication has

Pr[b = xi ⊕ xj] 6
1
2
+ O

(
c√
n

)
.
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Proof ingredients

A typical short message from Alice specifies a large subset
A ⊆ {0, 1}n of her possible inputs.

The best Bob can do to guess xi ⊕ xj is output the value of
this function that occurs most often among x ∈ A.
Set βij = |Ex∈A[(−1)xi+xj ]|: Bob’s advantage over guessing.

Claim [Talagrand ’96] [Gavinsky et al. ’07]∑
i<j

β2
ij = O

((
log

2n

|A|

)2
)
.

Proof sketch of claim:
βij = |Ex∈A[χ{i,j}(x)]| = (2n/|A|) |̂f ({i, j})|.

∑
i<j

β2
ij =

22n

|A|2

∑
i<j

f̂ ({i, j})2 6
22n

δ2|A|2

(
|A|

2n

)2/(1+δ)

for any 0 6 δ 6 1, using KKL. Then minimise over δ.
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Nonlocal games
A simple and natural way of exploring the power of quantum
correlations is via nonlocal games.

A B

x y

a b

Alice and Bob get inputs x, y, respectively, drawn from
some known distribution π.
They win the game if their outputs a, b satisfy a known
predicate V(x, y, a, b).

The players are allowed to communicate before the game
starts, to agree a strategy, but cannot communicate during
the game.
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Nonlocal games

Let the optimal probability of winning G be denoted by:
ω(G), if the players are classical;
ω∗(G), if the players are allowed to share entanglement.

The CHSH game shows that, for some games, ω∗(G) > ω(G).

Inputs x, y are chosen uniformly from {0, 1}.
The players win if their outputs a, b ∈ {0, 1} satisfy
a⊕ b = xy.

ω(CHSH) = 3/4, but ω∗(CHSH) = cos2(π/8) ≈ 0.85.

Question
How large can the gap between ω∗(G) and ω(G) be?
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Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf ’11]

Let n be an integer power of 2. Then there are two nonlocal
games HM and KV such that:

ω(HM) = 1/2 + O((log n)/
√

n), and ω∗(HM) = 1.

ω(KV) = O(1/n1−o(1)), and ω∗(KV) > 4/ log2 n.

The quantum protocols use entangled states on Cn ⊗ Cn.
These separations are close to optimal.

The proofs of the classical lower bounds both use
hypercontractivity:

The HM game is a translation of Hidden Matching to the
setting of nonlocal games.
The KV game is based on work of [Khot and Vishnoi ’05] on
the unique games conjecture.
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Multiplayer nonlocal games

We can generalise the framework of nonlocal games to k > 2
players, each receiving an input from {1, . . . ,n}.

P1 PkP2

x1 x2 . . . xk

a1 a2 . . . ak

A particularly interesting such class of games is XOR games:
games where each output ai is a single bit, and whether the
players win depends only on a1 ⊕ a2 ⊕ · · · ⊕ ak.

Question
What is the hardest k-player XOR game for classical players?
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Previously known results

Define the (classical) bias β(G) = ω(G) − 1
2 .

Until recently, there was a big gap between lower and upper
bounds on minG β(G):

There exists an XOR game G for which β(G) 6 n−(k−1)/2

[Ford and Gál ’05].
Any XOR game G has β(G) > 2−O(k)n−(k−1)/2 [Bohnenblust
and Hille ’31].

A recent and substantial improvement:

Theorem [Defant, Popa and Schwarting ’10] [Pellegrino and

Seoane-Sepúlveda ’12]

There exists a universal constant c > 0 such that, for any XOR
game G as above, β(G) = Ω(k−cn−(k−1)/2).

This result can be proven using hypercontractivity.
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Seoane-Sepúlveda ’12]

There exists a universal constant c > 0 such that, for any XOR
game G as above, β(G) = Ω(k−cn−(k−1)/2).

This result can be proven using hypercontractivity.



Previously known results

Define the (classical) bias β(G) = ω(G) − 1
2 .

Until recently, there was a big gap between lower and upper
bounds on minG β(G):

There exists an XOR game G for which β(G) 6 n−(k−1)/2

[Ford and Gál ’05].
Any XOR game G has β(G) > 2−O(k)n−(k−1)/2 [Bohnenblust
and Hille ’31].

