Some applications of hypercontractive inequalities in quantum information theory

Ashley Montanaro

Computer Science Department, University of Bristol, UK

$$
\begin{gathered}
18 \text { June } 2013 \\
\operatorname{arXiv:1208.0161}
\end{gathered}
$$

Introduction

In this talk, I will discuss how so-called hypercontractive inequalities can be used to give new(ish) proofs of results in quantum information theory:

- ... a bound on the bias of multiplayer XOR games (originally due to [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]) which implies the first progress on a conjecture about quantum query algorithms;
- ... a bound on the bias of local 4-design measurements (originally due to [Lancien and Winter '12]).

Hypercontractive inequalities: a CS perspective

Hypercontractive inequalities have been much used in the quantum field theory literature:

- introduced (in the form of log-Sobolev inequalities) by [Gross '75];
- for detailed reviews see e.g. [Davies, Gross and Simon '92], [Gross '06].

Hypercontractive inequalities: a CS perspective

Hypercontractive inequalities have been much used in the quantum field theory literature:

- introduced (in the form of log-Sobolev inequalities) by [Gross '75];
- for detailed reviews see e.g. [Davies, Gross and Simon '92], [Gross '06].

In the computer science literature, first used by [Kahn, Kalai and Linial '88] in an important paper proving that every boolean function has an influential variable.

The hypercontractive inequality they used is a particularly simple and clean special case due to [Bonami '70], [Gross '75], and often known as the Bonami-Beckner inequality.

Noise

Consider functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.

Noise

Consider functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.

- For $\epsilon \in[0,1]$, define the noise operator T_{ϵ} as follows:

$$
\left(T_{\epsilon} f\right)(x)=\mathbb{E}_{y \sim{ }_{\epsilon} x}[f(y)]
$$

- Here the expectation is over strings $y \in\{ \pm 1\}^{n}$ obtained from x by negating each element of x with independent probability $(1-\epsilon) / 2$.

Noise

Consider functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.

- For $\epsilon \in[0,1]$, define the noise operator T_{ϵ} as follows:

$$
\left(T_{\epsilon} f\right)(x)=\mathbb{E}_{y \sim{ }_{\epsilon} x}[f(y)]
$$

- Here the expectation is over strings $y \in\{ \pm 1\}^{n}$ obtained from x by negating each element of x with independent probability $(1-\epsilon) / 2$. So...
- If $\epsilon=1, T_{\epsilon} f=f$;
- If $\epsilon=0, T_{\epsilon} f$ is constant.

Noise

Consider functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.

- For $\epsilon \in[0,1]$, define the noise operator T_{ϵ} as follows:

$$
\left(T_{\epsilon} f\right)(x)=\mathbb{E}_{y \sim{ }_{\epsilon} x}[f(y)]
$$

- Here the expectation is over strings $y \in\{ \pm 1\}^{n}$ obtained from x by negating each element of x with independent probability $(1-\epsilon) / 2$. So...
- If $\epsilon=1, T_{\epsilon} f=f$;
- If $\epsilon=0, T_{\epsilon} f$ is constant.
- Fairly easy to show that T_{ϵ} is a contraction, i.e.

$$
\left\|T_{\epsilon} f\right\|_{p} \leqslant\|f\|_{p}
$$

where $\|f\|_{p}:=\left(\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}}|f(x)|^{p}\right)^{1 / p}$.

Hypercontractivity of T_{ϵ}

The Bonami-Beckner inequality [Bonami '70] [Gross '75]

For any $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, and any p and q such that
$1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|T_{\epsilon} f\right\|_{q} \leqslant\|f\|_{p}
$$

Intuition: usually $\|f\|_{p} \leqslant\|f\|_{q}$ for $p \leqslant q$, but applying noise to f smoothes out its peaks and makes the norms comparable.

Hypercontractivity of T_{ϵ}

The Bonami-Beckner inequality [Bonami '70] [Gross '75]

For any $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, and any p and q such that
$1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|T_{\epsilon} f\right\|_{q} \leqslant\|f\|_{p}
$$

Intuition: usually $\|f\|_{p} \leqslant\|f\|_{q}$ for $p \leqslant q$, but applying noise to f smoothes out its peaks and makes the norms comparable. Why should we care about this?

Hypercontractivity of T_{ϵ}

The Bonami-Beckner inequality [Bonami '70] [Gross '75]

For any $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, and any p and q such that
$1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$,

$$
\left\|T_{\epsilon} f\right\|_{q} \leqslant\|f\|_{p} .
$$

Intuition: usually $\|f\|_{p} \leqslant\|f\|_{q}$ for $p \leqslant q$, but applying noise to f smoothes out its peaks and makes the norms comparable. Why should we care about this?

Corollary

Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ be a polynomial of degree d. Then:

- for any $p \leqslant 2,\|f\|_{p} \geqslant(p-1)^{d / 2}\|f\|_{2}$;
- for any $q \geqslant 2,\|f\|_{q} \leqslant(q-1)^{d / 2}\|f\|_{2}$.

Intuition: low-degree polynomials are smooth.

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S}
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$.

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\|f\|_{q}^{2}=\left\|\sum_{k=0}^{d} f=k\right\|_{q}^{2}
$$

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\|f\|_{q}^{2}=\left\|\sum_{k=0}^{d} f^{=k}\right\|_{q}^{2}=\left\|T_{1 / \sqrt{q-1}}\left(\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right)\right\|_{q}^{2}
$$

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\begin{aligned}
\|f\|_{q}^{2} & =\left\|\sum_{k=0}^{d} f=k\right\|_{q}^{2}=\left\|T_{1 / \sqrt{q-1}}\left(\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right)\right\|_{q}^{2} \\
& \leqslant\left\|\sum_{k=0}^{d}(q-1)^{k / 2} f^{2} k\right\|_{2}^{2}
\end{aligned}
$$

