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Question

Consider a known ensemble E of n quantum states {|ψi〉} with a priori
probabilities pi. Given an unknown state |ψ?〉, picked at random from
E , what is the optimal probability Popt of identifying |ψ?〉? That is,

Popt = max
M

∑
i

pi〈ψi|Mi|ψi〉

where we maximise over all POVMs M = {Mi}.

Considered by many authors under titles like “quantum
hypothesis testing”, “quantum detection”, etc.
In general, producing an analytic expression for Popt appears to
be intractable (although good numerical solutions can be found)
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I will discuss:
1 Two analytic lower bounds recently obtained for this optimal

probability.
2 The application of one of them to distinguishing random

quantum states.
3 An application to the “oracle identification problem” in quantum

computation.
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Methods

The lower bounds are obtained by putting a lower bound on the
probability of success of a specific measurement that can be defined
for any ensemble of states, the Pretty Good Measurement (PGM).
Set ρ =

∑
i pi|ψi〉〈ψi|. Then the PGM is defined by the set of

measurement operators {|µi〉〈µi|}, where |µi〉 =
√

piρ
−1/2|ψi〉.

Key fact
Let G be the rescaled Gram matrix of the ensemble E ,
Gij = √pi pj〈ψi|ψj〉. Then the probability of success of the PGM is

Ppgm(E) =
∑

i

pi|〈ψi|µi〉|2 =
∑

i

(
√

G)2
ii
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The pairwise inner product bound

The first lower bound is based on the pairwise distinguishability
of the states in E .

The strategy is to put a lower bound on the square root function
by an “easier” function (a parabola), and then optimise the
parabola.

Works because
√

x ≥ ax + bx2 ⇒ (
√

G)ii ≥ aGii + b
∑

j |Gij|2.

Pairwise inner product bound

Let E be an ensemble of n states {|ψi〉} with a priori probabilities pi.

Then Ppgm(E) ≥
n∑

i=1

p2
i∑n

j=1 pj|〈ψi|ψj〉|2
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The eigenvalue bound

The second lower bound is based on a global measure of
distinguishability of the states in E : the eigenvalues of the Gram
matrix G.

Using a Cauchy-Schwarz inequality, we can show the following:

Eigenvalue bound
Let G be the Gram matrix of an ensemble E of n states and let G have
eigenvalues {λi}. Then

Ppgm(E) ≥ 1
n

(∑
i

√
λi

)2

=
1
n

tr(
√

G)2
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Comparison with previous bounds

Previous authors (e.g. Burnashev and Holevo 1) have used
bounds based on similar principles.

But the bounds here are stronger, especially for low values of
Ppgm(E), and always give a non-trivial value.

Assuming the states in E have equal probabilities:

Comparison of bounds

Previously known lower bound New lower bound
Ppgm(E) ≥ 1− 1

n

∑
i6=j |〈ψi|ψj〉|2 Ppgm(E) ≥ 1

n

∑n
i=1

1Pn
j=1 |〈ψi|ψj〉|2

Ppgm(E) ≥ 2√
n tr(

√
G)− 1 Ppgm(E) ≥ 1

n tr(
√

G)2

1M. V. Burnashev and A. S. Holevo, On reliability function of quantum
communication channel, quant-ph/9703013
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Random quantum states

What is an ensemble of random quantum states?
Here, we mean a set of n d-dimensional pure states whose
components (in some basis) are i.i.d. complex random variables
with mean 0 and variance 1/d.
This is a quite general notion of randomness that includes pure
states distributed uniformly at random (according to Haar
measure), in which case the components (in any basis!) are
Gaussians.

The pairwise inner product bound (above) can be applied to
random quantum states directly, but we can get better results
from the eigenvalue bound.
In order to apply this bound, we need a powerful result from
random matrix theory.
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The Marčenko-Pastur law

If the states in E are random and pi = 1/n for all i, the Gram
matrix G is known to statisticians (since the 1930s!) as a
rescaled complex Wishart matrix.
The density of the eigenvalues of G is known and is given by the
Marčenko-Pastur law.

This is the equivalent of the famous Wigner semicircle law for
random Hermitian matrices...

This allows us to calculate a lower bound on the expected
probability of success for the PGM!
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Technical issues

The Marčenko-Pastur law can be applied to random states in the
asymptotic regime where:

The number of states n and the dimension d approach infinity.
The ratio n/d approaches a constant, r.

We need to modify the Marčenko-Pastur law slightly.
It gives the density of the eigenvalues of the Gram matrix; we
need the density of the square roots of the eigenvalues.

The lower bound we get for E(Ppgm(E)) turns out to be given by
an intractable elliptic integral.

However, a good lower bound may be proven on this integral,
giving the main result...
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The finished lower bound

Main theorem
Let E be an ensemble of n equiprobable d-dimensional quantum states
{|ψi〉} with n/d → r ∈ (0,∞) as n, d →∞, and let the components
of |ψi〉 in some basis be i.i.d. complex random variables with mean 0
and variance 1/d. Then

E(Ppgm(E)) ≥
{ 1

r

(
1− 1

r

(
1− 64

9π2

))
if n ≥ d

1− r
(
1− 64

9π2

)
otherwise

and in particular E(Ppgm(E)) > 0.720 when n ≤ d.

Concentration of measure results may be used to show that
almost all states obey this lower bound!
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The Marčenko-Pastur law
Technical issues
The finished lower bound
Comparison with numerical results

Comparison with numerical results (1)
(0 ≤ n ≤ 2d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

P
pg

m
(E

)

r

Asymptotic lower bound
Numerical results

Figure: Asymptotic bound on Ppgm(E) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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Comparison with numerical results (2)
(0 ≤ n ≤ 10d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

P
pg

m
(E

)

r

Asymptotic lower bound
Numerical results

Figure: Asymptotic bound on Ppgm(E) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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Oracle identification

Problem
Given an unknown Boolean function f , picked uniformly at random
from a set S of N Boolean functions on n bits, identify f with the
minimum number of uses of f .

This is a particular case of the oracle identification problem
studied by Ambainis et al2.

We consider the case where we must identify f with a bounded
probability of error.

2A. Ambainis et al, Quantum identification of Boolean oracles, quant-ph/0403056
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Oracle identification

Consider the following single-query “algorithm”:
1 Create the state |ψf 〉 =

∑
x(−1)f (x)|x〉.

2 Apply the PGM.

When S is a random set of functions, the states {|ψf 〉} are
random quantum states.

So the results here can be used to put the same lower bound on
the probability of success of distinguishing these states.

Concentration of measure is used again to show that this bound
holds for almost all sets of functions.

When the probability of success is a constant > 1/2, we can
repeat the algorithm a constant number of times for an arbitrarily
good probability of success.
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Summary

Good lower bounds have been obtained on the probability of
distinguishing pure quantum states.

These bounds can be applied to distinguishing random quantum
states.

Asymptotically, n random states in n dimensions can be
distinguished with probability > 0.72.

Almost all sets of 2n Boolean functions on n bits can be
distinguished with a constant number of quantum queries.

Further reading: quant-ph/0607011

Thank you for your time!
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