A recent and substantial improvement:

Theorem [Defant, Popa and Schwarting ’10] [Pellegrino and

Seoane-Sepúlveda ’12]
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XOR games and multilinear forms

A homogeneous polynomial f : (Rn)k → R is said to be a
multilinear form if it can be written as

f (x1, . . . , xk) =
∑

i1,...,ik

f̂i1,...,ikx
1
i1x2

i2 . . . xk
ik

for some multidimensional array f̂ ∈ Rn × Rn × · · · × Rn.

Any XOR game G = (π,V) corresponds to a multilinear form f :

f (x1, . . . , xk) =
∑

i1,...,ik

πi1,...,ikV
′
i1,...,ikx

1
i1x2

i2 . . . xk
ik .

xj
` ∈ {±1}: what the j’th player outputs given input `.

V ′i1,...,ik : +1 or −1 depending on the input.

The bias β(G) is precisely ‖f‖∞ := maxx∈{±1}n |f (x)|.
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A powerful inequality

Bohnenblust-Hille inequality [BH ’31, DPS ’10, PS ’12]

For any multilinear form f : (Rn)k → R, and any p > 2k/(k + 1),

‖f̂‖p :=


 ∑

i1,...,ik

|̂fi1,...,ik |
p




1/p

6 Ck‖f‖∞,

where Ck may be taken to be O(klog2 e) ≈ O(k1.45).

Implies β(G) = Ω(C−1
k n−(k−1)/2) by choosing p = 2k/(k + 1).

Proof is by a delicate induction on k, for k a power of 2.

Inductive step goes from k→ k/2 via Hölder’s inequality,
relating ‖f̂‖2k/(k+1) to `2 norms of restricted versions of f .

Hypercontractivity lets us relate `2 norms to 2k
k+2 -norms.
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Moving to the real n-sphere

Let Sn := {x ∈ Rn+1 :
∑

i x2
i = 1} be the real n-sphere.

Any smooth function f : Sn → R can be expanded in terms
of spherical harmonics: f =

∑
k Yk, for degree k

polynomials Yk such that∫
Yj(x)Yk(x)dx = 0

for j 6= k.

Set ‖f‖p =
(∫

|f (x)|pdx
)1/p.

Parseval’s equality: ‖f‖2
2 =

∑
k ‖Yk‖2
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Hypercontractivity on the real n-sphere

For ρ ∈ [0, 1], define the Poisson semigroup Pρ as follows:

(Pρf )(x) =
∑
k>0

ρkYk(x).

Alternatively:

(Pρf )(x) = (1 − ρ2)

∫
|x − ρy|−(n+1)f (y)dy

Hypercontractive inequality [Beckner ’92]

For any f : Sn → R, and any p and q such that 1 6 p 6 q 6 ∞
and ρ 6

√
p−1
q−1 ,

‖Pρf‖q 6 ‖f‖p.
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Hypercontractivity on the real n-sphere

As this framework is so similar to the case of the boolean cube,
many corollaries carry across without change. For example:

Corollary
For any degree d polynomial f : Sn → R, and any q > 2,

‖f‖q 6 (q − 1)d/2‖f‖2.

Proof is exactly the same as on the boolean cube.



Communication complexity separation

We have seen that one-way quantum communication is
more powerful than one-way classical communication.

What about one-way quantum vs. two-way classical?

Theorem [Klartag+Regev ’11]

There is a partial function which can be computed with an
O(log n)-qubit message from Alice to Bob, but for which every
classical two-way protocol requires Ω(n1/3) bits of
communication.

The problem:

Alice gets a unit vector v ∈ Sn−1, Bob gets a subspace
H ⊂ Rn of dimension n/2.
Promise: either v ∈ H or v ∈ H⊥.
Task: determine which is the case.
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Classical communication lower bound
Many technical steps. . .

one key lemma:

Lemma (variant of [Klartag+Regev ’11])
Assume f : Sn−1 → R has ‖f‖1 = 1, ‖f‖∞ = M. Expand
f =

∑
k Yk. Then

‖Yk‖2 6

(
2e ln M

k

)k/2

.

Proof:

‖Yk‖2 = ‖T−1
ρ TρYk‖2 = ρ−k‖TρYk‖2 6 ρ−k‖Tρf‖2 6 ρ−k‖f‖p

for p = 1 + ρ2. Observing ‖f‖p 6 Mp−1 and optimising over p
gives the claimed result.