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\begin{aligned}
\|f\|_{q}^{2} & =\left\|\sum_{k=0}^{d} f=k\right\|_{q}^{2}=\left\|T_{1 / \sqrt{q-1}}\left(\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right)\right\|_{q}^{2} \\
& \leqslant\left\|\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right\|_{2}^{2}=\sum_{k=0}^{d}(q-1)^{k} \sum_{S \subseteq[n],|S|=k} \hat{f}(S)^{2}
\end{aligned}
$$

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\begin{aligned}
\|f\|_{q}^{2} & =\left\|\sum_{k=0}^{d} f=k\right\|_{q}^{2}=\left\|T_{1 / \sqrt{q-1}}\left(\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right)\right\|_{q}^{2} \\
& \leqslant\left\|\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right\|_{2}^{2}=\sum_{k=0}^{d}(q-1)^{k} \sum_{S \subseteq[n],|S|=k} \hat{f}(S)^{2} \\
& \leqslant(q-1)^{d} \sum_{S \subseteq[n]} \hat{f}(S)^{2}
\end{aligned}
$$

Proof of the corollary

Given a degree d (multilinear) polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n],|S| \leqslant d} \hat{f}(S) x_{S},
$$

where $x_{S}=\prod_{i \in S} x_{i}$, write $f=k=\sum_{S,|S|=k} \hat{f}(S) x_{S}$. Then

$$
\begin{aligned}
\|f\|_{q}^{2} & =\left\|\sum_{k=0}^{d} f=k\right\|_{q}^{2}=\left\|T_{1 / \sqrt{q-1}}\left(\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right)\right\|_{q}^{2} \\
& \leqslant\left\|\sum_{k=0}^{d}(q-1)^{k / 2} f=k\right\|_{2}^{2}=\sum_{k=0}^{d}(q-1)^{k} \sum_{S \subseteq[n],|S|=k} \hat{f}(S)^{2} \\
& \leqslant(q-1)^{d} \sum_{S \subseteq[n]} \hat{f}(S)^{2}=(q-1)^{d}\|f\|_{2}^{2} .
\end{aligned}
$$

(last step: Parseval's equality)

Applications in quantum computation

The above inequality has recently found some applications in quantum computation:

- Separations between quantum and classical communication complexity [Gavinsky et al '07]
- Limitations on quantum random access codes [Ben-Aroya, Regev and de Wolf '08]
- Bounds on non-local games [Buhrman '11]
- Lower bounds on quantum query complexity [Ambainis and de Wolf '12]
- Many more in classical computer science...

Applications in quantum computation

The above inequality has recently found some applications in quantum computation:

- Separations between quantum and classical communication complexity [Gavinsky et al '07]
- Limitations on quantum random access codes [Ben-Aroya, Regev and de Wolf '08]
- Bounds on non-local games [Buhrman '11]
- Lower bounds on quantum query complexity [Ambainis and de Wolf '12]
- Many more in classical computer science...

Today: two more applications.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A k-player XOR game is defined as follows:

- Fix a multidimensional array $A \in\left(\{ \pm 1\}^{n}\right)^{k}$.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A k-player XOR game is defined as follows:

- Fix a multidimensional array $A \in\left(\{ \pm 1\}^{n}\right)^{k}$.
- The j^{\prime} th player gets an input $i_{j} \in\{1, \ldots, n\}$, picked according to a known distribution π.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A k-player XOR game is defined as follows:

- Fix a multidimensional array $A \in\left(\{ \pm 1\}^{n}\right)^{k}$.
- The j^{\prime} th player gets an input $i_{j} \in\{1, \ldots, n\}$, picked according to a known distribution π.
- The j^{\prime} th player must reply with an output $x_{i_{j}}^{j} \in\{ \pm 1\}$.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A k-player XOR game is defined as follows:

- Fix a multidimensional array $A \in\left(\{ \pm 1\}^{n}\right)^{k}$.
- The j^{\prime} th player gets an input $i_{j} \in\{1, \ldots, n\}$, picked according to a known distribution π.
- The j^{\prime} th player must reply with an output $x_{i_{j}}^{j} \in\{ \pm 1\}$.
- The players win if the product of their outputs is equal to $A_{i_{1}, \ldots, i_{k}}$.

Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum correlations is via XOR games.

A k-player XOR game is defined as follows:

- Fix a multidimensional array $A \in\left(\{ \pm 1\}^{n}\right)^{k}$.
- The j^{\prime} th player gets an input $i_{j} \in\{1, \ldots, n\}$, picked according to a known distribution π.
- The j^{\prime} th player must reply with an output $x_{i_{j}}^{j} \in\{ \pm 1\}$.
- The players win if the product of their outputs is equal to $A_{i_{1}, \ldots, i_{k}}$.

The players are allowed to communicate before the game starts, to agree a strategy, but cannot communicate during the game.

Multiplayer XOR games

For example, consider the CHSH game:

- Two players, two possible inputs, chosen uniformly ($k=2$, $n=2, \pi$ is uniform).
- $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$: the players win if their outputs are the same, unless $i_{1}=i_{2}=2$, when they win if their outputs are different.

Multiplayer XOR games

For example, consider the CHSH game:

- Two players, two possible inputs, chosen uniformly ($k=2$, $n=2, \pi$ is uniform).
- $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$: the players win if their outputs are the same, unless $i_{1}=i_{2}=2$, when they win if their outputs are different.

In general, the maximal bias (i.e. difference between probability of success and failure) achievable by deterministic strategies is

$$
\beta(G):=\max _{x^{1}, \ldots, x^{k} \in\{ \pm 1\}^{n}}\left|\sum_{i_{1}, \ldots, i_{k}=1}^{n} \pi_{i_{1}, \ldots, i_{k}} A_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} \ldots x_{i_{k}}^{k}\right| .
$$

It's easy to see that shared randomness doesn't help.

Why care about XOR games?

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.

Why care about XOR games?

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.

Why care about XOR games?

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.
- XOR games are also interesting in themselves classically:
- Applications in communication complexity, e.g. [Ford and Gál '05]
- Known to be NP-hard to compute bias
- Connections to combinatorics and coding theory.

Why care about XOR games?

