The distinguishability of random quantum states

Ashley Montanaro¹

¹Department of Computer Science University of Bristol Bristol, UK

25th October 2006

We will consider a basic question in quantum measurement theory.

Question

Consider a known ensemble \mathcal{E} of *n* quantum states $\{|\psi_i\rangle\}$ with a priori probabilities p_i . Given an unknown state $|\psi_i\rangle$, picked at random from \mathcal{E} , what is the optimal probability $P^{opt}(\mathcal{E})$ of identifying $|\psi_i\rangle$? That is,

$$P^{opt}(\mathcal{E}) = \max_{M} \sum_{i=1}^{n} p_i \langle \psi_i | M_i | \psi_i \rangle$$

where we maximise over all POVMs $M = \{M_i\}$.

Previous work

- This problem has been considered by many authors since the 1970s, under titles like "quantum hypothesis testing", "quantum detection", "quantum state discrimination" etc.
- Many other optimality criteria have also been considered (e.g.: maximise information gain).

¹C. Helstrom, *Quantum detection and estimation theory* (1978)
 ²Y. Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002)

Previous work

- This problem has been considered by many authors since the 1970s, under titles like "quantum hypothesis testing", "quantum detection", "quantum state discrimination" etc.
- Many other optimality criteria have also been considered (e.g.: maximise information gain).
- Helstrom derived an analytic expression for $P^{opt}(\mathcal{E})$ in the case where \mathcal{E} contains 2 states ¹.
- In general, producing an analytic expression for $P^{opt}(\mathcal{E})$ appears to be intractable (although good numerical solutions can be found²)

¹C. Helstrom, *Quantum detection and estimation theory* (1978) ²Y. Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002)

Previous work

- This problem has been considered by many authors since the 1970s, under titles like "quantum hypothesis testing", "quantum detection", "quantum state discrimination" etc.
- Many other optimality criteria have also been considered (e.g.: maximise information gain).
- Helstrom derived an analytic expression for $P^{opt}(\mathcal{E})$ in the case where \mathcal{E} contains 2 states ¹.
- In general, producing an analytic expression for $P^{opt}(\mathcal{E})$ appears to be intractable (although good numerical solutions can be found²)
- We are therefore led to producing lower bounds on $P^{opt}(\mathcal{E})$.

¹C. Helstrom, *Quantum detection and estimation theory* (1978)

²Y. Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002)

I will discuss:

• Part I: the distinguishability of quantum states

- Using a specific measurement to lower bound $P^{opt}(\mathcal{E})$
- Two lower bounds on P^{opt}(E): a "local" bound and a "global" bound
- S Extending the lower bounds to mixed states
- Part II: random quantum states
 - Random quantum states and random matrix theory
 - Lower bounds on the distinguishability of random quantum states
 - Application: how mixed is my subsystem?
 - Application: the "oracle identification problem" in quantum computation

Notation

I will use the following notation throughout the talk:

- $\mathcal{E} = \{ |\psi_i \rangle \}$: the ensemble of states to distinguish
- *p_i*: the *a priori* probability of the *i*'th state
- $n = |\mathcal{E}|$: the number of states in \mathcal{E}
- *d*: the dimension of the states in \mathcal{E}

Notation

I will use the following notation throughout the talk:

- $\mathcal{E} = \{ |\psi_i \rangle \}$: the ensemble of states to distinguish
- *p_i*: the *a priori* probability of the *i*'th state
- $n = |\mathcal{E}|$: the number of states in \mathcal{E}
- d: the dimension of the states in \mathcal{E}
- S: the $d \times n$ state matrix $S = (\sqrt{p_1} |\psi_1\rangle \sqrt{p_2} |\psi_2\rangle \cdots \sqrt{p_n} |\psi_n\rangle)$
- ρ : the density matrix $\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$
- G: the Gram matrix $G_{ij} = \sqrt{p_i} \sqrt{p_j} \langle \psi_i | \psi_j \rangle$
- *P^M(E)*: the probability of success of measurement *M* applied to *E*

- Using a specific measurement to lower bound $P^{opt}(\mathcal{E})$
- Two lower bounds on $P^{opt}(\mathcal{E})$: a "local" bound and a "global" bound
- Section 2 Sec

- The lower bounds are obtained by putting a lower bound on the probability of success of a specific measurement that can be defined for any ensemble of states, the *Pretty Good Measurement* (PGM)³.
- For pure states, the PGM is defined by the set of measurement operators $\{|\mu_i\rangle\langle\mu_i|\}$, where $|\mu_i\rangle = \sqrt{p_i}\rho^{-1/2}|\psi_i\rangle$.
- It's easy to show that this always gives a valid measurement $(\sum_i |\mu_i\rangle\langle\mu_i| = I)$

³P. Hausladen, W. Wootters (1994)

The canonical nature of the PGM

The PGM has a number of desirable properties, including that:

- It can be defined analytically for any ensemble of states
- It's almost optimal for any ensemble \mathcal{E}^4 :
 - $P^{pgm}(\mathcal{E}) \geq P^{opt}(\mathcal{E})^2$

For us, the important fact is that it's easy to analyse.

