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Introduction

In this talk, I will discuss how so-called hypercontractive
inequalities can be used to give a new(ish) proof of a bound on
the bias of multiplayer XOR games, which implies a (very)
special case of a conjecture about quantum query algorithms.
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In this talk, I will discuss how so-called hypercontractive
inequalities can be used to give a new(ish) proof of a bound on
the bias of multiplayer XOR games, which implies a (very)
special case of a conjecture about quantum query algorithms.

Outline:
@ Introduction to hypercontractivity
@ XOR games
@ The Bohnenblust-Hille inequality and its proof
@ The Aaronson-Ambainis conjecture.
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Hypercontractive inequalities: a CS
perspective

Hypercontractive inequalities have been much used in the
quantum field theory literature:

@ introduced (in the form of log-Sobolev inequalities) by
[Gross 75];

o for detailed reviews see e.g. [Davies, Gross and Simon '92],
[Gross “06].

In the computer science literature, first used by [Kahn, Kalai and
Linial ‘88] in an important paper proving that every boolean
function has an influential variable.

The hypercontractive inequality they used is a particularly
simple and clean special case due to [Bonami '70], [Gross '75], and
often known as the Bonami-Beckner inequality.
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Noise

Consider functions f : {£1}" — R.

@ For € € [0, 1], define the noise operator T, as follows:

(Tef) (x) = Ey~Efo(y)]

@ Here the expectation is over strings y € {£-1}" obtained
from x by negating each element of x with independent
probability (1 —€)/2. So...

o lfe=1Tf=f;
o If e =0, T¢f is constant.

@ Fairly easy to show that T. is a contraction, i.e.

ITefllp < IFlp

1/p
where [|flly = (% ¥ erarp fF) "
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Noise and polynomials

@ Any function f : {£1}" — R can be expanded as a
multilinear polynomial:

flrr,xa) =) f(S)xs,
SCn]

where x5 = [ ;.5 x;.

e Parseval’s equality: |5 = ZSQHJ(S)Z.
@ The noise operator has a nice “Fourier-side” description
in terms of polynomials: for g(x) = xs,

(Teg)(x) = €lxs,

and by linearity, for any f : {£1}" — R,
(Tef)(x) = Y €lF(S)xs.

5Cln]
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For any f : {£1}" — R, and any p and g such that

1<p<q<ooande<,/5%},
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smoothes out its peaks and makes the norms comparable.
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Corollary

Let f : {#1}" — R be a polynomial of degree d. Then:
2, |Ifllp = —1)d/2\lf|!z;

2, [Iflly < (9= 1*2|f]2-

e for any p

VoA

e for any g

Intuition: low-degree polynomials are smooth.
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Proof of the corollary

Given a degree d (multilinear) polynomial

flr, )= ) fS)s,

5Cnl.lSI<d

where x5 = [ [;cqx;, write f =% = Zs,|s\:k]?(5)xs- Then

d 2 d 2
Hf”s = Zf:k T1/\/q_71 (Z(q - 1)k/2f_k>
k=0 q k=0 q
d 2 d X
< |D_g=DMEFH =D (g-1F F(8)?
k=0 2 k=0 SCnl,|S|=k
< @@= f(92=(a- 1|3
SCn]

(last two equalities: Parseval’s equality)
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applications in quantum computation:

@ Separations between quantum and classical
communication complexity [Gavinsky et al '07]

@ Limitations on quantum random access codes [Ben-Aroya,
Regev and de Wolf "08]

@ Bounds on non-local games [Buhrman '11]

@ Lower bounds on quantum query complexity [Ambainis and
de Wolf "12]

@ Many more in classical computer science. ..
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@ Limitations on quantum random access codes [Ben-Aroya,
Regev and de Wolf "08]

@ Bounds on non-local games [Buhrman '11]

@ Lower bounds on quantum query complexity [Ambainis and
de Wolf "12]

@ Many more in classical computer science. ..

Today: one more application.
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Application: multiplayer XOR games

A simple and natural way of exploring the power of quantum
correlations is via XOR games.

A k-player XOR game is defined as follows:

@ Fix a multidimensional array A € (ESVAL

@ The j’th player gets an inputi; € {1,.. ., n}, picked
according to a known distribution 7t.