- In some cases (e.g. the CHSH game), if the players are allowed to share entanglement they can beat any possible classical strategy.
- XOR games thus provide a clean, mathematically tractable way of studying the power of entanglement.
- XOR games are also interesting in themselves classically:
- Applications in communication complexity, e.g. [Ford and Gál '05]
- Known to be NP-hard to compute bias
- Connections to combinatorics and coding theory.

Today's question

What is the hardest k-player XOR game for classical players?
i.e. what is the game which minimises the maximal bias achievable?

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists a game G for which $\beta(G) \leqslant n^{-(k-1) / 2}[$ Ford and Gál '05].
- Any game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists a game G for which $\beta(G) \leqslant n^{-(k-1) / 2}$ [Ford and Gál ${ }^{\prime} 05$].
- Any game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

A recent and significant improvement:
Theorem [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]
There exists a universal constant $c>0$ such that, for any XOR game G as above, $\beta(G)=\Omega\left(k^{-c} n^{-(k-1) / 2}\right)$.

Previously known results

Until recently, there was a big gap between lower and upper bounds on $\min _{G} \beta(G)$:

- There exists a game G for which $\beta(G) \leqslant n^{-(k-1) / 2}$ [Ford and Gál ' 05].
- Any game G has $\beta(G) \geqslant 2^{-O(k)} n^{-(k-1) / 2}$ [Bohnenblust and Hille '31].

A recent and significant improvement:
Theorem [Defant, Popa and Schwarting '10] [Pellegrino and Seoane-Sepúlveda '12]
There exists a universal constant $c>0$ such that, for any XOR game G as above, $\beta(G)=\Omega\left(k^{-c} n^{-(k-1) / 2}\right)$.

We will show how this result can be proven using hypercontractivity (as a small step in the proof).

XOR games and multilinear forms

A homogeneous polynomial $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is said to be a multilinear form if it can be written as

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

for some multidimensional array $\hat{f} \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$.

XOR games and multilinear forms

A homogeneous polynomial $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is said to be a multilinear form if it can be written as

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

for some multidimensional array $\hat{f} \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$. Define as before

$$
\|f\|_{p}:=\left(\frac{1}{2^{n k}} \sum_{x^{1}, \ldots, x^{k} \in\{ \pm 1\}^{n}}\left|f\left(x^{1}, \ldots, x^{k}\right)\right|^{p}\right)^{1 / p}
$$

XOR games and multilinear forms

A homogeneous polynomial $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is said to be a multilinear form if it can be written as

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

for some multidimensional array $\hat{f} \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$. Define as before

$$
\|f\|_{p}:=\left(\frac{1}{2^{n k}} \sum_{x^{1}, \ldots, x^{k} \in\{ \pm 1\}^{n}}\left|f\left(x^{1}, \ldots, x^{k}\right)\right|^{p}\right)^{1 / p}
$$

Any XOR game $G=(\pi, A)$ corresponds to a multilinear form f :

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \pi_{i_{1}, \ldots, i_{k}} A_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

and the bias $\beta(G)$ is precisely $\|f\|_{\infty}:=\max _{x \in\{ \pm 1\}^{n}}|f(x)|$.

What we want to prove

Bohnenblust-Hille inequality [BH '31, DPS '10, PS '12]
For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty}
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.

What we want to prove

Bohnenblust-Hille inequality [BH '31, DPS ' 10 , PS ' 12]

For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty},
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing p appropriately.

What we want to prove

Bohnenblust-Hille inequality [BH '31, DPS ' 10 , PS ' 12]

For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty},
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing p appropriately. We'll prove the claim by induction on k, for k a power of 2 .

What we want to prove

Bohnenblust-Hille inequality [BH '31, DPS ' 10 , PS ' 12]

For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty},
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing p appropriately. We'll prove the claim by induction on k, for k a power of 2 .

- As $\|\hat{f}\|_{p}$ is nonincreasing with p, it suffices to prove the claim for $p=2 k /(k+1)$.

What we want to prove

Bohnenblust-Hille inequality [BH '31, DPS ' 10 , PS ' 12]

For any multilinear form $f:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$, and any $p \geqslant 2 k /(k+1)$,

$$
\|\hat{f}\|_{p}:=\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{p}\right)^{1 / p} \leqslant C_{k}\|f\|_{\infty},
$$

where C_{k} may be taken to be $O\left(k^{\log _{2} e}\right) \approx O\left(k^{1.45}\right)$.
Implies $\beta(G)=\Omega\left(C_{k}^{-1} n^{-(k-1) / 2}\right)$ by choosing p appropriately. We'll prove the claim by induction on k, for k a power of 2 .

- As $\|\hat{f}\|_{p}$ is nonincreasing with p, it suffices to prove the claim for $p=2 k /(k+1)$.
- The base case $k=1$ is trivial $\left(C_{1}=1\right)$. So, assuming the theorem holds for $k / 2$, we prove it holds for k.

Proof

We start with a matrix inequality [Defant, Popa and Schwarting '10]:

$$
\begin{aligned}
\|\hat{f}\|_{2 k /(k+1)} & \leqslant\left(\sum_{i_{1}, \ldots, i_{k / 2}}\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{k / 2+1}, \ldots, i_{k}=1}^{n}\right\|_{2}^{2 k /(k+2)}\right)^{(k+2) / 4 k} \\
& \times\left(\sum_{i_{k / 2+1}, \ldots, i_{k}}\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}^{2 k /(k+2)}\right)^{(k+2) / 4 k}
\end{aligned}
$$

Proof

We start with a matrix inequality [Defant, Popa and Schwarting '10]:

$$
\begin{aligned}
\|\hat{f}\|_{2 k /(k+1)} & \leqslant\left(\sum_{i_{1}, \ldots, i_{k / 2}}\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{k / 2+1}, \ldots, i_{k}=1}^{n}\right\|_{2}^{2 k /(k+2)}\right)^{(k+2) / 4 k} \\
& \times\left(\sum_{i_{k / 2+1}, \ldots, i_{k}}\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}^{2 k /(k+2)}\right)^{(k+2) / 4 k}
\end{aligned}
$$

We estimate the second term (the first follows exactly the same procedure).