⁴H. Barnum and E. Knill, quant-ph/0004088 (2000)

The canonical nature of the PGM

The PGM has a number of desirable properties, including that:

- It can be defined analytically for any ensemble of states
- It's almost optimal for any ensemble \mathcal{E}^4 :
 - $P^{pgm}(\mathcal{E}) \geq P^{opt}(\mathcal{E})^2$

For us, the important fact is that it's easy to analyse.

Key fact

Let *G* be the rescaled Gram matrix of the ensemble \mathcal{E} , $G_{ij} = \sqrt{p_i p_j} \langle \psi_i | \psi_j \rangle$. Then the probability of success of the PGM is

$$P^{pgm}(\mathcal{E}) = \sum_{i=1}^{n} p_i |\langle \psi_i | \mu_i \rangle|^2 = \sum_{i=1}^{n} (\sqrt{G})_{ii}^2$$

Our two lower bounds will be based on lower bounding this sum.

⁴H. Barnum and E. Knill, quant-ph/0004088 (2000)

The pairwise inner product bound

- The first lower bound is based on a strategy used by Hausladen et al.⁵
- The strategy is to put a lower bound on the square root function by an "easier" function (a parabola)
- Works because $\sqrt{x} \ge ax + bx^2 \Rightarrow (\sqrt{G})_{ii} \ge aG_{ii} + b\sum_j |G_{ij}|^2$.

Red: \sqrt{x} . Blue: $\frac{3}{2}x - \frac{1}{2}x^2$ ⁵P. Hausladen, R. Jozsa, B. Schumacher, W. Wootters (1996)

The pairwise inner product bound

- We can improve their bound by producing (for a given set of states) a set of optimal parabolae.
- For each *i*, we look for *a* and *b* such that $\sqrt{x} \ge ax + bx^2$ for $x \ge 0$, and $aG_{ii} + b\sum_i |G_{ij}|^2$ is maximised.

The pairwise inner product bound

- We can improve their bound by producing (for a given set of states) a set of optimal parabolae.
- For each *i*, we look for *a* and *b* such that $\sqrt{x} \ge ax + bx^2$ for $x \ge 0$, and $aG_{ii} + b\sum_j |G_{ij}|^2$ is maximised.
- Only basic calculus is required to find these values of *a* and *b*, and substituting in gives the result:

Pairwise inner product bound

Let \mathcal{E} be an ensemble of *n* states $\{|\psi_i\rangle\}$ with a priori probabilities p_i .

Then
$$P^{pgm}(\mathcal{E}) \ge \sum_{i=1}^{n} \frac{p_i^2}{\sum_{j=1}^{n} p_j |\langle \psi_i | \psi_j \rangle|^2}$$

$$\sum_{i=1}^{n} (\sqrt{G})_{ii} = \sum_{i=1}^{n} \sqrt{\lambda_i}$$
(1)

$$\sum_{i=1}^{n} (\sqrt{G})_{ii} = \sum_{i=1}^{n} \sqrt{\lambda_i}$$
(1)
$$\Rightarrow \left(\sum_{i=1}^{n} (\sqrt{G})_{ii}\right)^2 = \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(2)

$$\sum_{i=1}^{n} (\sqrt{G})_{ii} = \sum_{i=1}^{n} \sqrt{\lambda_i}$$
(1)
$$\Rightarrow \left(\sum_{i=1}^{n} (\sqrt{G})_{ii}\right)^2 = \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(2)
$$\Rightarrow n \sum_{i=1}^{n} (\sqrt{G})_{ii}^2 \ge \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(3)

$$\sum_{i=1}^{n} (\sqrt{G})_{ii} = \sum_{i=1}^{n} \sqrt{\lambda_i}$$
(1)

$$\Rightarrow \left(\sum_{i=1}^{n} (\sqrt{G})_{ii}\right)^2 = \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(2)

$$\Rightarrow n \sum_{i=1}^{n} (\sqrt{G})_{ii}^2 \ge \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(3)

$$\Rightarrow P^{pgm}(\mathcal{E}) \ge \frac{1}{n} \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(4)

The second lower bound is based on a global measure of distinguishability of the states in \mathcal{E} : the eigenvalues $\{\lambda_i\}$ of the Gram matrix *G*.

$$\sum_{i=1}^{n} (\sqrt{G})_{ii} = \sum_{i=1}^{n} \sqrt{\lambda_i}$$
(1)

$$\Rightarrow \left(\sum_{i=1}^{n} (\sqrt{G})_{ii}\right)^2 = \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(2)

$$\Rightarrow n \sum_{i=1}^{n} (\sqrt{G})_{ii}^2 \ge \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(3)

$$\Rightarrow P^{pgm}(\mathcal{E}) \ge \frac{1}{n} \left(\sum_{i=1}^{n} \sqrt{\lambda_i}\right)^2$$
(4)

In terms of the trace norm, $P^{pgm}(\mathcal{E}) \ge \frac{1}{n} ||S||_1^2 = \frac{1}{n} (\sum_i \sigma_i(S))^2$.