[Klartag+Regev ’11] used a different noise operator and a
different hypercontractive inequality, but the eventual
result is essentially the same.
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Biases of local measurements

Imagine we are given a quantum state promised to be
either ρ or σ, with equal probability of each.

We want to determine which state we have, but are forced
to use just one fixed measurement for all ρ, σ.

We use the uniform POVM U putting equal weight on
each state |ψ〉 ∈ Cn.

Set ∆ = (ρ− σ)/2. Then the optimal success probability is

1
2

(
1 + n

∫
|〈ψ|∆|ψ〉| dψ

)
=:

1
2
(1 + ‖∆‖U) .

Theorem [Ambainis+Emerson ’07, Matthews et al. ’09]

There is a universal constant C such that

‖∆‖U > C
√

tr∆2.
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Proving this using hypercontractivity

The proof is based on the “fourth moment method”:

‖∆‖U = n
∫
|〈ψ|∆|ψ〉| dψ > n

(∫
〈ψ|∆|ψ〉2dψ

)3/2

(∫
〈ψ|∆|ψ〉4dψ

)1/2 .

It’s easy to compute∫
〈ψ|∆|ψ〉2dψ = tr

(∫
dψ|ψ〉〈ψ|⊗2

)
∆⊗2 =

tr∆2

n(n + 1)
.

To bound the denominator, we use hypercontractivity.
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Proving this using hypercontractivity

We go from the complex to the real unit sphere:

Associate |ψ〉 with ξ ∈ S2n−1.

Claim: f (ξ) = 〈ψ|∆|ψ〉 is a degree-2 polynomial in ξ.

So, by hypercontractivity,

‖f‖p =

(∫
|〈ψ|∆|ψ〉|p

)1/p

6 (p − 1)
(∫
〈ψ|∆|ψ〉2

)1/2

.

Taking p = 4 and substituting in gives an overall bound

‖∆‖U >

(
1
9
− o(1)

)√
tr∆2.
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The multipartite case

What about if ρ, σ are multipartite states on (Cn)⊗k, and we
use as our measurement the uniform POVM on each party
separately?

Theorem [Matthews et al. ’09, Lancien+Winter ’13]

‖∆‖U > Ck/2


∑

S⊆[k]

tr[(trS∆)
2]




1/2

.

Claim: hypercontractivity gives us this result for free using
multiplicativity of the Lp → Lq norm!

Compare the original proof. . .
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In the particular case of all the seven permutations in A, σA = id, σB = (14), σC = (23),
σD = (1234), σE = (1432), σF = (12)(34) and σG = (14)(23), this becomes

Tr ∆⊗4(UσA ⊗ · · · ⊗ UσG ) =
∑

a1,...,g1

a2,...,g2

a3,...,g3

a4,...,g4

∆a1b4c1d2e4f2g4

a1b1c1d1e1f1g1
∆a2b2c3d3e1f1g3

a2b2c2d2e2f2g2
∆a3b3c2d4e2f4g2

a3b3c3d3e3f3g3
∆a4b1c4d1e3f3g1

a4b4c4d4e4f4g4

=
∑

b1,d1,...,g1

c2,...,g2

c3,...,g3

b4,d4,...,g4

[
(TrA⊗C ∆)ΓE

]b4d2e1f2g4

b1d1e4f1g1

[
(TrA⊗B∆)ΓE

]c3d3e2f1g3

c2d2e1f2g2

×
[
(TrA⊗B∆)ΓE

]c2d4e3f4g2

c3d3e2f3g3

[
(TrA⊗C ∆)ΓE

]b1d1e4f3g1

b4d4e3f4g4
,

where ΓE denotes the partial transposition on E .
We can rewrite this using the maximally entangled ΦF⊗F =

∑

ff ′
|ff〉〈f ′f ′|:

Letting J := C ⊗ D ⊗ E ⊗ G, P := (TrA⊗B∆)ΓE and R := (P ⊗ 11F )(11J ⊗ ΦF⊗F )(P ⊗ 11F ), we
notice that, for all j, j′, f, f ′, f̃ , f̃ ′:

Rj
′,f ′,f̃ ′

j,f,f̃
=
∑

j′′,j′′′

f ′′,f ′′′

f̃ ′′,f̃ ′′′

(
P j
′′,f ′′
j,f δ

f̃ ′′=f̃

)(
δj′′′=j′′δf̃ ′′=f ′′,f̃ ′′′=f ′′′

)(
P j
′,f ′
j′′′,f ′′′δf̃ ′′′=f̃ ′

)
=
∑

j′′
P j
′′,f̃
j,f P j

′,f ′

j′′,f̃ ′
.