@ The j'th player must reply with an output xij € {£1}

@ The players win if the product of their outputs is equal to
A

11,.., U

The players are allowed to communicate before the game
starts, to agree a strategy, but cannot communicate during the
game.
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Multiplayer XOR games

For example, consider the CHSH game:

e Two players, two possible inputs, chosen uniformly (k = 2,
n = 2, 7 is uniform).

e A= ({): the players win if their outputs are the same,
unless i1 = i = 2, when they win if their outputs are
different.

In general, the maximal bias (i.e. difference between

probability of success and failure) achievable by deterministic
strategies is

1 k
B(G):=  max i A XX |
¥l xke{il}” 1-1 Z 5 Lt

It’s easy to see that shared randomness doesn’t help.
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Why care about XOR games?

@ In some cases (e.g. the CHSH game), if the players are
allowed to share entanglement they can beat any possible
classical strategy.

@ XOR games thus provide a clean, mathematically tractable
way of studying the power of entanglement.

@ XOR games are also interesting in themselves classically:

e Applications in communication complexity, e.g. [Ford and
Gal "05]

e Known to be NP-hard to compute bias

e Connections to combinatorics and coding theory.

Today’s question
What is the hardest k-player XOR game for classical players? J

i.e. what is the game which minimises the maximal bias
achievable?
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Previously known results

Until recently, there was a big gap between lower and upper
bounds on ming 3(G):

@ There exists a game G for which 3(G) < n~(=1)/2 [Ford
and Gal '05].

@ Any game G has B(G) > 20 = (k=1)/2 [Bohnenblust and
Hille '31].

A recent and significant improvement:

Theorem [Defant, Popa and Schwarting "10] [Pellegrino and
Seoane-Sepulveda "12]

There exists a universal constant ¢ > 0 such that, for any XOR
game G as above, B(G) = Q(k—n—*=1)/2),

We will show how this result can be proven using
hypercontractivity (as a small step in the proof).
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XOR games and multilinear forms

A homogeneous polynomial f : (R")* — R is said to be a
multilinear form if it can be written as

fat, oy =) fi Al

for some multidimensional array f ER"xR" x --- xR",
Define as before

= (ge X e

Any XOR game G = (7, A) corresponds to a multilinear form f:

1.2 k
f( Z 7.[11 ..... lk 11 ..... ka x xk

and the bias 3(G) is precisely ||f|oo := maxyecr1y [f(x)].
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What we want to prove

Bohnenblust-Hille inequality [BH ‘31, DPS ‘10, PS "12]

For any multilinear form f : (R")* — R, and any p > 2k/(k + 1),

where C; may be taken to be O(k'82¢) ~ O(k'4%).

Implies B(G) = Q(C, 'n~*"1)/2) by choosing p appropriately.
We’ll prove the claim by induction on k, for k a power of 2.

o As ||f|| p is nonincreasing with p, it suffices to prove the
claim for p = 2k/(k +1).

@ The base case k =1 is trivial (C; = 1). So, assuming the
theorem holds for k/2, we prove it holds for k.
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Proof

We start with a matrix inequality [Defant, Popa and Schwarting "10]:

T 2
Fll2k/ k1) < > > _fim+l ..... i

K/ (ki) (k+2)/4k

We estimate the second term (the first follows exactly the same
procedure).
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Proof

(R”)k/2 — R by

For each ix/p,1,... i € [n], define f;, |

1 k/2\ _ 2z 1.2 k/2
fl'k/z.1 ..... ik(X....,x/)_ Z fil _____ PWXi Xiy X

/2

fxll ..... Xk/z( k/2+l ’xk) :f(xll rxk)
We have
1 1 k/2y. k/2+1 k.
fxll ..... xk/z(xk/zJr ree Z f7A/2+1 ----- fk(x reea X / )xik/2+1 e Y
Ik /2410 ik=1
of course | xl,,..,xk/2H00 < flloo
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Proof

For each tuple i 5.1, ..., ik we have by Parseval’s equality
n
2 _r 2
Z fi1 ..... I H]CI/(/2+1 ----- l/<||2'
1yeeey ik/2:1

By hypercontractivity,

K2

22 _ (Kt 2\ T 2K/ (k+2)
Wik/z+1 ----- lkH < (k—z Wik/ul ----- lkHZk/ 2)"