Comparison with previous bounds

- Previous authors (e.g. Burnashev and Holevo⁶) have used bounds based on similar principles.
- But the bounds here are stronger, especially for low values of $P^{pgm}(\mathcal{E})$, and always give a non-trivial value.

⁶M. V. Burnashev and A. S. Holevo, On reliability function of quantum communication channel, quant-ph/9703013

Comparison with previous bounds

- Previous authors (e.g. Burnashev and Holevo⁶) have used bounds based on similar principles.
- But the bounds here are stronger, especially for low values of $P^{pgm}(\mathcal{E})$, and always give a non-trivial value.
- Assuming the states in \mathcal{E} have equal probabilities:

Comparison of boundsPreviously known lower boundNew lower bound $P^{pgm}(\mathcal{E}) \ge 1 - \frac{1}{n} \sum_{i \ne j} |\langle \psi_i | \psi_j \rangle|^2$ $P^{pgm}(\mathcal{E}) \ge \frac{1}{n} \sum_{i=1}^n \frac{1}{\sum_{j=1}^n |\langle \psi_i | \psi_j \rangle|^2}$ $P^{pgm}(\mathcal{E}) \ge \frac{2}{\sqrt{n}} \operatorname{tr}(\sqrt{G}) - 1$ $P^{pgm}(\mathcal{E}) \ge \frac{1}{n} \operatorname{tr}(\sqrt{G})^2$

⁶M. V. Burnashev and A. S. Holevo, On reliability function of quantum communication channel, quant-ph/9703013

A local bound and a global bound

- It is interesting to note that the inner product bound only considers the pairwise distinguishability between states, while the eigenvalue bound is based on global features of the ensemble.
- We might therefore expect the latter to be stronger...

A local bound and a global bound

- It is interesting to note that the inner product bound only considers the pairwise distinguishability between states, while the eigenvalue bound is based on global features of the ensemble.
- We might therefore expect the latter to be stronger...
- Consider an ensemble of *n* states, each pair of which have the same inner product, $k \in \mathbb{R}^+$. Then it is possible to show that:
 - The inner product bound gives an almost trivial bound:
 P^{pgm}(*E*) ≥ *O*(1/*n*)
 - The eigenvalue bound gives a strong bound: $P^{pgm}(\mathcal{E}) \ge (1-k) - o(1)$

A local bound and a global bound

- It is interesting to note that the inner product bound only considers the pairwise distinguishability between states, while the eigenvalue bound is based on global features of the ensemble.
- We might therefore expect the latter to be stronger...
- Consider an ensemble of *n* states, each pair of which have the same inner product, $k \in \mathbb{R}^+$. Then it is possible to show that:
 - The inner product bound gives an almost trivial bound:
 P^{pgm}(*E*) ≥ *O*(1/*n*)
 - The eigenvalue bound gives a strong bound: $P^{pgm}(\mathcal{E}) \ge (1-k) - o(1)$
- (NB: in this trivial case we can actually diagonalise the Gram matrix and calculate the probability of success of the PGM exactly)

Mixed states

- We have only considered the distinguishability of pure states.
- It turns out that we can give a lower bound on the distinguishability of mixed states too...
 - If we have an ensemble of states {ρ_i}, and we know their eigendecompositions ρ_i = Σ_k λ_{ik}|e_{ik}⟩⟨e_{ik}|, then we can relate the problem of distinguishing the {ρ_i} to distinguishing the |e_{ik}⟩.

Mixed states

- We have only considered the distinguishability of pure states.
- It turns out that we can give a lower bound on the distinguishability of mixed states too...
 - If we have an ensemble of states {ρ_i}, and we know their eigendecompositions ρ_i = Σ_k λ_{ik}|e_{ik}⟩⟨e_{ik}|, then we can relate the problem of distinguishing the {ρ_i} to distinguishing the |e_{ik}⟩.
- Even if we don't know the eigendecompositions, we can convert the inner product bound to a bound based on the pairwise *fidelities* of the states in \mathcal{E} .

Pairwise fidelity bound

Let \mathcal{E} be an ensemble of *n* states $\{\rho_i\}$ with a priori probabilities p_i .