Likewise, lettingK := B⊗D⊗E⊗G,Q := (TrA⊗C ∆)ΓE and S := (Q⊗11F )(11K⊗ΦF⊗F )(Q⊗11F ),
we have for all k, k′, f, f ′, f̃ , f̃ ′:

Sk
′,f,f̃
k,f ′,f̃ ′

=
∑

k′′
Qk
′′,f̃ ′
k,f ′ Q

k′,f
k′′,f̃

.

We now just have to make the following identifications:

• j := (c2, d2, e1, g2), j′ := (c2, d4, e3, g2), j′′ := (c3, d3, e2, g3),

• k := (b4, d4, e3, g4), k′ := (b4, d2, e1, g4), k′′ := (b1, d1, e4, g1),

• f := f2, f
′ := f4, f̃ := f1, f̃

′ := f3,

and to notice that we can actually sum over j′′ and k′′ independently. We thus get:

Tr ∆⊗4(UσA ⊗ · · · ⊗ UσG ) =
∑

e1,f1

c2,d2,f2,g2

e3,f3

b4,d4,f4,g4

Rc2,d4,e3,g2,f4,f3

c2,d2,e1,g2,f2,f1
Sb4,d2,e1,g4,f2,f1

b4,d4,e3,g4,f4,f3

=
∑

e1,f1

d2,f2

e3,f3

d4,f4

(TrC⊗G R)d4,e3,f4,f3

d2,e1,f2,f1
(TrB⊗G S)d2,e1,f2,f1

d4,e3,f4,f3

= TrD⊗E⊗F⊗F (TrC⊗G R) (TrB⊗G S) .

17

Defining P̃ := (P⊗11F )(11J ⊗
∑

f |ff〉) and Q̃ := (Q⊗11F )(11J ⊗
∑

f |ff〉), we see thatR = P̃ P̃ †

and S = Q̃Q̃†. Hence R and S are positive semidefinite, and so are TrC⊗G R and TrB⊗G S. Thus,
using the fact that, for positive semidefinite V and W , TrVW ≤ (TrV )(TrW ), we obtain

TrD⊗E⊗F⊗F [(TrC⊗G R) (TrB⊗G S)] ≤ (TrC⊗D⊗E⊗F⊗F⊗G R) (TrB⊗D⊗E⊗F⊗F⊗G S) .

On right hand side,

TrR = TrC⊗D⊗E⊗F⊗G P 2

= TrC⊗D⊗E⊗F⊗G
(
(TrA⊗B∆)ΓE

)2

= TrC⊗D⊗E⊗F⊗G (TrA⊗B∆)2 ,

and likewise, TrS = TrB⊗D⊗E⊗F⊗G (TrA⊗C ∆)2. So, we eventually arrive at

Tr ∆⊗4(UσA ⊗ · · · ⊗ UσG ) ≤
[
TrC⊗D⊗E⊗F⊗G (TrA⊗B∆)2

] [
TrB⊗D⊗E⊗F⊗G (TrA⊗C ∆)2

]
. (A2)

With this inequality as a tool, we can now return to our initial problem: For all π ∈ AK =
{id, (14), (23), (1234), (1432), (12)(34), (14)(23)}K , we can define the following factors of the global
Hilbert spaceH:

A(π) :=
⊗

j s.t. πj=id

Hj , B(π) :=
⊗

j s.t. πj=(14)

Hj , C(π) :=
⊗

j s.t. πj=(23)

Hj ,

D(π) :=
⊗

j s.t. πj=(1234)

Hj , E(π) :=
⊗

j s.t. πj=(1432)

Hj ,

F(π) :=
⊗

j s.t. πj=(12)(34)

Hj , G(π) :=
⊗

j s.t. πj=(14)(23)