Proof

For each $i_{k / 2+1}, \ldots, i_{k} \in[n]$, define $f_{i_{k / 2+1}, \ldots, i_{k}}:\left(\mathbb{R}^{n}\right)^{k / 2} \rightarrow \mathbb{R}$ by

$$
f_{i_{k / 2+1}, \ldots, i_{k}}\left(x^{1}, \ldots, x^{k / 2}\right)=\sum_{i_{1}, \ldots, i_{k / 2}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k / 2}}^{k / 2} .
$$

Proof

For each $i_{k / 2+1}, \ldots, i_{k} \in[n]$, define $f_{i_{k / 2+1}, \ldots, i_{k}}:\left(\mathbb{R}^{n}\right)^{k / 2} \rightarrow \mathbb{R}$ by

$$
f_{i_{k / 2}+1, \ldots, i_{k}}\left(x^{1}, \ldots, x^{k / 2}\right)=\sum_{i_{1}, \ldots, i_{k / 2}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k / 2}}^{k / 2} .
$$

Also define a "dual" function $f_{x^{1}, \ldots, x^{k / 2}}^{\prime}:\left(\mathbb{R}^{n}\right)^{k / 2} \rightarrow \mathbb{R}$ by

$$
f_{x^{1}, \ldots, x^{k / 2}}^{\prime}\left(x^{k / 2+1}, \ldots, x^{k}\right)=f\left(x^{1}, \ldots, x^{k}\right) .
$$

Proof

For each $i_{k / 2+1}, \ldots, i_{k} \in[n]$, define $f_{i_{k / 2+1}, \ldots, i_{k}}:\left(\mathbb{R}^{n}\right)^{k / 2} \rightarrow \mathbb{R}$ by

$$
f_{i_{k / 2+1}, \ldots, i_{k}}\left(x^{1}, \ldots, x^{k / 2}\right)=\sum_{i_{1}, \ldots, i_{k / 2}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k / 2}}^{k / 2} .
$$

Also define a "dual" function $f_{x^{1}, \ldots, x^{k / 2}}^{\prime}:\left(\mathbb{R}^{n}\right)^{k / 2} \rightarrow \mathbb{R}$ by

$$
f_{x^{1}, \ldots, x^{k / 2}}^{\prime}\left(x^{k / 2+1}, \ldots, x^{k}\right)=f\left(x^{1}, \ldots, x^{k}\right) .
$$

We have
$f_{x^{1}, \ldots, x^{k / 2}}^{\prime}\left(x^{k / 2+1}, \ldots, x^{k}\right)=\sum_{i_{k / 2+1}, \ldots, i_{k}=1}^{n} f_{i_{k / 2+1}, \ldots, i_{k}}\left(x^{1}, \ldots, x^{k / 2}\right) x_{i_{k / 2+1}}^{k / 2+1} \ldots x_{i_{k}}^{k} ;$
of course $\left\|f_{x^{1}, \ldots, x^{k} / 2}^{\prime}\right\|_{\infty} \leqslant\|f\|_{\infty}$.

Proof

For each tuple $i_{k / 2+1}, \ldots, i_{k}$ we have by Parseval's equality

$$
\left\|\hat{f}_{1, \ldots, \ldots i_{k}} i_{i_{1}, \ldots i_{k / 2}=1}^{n}\right\|_{2}=\left(\sum_{i_{1}, \ldots, i_{k} / 2}^{n} \hat{f}_{i_{1}, \ldots, i_{k}}^{n}\right)^{1 / 2}=\left\|f_{i_{k / 2}+1, \ldots, i_{k}}\right\|_{2} .
$$

Proof

For each tuple $i_{k / 2+1}, \ldots, i_{k}$ we have by Parseval's equality

$$
\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}=\left(\sum_{i_{1}, \ldots, i_{k / 2}=1}^{n} \hat{f}_{i_{1}, \ldots, i_{k}}^{2}\right)^{1 / 2}=\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2}
$$

By hypercontractivity,

$$
\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2}^{2 k /(k+2)} \leqslant\left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}}\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2 k /(k+2)}^{2 k /(k+2)}
$$

Proof

For each tuple $i_{k / 2+1}, \ldots, i_{k}$ we have by Parseval's equality

$$
\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}=\left(\sum_{i_{1}, \ldots, i_{k / 2}=1}^{n} \hat{f}_{i_{1}, \ldots, i_{k}}^{2}\right)^{1 / 2}=\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2}
$$

By hypercontractivity,

$$
\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2}^{2 k /(k+2)} \leqslant\left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}}\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{2 k /(k+2)}^{2 k /(k+2)}
$$

We now observe that, for any $p \geqslant 1$,
$\sum_{i_{k / 2+1}, \ldots, i_{k}}\left\|f_{i_{k / 2+1}, \ldots, i_{k}}\right\|_{p}^{p}=\mathbb{E}_{x^{1}, \ldots, x^{k / 2}}\left[\sum_{i_{k / 2+1}, \ldots, i_{k}}\left|f_{i_{k / 2+1}, \ldots, i_{k}}\left(x^{1}, \ldots, x^{k / 2}\right)\right|^{p}\right]$

$$
=\mathbb{E}_{x^{1}, \ldots, x^{k / 2}}\left[\left\|\hat{f}_{x^{1}, \ldots, x^{k / 2}}^{\prime}\right\|_{p}^{p}\right] .
$$

Proof

Hence, taking $p=2 k /(k+2)=2(k / 2) /(k / 2+1)$, we have

$$
\begin{aligned}
& \sum_{/ 2+1, \ldots, i_{k}}\left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}^{2 k /(k+2)} \\
& \quad \leqslant\left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}} \mathbb{E}_{x^{1}, \ldots, x^{k / 2}}\left[\left\|\hat{f}_{x^{1}, \ldots, x^{k / 2}}\right\|_{2 k /(k+2)}^{2 k /(k+2)}\right]
\end{aligned}
$$

Proof

Hence, taking $p=2 k /(k+2)=2(k / 2) /(k / 2+1)$, we have

$$
\begin{aligned}
\sum_{i_{k / 2+1}, \ldots, i_{k}} & \left\|\left(\hat{f}_{i_{1}, \ldots, i_{k}}\right)_{i_{1}, \ldots, i_{k / 2}=1}^{n}\right\|_{2}^{2 k /(k+2)} \\
& \leqslant\left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}} \mathbb{E}_{x^{1}, \ldots, x^{k / 2}}\left[\left\|\hat{f}_{x^{\prime}, \ldots, x^{k / 2}}\right\|_{2 k /(k+2)}^{2 k /(k+2)}\right] \\
& \leqslant\left(\frac{k+2}{k-2}\right)^{\frac{k^{2}}{2(k+2)}} C_{k / 2}^{2 k /(k+2)}\|f\|_{\infty}^{2 k /(k+2)}
\end{aligned}
$$

by the inductive hypothesis.

