Some applications of hypercontractive inequalities in quantum information theory

Ashley Montanaro

Computer Science Department, University of Bristol, UK

18 June 2013

arXiv:1208.0161

Introduction

In this talk, I will discuss how so-called hypercontractive inequalities can be used to give new(ish) proofs of results in quantum information theory:

• ... a bound on the bias of multiplayer XOR games (originally due to [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]) which implies the first progress on a conjecture about quantum query algorithms;

• ... a bound on the bias of local 4-design measurements (originally due to [Lancien and Winter '12]).

Hypercontractive inequalities: a CS perspective

Hypercontractive inequalities have been much used in the quantum field theory literature:

- introduced (in the form of log-Sobolev inequalities) by [Gross '75];
- for detailed reviews see e.g. [Davies, Gross and Simon '92], [Gross '06].

Hypercontractive inequalities: a CS perspective

Hypercontractive inequalities have been much used in the quantum field theory literature:

- introduced (in the form of log-Sobolev inequalities) by [Gross '75];
- for detailed reviews see e.g. [Davies, Gross and Simon '92], [Gross '06].

In the computer science literature, first used by [Kahn, Kalai and Linial '88] in an important paper proving that every boolean function has an influential variable.

The hypercontractive inequality they used is a particularly simple and clean special case due to [Bonami '70], [Gross '75], and often known as the Bonami-Beckner inequality.

Consider functions $f : \{\pm 1\}^n \to \mathbb{R}$.

Consider functions $f: \{\pm 1\}^n \to \mathbb{R}$.

• For $\epsilon \in [0, 1]$, define the noise operator T_{ϵ} as follows:

$$(T_{\epsilon}f)(x) = \mathbb{E}_{y \sim_{\epsilon} x}[f(y)]$$

 Here the expectation is over strings *y* ∈ {±1}ⁿ obtained from *x* by negating each element of *x* with independent probability (1 − ε)/2.

Consider functions $f: \{\pm 1\}^n \to \mathbb{R}$.

• For $\epsilon \in [0, 1]$, define the noise operator T_{ϵ} as follows:

$$(T_{\epsilon}f)(x) = \mathbb{E}_{y \sim_{\epsilon} x}[f(y)]$$

 Here the expectation is over strings *y* ∈ {±1}ⁿ obtained from *x* by negating each element of *x* with independent probability (1 − ε)/2. So...

• If
$$\epsilon = 1$$
, $T_{\epsilon}f = f$;

• If
$$\epsilon = 0$$
, $T_{\epsilon}f$ is constant.

Consider functions $f : \{\pm 1\}^n \to \mathbb{R}$.

• For $\epsilon \in [0, 1]$, define the noise operator T_{ϵ} as follows:

$$(T_{\epsilon}f)(x) = \mathbb{E}_{y \sim_{\epsilon} x}[f(y)]$$

Here the expectation is over strings *y* ∈ {±1}ⁿ obtained from *x* by negating each element of *x* with independent probability (1 − ε)/2. So...

• If
$$\epsilon = 1$$
, $T_{\epsilon}f = f$;

• If
$$\epsilon = 0$$
, $T_{\epsilon}f$ is constant.

• Fairly easy to show that T_{ϵ} is a contraction, i.e.

 $||T_{\epsilon}f||_p \leq ||f||_p$

where
$$||f||_p := \left(\frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} |f(x)|^p\right)^{1/p}$$
.

Hypercontractivity of T_{ε}

The Bonami-Beckner inequality [Bonami '70] [Gross '75] For any $f : \{\pm 1\}^n \to \mathbb{R}$, and any p and q such that $1 \le p \le q \le \infty$ and $\epsilon \le \sqrt{\frac{p-1}{q-1}}$, $\|T_{\epsilon}f\|_q \le \|f\|_p$.

Intuition: usually $||f||_p \leq ||f||_q$ for $p \leq q$, but applying noise to f smoothes out its peaks and makes the norms comparable.

Hypercontractivity of T_{ε}

The Bonami-Beckner inequality [Bonami '70] [Gross '75] For any $f : \{\pm 1\}^n \to \mathbb{R}$, and any p and q such that $1 \le p \le q \le \infty$ and $\epsilon \le \sqrt{\frac{p-1}{q-1}}$, $\|T_{\epsilon}f\|_q \le \|f\|_p$.

Intuition: usually $||f||_p \leq ||f||_q$ for $p \leq q$, but applying noise to f smoothes out its peaks and makes the norms comparable. Why should we care about this?

Hypercontractivity of T_{ε}

The Bonami-Beckner inequality [Bonami '70] [Gross '75] For any $f : \{\pm 1\}^n \to \mathbb{R}$, and any p and q such that $1 \le p \le q \le \infty$ and $\epsilon \le \sqrt{\frac{p-1}{q-1}}$, $\|T_{\epsilon}f\|_q \le \|f\|_p$.

Intuition: usually $||f||_p \leq ||f||_q$ for $p \leq q$, but applying noise to f smoothes out its peaks and makes the norms comparable. Why should we care about this?

Corollary

Let $f : \{\pm 1\}^n \to \mathbb{R}$ be a polynomial of degree *d*. Then:

- for any $p \leq 2$, $||f||_p \ge (p-1)^{d/2} ||f||_2$;
- for any $q \ge 2$, $||f||_q \le (q-1)^{d/2} ||f||_2$.

Intuition: low-degree polynomials are smooth.

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

$$\|f\|_q^2 = \left\|\sum_{k=0}^d f^{=k}\right\|_q^2$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

$$\|f\|_q^2 = \left\|\sum_{k=0}^d f^{=k}\right\|_q^2 = \left\|T_{1/\sqrt{q-1}}\left(\sum_{k=0}^d (q-1)^{k/2} f^{=k}\right)\right\|_q^2$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

$$\begin{split} \|f\|_{q}^{2} &= \left\|\sum_{k=0}^{d} f^{=k}\right\|_{q}^{2} = \left\|T_{1/\sqrt{q-1}}\left(\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right)\right\|_{q}^{2} \\ &\leqslant \left\|\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right\|_{2}^{2} \end{split}$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

$$\begin{split} \|f\|_{q}^{2} &= \left\|\sum_{k=0}^{d} f^{-k}\right\|_{q}^{2} = \left\|T_{1/\sqrt{q-1}}\left(\sum_{k=0}^{d} (q-1)^{k/2} f^{-k}\right)\right\|_{q}^{2} \\ &\leqslant \left\|\sum_{k=0}^{d} (q-1)^{k/2} f^{-k}\right\|_{2}^{2} = \sum_{k=0}^{d} (q-1)^{k} \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^{2} \end{split}$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

$$\begin{split} \|f\|_{q}^{2} &= \left\|\sum_{k=0}^{d} f^{=k}\right\|_{q}^{2} = \left\|T_{1/\sqrt{q-1}}\left(\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right)\right\|_{q}^{2} \\ &\leqslant \left\|\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right\|_{2}^{2} = \sum_{k=0}^{d} (q-1)^{k} \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^{2} \\ &\leqslant (q-1)^{d} \sum_{S \subseteq [n]} \hat{f}(S)^{2} \end{split}$$