Then
$$P^{pgm}(\mathcal{E}) \ge \sum_{i=1}^{n} \frac{p_i^2 \operatorname{tr}(\rho_i^2)}{\sum_{j=1}^{n} p_j F(\rho_i, \rho_j)}$$

- Random quantum states and random matrix theory
- Lower bounds on the distinguishability of random quantum states
- Application: how mixed is my subsystem?
- Application: the "oracle identification problem" in quantum computation

- We will now apply the eigenvalue bound to the case where the states in \mathcal{E} are random.
- To be precise, for all *i*:
 - |ψ_i⟩ is distributed uniformly at random on the *d*-dimensional complex unit sphere (according to Haar measure)
 - $p_i = 1/n$ (the states are equiprobable)
- We will calculate the expected probability of success of identifying |ψ_?⟩ in this case.

- We will now apply the eigenvalue bound to the case where the states in \mathcal{E} are random.
- To be precise, for all *i*:
 - |ψ_i⟩ is distributed uniformly at random on the *d*-dimensional complex unit sphere (according to Haar measure)
 - $p_i = 1/n$ (the states are equiprobable)
- We will calculate the expected probability of success of identifying |ψ_?⟩ in this case.

So we are given a state picked at random from a known set of states which are themselves randomly picked, and asked to determine which random state our randomly picked state actually is

How do we produce a state $|\psi\rangle$ distributed uniformly at random?

- Generate a vector v whose components v_i are complex Gaussians, then set $|\psi\rangle = v/||v||$.
 - i.e. v_i 's real and complex parts are independently normally distributed with variance 1/2; both parts have probability density function $\frac{1}{2\sqrt{\pi}}e^{-x^2/2}$ and $\mathbb{E}(|v_i|^2) = 1$.
- This works because of the spherical symmetry of the multivariate normal distribution.

How do we produce a state $|\psi\rangle$ distributed uniformly at random?

- Generate a vector v whose components v_i are complex Gaussians, then set $|\psi\rangle = v/||v||$.
 - i.e. v_i 's real and complex parts are independently normally distributed with variance 1/2; both parts have probability density function $\frac{1}{2\sqrt{\pi}}e^{-x^2/2}$ and $\mathbb{E}(|v_i|^2) = 1$.
- This works because of the spherical symmetry of the multivariate normal distribution.
- It turns out that the normalisation step becomes "almost" unnecessary in high dimension (qv): rescaling v by $1/\sqrt{d}$ will give a complex vector whose norm is approximately 1.
- So the state matrix *S* is (almost!) a rescaled matrix of Gaussians: $S_{ij} \sim \tilde{N}(0, 1/nd)$, and we need to calculate $\mathbb{E}(\frac{1}{n} ||S||_1^2)$.

Random matrix theory

• Random matrix theory deals with the properties of matrices whose entries are random variables.

⁷V. A. Marčenko and L. A. Pastur (1967)

- Random matrix theory deals with the properties of matrices whose entries are random variables.
- In particular, infinite-dimensional random matrix theory allows us to answer questions like "what is the limiting density of the eigenvalues of a family of *n* × *n* random matrices, as *n* → ∞?".
 - By density, we mean the function f(x) which integrates to $F(x) = \frac{1}{n} (\# eigenvalues < x)$
 - It's not a priori obvious that such a limit should exist!

⁷V. A. Marčenko and L. A. Pastur (1967)

- Random matrix theory deals with the properties of matrices whose entries are random variables.
- In particular, infinite-dimensional random matrix theory allows us to answer questions like "what is the limiting density of the eigenvalues of a family of *n* × *n* random matrices, as *n* → ∞?".
 - By density, we mean the function f(x) which integrates to $F(x) = \frac{1}{n} (\# eigenvalues < x)$
 - It's not a priori obvious that such a limit should exist!
- Statisticians have long studied the density of eigenvalues of the matrix $G = SS^{\dagger}$, where S is a random matrix: under certain conditions, it's given by the Marčenko-Pastur law ⁷.
 - This is the equivalent of the famous Wigner semicircle law for random Hermitian matrices...
- ⁷V. A. Marčenko and L. A. Pastur (1967)
The Marčenko-Pastur law

The Marčenko-Pastur law gives the limiting density of the eigenvalues of a sample covariance matrix $G = SS^{\dagger}$ under very weak conditions.

The Marčenko-Pastur law

The Marčenko-Pastur law gives the limiting density of the eigenvalues of a sample covariance matrix $G = SS^{\dagger}$ under very weak conditions.