Proof

Combining both terms in the first inequality,

$$
\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{2 k /(k+1)}\right)^{(k+1) /(2 k)} \leqslant\left(\frac{k+2}{k-2}\right)^{k / 4} C_{k / 2}\|f\|_{\infty}
$$

Proof

Combining both terms in the first inequality,

$$
\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{2 k /(k+1)}\right)^{(k+1) /(2 k)} \leqslant\left(\frac{k+2}{k-2}\right)^{k / 4} C_{k / 2}\|f\|_{\infty}
$$

Thus

$$
C_{k} \leqslant\left(1+\frac{4}{k-2}\right)^{k / 4} C_{k / 2}
$$

Proof

Combining both terms in the first inequality,

$$
\left(\sum_{i_{1}, \ldots, i_{k}}\left|\hat{f}_{i_{1}, \ldots, i_{k}}\right|^{2 k /(k+1)}\right)^{(k+1) /(2 k)} \leqslant\left(\frac{k+2}{k-2}\right)^{k / 4} C_{k / 2}\|f\|_{\infty}
$$

Thus

$$
C_{k} \leqslant\left(1+\frac{4}{k-2}\right)^{k / 4} C_{k / 2}
$$

Observing that $(1+4 /(k-2))^{k / 4} \leqslant(1+O(1 / k)) e$, we have $C_{k}=O\left(k^{\log _{2} e}\right)$ as claimed.

A conjecture of Aaronson and Ambainis

The following beautiful conjecture is currently open:
Conjecture [Aaronson and Ambainis '11]
Every bounded low-degree polynomial on the boolean cube has an influential variable.

A conjecture of Aaronson and Ambainis

The following beautiful conjecture is currently open:
Conjecture [Aaronson and Ambainis '11]
Every bounded low-degree polynomial on the boolean cube has an influential variable.

- Generalises a prior result showing this for decision trees [O'Donnell et al '05].
- One reason this conjecture is interesting: it would imply that every quantum query algorithm can be approximated by a classical algorithm on "most" inputs.
- One special case known: when f is symmetric, i.e. $f(x)$ depends only on $\sum_{i} x_{i}$ [Backurs '12].

A conjecture of Aaronson and Ambainis

A more formal version of the conjecture:
Conjecture [Aaronson and Ambainis '11]
For all degree d polynomials $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$, there exists j such that $I_{j}(f) \geqslant \operatorname{poly}(\operatorname{Var}(f) / d)$.

A conjecture of Aaronson and Ambainis

A more formal version of the conjecture:
Conjecture [Aaronson and Ambainis '11]
For all degree d polynomials $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$, there exists j such that $I_{j}(f) \geqslant \operatorname{poly}(\operatorname{Var}(f) / d)$.

What does this mean?

- Write $\mathbb{E}[f]=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x)$. Then the $\left(\ell_{2}\right)$ variance of f is

$$
\operatorname{Var}(f)=\mathbb{E}\left[(f-\mathbb{E}[f])^{2}\right]
$$

- Define the influence of the j^{\prime} th variable on f as

$$
I_{j}(f)=\frac{1}{2^{n+2}} \sum_{x \in\{ \pm 1\}^{n}}\left(f(x)-f\left(x^{j}\right)\right)^{2}
$$

where x^{j} is x with the j^{\prime} th variable negated.

A conjecture of Aaronson and Ambainis

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

where $\hat{f}_{i_{1}, \ldots, i_{k}}= \pm \alpha$ for some α.

A conjecture of Aaronson and Ambainis

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

where $\hat{f}_{i_{1}, \ldots, i_{k}}= \pm \alpha$ for some α.

- f depends on $n k$ variables $x_{\ell}^{j}, 1 \leqslant j \leqslant k$ and $1 \leqslant \ell \leqslant n$.
- The influence of variable (j, ℓ) on f is

$$
\operatorname{Inf}_{(j, \ell)}(f)=\sum_{i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{j-1}, \ell, i_{j+1}, \ldots, i_{k}}^{2}=n^{k-1} \alpha^{2}
$$

A conjecture of Aaronson and Ambainis

Using the above strengthening of the BH inequality, it is easy to prove a very special case of the Aaronson-Ambainis conjecture. Let

$$
f\left(x^{1}, \ldots, x^{k}\right)=\sum_{i_{1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{k}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}
$$

where $\hat{f}_{i_{1}, \ldots, i_{k}}= \pm \alpha$ for some α.

- f depends on $n k$ variables $x_{\ell}^{j}, 1 \leqslant j \leqslant k$ and $1 \leqslant \ell \leqslant n$.
- The influence of variable (j, ℓ) on f is

$$
\operatorname{Inf}_{(j, \ell)}(f)=\sum_{i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{k}} \hat{f}_{i_{1}, \ldots, i_{j-1}, \ell, i_{j+1}, \ldots, i_{k}}^{2}=n^{k-1} \alpha^{2} .
$$

Corollary

If f is a multilinear form such that $\|f\|_{\infty} \leqslant 1$ and $\hat{f}_{i_{1}, \ldots, i_{k}}= \pm \alpha$ for some α, then $I_{(j, \ell)}(f)=\Omega\left(\operatorname{Var}(f)^{2} / k^{3}\right)$ for all (j, ℓ).