Given a degree *d* (multilinear) polynomial

$$f(x_1,\ldots,x_n)=\sum_{S\subseteq [n],|S|\leqslant d}\hat{f}(S)x_S,$$

where $x_S = \prod_{i \in S} x_i$, write $f^{=k} = \sum_{S, |S|=k} \hat{f}(S) x_S$. Then

$$\begin{split} \|f\|_{q}^{2} &= \left\|\sum_{k=0}^{d} f^{=k}\right\|_{q}^{2} = \left\|T_{1/\sqrt{q-1}}\left(\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right)\right\|_{q}^{2} \\ &\leqslant \left\|\sum_{k=0}^{d} (q-1)^{k/2} f^{=k}\right\|_{2}^{2} = \sum_{k=0}^{d} (q-1)^{k} \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^{2} \\ &\leqslant (q-1)^{d} \sum_{S \subseteq [n]} \hat{f}(S)^{2} = (q-1)^{d} \|f\|_{2}^{2}. \end{split}$$

(last step: Parseval's equality)

Applications in quantum computation

The above inequality has recently found some applications in quantum computation:

- Separations between quantum and classical communication complexity [Gavinsky et al '07]
- Limitations on quantum random access codes [Ben-Aroya, Regev and de Wolf '08]
- Bounds on non-local games [Buhrman '11]
- Lower bounds on quantum query complexity [Ambainis and de Wolf '12]
- Many more in classical computer science...

Applications in quantum computation

The above inequality has recently found some applications in quantum computation:

- Separations between quantum and classical communication complexity [Gavinsky et al '07]
- Limitations on quantum random access codes [Ben-Aroya, Regev and de Wolf '08]
- Bounds on non-local games [Buhrman '11]
- Lower bounds on quantum query complexity [Ambainis and de Wolf '12]
- Many more in classical computer science...

Today: two more applications.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A *k*-player XOR game is defined as follows:

• Fix a multidimensional array $A \in (\{\pm 1\}^n)^k$.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A *k*-player XOR game is defined as follows:

- Fix a multidimensional array $A \in (\{\pm 1\}^n)^k$.
- The *j*′th player gets an input *i_j* ∈ {1, ..., *n*}, picked according to a known distribution *π*.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A *k*-player XOR game is defined as follows:

- Fix a multidimensional array $A \in (\{\pm 1\}^n)^k$.
- The *j*′th player gets an input *i_j* ∈ {1, ..., *n*}, picked according to a known distribution *π*.
- The *j*'th player must reply with an output $x_{i_i}^j \in \{\pm 1\}$.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A *k*-player XOR game is defined as follows:

- Fix a multidimensional array $A \in (\{\pm 1\}^n)^k$.
- The *j*′th player gets an input *i_j* ∈ {1, ..., *n*}, picked according to a known distribution *π*.
- The *j*'th player must reply with an output $x_{i_i}^j \in \{\pm 1\}$.
- The players win if the product of their outputs is equal to $A_{i_1,...,i_k}$.

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A *k*-player XOR game is defined as follows:

- Fix a multidimensional array $A \in (\{\pm 1\}^n)^k$.
- The *j*′th player gets an input *i_j* ∈ {1, ..., *n*}, picked according to a known distribution *π*.
- The *j*'th player must reply with an output $x_{i_i}^j \in \{\pm 1\}$.
- The players win if the product of their outputs is equal to $A_{i_1,...,i_k}$.

The players are allowed to communicate before the game starts, to agree a strategy, but cannot communicate during the game.

Multiplayer XOR games

For example, consider the CHSH game:

- Two players, two possible inputs, chosen uniformly (k = 2, n = 2, π is uniform).
- $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$: the players win if their outputs are the same, unless $i_1 = i_2 = 2$, when they win if their outputs are different.

Multiplayer XOR games

For example, consider the CHSH game:

- Two players, two possible inputs, chosen uniformly (k = 2, n = 2, π is uniform).
- $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$: the players win if their outputs are the same, unless $i_1 = i_2 = 2$, when they win if their outputs are different.

In general, the maximal bias (i.e. difference between probability of success and failure) achievable by deterministic strategies is

$$\beta(G) := \max_{x^1, \dots, x^k \in \{\pm 1\}^n} \left| \sum_{i_1, \dots, i_k=1}^n \pi_{i_1, \dots, i_k} A_{i_1, \dots, i_k} x_{i_1}^1 \dots x_{i_k}^k \right|.$$

It's easy to see that shared randomness doesn't help.

• In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.
- XOR games are also interesting in themselves classically:
 - Applications in communication complexity, e.g. [Ford and Gál '05]
 - Known to be NP-hard to compute bias
 - Connections to combinatorics and coding theory.

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.
- XOR games are also interesting in themselves classically:
 - Applications in communication complexity, e.g. [Ford and Gál '05]
 - Known to be NP-hard to compute bias
 - Connections to combinatorics and coding theory.

Today's question

What is the hardest *k*-player XOR game for classical players?

i.e. what is the game which minimises the maximal bias achievable?

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min_G \beta(G)$:

- There exists a game *G* for which β(*G*) ≤ n^{-(k-1)/2} [Ford and Gál '05].
- Any game *G* has $\beta(G) \ge 2^{-O(k)} n^{-(k-1)/2}$ [Bohnenblust and Hille '31].

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min_{G} \beta(G)$:

- There exists a game *G* for which β(*G*) ≤ n^{-(k-1)/2} [Ford and Gál '05].
- Any game *G* has $\beta(G) \ge 2^{-O(k)} n^{-(k-1)/2}$ [Bohnenblust and Hille '31].

A recent and significant improvement:

Theorem [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]

There exists a universal constant c > 0 such that, for any XOR game *G* as above, $\beta(G) = \Omega(k^{-c}n^{-(k-1)/2})$.

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min_{G} \beta(G)$:

- There exists a game *G* for which β(*G*) ≤ n^{-(k-1)/2} [Ford and Gál '05].
- Any game *G* has $\beta(G) \ge 2^{-O(k)} n^{-(k-1)/2}$ [Bohnenblust and Hille '31].

A recent and significant improvement:

Theorem [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]

There exists a universal constant c > 0 such that, for any XOR game *G* as above, $\beta(G) = \Omega(k^{-c}n^{-(k-1)/2})$.

We will show how this result can be proven using hypercontractivity (as a small step in the proof).

XOR games and multilinear forms

A homogeneous polynomial $f : (\mathbb{R}^n)^k \to \mathbb{R}$ is said to be a multilinear form if it can be written as

$$f(x^1, \ldots, x^k) = \sum_{i_1, \ldots, i_k} \hat{f}_{i_1, \ldots, i_k} x_{i_1}^1 x_{i_2}^2 \ldots x_{i_k}^k$$

for some multidimensional array $\hat{f} \in \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n$.