Marčenko-Pastur law

Let R_r be a family of $d \times n$ matrices with $n \ge d$ and $d/n \to r \in (0, 1]$ as $n, d \to \infty$, where the entries of R_r are i.i.d. complex random variables with mean 0 and variance 1. Then, as $n, d \to \infty$, the eigenvalues of the rescaled matrix $\frac{1}{n}R_rR_r^{\dagger}$ tend almost surely to a limiting distribution with density

$$p_r(x) = \frac{\sqrt{(x-A^2)(B^2-x)}}{2\pi rx}$$

for $A^2 \le x \le B^2$ (where $A = 1 - \sqrt{r}$, $B = 1 + \sqrt{r}$), and density 0 elsewhere.

The Marčenko-Pastur law

The Marčenko-Pastur law gives the limiting density of the eigenvalues of a sample covariance matrix $G = SS^{\dagger}$ under very weak conditions.

Marčenko-Pastur law

Let R_r be a family of $d \times n$ matrices with $n \ge d$ and $d/n \to r \in (0, 1]$ as $n, d \to \infty$, where the entries of R_r are i.i.d. complex random variables with mean 0 and variance 1. Then, as $n, d \to \infty$, the eigenvalues of the rescaled matrix $\frac{1}{n}R_rR_r^{\dagger}$ tend almost surely to a limiting distribution with density

$$p_r(x) = \frac{\sqrt{(x-A^2)(B^2-x)}}{2\pi rx}$$

for $A^2 \le x \le B^2$ (where $A = 1 - \sqrt{r}$, $B = 1 + \sqrt{r}$), and density 0 elsewhere.

We can easily tweak this result to tell us the density of the singular values of R_r instead!

Experimental results

Who says theorists don't know how to do experiments? \bigcirc

Blue: singular value density predicted by Marčenko-Pastur law Red: empirical singular value distribution of a 500x500 matrix

We can use the M-P law to give us the expected trace norm of a random matrix, again under very weak conditions.

Expected trace norm

Let R_r be a family of $d \times n$ matrices with $k/m \to r \in (0, 1]$ as $n, d \to \infty$, where $k = \min(n, d)$ and $m = \max(n, d)$, and the entries of R_r are i.i.d. complex random variables with mean 0 and variance 1. Then, as $n, d \to \infty$, the expected trace norm of R_r tends almost surely to

$$\mathbb{E}(\|R_r\|_1) = \frac{m^{3/2}}{\pi} \int_A^B \sqrt{(y^2 - A^2)(B^2 - y^2)} \, dy$$

where $A = 1 - \sqrt{r}, B = 1 + \sqrt{r}$.

Applying the Marčenko-Pastur law (2)

We want to evaluate the following integral:

$$\int_{A}^{B} \sqrt{(y^2 - A^2)(B^2 - y^2)} \, dy$$

Unfortunately, this is an elliptic integral with no analytic solution. But we can find a good lower bound on the integral...

Applying the Marčenko-Pastur law (2)

We want to evaluate the following integral:

•

$$\int_{A}^{B} \sqrt{(y^2 - A^2)(B^2 - y^2)} \, dy$$

Unfortunately, this is an elliptic integral with no analytic solution. But we can find a good lower bound on the integral...

Elliptic integral lower bound

Let $0 \le r \le 1$ and $A = 1 - \sqrt{r}$, $B = 1 + \sqrt{r}$. Then

$$\int_{A}^{B} \sqrt{(y^2 - A^2)(B^2 - y^2)} \, dy \ge r\pi \sqrt{1 - r\left(1 - \frac{64}{9\pi^2}\right)}$$

with equality at r = 0, r = 1.

(The proof is quite long and involves representing the integral as the difference of two hypergeometric series and performing several transformations on these hypergeometric series...)

Main theorem

Let \mathcal{E} be an ensemble of *n* equiprobable *d*-dimensional quantum states $\{|\psi_i\rangle\}$ with $n/d \to r \in (0, \infty)$ as $n, d \to \infty$, and let the components of $|\psi_i\rangle$ in some basis be i.i.d. complex random variables with mean 0 and variance 1/d. Then, as $n, d \to \infty$,

$$\mathbb{E}(P^{pgm}(\mathcal{E})) \geq \begin{cases} \frac{1}{r} \left(1 - \frac{1}{r} \left(1 - \frac{64}{9\pi^2}\right)\right) & \text{if } n \geq d \\ 1 - r \left(1 - \frac{64}{9\pi^2}\right) & \text{otherwise} \end{cases}$$

and in particular $\mathbb{E}(P^{pgm}(\mathcal{E})) > 0.720$ when $n \leq d$.

Comparison with numerical results (1) $(0 \le n \le 2d)$

Figure: Asymptotic bound on $P^{pgm}(\mathcal{E})$ vs. numerical results (averaged over 10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.

Comparison with numerical results (2) $(0 \le n \le 10d)$

Figure: Asymptotic bound on $P^{pgm}(\mathcal{E})$ vs. numerical results (averaged over 10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.