Application 2: The bias of local 4-designs

Given a quantum state which is promised to be either ρ (with probability p) or σ (with probability $1-p$), we want to determine which is the case via a measurement.

- The most general kind of quantum measurement is known as a POVM, i.e. a partition of the identity into positive operators.
- The optimal measurement achieves success probability

$$
\frac{1}{2}\left(1+\|p \rho-(1-p) \sigma\|_{1}\right)
$$

where $\|M\|_{1}=\operatorname{tr}|M|$ is the usual trace norm.

- Setting $\Delta=p \rho-(1-p) \sigma$, the optimal bias is just $\|\Delta\|_{1}$.

The bias of local measurements

What if we are not allowed to perform an arbitrary measurement, but can only perform a single fixed quantum measurement, followed by arbitrary classical postprocessing?

The bias of local measurements

What if we are not allowed to perform an arbitrary measurement, but can only perform a single fixed quantum measurement, followed by arbitrary classical postprocessing?

- Given a POVM $M=\left(M_{i}\right)$, let ρ^{M}, σ^{M} be the probability distributions on measurement outcomes induced by performing M on ρ, σ.
- The optimal bias one can achieve by performing M is then equal to

$$
\|\Delta\|_{M}:=\left\|p \rho^{M}-(1-p) \sigma^{M}\right\|_{1}
$$

The bias of local measurements

What if we are not allowed to perform an arbitrary measurement, but can only perform a single fixed quantum measurement, followed by arbitrary classical postprocessing?

- Given a POVM $M=\left(M_{i}\right)$, let ρ^{M}, σ^{M} be the probability distributions on measurement outcomes induced by performing M on ρ, σ.
- The optimal bias one can achieve by performing M is then equal to

$$
\begin{aligned}
\|\Delta\|_{M} & :=\left\|p \rho^{M}-(1-p) \sigma^{M}\right\|_{1} \\
& =\sum_{i}\left|p \operatorname{tr} M_{i} \rho-(1-p) \operatorname{tr} M_{i} \sigma\right|
\end{aligned}
$$

The bias of local measurements

What if we are not allowed to perform an arbitrary measurement, but can only perform a single fixed quantum measurement, followed by arbitrary classical postprocessing?

- Given a POVM $M=\left(M_{i}\right)$, let ρ^{M}, σ^{M} be the probability distributions on measurement outcomes induced by performing M on ρ, σ.
- The optimal bias one can achieve by performing M is then equal to

$$
\begin{aligned}
\|\Delta\|_{M} & :=\left\|p \rho^{M}-(1-p) \sigma^{M}\right\|_{1} \\
& =\sum_{i}\left|p \operatorname{tr} M_{i} \rho-(1-p) \operatorname{tr} M_{i} \sigma\right| \\
& =\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|
\end{aligned}
$$

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto|\psi\rangle\langle\psi|$ for every n-dimensional pure state $|\psi\rangle$, normalised such that $\int d \psi M_{\psi}=I$.

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto|\psi\rangle\langle\psi|$ for every n-dimensional pure state $|\psi\rangle$, normalised such that $\int d \psi M_{\psi}=I$.
- We can't actually perform this physically, but can approximate it using t-designs.

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto|\psi\rangle\langle\psi|$ for every n-dimensional pure state $|\psi\rangle$, normalised such that $\int d \psi M_{\psi}=I$.
- We can't actually perform this physically, but can approximate it using t-designs.
- A rank-one POVM $M=\left(M_{i}\right)$ in n dimensions is called a t-design if

$$
\sum_{i} p_{i} P_{i}^{\otimes t}=\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes t}\right.
$$

where $p_{i}=\frac{1}{n} \operatorname{tr} M_{i}$ and $P_{i}=\frac{1}{\operatorname{tr} M_{i}} M_{i}$.

The uniform POVM

One particularly natural (and optimal!) fixed measurement is the uniform POVM in n dimensions.

- This is a continuous POVM with a measurement operator $M_{\psi} \propto|\psi\rangle\langle\psi|$ for every n-dimensional pure state $|\psi\rangle$, normalised such that $\int d \psi M_{\psi}=I$.
- We can't actually perform this physically, but can approximate it using t-designs.
- A rank-one POVM $M=\left(M_{i}\right)$ in n dimensions is called a t-design if

$$
\sum_{i} p_{i} P_{i}^{\otimes t}=\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes t}\right.
$$

where $p_{i}=\frac{1}{n} \operatorname{tr} M_{i}$ and $P_{i}=\frac{1}{\operatorname{tr} M_{i}} M_{i}$.

- As t increases, t-designs become better and better approximations to the uniform POVM.

The bias of 4-design measurements

Theorem [Ambainis and Emerson '07], [Matthews, Wehner and Winter '09]
Let M be a 4 -design and set $\Delta=(\rho-\sigma) / 2$. Then

$$
\|\Delta\|_{M} \geqslant C \sqrt{\operatorname{tr} \Delta^{2}}
$$

for some universal constant $C>0$.

The bias of 4-design measurements

Theorem [Ambainis and Emerson '07], [Matthews, Wehner and Winter '09]
Let M be a 4-design and set $\Delta=(\rho-\sigma) / 2$. Then

$$
\|\Delta\|_{M} \geqslant C \sqrt{\operatorname{tr} \Delta^{2}}
$$

for some universal constant $C>0$.

One can generalise this to a setting where locality comes into play by making M into a tensor product of 4-designs. That is:

- Each operator is of the form $M_{i_{1}, \ldots, i_{k}}=M_{i_{1}} \otimes M_{i_{2}} \otimes \ldots M_{i_{k}}$.
- Each individual measurement $\left(M_{j}\right)$ is a 4-design.

This is interesting because it allows us to explore the power of local vs. global measurements.

Local 4-designs

Theorem [Lancien and Winter '12]
Let M be a k-partite measurement which is a product of local 4 -designs and set $\Delta=p \rho-(1-p) \sigma$. Then

$$
\|\Delta\|_{M} \geqslant D^{k}\left(\sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right]\right)^{1 / 2}
$$

for some universal constant $D>0$.

- Previously known for $k=2$ [Matthews, Wehner and Winter '09].