XOR games and multilinear forms

A homogeneous polynomial $f : (\mathbb{R}^n)^k \to \mathbb{R}$ is said to be a multilinear form if it can be written as

$$f(x^1, \dots, x^k) = \sum_{i_1, \dots, i_k} \hat{f}_{i_1, \dots, i_k} x_{i_1}^1 x_{i_2}^2 \dots x_{i_k}^k$$

for some multidimensional array $\hat{f} \in \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n$. Define as before

$$\|f\|_p := \left(\frac{1}{2^{nk}} \sum_{x^1, \dots, x^k \in \{\pm 1\}^n} |f(x^1, \dots, x^k)|^p\right)^{1/p}$$

XOR games and multilinear forms

A homogeneous polynomial $f : (\mathbb{R}^n)^k \to \mathbb{R}$ is said to be a multilinear form if it can be written as

$$f(x^1, \dots, x^k) = \sum_{i_1, \dots, i_k} \hat{f}_{i_1, \dots, i_k} x_{i_1}^1 x_{i_2}^2 \dots x_{i_k}^k$$

for some multidimensional array $\hat{f} \in \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n$. Define as before

$$||f||_p := \left(\frac{1}{2^{nk}} \sum_{x^1, \dots, x^k \in \{\pm 1\}^n} |f(x^1, \dots, x^k)|^p\right)^{1/p}$$

Any XOR game $G = (\pi, A)$ corresponds to a multilinear form *f*:

$$f(x^1,\ldots,x^k) = \sum_{i_1,\ldots,i_k} \pi_{i_1,\ldots,i_k} A_{i_1,\ldots,i_k} x^1_{i_1} x^2_{i_2} \ldots x^k_{i_k},$$

and the bias $\beta(G)$ is precisely $||f||_{\infty} := \max_{x \in \{\pm 1\}^n} |f(x)|$.

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f : (\mathbb{R}^n)^k \to \mathbb{R}$, and any $p \ge 2k/(k+1)$,

$$\|\hat{f}\|_{p} := \left(\sum_{i_{1},\dots,i_{k}} |\hat{f}_{i_{1},\dots,i_{k}}|^{p}\right)^{1/p} \leqslant C_{k} \|f\|_{\infty},$$

where C_k may be taken to be $O(k^{\log_2 e}) \approx O(k^{1.45})$.

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f : (\mathbb{R}^n)^k \to \mathbb{R}$, and any $p \ge 2k/(k+1)$,

$$\|\hat{f}\|_{p} := \left(\sum_{i_{1},...,i_{k}} |\hat{f}_{i_{1},...,i_{k}}|^{p}\right)^{1/p} \leqslant C_{k} \|f\|_{\infty},$$

where C_k may be taken to be $O(k^{\log_2 e}) \approx O(k^{1.45})$.

Implies $\beta(G) = \Omega(C_k^{-1}n^{-(k-1)/2})$ by choosing *p* appropriately.

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f : (\mathbb{R}^n)^k \to \mathbb{R}$, and any $p \ge 2k/(k+1)$,

$$\|\hat{f}\|_{p} := \left(\sum_{i_{1},...,i_{k}} |\hat{f}_{i_{1},...,i_{k}}|^{p}\right)^{1/p} \leqslant C_{k} \|f\|_{\infty},$$

where C_k may be taken to be $O(k^{\log_2 e}) \approx O(k^{1.45})$.

Implies $\beta(G) = \Omega(C_k^{-1}n^{-(k-1)/2})$ by choosing *p* appropriately. We'll prove the claim by induction on *k*, for *k* a power of 2.

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f : (\mathbb{R}^n)^k \to \mathbb{R}$, and any $p \ge 2k/(k+1)$,

$$\|\hat{f}\|_{p} := \left(\sum_{i_{1},...,i_{k}} |\hat{f}_{i_{1},...,i_{k}}|^{p}\right)^{1/p} \leqslant C_{k} \|f\|_{\infty},$$

where C_k may be taken to be $O(k^{\log_2 e}) \approx O(k^{1.45})$.

Implies $\beta(G) = \Omega(C_k^{-1}n^{-(k-1)/2})$ by choosing *p* appropriately.

We'll prove the claim by induction on *k*, for *k* a power of 2.

• As $\|\hat{f}\|_p$ is nonincreasing with p, it suffices to prove the claim for $p = \frac{2k}{k+1}$.

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]

For any multilinear form $f : (\mathbb{R}^n)^k \to \mathbb{R}$, and any $p \ge 2k/(k+1)$,

$$\|\hat{f}\|_{p} := \left(\sum_{i_{1},...,i_{k}} |\hat{f}_{i_{1},...,i_{k}}|^{p}\right)^{1/p} \leqslant C_{k} \|f\|_{\infty},$$

where C_k may be taken to be $O(k^{\log_2 e}) \approx O(k^{1.45})$.

Implies $\beta(G) = \Omega(C_k^{-1}n^{-(k-1)/2})$ by choosing *p* appropriately.

We'll prove the claim by induction on *k*, for *k* a power of 2.

- As $\|\hat{f}\|_p$ is nonincreasing with p, it suffices to prove the claim for $p = \frac{2k}{k+1}$.
- The base case k = 1 is trivial (C₁ = 1). So, assuming the theorem holds for k/2, we prove it holds for k.

We start with a matrix inequality [Defant, Popa and Schwarting '10]:

$$\begin{split} \|\hat{f}\|_{2k/(k+1)} &\leq \left(\sum_{i_1,\dots,i_{k/2}} \|(\hat{f}_{i_1,\dots,i_k})_{i_{k/2+1},\dots,i_k=1}^n\|_2^{2k/(k+2)}\right)^{(k+2)/4k} \\ &\times \left(\sum_{i_{k/2+1},\dots,i_k} \|(\hat{f}_{i_1,\dots,i_k})_{i_1,\dots,i_{k/2}=1}^n\|_2^{2k/(k+2)}\right)^{(k+2)/4k} \end{split}$$

We start with a matrix inequality [Defant, Popa and Schwarting '10]:

$$\begin{split} \|\hat{f}\|_{2k/(k+1)} &\leqslant \left(\sum_{i_1,\dots,i_{k/2}} \|(\hat{f}_{i_1,\dots,i_k})_{i_{k/2+1},\dots,i_k=1}^n\|_2^{2k/(k+2)}\right)^{(k+2)/4k} \\ &\times \left(\sum_{i_{k/2+1},\dots,i_k} \|(\hat{f}_{i_1,\dots,i_k})_{i_1,\dots,i_{k/2}=1}^n\|_2^{2k/(k+2)}\right)^{(k+2)/4k} \end{split}$$

We estimate the second term (the first follows exactly the same procedure).