We now observe that, for any p > 1

1 k/2
Z ||fik/z+1 ----- ik”ﬁ = Ea  an Z ﬁk/2+1 ----- (X0, / )P



Proof

Hence, taking p = 2k/(k +2) =2(k/2)/(k/2 4+ 1), we have

k/ (k+2)
2 (Z fi... )
1 i1 ]

lef2410memil
2

k
< (k_2> xl ..... xk/2 |:Hf X, xk/Zsz/ )]



Proof

Hence, taking p = 2k/(k +2) =2(k/2)/(k/2 4+ 1), we have

k/ (k+2)
2 (Z fi... )
1 i] ]

Bey2410emid
2

k
k+2 2(k+2) Zk/ k+2)
< <k—2) En e [Hf X, xk/ZHZk/ k+2)]

K2

k+2 2 2k/ (k-+2) 1y £112k / (k-2
<(53)" aninge

by the inductive hypothesis.
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Proof

Combining both terms in the first inequality,

(k+1)/(2k) K/
3 a0 <(F2) cualfl
. : yeeey U ~X k—2 k/2 o0
5 I

Thus

Nz
Cr < (1 ai m) Ck/2-

Observing that (1 +4/(k — 2))'(/4 < (1 + O(1/k))e, we have
Cr = O(K'°82¢) as claimed.



A conjecture of Aaronson and Ambainis
The following beautiful conjecture is currently open:

COllj ecture [Aaronson and Ambainis "11]

Every bounded low-degree polynomial on the boolean cube
has an influential variable.




A conjecture of Aaronson and Ambainis
The following beautiful conjecture is currently open:

COIlj ecture [Aaronson and Ambainis "11]

Every bounded low-degree polynomial on the boolean cube
has an influential variable.

@ Generalises a prior result showing this for decision trees
[O’Donnell et al "05].

@ One reason this conjecture is interesting: it would imply
that every quantum query algorithm can be approximated
by a classical algorithm on “most” inputs.

@ One special case known: when f is symmetric, i.e. f(x)
depends only on ) _; x; [Bagkurs "12].

@ There are “L1” and “L2” versions of the conjecture [Backurs
and Bavarian '13]; both are open. Here: the L2 version.
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A conjecture of Aaronson and Ambainis
A more formal version of the conjecture:

COllj ecture [Aaronson and Ambainis "11]

For all degree d polynomials f : {£1}" — [—1, 1], there exists j
such that [;(f) > poly(Var(f)/d).

What does this mean?

o Write E[f] = > re(+1ynf(x). Then the (€2) variance of f is
Var(f) = E[(f — E[f])*]

@ Define the influence of the j'th variable on f as

) =5 Y (0 —fW)2

xe{£1}

where ¥/ is x with the j’th variable negated.
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A conjecture of Aaronson and Ambainis

Using the above strengthening of the BH inequality, it is easy
to prove a very special case of the Aaronson-Ambainis
conjecture. Let

1 k 2 1.2 k
f(x,...,x):Zfi1 _____ X, Xiy - X

where f;, ; = F« for some «.

°f depends on nk variables xlz, 1<j<kand1 <<
@ The influence of variable (j, ) on f is

2 k1.2
Inf(; o) (f) = Z fil,...,ij,l,z,im ..... o =m a

T A

Corollary

If f is a multilinear form such that ||f||cc < 1 and le =tou

.....

for some «, then [ o (f) = Q(Var(f) )2/k%) for all (j, (7,)




Summary

We have:
@ ...used hypercontractivity to prove the Bohnenblust-Hille
inequality;
@ ...and hence give strong bounds on the worst-case
classical bias in XOR games;

@ ...and also prove a very special case of the
Aaronson-Ambainis conjecture.

Open problems:

@ Prove the Aaronson-Ambainis conjecture (using
hypercontractivity!).



Summary

On a more concrete level:

@ Can one generalise the Bohnenblust-Hille inequality to
polynomials? i.e. prove that for any degree d multilinear
polynomial f : {£1}" =+ R, and any p > 24/(d + 1),

1/p
IFllp == (Z ff(sw) < Callflloos
SCln]

where C; = poly(d).

e This inequality holds for C; = 2°(?) (Andreas Defant,
personal communication).

@ Would this imply the Aaronson-Ambainis conjecture?
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1/p
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where C; = poly(d).

e This inequality holds for C; = 2°(?) (Andreas Defant,
personal communication).

@ Would this imply the Aaronson-Ambainis conjecture?

Thanks!