Local 4-designs

Theorem [Lancien and Winter '12]
Let M be a k-partite measurement which is a product of local 4 -designs and set $\Delta=p \rho-(1-p) \sigma$. Then

$$
\|\Delta\|_{M} \geqslant D^{k}\left(\sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right]\right)^{1 / 2}
$$

for some universal constant $D>0$.

- Previously known for $k=2$ [Matthews, Wehner and Winter '09].

We give a new proof using hypercontractivity.

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\|\Delta\|_{M}=\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|
$$

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\|\Delta\|_{M}=\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|=n \sum_{i} p_{i}\left|\operatorname{tr} P_{i} \Delta\right|
$$

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\|\Delta\|_{M}=\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|=n \sum_{i} p_{i}\left|\operatorname{tr} P_{i} \Delta\right| \geqslant n \frac{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{2}\right)^{3 / 2}}{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{4}\right)^{1 / 2}}
$$

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\begin{aligned}
\|\Delta\|_{M} & =\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|=n \sum_{i} p_{i}\left|\operatorname{tr} P_{i} \Delta\right| \geqslant n \frac{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{2}\right)^{3 / 2}}{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{4}\right)^{1 / 2}} \\
& =n \frac{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3 / 2}}{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1 / 2}} .
\end{aligned}
$$

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\begin{aligned}
\|\Delta\|_{M} & =\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|=n \sum_{i} p_{i}\left|\operatorname{tr} P_{i} \Delta\right| \geqslant n \frac{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{2}\right)^{3 / 2}}{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{4}\right)^{1 / 2}} \\
& =n \frac{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3 / 2}}{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1 / 2}} .
\end{aligned}
$$

As M is a 4-design,

$$
\|\Delta\|_{M} \geqslant n \frac{\left(\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3 / 2}\right.}{\left(\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1 / 2}\right.}=n \frac{\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{3 / 2}}{\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{4} d \psi\right)^{1 / 2}}
$$

The $k=1$ case

We use the "fourth moment method" [Littlewood '30] [Berger '97]:

$$
\begin{aligned}
\|\Delta\|_{M} & =\sum_{i}\left|\operatorname{tr} M_{i} \Delta\right|=n \sum_{i} p_{i}\left|\operatorname{tr} P_{i} \Delta\right| \geqslant n \frac{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{2}\right)^{3 / 2}}{\left(\sum_{i} p_{i}\left(\operatorname{tr} P_{i} \Delta\right)^{4}\right)^{1 / 2}} \\
& =n \frac{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3 / 2}}{\left(\operatorname{tr}\left(\sum_{i} p_{i} P_{i}^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1 / 2}} .
\end{aligned}
$$

As M is a 4-design,

$$
\|\Delta\|_{M} \geqslant n \frac{\left(\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right) \Delta^{\otimes 2}\right)^{3 / 2}\right.}{\left(\operatorname{tr}\left(\int d \psi|\psi\rangle\left\langle\left.\psi\right|^{\otimes 4}\right) \Delta^{\otimes 4}\right)^{1 / 2}\right.}=n \frac{\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{3 / 2}}{\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{4} d \psi\right)^{1 / 2}}
$$

So, if we can upper bound $\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{4} d \psi$ in terms of $\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi$, this will give a lower bound on $\|\Delta\|_{M}$.

Functions on the sphere

- Let S^{n} be the real n-sphere, i.e. $\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$.

Functions on the sphere

- Let S^{n} be the real n-sphere, i.e. $\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$.
- For $f: S^{n} \rightarrow \mathbb{R}$ define the $L^{p}\left(S^{n}\right)$ norms as

$$
\|f\|_{L^{p}\left(S^{n}\right)}:=\left(\int|f(\xi)|^{p} d \xi\right)^{1 / p}
$$

where we integrate with respect to the uniform measure on S^{n}, normalised so that $\int d \xi=1$.

Functions on the sphere

- Let S^{n} be the real n-sphere, i.e. $\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$.
- For $f: S^{n} \rightarrow \mathbb{R}$ define the $L^{p}\left(S^{n}\right)$ norms as

$$
\|f\|_{L^{p}\left(S^{n}\right)}:=\left(\int|f(\xi)|^{p} d \xi\right)^{1 / p}
$$

where we integrate with respect to the uniform measure on S^{n}, normalised so that $\int d \xi=1$.

- Identify each n-dimensional quantum state $|\psi\rangle$ (element of the unit sphere in \mathbb{C}^{n}) with a real vector $\xi \in S^{2 n-1}$ by taking real and imaginary parts.

Functions on the sphere

- Let S^{n} be the real n-sphere, i.e. $\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$.
- For $f: S^{n} \rightarrow \mathbb{R}$ define the $L^{p}\left(S^{n}\right)$ norms as

$$
\|f\|_{L^{p}\left(S^{n}\right)}:=\left(\int|f(\xi)|^{p} d \xi\right)^{1 / p}
$$

where we integrate with respect to the uniform measure on S^{n}, normalised so that $\int d \xi=1$.

- Identify each n-dimensional quantum state $|\psi\rangle$ (element of the unit sphere in \mathbb{C}^{n}) with a real vector $\xi \in S^{2 n-1}$ by taking real and imaginary parts.
- Now consider the function $f(\xi)=\operatorname{tr} \Delta|\psi\rangle\langle\psi|$.

Functions on the sphere

- Let S^{n} be the real n-sphere, i.e. $\left\{x \in \mathbb{R}^{n+1}: \sum_{i} x_{i}^{2}=1\right\}$.
- For $f: S^{n} \rightarrow \mathbb{R}$ define the $L^{p}\left(S^{n}\right)$ norms as

$$
\|f\|_{L^{p}\left(S^{n}\right)}:=\left(\int|f(\xi)|^{p} d \xi\right)^{1 / p}
$$

where we integrate with respect to the uniform measure on S^{n}, normalised so that $\int d \xi=1$.