For each $i_{k/2+1}, \ldots, i_k \in [n]$, define $f_{i_{k/2+1},\ldots,i_k} : (\mathbb{R}^n)^{k/2} \to \mathbb{R}$ by

$$f_{i_{k/2+1},\ldots,i_k}(x^1,\ldots,x^{k/2}) = \sum_{i_1,\ldots,i_{k/2}} \hat{f}_{i_1,\ldots,i_k} x_{i_1}^1 x_{i_2}^2 \ldots x_{i_{k/2}}^{k/2}.$$

For each $i_{k/2+1}, \ldots, i_k \in [n]$, define $f_{i_{k/2+1},\ldots,i_k} : (\mathbb{R}^n)^{k/2} \to \mathbb{R}$ by

$$f_{i_{k/2+1},\ldots,i_k}(x^1,\ldots,x^{k/2}) = \sum_{i_1,\ldots,i_{k/2}} \hat{f}_{i_1,\ldots,i_k} x_{i_1}^1 x_{i_2}^2 \ldots x_{i_{k/2}}^{k/2}.$$

Also define a "dual" function $f'_{\chi^1,...,\chi^{k/2}} : (\mathbb{R}^n)^{k/2} \to \mathbb{R}$ by

$$f'_{x^1,\ldots,x^{k/2}}(x^{k/2+1},\ldots,x^k) = f(x^1,\ldots,x^k).$$

For each $i_{k/2+1}, \ldots, i_k \in [n]$, define $f_{i_{k/2+1},\ldots,i_k} : (\mathbb{R}^n)^{k/2} \to \mathbb{R}$ by

$$f_{i_{k/2+1},\ldots,i_k}(x^1,\ldots,x^{k/2}) = \sum_{i_1,\ldots,i_{k/2}} \hat{f}_{i_1,\ldots,i_k} x_{i_1}^1 x_{i_2}^2 \ldots x_{i_{k/2}}^{k/2}.$$

Also define a "dual" function $f'_{x^1,...,x^{k/2}} : (\mathbb{R}^n)^{k/2} \to \mathbb{R}$ by

$$f'_{x^1,\ldots,x^{k/2}}(x^{k/2+1},\ldots,x^k) = f(x^1,\ldots,x^k).$$

We have

$$f'_{x^1,\ldots,x^{k/2}}(x^{k/2+1},\ldots,x^k) = \sum_{\substack{i_{k/2+1},\ldots,i_k=1}}^n f_{i_{k/2+1},\ldots,i_k}(x^1,\ldots,x^{k/2})x^{k/2+1}_{i_{k/2+1}}\ldots x^k_{i_k};$$

of course $\|f'_{x^1,\ldots,x^{k/2}}\|_{\infty} \leq \|f\|_{\infty}$.

For each tuple $i_{k/2+1}, \ldots, i_k$ we have by Parseval's equality

$$\|(\hat{f}_{i_1,\dots,i_k})_{i_1,\dots,i_{k/2}=1}^n\|_2 = \left(\sum_{i_1,\dots,i_{k/2}=1}^n \hat{f}_{i_1,\dots,i_k}^2\right)^{1/2} = \|f_{i_{k/2+1},\dots,i_k}\|_2.$$

For each tuple $i_{k/2+1}, \ldots, i_k$ we have by Parseval's equality

$$\|(\hat{f}_{i_1,\dots,i_k})_{i_1,\dots,i_{k/2}=1}^n\|_2 = \left(\sum_{i_1,\dots,i_{k/2}=1}^n \hat{f}_{i_1,\dots,i_k}^2\right)^{1/2} = \|f_{i_{k/2+1},\dots,i_k}\|_2.$$

By hypercontractivity,

$$\|f_{i_{k/2+1},\ldots,i_k}\|_2^{2k/(k+2)} \leqslant \left(\frac{k+2}{k-2}\right)^{\frac{k^2}{2(k+2)}} \|f_{i_{k/2+1},\ldots,i_k}\|_{2k/(k+2)}^{2k/(k+2)}.$$

For each tuple $i_{k/2+1}, \ldots, i_k$ we have by Parseval's equality

$$\|(\hat{f}_{i_1,\dots,i_k})_{i_1,\dots,i_{k/2}=1}^n\|_2 = \left(\sum_{i_1,\dots,i_{k/2}=1}^n \hat{f}_{i_1,\dots,i_k}^2\right)^{1/2} = \|f_{i_{k/2+1},\dots,i_k}\|_2.$$

By hypercontractivity,

$$\|f_{i_{k/2+1},\ldots,i_k}\|_2^{2k/(k+2)} \leqslant \left(\frac{k+2}{k-2}\right)^{\frac{k^2}{2(k+2)}} \|f_{i_{k/2+1},\ldots,i_k}\|_{2k/(k+2)}^{2k/(k+2)}.$$

We now observe that, for any $p \ge 1$,

$$\sum_{i_{k/2+1},\ldots,i_{k}} \|f_{i_{k/2+1},\ldots,i_{k}}\|_{p}^{p} = \mathbb{E}_{x^{1},\ldots,x^{k/2}} \left[\sum_{i_{k/2+1},\ldots,i_{k}} |f_{i_{k/2+1},\ldots,i_{k}}(x^{1},\ldots,x^{k/2})|^{p} \right]$$
$$= \mathbb{E}_{x^{1},\ldots,x^{k/2}} \left[\|\hat{f'}_{x^{1},\ldots,x^{k/2}}\|_{p}^{p} \right].$$

Hence, taking p = 2k/(k+2) = 2(k/2)/(k/2+1), we have

$$\sum_{i_{k/2+1},\dots,i_{k}} \|(\hat{f}_{i_{1},\dots,i_{k}})_{i_{1},\dots,i_{k/2}=1}^{n}\|_{2}^{2k/(k+2)}$$

$$\leq \left(\frac{k+2}{k-2}\right)^{\frac{k^2}{2(k+2)}} \mathbb{E}_{x^1,\dots,x^{k/2}} \left[\|\hat{f'}_{x^1,\dots,x^{k/2}}\|_{2k/(k+2)}^{2k/(k+2)} \right]$$

Hence, taking p = 2k/(k+2) = 2(k/2)/(k/2+1), we have

$$\begin{split} \sum_{i_{k/2+1},\dots,i_{k}} \|(\hat{f}_{i_{1},\dots,i_{k}})_{i_{1},\dots,i_{k/2}=1}^{n}\|_{2}^{2k/(k+2)} \\ \leqslant \left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}} \mathbb{E}_{x^{1},\dots,x^{k/2}} \left[\|\hat{f'}_{x^{1},\dots,x^{k/2}}\|_{2k/(k+2)}^{2k/(k+2)}\right] \end{split}$$

$$\leq \left(\frac{k+2}{k-2}\right)^{\frac{k^2}{2(k+2)}} C_{k/2}^{2k/(k+2)} \|f\|_{\infty}^{2k/(k+2)}$$

by the inductive hypothesis.