A finite-dimensional lower bound

- The M-P law holds in the asymptotic limit. Can we find a lower bound on the expected distinguishability of an ensemble of finite-dimensional random states?
- Also, I glossed over the issue of normalising the states we produce...

A finite-dimensional lower bound

- The M-P law holds in the asymptotic limit. Can we find a lower bound on the expected distinguishability of an ensemble of finite-dimensional random states?
- Also, I glossed over the issue of normalising the states we produce...
- There are two "bad events" that we have to take into account:
 - The eigenvalue distribution in finite dimension *d* will not be given by the M-P law, but some approximation
 - The normalisation of the states might perturb the state matrix excessively

A finite-dimensional lower bound

- The M-P law holds in the asymptotic limit. Can we find a lower bound on the expected distinguishability of an ensemble of finite-dimensional random states?
- Also, I glossed over the issue of normalising the states we produce...
- There are two "bad events" that we have to take into account:
 - The eigenvalue distribution in finite dimension *d* will not be given by the M-P law, but some approximation
 - The normalisation of the states might perturb the state matrix excessively
- Actually, both of these problems can be overcome:
 - There is a convergence result bounding the rate at which the eigenvalues converge to the M-P law
 - We can produce a tail bound that says that the normalisation step makes little difference

Convergence rate to the M-P law:

• We can use a convergence result ⁸ that gives that the expected probability of success we calculated needs adjusting by a term of order $O(d^{-5/48})$.

⁸Z. D. Bai, 1993
⁹C. H. Bennett, P. Hayden, D. Leung, P. Shor, A. Winter (2003)

Ashley Montanaro The distinguishability of random quantum states

Convergence rate to the M-P law:

• We can use a convergence result ⁸ that gives that the expected probability of success we calculated needs adjusting by a term of order $O(d^{-5/48})$.

Effect of replacing the normalisation step with rescaling:

• The norm of the original *d*-dimensional vector *v* is sharply concentrated around its expected value⁹: $\Pr[|||v||^2 - 1| \ge \epsilon] < 2e^{-d\epsilon^2/12}$

⁸Z. D. Bai, 1993
⁹C. H. Bennett, P. Hayden, D. Leung, P. Shor, A. Winter (2003)

Convergence rate to the M-P law:

• We can use a convergence result ⁸ that gives that the expected probability of success we calculated needs adjusting by a term of order $O(d^{-5/48})$.

Effect of replacing the normalisation step with rescaling:

- The norm of the original *d*-dimensional vector *v* is sharply concentrated around its expected value⁹: $\Pr[|||v||^2 - 1| \ge \epsilon] < 2e^{-d\epsilon^2/12}$
- ⇒ Each column of the state matrix S will be close to the vector we would get by blindly rescaling v
- ⇒ The probability that the trace norm of *S* is far from the "blindly rescaled" matrix *S*′ is exponentially small in *d*

⁹C. H. Bennett, P. Hayden, D. Leung, P. Shor, A. Winter (2003)

⁸Z. D. Bai, 1993

Convergence in low dimension

Empirical probability of success of the PGM applied to n states in n dimensions (averaged over 100 runs).

Concentration of measure

- So far we've only calculated the *expected* distinguishability of a set of random states.
- How close are most states to this expected value?
- Concentration of measure results allow us to answer this question!

Concentration of measure

- So far we've only calculated the *expected* distinguishability of a set of random states.
- How close are most states to this expected value?
- Concentration of measure results allow us to answer this question!

Concentration of measure

Let p be a point in \mathbb{R}^d picked in accordance with standard Gaussian measure (i.e. $\mathbb{E}(p_i^2) = 1$). Then

$$\Pr[|f(p) - \mathbb{E}(f)| \ge \epsilon] \le 2e^{-\epsilon^2/2\eta^2}$$
(5)

where η is the Lipschitz constant of f, $\eta = \sup_{x,y} |f(x) - f(y)| / ||x - y||_2.$

Concentration of measure (2)

• So we identify the state matrix *S* with a (rescaled) 2*nd*-dimensional vector of real Gaussians and consider the "distinguishability" function $f(S) = \frac{1}{n} ||S||_1^2$: then $\eta \le 2||S||_2$.