Hj ,

so that clearly,H = A(π)⊗ B(π)⊗ C(π)⊗D(π)⊗ E(π)⊗F(π)⊗ G(π). Hence, using successively
the two inequalities (A1) and (A2), we have:

∑

σ∈SK4

Tr
(
∆⊗4Uσ

)
≤
∑

σ∈SK4

{
1

2
Tr
(
∆⊗4UσL

)
+

1

2
Tr
(
∆⊗4UσR

)}

≤
∑

σ∈SK4

{
1

2

[
Tr
(

TrA(σL)⊗B(σL) ∆
)2
] [

Tr
(

TrA(σL)⊗C(σL) ∆
)2
]

+
1

2

[
Tr
(

TrA(σR)⊗B(σR) ∆
)2
] [

Tr
(

TrA(σR)⊗C(σR) ∆
)2
]}

=
∑

σ∈SK4

[
Tr
(

TrA(σL)⊗B(σL) ∆
)2
] [

Tr
(

TrA(σL)⊗C(σL) ∆
)2
]

≤
∑

σ∈SK4

{
1

2

[
Tr
(

TrA(σL)⊗B(σL) ∆
)2
]2

+
1

2

[
Tr
(

TrA(σL)⊗C(σL) ∆
)2
]2
}

=
∑

σ∈SK4

[
Tr
(

TrA(σL)⊗B(σL) ∆
)2
]2

,

where in the last lines we have made use of the symmetry between σL and σR on the one hand,
and that between B(σL) and C(σL) on the other, when σ ranges over SK

4 .



Noncommutative generalisations

There are at least two sensible ways in which one could
generalise the hypercontractive inequality on the boolean cube
to a noncommutative setting:

Matrix-valued functions on the boolean cube:

f : {0, 1}n →Md

Linear operators on (C2)⊗n (the space of n qubits).

Both of these ideas work and lead to interesting consequences.



Matrix-valued functions
The hypercontractive inequality when q = 2:

∑
S⊆[n]

(p − 1)|S| f̂ (S)2 6


 1

2n

∑
x∈{0,1}n

|f (x)|p




2/p

for any 1 6 p 6 2.

In the matrix-valued case we have:

Theorem [Ben-Aroya, Regev and de Wolf ’08]

∑
S⊆[n]

(p − 1)|S|‖f̂ (S)‖2
p 6


 1

2n

∑
x∈{0,1}n

‖f (x)‖p
p




2/p

for any 1 6 p 6 2, where ‖ · ‖p is the Schatten p-norm and

f̂ (S) =
1
2n

∑
x∈{0,1}n

f (x)χS(x)

are now matrices.
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Applications

One example: proving limitations on quantum random access
codes [Ben-Aroya, Regev, de Wolf ’08].

We want to encode x ∈ {0, 1}n in a state ρ ∈M2m such that
we can recover any k of the n bits with high probability.

Claim: even predicting
⊕

i∈S xi, for an arbitrary k-subset S,
is difficult on average.

If f : {0, 1}n →M2m is our encoding function, the success
probability is controlled by

‖Ex,
⊕

i∈S xi=0[Mx] − Ex,
⊕

i∈S xi=1[Mx]‖1 = ‖f̂ (S)‖1.

Claim:

ES∼([n]k )

[
‖f̂ (S)‖1

]
6 C

(
C ′m

n

)k/2

.

Proof: use hypercontractive inequality with carefully chosen p.
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A different notion of noncommutativity

Instead of functions f : {0, 1}n → R, we consider Hermitian
operators on the space of n qubits.

Then a natural generalisation of the noise operator on one
bit is the qubit depolarising channel:

Dρ(M) = (1 − ρ)(tr M)
I
2
+ ρM.

Hypercontractive inequality [King ’12] [AM+Osborne ’10]

For any Hermitian operator M ∈ B((C2)⊗n), and any p and q

such that 1 6 p 6 q 6 ∞ and ρ 6
√

p−1
q−1 ,

‖D⊗n
ρ M‖q 6 ‖M‖p.

([King ’12] actually proves hypercontractivity for all semigroups
of unital qubit channels)
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Application: norm and tail bounds

Many (though not all!) of the corollaries of
hypercontractivity on the boolean cube go through
immediately.

The right analogue of degree d polynomials turns out to
be d-local operators on (C2)⊗n.