Combining both terms in the first inequality,

$$\left(\sum_{i_1,\ldots,i_k} |\hat{f}_{i_1,\ldots,i_k}|^{2k/(k+1)}\right)^{(k+1)/(2k)} \leqslant \left(\frac{k+2}{k-2}\right)^{k/4} C_{k/2} ||f||_{\infty}.$$

Combining both terms in the first inequality,

$$\left(\sum_{i_1,\ldots,i_k} |\hat{f}_{i_1,\ldots,i_k}|^{2k/(k+1)}\right)^{(k+1)/(2k)} \leqslant \left(\frac{k+2}{k-2}\right)^{k/4} C_{k/2} ||f||_{\infty}.$$

Thus

$$C_k \leqslant \left(1 + \frac{4}{k-2}\right)^{k/4} C_{k/2}.$$

Combining both terms in the first inequality,

$$\left(\sum_{i_1,\ldots,i_k} |\hat{f}_{i_1,\ldots,i_k}|^{2k/(k+1)}\right)^{(k+1)/(2k)} \leqslant \left(\frac{k+2}{k-2}\right)^{k/4} C_{k/2} ||f||_{\infty}.$$

Thus

$$C_k \leqslant \left(1 + \frac{4}{k-2}\right)^{k/4} C_{k/2}.$$

Observing that $(1 + 4/(k-2))^{k/4} \leq (1 + O(1/k))e$, we have $C_k = O(k^{\log_2 e})$ as claimed.

The following beautiful conjecture is currently open:

Conjecture [Aaronson and Ambainis '11]

Every bounded low-degree polynomial on the boolean cube has an influential variable.

The following beautiful conjecture is currently open:

Conjecture [Aaronson and Ambainis '11]

Every bounded low-degree polynomial on the boolean cube has an influential variable.

- Generalises a prior result showing this for decision trees [O'Donnell et al '05].
- One reason this conjecture is interesting: it would imply that every quantum query algorithm can be approximated by a classical algorithm on "most" inputs.
- One special case known: when *f* is symmetric, i.e. f(x) depends only on $\sum_{i} x_i$ [Backurs '12].

A more formal version of the conjecture:

Conjecture [Aaronson and Ambainis '11]

For all degree *d* polynomials $f : \{\pm 1\}^n \to [-1, 1]$, there exists *j* such that $I_j(f) \ge \text{poly}(\text{Var}(f)/d)$.

A more formal version of the conjecture:

Conjecture [Aaronson and Ambainis '11]

For all degree *d* polynomials $f : \{\pm 1\}^n \to [-1, 1]$, there exists *j* such that $I_j(f) \ge \text{poly}(\text{Var}(f)/d)$.

What does this mean?

• Write $\mathbb{E}[f] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)$. Then the (ℓ_2) variance of f is

$$\mathsf{Var}(f) = \mathbb{E}[(f - \mathbb{E}[f])^2]$$

• Define the influence of the *j*'th variable on *f* as

$$I_j(f) = \frac{1}{2^{n+2}} \sum_{x \in \{\pm 1\}^n} (f(x) - f(x^j))^2,$$

where x^{j} is *x* with the *j*'th variable negated.

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$f(x^1, \dots, x^k) = \sum_{i_1, \dots, i_k} \hat{f}_{i_1, \dots, i_k} x_{i_1}^1 x_{i_2}^2 \dots x_{i_k}^k$$

where $\hat{f}_{i_1,...,i_k} = \pm \alpha$ for some α .

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$f(x^1, \ldots, x^k) = \sum_{i_1, \ldots, i_k} \hat{f}_{i_1, \ldots, i_k} x_{i_1}^1 x_{i_2}^2 \ldots x_{i_k}^k$$

where $\hat{f}_{i_1,\ldots,i_k} = \pm \alpha$ for some α .

- *f* depends on *nk* variables x_{ℓ}^{j} , $1 \leq j \leq k$ and $1 \leq \ell \leq n$.
- The influence of variable (j, ℓ) on f is

$$\operatorname{Inf}_{(j,\ell)}(f) = \sum_{i_1,\dots,i_{j-1},i_{j+1},\dots,i_k} \hat{f}_{i_1,\dots,i_{j-1},\ell,i_{j+1},\dots,i_k}^2 = n^{k-1} \alpha^2.$$

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$f(x^1, \dots, x^k) = \sum_{i_1, \dots, i_k} \hat{f}_{i_1, \dots, i_k} x_{i_1}^1 x_{i_2}^2 \dots x_{i_k}^k$$

where $\hat{f}_{i_1,\ldots,i_k} = \pm \alpha$ for some α .

- *f* depends on *nk* variables x_{ℓ}^{j} , $1 \leq j \leq k$ and $1 \leq \ell \leq n$.
- The influence of variable (j, ℓ) on f is

$$\operatorname{Inf}_{(j,\ell)}(f) = \sum_{i_1,\dots,i_{j-1},i_{j+1},\dots,i_k} \hat{f}_{i_1,\dots,i_{j-1},\ell,i_{j+1},\dots,i_k}^2 = n^{k-1} \alpha^2.$$

Corollary

If *f* is a multilinear form such that $||f||_{\infty} \leq 1$ and $\hat{f}_{i_1,...,i_k} = \pm \alpha$ for some α , then $I_{(j,\ell)}(f) = \Omega(\operatorname{Var}(f)^2/k^3)$ for all (j,ℓ) .

Application 2: The bias of local 4-designs

Given a quantum state which is promised to be either ρ (with probability p) or σ (with probability 1 - p), we want to determine which is the case via a measurement.

- The most general kind of quantum measurement is known as a POVM, i.e. a partition of the identity into positive operators.
- The optimal measurement achieves success probability

$$rac{1}{2}\left(1+\|p
ho-(1-p)\sigma\|_{1}
ight)$$
 ,

where $||M||_1 = \text{tr} |M|$ is the usual trace norm.

• Setting $\Delta = p\rho - (1 - p)\sigma$, the optimal bias is just $\|\Delta\|_1$.

- Given a POVM $M = (M_i)$, let ρ^M , σ^M be the probability distributions on measurement outcomes induced by performing M on ρ , σ .
- The optimal bias one can achieve by performing *M* is then equal to

$$\|\Delta\|_M := \|p\rho^M - (1-p)\sigma^M\|_1$$

- Given a POVM $M = (M_i)$, let ρ^M , σ^M be the probability distributions on measurement outcomes induced by performing M on ρ , σ .
- The optimal bias one can achieve by performing *M* is then equal to

$$\begin{aligned} \|\Delta\|_M &:= \|p\rho^M - (1-p)\sigma^M\|_1 \\ &= \sum_i |p\operatorname{tr} M_i\rho - (1-p)\operatorname{tr} M_i\sigma| \end{aligned}$$

- Given a POVM $M = (M_i)$, let ρ^M , σ^M be the probability distributions on measurement outcomes induced by performing M on ρ , σ .
- The optimal bias one can achieve by performing *M* is then equal to

$$\begin{split} \|\Delta\|_{M} &:= \|p\rho^{M} - (1-p)\sigma^{M}\|_{1} \\ &= \sum_{i} |p \operatorname{tr} M_{i}\rho - (1-p) \operatorname{tr} M_{i}\sigma| \\ &= \sum_{i} |\operatorname{tr} M_{i}\Delta|. \end{split}$$

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

• This is a continuous POVM with a measurement operator $M_{\psi} \propto |\psi\rangle\langle\psi|$ for every *n*-dimensional pure state $|\psi\rangle$, normalised such that $\int d\psi M_{\psi} = I$.