Concentration of measure (2)

- So we identify the state matrix *S* with a (rescaled) 2*nd*-dimensional vector of real Gaussians and consider the "distinguishability" function $f(S) = \frac{1}{n} ||S||_1^2$: then $\eta \le 2||S||_2$.
- Plugging this in, and considering the finite-dimensional "correction factors" discussed previously, after some fiddly algebra we end up with:

Concentration of measure (2)

- So we identify the state matrix *S* with a (rescaled) 2*nd*-dimensional vector of real Gaussians and consider the "distinguishability" function $f(S) = \frac{1}{n} ||S||_1^2$: then $\eta \le 2||S||_2$.
- Plugging this in, and considering the finite-dimensional "correction factors" discussed previously, after some fiddly algebra we end up with:

Probability of success in finite dimension

Let \mathcal{E} be an ensemble of n equiprobable d-dimensional quantum states picked uniformly at random. Set $p = \frac{1}{r} \left(1 - \frac{1}{r} \left(1 - \frac{64}{9\pi^2}\right)\right) - O(n^{-5/48})$ if $n \ge d$, and $p = 1 - r \left(1 - \frac{64}{9\pi^2}\right) - O(d^{-5/48})$ otherwise. Then, for any $\epsilon \le p/2$, $\Pr[P^{pgm}(\mathcal{E}) \le p - 2\epsilon] \le 2 \left((n+1)e^{-d\epsilon^4/K} + e^{-nd\epsilon^2/5}\right)$

where *K* is a constant \leq 300.

Why study random states anyway?

Other reasons:

• Random states provide an interesting case where we can determine the distinguishability of an ensemble based only on two parameters: *n* and *d*.

Other reasons:

- Random states provide an interesting case where we can determine the distinguishability of an ensemble based only on two parameters: *n* and *d*.
- We can get very tight analytic results in this case: even for low dimensions, the bound seems to be within 1% of the observed probability of success of the PGM.

Other reasons:

- Random states provide an interesting case where we can determine the distinguishability of an ensemble based only on two parameters: *n* and *d*.
- We can get very tight analytic results in this case: even for low dimensions, the bound seems to be within 1% of the observed probability of success of the PGM.
- These results allow one to say: my states are like random states ⇒ they're (quite) distinguishable.

Other reasons:

- Random states provide an interesting case where we can determine the distinguishability of an ensemble based only on two parameters: *n* and *d*.
- We can get very tight analytic results in this case: even for low dimensions, the bound seems to be within 1% of the observed probability of success of the PGM.
- These results allow one to say: my states are like random states ⇒ they're (quite) distinguishable.

But what if we don't care about quantum measurement theory?

- There is another interpretation of these results which doesn't come from quantum measurement.
- It turns out that $\frac{1}{n} ||S||_1^2$ gives the fidelity of the Gram matrix *G* with the *n*-dimensional maximally mixed state I/n.
 - where the fidelity $F(\rho, \sigma) = (\operatorname{tr} \sqrt{\rho^{1/2} \sigma \rho^{1/2}})^2$
- We may thus interpret the lower bound on the distinguishability of a set of states as how close its Gram matrix is to the maximally mixed state.

Application: how mixed is my subsystem?

- Let $\rho_{n,d}$ be the density matrix obtained by picking a pure state uniformly at random from a $n \times d$ -dimensional Hilbert space, and tracing out the *n*-dimensional portion of it.
 - It's easy to show that $\rho_{n,d} \approx \frac{1}{n} \sum_{i=1}^{n} |\psi_i\rangle \langle \psi_i|$, where $|\psi_i\rangle$ is picked uniformly at random in the *d*-dimensional space

Application: how mixed is my subsystem?

- Let $\rho_{n,d}$ be the density matrix obtained by picking a pure state uniformly at random from a $n \times d$ -dimensional Hilbert space, and tracing out the *n*-dimensional portion of it.
 - It's easy to show that $\rho_{n,d} \approx \frac{1}{n} \sum_{i=1}^{n} |\psi_i\rangle \langle \psi_i|$, where $|\psi_i\rangle$ is picked uniformly at random in the *d*-dimensional space
- It's possible to show that the non-zero eigenvalues of $\rho_{n,d}$ are the same as those of the Gram matrix of a set of *n* equiprobable *d*-dimensional random states¹⁰
- Using this, one can show that $\frac{1}{d} ||S||_1^2$ gives the approximate fidelity of $\rho_{n,d}$ with I/d!

¹⁰R. Jozsa, J. Schlienz, quant-ph/9911009

Application: how mixed is my subsystem?

- Let $\rho_{n,d}$ be the density matrix obtained by picking a pure state uniformly at random from a $n \times d$ -dimensional Hilbert space, and tracing out the *n*-dimensional portion of it.
 - It's easy to show that $\rho_{n,d} \approx \frac{1}{n} \sum_{i=1}^{n} |\psi_i\rangle \langle \psi_i|$, where $|\psi_i\rangle$ is picked uniformly at random in the *d*-dimensional space
- It's possible to show that the non-zero eigenvalues of $\rho_{n,d}$ are the same as those of the Gram matrix of a set of *n* equiprobable *d*-dimensional random states¹⁰
- Using this, one can show that $\frac{1}{d} ||S||_1^2$ gives the approximate fidelity of $\rho_{n,d}$ with I/d!
- The previous results thus predict the distance of $\rho_{n,d}$ from the maximally mixed state very closely.
- (Popescu, Short, and Winter previously obtained a similar result by different methods)

¹⁰R. Jozsa, J. Schlienz, quant-ph/9911009

Problem

Given an unknown Boolean function f, picked uniformly at random from a set S of N Boolean functions on n bits, identify f with the minimum number of uses of f.