Norm and tail bounds
Let M be a d-local Hermitian operator on n qubits such that
‖M‖2 = 1. Then:

‖M‖q 6 (q − 1)d/2 for all q > 2.

|{i : |λi| > t}|
2n 6 exp(−dt2/d/(2e)).

A weaker (but much simpler) version of quantum central limit
theorems, e.g. [Hartmann et al. ’04].

Question: is there a quantum version of the KKL theorem?
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Application: rapid mixing

A quantum Markov process is a family of channels of the
form

Et(ρ) = etL.

We want to find the mixing time of E: the minimum t
such that

‖Et(ρ) − σ‖1 6 ε

for all ρ, where σ = limt→∞ Et(ρ).

[Kastoryano+Temme ’13]: hypercontractive (≡ log-Sobolev)
inequalities imply significantly improved mixing time bounds.

e.g. an exponential improvement over a more naı̈ve bound
for the d-dimensional depolarising channel.
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Conclusions

A little bit of noise can be very powerful. . .

Further reading
AM, Some applications of hypercontractive inequalities in
quantum information theory
JMP, vol. 53, 122206, 2012
arXiv:1208.0161

and references therein.

Thanks!



Conclusions

A little bit of noise can be very powerful. . .

Further reading
AM, Some applications of hypercontractive inequalities in
quantum information theory
JMP, vol. 53, 122206, 2012
arXiv:1208.0161

and references therein.

Thanks!



Conclusions

A little bit of noise can be very powerful. . .

Further reading
AM, Some applications of hypercontractive inequalities in
quantum information theory
JMP, vol. 53, 122206, 2012
arXiv:1208.0161

and references therein.

Thanks!



A special case of a conjecture

The following beautiful conjecture (a generalisation of KKL)
would imply efficient simulations of quantum query
algorithms by classical algorithms on most inputs:

Conjecture [Aaronson and Ambainis ’11]

For all degree d polynomials f : {±1}n → [−1, 1], there exists j
such that Ij(f ) > poly(Var(f )/d).

The above result proves the special case of this conjecture
where f is a multilinear form whose coefficients are all
equal (in absolute value).

Few other special cases known. One example: symmetric
functions f [Bačkurs ’12].



The Khot-Vishnoi game

Parametrised by N = 2n and η ∈ [0, 1/2].

Let H be subgroup of ZN
2 containing Hadamard

codewords (strings x such that xz = z⊕ s for some
s ∈ {0, 1}n).

Alice gets uniformly random coset of H defined by a
bit-string x.

Bob gets coset defined by y = x⊕ e, where ei = 1 with
independent probability η.

Alice outputs a ∈ H ⊕ x, Bob outputs b ∈ H ⊕ y such that
a⊕ b = e.

The number of possible inputs to each player is N/n and
the number of possible outputs for each player is n.



Communication complexity separation
An O(log n)-qubit quantum protocol is easy; the difficult part
is proving the classical lower bound.
The key technical component:

Lemma (informal) [Klartag+Regev ’11]

Let A ⊆ Sn−1 have measure σ(A) > e−n1/3
. Pick an

(n − 1)-dimensional subspace H uniformly at random. Then
σH(A ∩H) ≈ σ(A) with high probability.

Via an inductive argument, this is used to show that for
any subsets A, B such that σ(A),σ(B) > e−Cn1/3

,

σ((A× B) ∩ I) > C ′σ(A)σ(B).

A× B is a rectangle representing the inputs identified by
Alice and Bob’s communication so far; I is the set of
inputs for which they should output “yes”.



A key technical lemma

Lemma [Klartag+Regev ’11]

Let f , g satisfy
∫

f (x)dx =
∫

g(x)dx = 1. Then∫
f (x)g(y)d⊥(x, y) = 1 + O

(
log ‖f‖∞ log ‖g‖∞

n

)

where the integral is taken over orthonormal vectors x, y.

Expand f and g in terms of spherical harmonics Yk, Y ′k, then∫
f (x)g(y)d⊥(x, y) =

∑
k>0

µk

∫
Yk(x)Y ′k(x)dx

for some {µk} such that µ0 = 1, |µk| 6
(

C k
n

)k/2
. So

∣∣∣∣
∫

f (x)g(y)d⊥(x, y) − 1
∣∣∣∣ 6

∑
k>0

|µk|‖Yk‖2‖Y ′k‖2.