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto |\psi\rangle\langle\psi|$ for every *n*-dimensional pure state $|\psi\rangle$, normalised such that $\int d\psi M_{\psi} = I$.
- We can't actually perform this physically, but can approximate it using *t*-designs.

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto |\psi\rangle\langle\psi|$ for every *n*-dimensional pure state $|\psi\rangle$, normalised such that $\int d\psi M_{\psi} = I$.
- We can't actually perform this physically, but can approximate it using *t*-designs.
- A rank-one POVM $M = (M_i)$ in *n* dimensions is called a *t*-design if

$$\sum_{i} p_{i} P_{i}^{\otimes t} = \int d\psi |\psi\rangle \langle \psi|^{\otimes t},$$

where $p_i = \frac{1}{n} \operatorname{tr} M_i$ and $P_i = \frac{1}{\operatorname{tr} M_i} M_i$.

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto |\psi\rangle\langle\psi|$ for every *n*-dimensional pure state $|\psi\rangle$, normalised such that $\int d\psi M_{\psi} = I$.
- We can't actually perform this physically, but can approximate it using *t*-designs.
- A rank-one POVM $M = (M_i)$ in *n* dimensions is called a *t*-design if

$$\sum_{i} p_{i} P_{i}^{\otimes t} = \int d\psi |\psi\rangle \langle \psi|^{\otimes t},$$

where $p_i = \frac{1}{n} \operatorname{tr} M_i$ and $P_i = \frac{1}{\operatorname{tr} M_i} M_i$.

• As *t* increases, *t*-designs become better and better approximations to the uniform POVM.

The bias of 4-design measurements

Theorem [Ambainis and Emerson '07], [Matthews, Wehner and Winter '09]

Let *M* be a 4-design and set $\Delta = (\rho - \sigma)/2$. Then

 $\|\Delta\|_M \ge C\sqrt{\operatorname{tr}\Delta^2}$,

for some universal constant C > 0.

The bias of 4-design measurements

Theorem [Ambainis and Emerson '07], [Matthews, Wehner and Winter '09]

Let *M* be a 4-design and set $\Delta = (\rho - \sigma)/2$. Then

 $\|\Delta\|_M \ge C\sqrt{\operatorname{tr}\Delta^2}$,

for some universal constant C > 0.

One can generalise this to a setting where locality comes into play by making *M* into a tensor product of 4-designs. That is:

- Each operator is of the form $M_{i_1,\ldots,i_k} = M_{i_1} \otimes M_{i_2} \otimes \ldots M_{i_k}$.
- Each individual measurement (M_i) is a 4-design.

This is interesting because it allows us to explore the power of local vs. global measurements.

Local 4-designs

Theorem [Lancien and Winter '12]

Let *M* be a *k*-partite measurement which is a product of local 4-designs and set $\Delta = p\rho - (1-p)\sigma$. Then

$$\|\Delta\|_{M} \ge D^{k} \left(\sum_{S \subseteq [k]} \operatorname{tr} \left[(\operatorname{tr}_{S} \Delta)^{2} \right] \right)^{1/2}$$

for some universal constant D > 0.

• Previously known for k = 2 [Matthews, Wehner and Winter '09].

Local 4-designs

Theorem [Lancien and Winter '12]

Let *M* be a *k*-partite measurement which is a product of local 4-designs and set $\Delta = p\rho - (1-p)\sigma$. Then

$$\|\Delta\|_{M} \ge D^{k} \left(\sum_{S \subseteq [k]} \operatorname{tr} \left[(\operatorname{tr}_{S} \Delta)^{2} \right] \right)^{1/2}$$

for some universal constant D > 0.

• Previously known for k = 2 [Matthews, Wehner and Winter '09].

We give a new proof using hypercontractivity.

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$\|\Delta\|_M = \sum_i |\operatorname{tr} M_i \Delta|$$

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$\|\Delta\|_{M} = \sum_{i} |\operatorname{tr} M_{i}\Delta| = n \sum_{i} p_{i} |\operatorname{tr} P_{i}\Delta|$$

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$\|\Delta\|_{M} = \sum_{i} |\operatorname{tr} M_{i}\Delta| = n \sum_{i} p_{i} |\operatorname{tr} P_{i}\Delta| \ge n \frac{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{2}\right)^{3/2}}{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{4}\right)^{1/2}}$$

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

~ /~

$$\begin{split} \|\Delta\|_{M} &= \sum_{i} |\operatorname{tr} M_{i}\Delta| = n \sum_{i} p_{i} |\operatorname{tr} P_{i}\Delta| \ge n \frac{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{2}\right)^{3/2}}{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{4}\right)^{1/2}} \\ &= n \frac{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3/2}}{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1/2}}. \end{split}$$

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

~ /~

$$\begin{split} \|\Delta\|_{M} &= \sum_{i} |\operatorname{tr} M_{i}\Delta| = n \sum_{i} p_{i} |\operatorname{tr} P_{i}\Delta| \ge n \frac{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{2}\right)^{3/2}}{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{4}\right)^{1/2}} \\ &= n \frac{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3/2}}{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1/2}}. \end{split}$$

As *M* is a 4-design,

$$\|\Delta\|_{M} \ge n \frac{\left(\operatorname{tr}\left(\int d\psi |\psi\rangle \langle \psi|^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3/2}}{\left(\operatorname{tr}\left(\int d\psi |\psi\rangle \langle \psi|^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1/2}} = n \frac{\left(\int (\operatorname{tr}\Delta |\psi\rangle \langle \psi|)^{2} d\psi\right)^{3/2}}{\left(\int (\operatorname{tr}\Delta |\psi\rangle \langle \psi|)^{4} d\psi\right)^{1/2}}.$$

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

~ /~

$$\begin{split} \|\Delta\|_{M} &= \sum_{i} |\operatorname{tr} M_{i}\Delta| = n \sum_{i} p_{i} |\operatorname{tr} P_{i}\Delta| \ge n \frac{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{2}\right)^{3/2}}{\left(\sum_{i} p_{i} (\operatorname{tr} P_{i}\Delta)^{4}\right)^{1/2}} \\ &= n \frac{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3/2}}{\left(\operatorname{tr} \left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1/2}}. \end{split}$$

As *M* is a 4-design,

$$\|\Delta\|_{M} \ge n \frac{\left(\operatorname{tr}\left(\int d\psi |\psi\rangle \langle \psi|^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3/2}}{\left(\operatorname{tr}\left(\int d\psi |\psi\rangle \langle \psi|^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1/2}} = n \frac{\left(\int (\operatorname{tr}\Delta |\psi\rangle \langle \psi|)^{2} d\psi\right)^{3/2}}{\left(\int (\operatorname{tr}\Delta |\psi\rangle \langle \psi|)^{4} d\psi\right)^{1/2}}.$$

So, if we can upper bound $\int (\text{tr } \Delta |\psi\rangle \langle \psi|)^4 d\psi$ in terms of $\int (\text{tr } \Delta |\psi\rangle \langle \psi|)^2 d\psi$, this will give a lower bound on $\|\Delta\|_M$.