¹¹A. Ambainis et al, Quantum identification of Boolean oracles, quant-ph/0403056

Problem

Given an unknown Boolean function f, picked uniformly at random from a set S of N Boolean functions on n bits, identify f with the minimum number of uses of f.

- This is a particular case of the oracle identification problem studied by Ambainis et al¹¹.
- We consider the case where we are allowed a bounded probability of error in our quest to identify *f*.
- Many important problems fit into this framework (eg. unstructured search).

¹¹A. Ambainis et al, Quantum identification of Boolean oracles, quant-ph/0403056 Ashley Montanaro The distinguishability of random quantum states

- A classical algorithm must make at least log N queries
 - (each query can only reduce the size of the search space by half)
- Note that being allowed some probability of error < 1/2 is useless for classical algorithms.
- We can actually show a classical upper bound of $O(\log N)$ queries in the random oracle case.
 - (because in this case every query will reduce the search space by almost half whp)

We will show that, when 2^n is large relative to N, for almost all sets of functions f can be identified with a constant number of quantum queries.
We will show that, when 2^n is large relative to N, for almost all sets of functions f can be identified with a constant number of quantum queries.

- Consider the following single-query quantum "algorithm":
 - Create the state $|\psi_f\rangle = \frac{1}{\sqrt{2^n}} \sum_x (-1)^{f(x)} |x\rangle$ using one query to *f*.
 - **2** Use the PGM to distinguish the states in the ensemble $\mathcal{E} = \{|\psi_f\rangle\}.$

We will show that, when 2^n is large relative to N, for almost all sets of functions f can be identified with a constant number of quantum queries.

- Consider the following single-query quantum "algorithm":
 - Create the state $|\psi_f\rangle = \frac{1}{\sqrt{2^n}} \sum_x (-1)^{f(x)} |x\rangle$ using one query to *f*.

2 Use the PGM to distinguish the states in the ensemble $\mathcal{E} = \{|\psi_f\rangle\}.$

- When the functions are random, the state matrix $S = (\{|\psi_f\rangle/\sqrt{N}\})$ is random, in the sense that the M-P law can be applied to it.
- Why? Because each entry of $\sqrt{N2^n}S$ is i.i.d. with mean 0 and expected value 1.

Oracle identification: quantum (2)

- So the results here can be used to put the same lower bound on the probability of success of distinguishing these states.
- And in particular, the input size and the number of functions determine this probability (unlike the classical case where we can't use all the input)...

Oracle identification: quantum (2)

- So the results here can be used to put the same lower bound on the probability of success of distinguishing these states.
- And in particular, the input size and the number of functions determine this probability (unlike the classical case where we can't use all the input)...
- Concentration of measure can be used again (but on the hypercube this time) to show that this bound holds for almost all sets of functions.
 - In fact, the proof is easier as there is no difficulty with normalisation.

Oracle identification: quantum (2)

- So the results here can be used to put the same lower bound on the probability of success of distinguishing these states.
- And in particular, the input size and the number of functions determine this probability (unlike the classical case where we can't use all the input)...
- Concentration of measure can be used again (but on the hypercube this time) to show that this bound holds for almost all sets of functions.
 - In fact, the proof is easier as there is no difficulty with normalisation.
- When the probability of success is a constant > 1/2, we can repeat the algorithm a constant number of times for an arbitrarily good probability of success.

Summary and further work

- Good lower bounds have been obtained on the probability of distinguishing pure quantum states.
- These bounds can be applied to distinguishing random quantum states. For example:
 - For large *n*, *n* random states in *n* dimensions can be distinguished with probability > 0.72.
 - Almost all sets of 2ⁿ Boolean functions on *n* bits can be distinguished with a constant number of quantum queries.

Summary and further work

- Good lower bounds have been obtained on the probability of distinguishing pure quantum states.
- These bounds can be applied to distinguishing random quantum states. For example:
 - For large *n*, *n* random states in *n* dimensions can be distinguished with probability > 0.72.
 - Almost all sets of 2ⁿ Boolean functions on *n* bits can be distinguished with a constant number of quantum queries.

Possible future directions:

- Upper bounds on $P^{pgm}(\mathcal{E})$?
- Multiple copies?
- Further applications to quantum computation?

• Further reading:

"On the distinguishability of random quantum states" *Communications in Mathematical Physics*, to appear quant-ph/0607011

• Thanks for your time!