• Let S^n be the real *n*-sphere, i.e. $\{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$.

- Let S^n be the real *n*-sphere, i.e. $\{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$.
- For $f: S^n \to \mathbb{R}$ define the $L^p(S^n)$ norms as

$$\|f\|_{L^p(S^n)} := \left(\int |f(\xi)|^p d\xi\right)^{1/p},$$

where we integrate with respect to the uniform measure on S^n , normalised so that $\int d\xi = 1$.

- Let S^n be the real *n*-sphere, i.e. $\{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$.
- For $f: S^n \to \mathbb{R}$ define the $L^p(S^n)$ norms as

$$\|f\|_{L^p(S^n)} := \left(\int |f(\xi)|^p d\xi\right)^{1/p}$$

where we integrate with respect to the uniform measure on S^n , normalised so that $\int d\xi = 1$.

Identify each *n*-dimensional quantum state |ψ⟩ (element of the unit sphere in Cⁿ) with a real vector ξ ∈ S²ⁿ⁻¹ by taking real and imaginary parts.

- Let S^n be the real *n*-sphere, i.e. $\{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$.
- For $f: S^n \to \mathbb{R}$ define the $L^p(S^n)$ norms as

$$\|f\|_{L^p(S^n)} := \left(\int |f(\xi)|^p d\xi\right)^{1/p}$$

where we integrate with respect to the uniform measure on S^n , normalised so that $\int d\xi = 1$.

- Identify each *n*-dimensional quantum state |ψ⟩ (element of the unit sphere in Cⁿ) with a real vector ξ ∈ S²ⁿ⁻¹ by taking real and imaginary parts.
- Now consider the function $f(\xi) = \operatorname{tr} \Delta |\psi\rangle \langle \psi|$.

- Let S^n be the real *n*-sphere, i.e. $\{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$.
- For $f: S^n \to \mathbb{R}$ define the $L^p(S^n)$ norms as

$$\|f\|_{L^p(S^n)} := \left(\int |f(\xi)|^p d\xi\right)^{1/p}$$

where we integrate with respect to the uniform measure on S^n , normalised so that $\int d\xi = 1$.

- Identify each *n*-dimensional quantum state |ψ⟩ (element of the unit sphere in Cⁿ) with a real vector ξ ∈ S²ⁿ⁻¹ by taking real and imaginary parts.
- Now consider the function $f(\xi) = \operatorname{tr} \Delta |\psi\rangle \langle \psi|$.
- We want to upper bound $||f||_{L^4(S^n)}$ in terms of $||f||_{L^2(S^n)}$.

Hypercontractivity to the rescue?

Claim

f is a degree 2 polynomial in the components of ξ .

Suggests that we could relate $||f||_{L^4(S^n)}$ to $||f||_{L^2(S^n)}$ using some form of hypercontractivity...

Hypercontractivity to the rescue?

Claim

f is a degree 2 polynomial in the components of ξ .

Suggests that we could relate $||f||_{L^4(S^n)}$ to $||f||_{L^2(S^n)}$ using some form of hypercontractivity...

We need to understand hypercontractivity for functions on the sphere, and some basic ideas from the theory of spherical harmonics.

Spherical harmonics

The restriction of every degree *d* polynomial *f* : ℝⁿ⁺¹ → ℝ to the sphere Sⁿ can be written as

$$f(x) = \sum_{k=0}^{d} Y_k(x),$$

where $Y_k : S^n \to \mathbb{R}$ is called a spherical harmonic, and is the restriction of a degree *k* polynomial to the sphere, satisfying $\int Y_i(\xi)Y_k(\xi)d\xi = 0$ for $j \neq k$.

Spherical harmonics

The restriction of every degree *d* polynomial *f* : ℝⁿ⁺¹ → ℝ to the sphere Sⁿ can be written as

$$f(x) = \sum_{k=0}^{d} Y_k(x),$$

where $Y_k : S^n \to \mathbb{R}$ is called a spherical harmonic, and is the restriction of a degree *k* polynomial to the sphere, satisfying $\int Y_j(\xi)Y_k(\xi)d\xi = 0$ for $j \neq k$.

• The Poisson semigroup (which can be thought of as a "noise operator" for the sphere) is defined by

$$(P_{\epsilon}f)(x) = \sum_{k} \epsilon^{k} Y_{k}(x).$$

Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed hypercontractive.

Theorem [Beckner '92] If $1 \le p \le q \le \infty$ and $\epsilon \le \sqrt{\frac{p-1}{q-1}}$, then $\|P_{\epsilon}f\|_{L^{q}(S^{n})} \le \|f\|_{L^{p}(S^{n})}$.

Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed hypercontractive.

Theorem [Beckner '92]

If $1 \leq p \leq q \leq \infty$ and $\epsilon \leq \sqrt{\frac{p-1}{q-1}}$, then

 $\|P_{\epsilon}f\|_{L^q(S^n)} \leqslant \|f\|_{L^p(S^n)}.$

Just as in the setting of the cube $\{\pm 1\}^n$, this implies the following corollary.

Corollary

Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a degree *d* polynomial. Then, for $q \ge 2$,

 $||f||_{L^q(S^n)} \leq (q-1)^{d/2} ||f||_{L^2(S^n)}.$

Declare victory

Taking q = 4, we see that

$$\left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^4 d\psi\right)^{1/4} \leqslant 3 \left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^2 d\psi\right)^{1/2},$$

so we get

$$\|\Delta\|_M \ge \frac{n}{9} \left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^2 d\psi \right)^{1/2};$$

the RHS can be explicitly evaluated to give

$$\|\Delta\|_M \ge \frac{1}{9(1+1/n)^{1/2}}\sqrt{\operatorname{tr}\Delta^2}.$$

Declare victory

Taking q = 4, we see that

$$\left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^4 d\psi\right)^{1/4} \leqslant 3 \left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^2 d\psi\right)^{1/2},$$

so we get

$$\|\Delta\|_M \geqslant rac{n}{9} \left(\int (\operatorname{tr} \Delta |\psi\rangle \langle \psi|)^2 d\psi \right)^{1/2};$$

the RHS can be explicitly evaluated to give

$$\|\Delta\|_M \ge \frac{1}{9(1+1/n)^{1/2}}\sqrt{\operatorname{tr}\Delta^2}.$$

So we've solved the case k = 1... what about higher k?

We start the proof in the same way: As *M* is a tensor product of local 4-designs,

$$\|\Delta\|_{M} \geq n^{k} \frac{\left(\int \dots \int d\psi_{1} \dots d\psi_{k} (\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{2}\right)^{3/2}}{\left(\int \dots \int d\psi_{1} \dots d\psi_{k} (\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{4}\right)^{1/2}}$$

We start the proof in the same way: As *M* is a tensor product of local 4-designs,

$$\begin{split} \|\Delta\|_{M} & \geqslant \quad n^{k} \frac{\left(\int \dots \int d\psi_{1} \dots d\psi_{k}(\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{2}\right)^{3/2}}{\left(\int \dots \int d\psi_{1} \dots d\psi_{k}(\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{4}\right)^{1/2}} \\ & = \quad n^{k} \frac{\|f\|_{L^{2}((S^{2n-1})^{k})}^{3}}{\|f\|_{L^{4}((S^{2n-1})^{k})}^{2}}, \end{split}$$

where we define the function $f : (S^{2n-1})^k \to \mathbb{R}$ by

 $f(\xi_1,\ldots,\xi_k) = \operatorname{tr} \Delta(|\psi_1\rangle\langle\psi_1|\otimes\cdots\otimes|\psi_k\rangle\langle\psi_k|),$

where $|\psi_i\rangle$ is the *n*-dimensional complex unit vector whose real and imaginary parts are given by $\xi_i \in S^{2n-1}$ in the obvious way.

We start the proof in the same way: As *M* is a tensor product of local 4-designs,

$$\begin{split} \|\Delta\|_{M} & \geqslant \quad n^{k} \frac{\left(\int \dots \int d\psi_{1} \dots d\psi_{k}(\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{2}\right)^{3/2}}{\left(\int \dots \int d\psi_{1} \dots d\psi_{k}(\operatorname{tr} \Delta(|\psi_{1}\rangle\langle\psi_{1}|\otimes\dots\otimes|\psi_{k}\rangle\langle\psi_{k}|))^{4}\right)^{1/2}} \\ & = \quad n^{k} \frac{\|f\|_{L^{2}((S^{2n-1})^{k})}^{3}}{\|f\|_{L^{4}((S^{2n-1})^{k})}^{2}}, \end{split}$$

where we define the function $f: (S^{2n-1})^k \to \mathbb{R}$ by

 $f(\xi_1,\ldots,\xi_k) = \operatorname{tr} \Delta(|\psi_1\rangle\langle\psi_1|\otimes\cdots\otimes|\psi_k\rangle\langle\psi_k|),$

where $|\psi_i\rangle$ is the *n*-dimensional complex unit vector whose real and imaginary parts are given by $\xi_i \in S^{2n-1}$ in the obvious way.

As before, we want to relate $||f||_{L^4((S^{2n-1})^k)}$ to $||f||_{L^2((S^{2n-1})^k)}$.

Here's where the magic happens: the $L^p \rightarrow L^q$ norm is multiplicative, so as a corollary of Beckner's result...

Corollary

Let
$$f: (S^n)^k \to \mathbb{R}$$
. If $1 \leq p \leq q \leq \infty$ and $\epsilon \leq \sqrt{\frac{p-1}{q-1}}$, then

 $\|P_{\epsilon}^{\otimes k}f\|_{L^q((S^n)^k)} \leqslant \|f\|_{L^p((S^n)^k)}.$

Here's where the magic happens: the $L^p \rightarrow L^q$ norm is multiplicative, so as a corollary of Beckner's result...

Corollary

Let
$$f: (S^n)^k \to \mathbb{R}$$
. If $1 \leq p \leq q \leq \infty$ and $\epsilon \leq \sqrt{\frac{p-1}{q-1}}$, then

 $\|P_{\epsilon}^{\otimes k}f\|_{L^q((S^n)^k)} \leq \|f\|_{L^p((S^n)^k)}.$

Also, the same corollary goes through!

Corollary

Let $f : (\mathbb{R}^{n+1})^k \to \mathbb{R}$ be a degree *d* polynomial in the components of each $x^1, \ldots, x^k \in \mathbb{R}^{n+1}$. Then, for any $q \ge 2$,

 $||f||_{L^q((S^n)^k)} \leq (q-1)^{dk/2} ||f||_{L^2((S^n)^k)}.$

Completing the proof

We have

$$\|\Delta\|_{M} \ge n^{k} \frac{\|f\|_{L^{2}((S^{2n-1})^{k})}^{3}}{\|f\|_{L^{4}((S^{2n-1})^{k})}^{2}} \ge \left(\frac{n}{9}\right)^{k} \|f\|_{L^{2}((S^{2n-1})^{k})}.$$

Completing the proof

We have

$$\|\Delta\|_{M} \ge n^{k} \frac{\|f\|_{L^{2}((S^{2n-1})^{k})}^{3}}{\|f\|_{L^{4}((S^{2n-1})^{k})}^{2}} \ge \left(\frac{n}{9}\right)^{k} \|f\|_{L^{2}((S^{2n-1})^{k})}.$$

All that remains is to explicitly calculate

$$\begin{split} \|f\|_{L^{2}((S^{2n-1})^{k})}^{2} &= \operatorname{tr}\left(\int \dots \int d\psi_{1} \dots d\psi_{k} |\psi_{1}\rangle \langle \psi_{1}|^{\otimes 2} \otimes \dots \otimes |\psi_{k}\rangle \langle \psi_{k}|^{\otimes 2}\right) \Delta^{\otimes 2} \\ &= \operatorname{tr}\left(\frac{I+F}{n(n+1)}\right)^{\otimes k} \Delta^{\otimes 2} \\ &= \frac{1}{n^{k}(n+1)^{k}} \sum_{S \subseteq [k]} \operatorname{tr}\left[(\operatorname{tr}_{S} \Delta)^{2}\right]. \end{split}$$

Comparison to previous work

The approach of [Lancien and Winter '12] has definite advantages:

- Better constants
- Based only on clever use of "elementary" techniques (e.g. Cauchy-Schwarz)
- More "concrete".

Comparison to previous work

The approach of [Lancien and Winter '12] has definite advantages:

- Better constants
- Based only on clever use of "elementary" techniques (e.g. Cauchy-Schwarz)
- More "concrete".

But the hypercontractive approach has good points too:

- Extension to arbitrary *k* is essentially immediate
- Can be extended to *t*-designs for t > 4 with little effort
- Gives an intuitive explanation of the exponential prefactor
- More "natural" (if one already knows hypercontractivity!)

Summary

- Hypercontractive inequalities seem to be a powerful tool for proving results in quantum information theory.
- The proofs given here were of previously known results: in both cases the results appear somewhat less technical, at the expense of being less concrete (and giving worse constants).

Open problems:

- Prove the Aaronson-Ambainis conjecture (using hypercontractivity!).
- Explore connections between the results of [Lancien and Winter '12] and testing product states.

Summary

- Hypercontractive inequalities seem to be a powerful tool for proving results in quantum information theory.
- The proofs given here were of previously known results: in both cases the results appear somewhat less technical, at the expense of being less concrete (and giving worse constants).

Open problems:

- Prove the Aaronson-Ambainis conjecture (using hypercontractivity!).
- Explore connections between the results of [Lancien and Winter '12] and testing product states.

Thanks!