- Identify each n-dimensional quantum state $|\psi\rangle$ (element of the unit sphere in \mathbb{C}^{n}) with a real vector $\xi \in S^{2 n-1}$ by taking real and imaginary parts.
- Now consider the function $f(\xi)=\operatorname{tr} \Delta|\psi\rangle\langle\psi|$.
- We want to upper bound $\|f\|_{L^{4}\left(S^{n}\right)}$ in terms of $\|f\|_{L^{2}\left(S^{n}\right)}$.

Hypercontractivity to the rescue?

Claim

f is a degree 2 polynomial in the components of ξ.

Suggests that we could relate $\|f\|_{L^{4}\left(S^{n}\right)}$ to $\|f\|_{L^{2}\left(S^{n}\right)}$ using some form of hypercontractivity...

Hypercontractivity to the rescue?

Claim

f is a degree 2 polynomial in the components of ξ.

Suggests that we could relate $\|f\|_{L^{4}\left(S^{n}\right)}$ to $\|f\|_{L^{2}\left(S^{n}\right)}$ using some form of hypercontractivity...

We need to understand hypercontractivity for functions on the sphere, and some basic ideas from the theory of spherical harmonics.

Spherical harmonics

- The restriction of every degree d polynomial $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ to the sphere S^{n} can be written as

$$
f(x)=\sum_{k=0}^{d} Y_{k}(x)
$$

where $Y_{k}: S^{n} \rightarrow \mathbb{R}$ is called a spherical harmonic, and is the restriction of a degree k polynomial to the sphere, satisfying $\int Y_{j}(\xi) Y_{k}(\xi) d \xi=0$ for $j \neq k$.

Spherical harmonics

- The restriction of every degree d polynomial $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ to the sphere S^{n} can be written as

$$
f(x)=\sum_{k=0}^{d} Y_{k}(x)
$$

where $Y_{k}: S^{n} \rightarrow \mathbb{R}$ is called a spherical harmonic, and is the restriction of a degree k polynomial to the sphere, satisfying $\int Y_{j}(\xi) Y_{k}(\xi) d \xi=0$ for $j \neq k$.

- The Poisson semigroup (which can be thought of as a "noise operator" for the sphere) is defined by

$$
\left(P_{\epsilon} f\right)(x)=\sum_{k} \epsilon^{k} Y_{k}(x)
$$

Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed hypercontractive.

Theorem [Beckner '92]
If $1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$, then

$$
\left\|P_{\epsilon} f\right\|_{L^{q}\left(S^{n}\right)} \leqslant\|f\|_{L^{p}\left(S^{n}\right)} .
$$

Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed hypercontractive.

Theorem [Beckner '92]
If $1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$, then

$$
\left\|P_{\epsilon} f\right\|_{L^{q}\left(S^{n}\right)} \leqslant\|f\|_{L^{p}\left(S^{n}\right)} .
$$

Just as in the setting of the cube $\{ \pm 1\}^{n}$, this implies the following corollary.

Corollary

Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a degree d polynomial. Then, for $q \geqslant 2$,

$$
\|f\|_{L^{q}\left(S^{n}\right)} \leqslant(q-1)^{d / 2}\|f\|_{L^{2}\left(S^{n}\right)} .
$$

Declare victory

Taking $q=4$, we see that

$$
\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{4} d \psi\right)^{1 / 4} \leqslant 3\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{1 / 2}
$$

so we get

$$
\|\Delta\|_{M} \geqslant \frac{n}{9}\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{1 / 2}
$$

the RHS can be explicitly evaluated to give

$$
\|\Delta\|_{M} \geqslant \frac{1}{9(1+1 / n)^{1 / 2}} \sqrt{\operatorname{tr} \Delta^{2}}
$$

Declare victory

Taking $q=4$, we see that

$$
\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{4} d \psi\right)^{1 / 4} \leqslant 3\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{1 / 2}
$$

so we get

$$
\|\Delta\|_{M} \geqslant \frac{n}{9}\left(\int(\operatorname{tr} \Delta|\psi\rangle\langle\psi|)^{2} d \psi\right)^{1 / 2}
$$

the RHS can be explicitly evaluated to give

$$
\|\Delta\|_{M} \geqslant \frac{1}{9(1+1 / n)^{1 / 2}} \sqrt{\operatorname{tr} \Delta^{2}}
$$

So we've solved the case $k=1 \ldots$ what about higher k ?

Arbitrary k

We start the proof in the same way: As M is a tensor product of local 4-designs,

$$
\|\Delta\|_{M} \geqslant n^{k} \frac{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{2}\right)^{3 / 2}}{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{4}\right)^{1 / 2}}
$$

Arbitrary k

We start the proof in the same way: As M is a tensor product of local 4-designs,

$$
\begin{aligned}
\|\Delta\|_{M} & \geqslant n^{k} \frac{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{2}\right)^{3 / 2}}{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{4}\right)^{1 / 2}} \\
& =n^{k} \frac{\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}^{3}}{\|f\|_{L^{4}\left(\left(S^{2 n-1}\right)^{k}\right)}^{2}}
\end{aligned}
$$

where we define the function $f:\left(S^{2 n-1}\right)^{k} \rightarrow \mathbb{R}$ by

$$
f\left(\xi_{1}, \ldots, \xi_{k}\right)=\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)
$$

where $\left|\psi_{i}\right\rangle$ is the n-dimensional complex unit vector whose real and imaginary parts are given by $\xi_{i} \in S^{2 n-1}$ in the obvious way.

Arbitrary k

We start the proof in the same way: As M is a tensor product of local 4-designs,

$$
\begin{aligned}
\|\Delta\|_{M} & \geqslant n^{k} \frac{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{2}\right)^{3 / 2}}{\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left(\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)\right)^{4}\right)^{1 / 2}} \\
& =n^{k} \frac{\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}^{3}}{\|f\|_{L^{4}\left(\left(S^{2 n-1}\right)^{k}\right)}^{2}}
\end{aligned}
$$

where we define the function $f:\left(S^{2 n-1}\right)^{k} \rightarrow \mathbb{R}$ by

$$
f\left(\xi_{1}, \ldots, \xi_{k}\right)=\operatorname{tr} \Delta\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes \cdots \otimes\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right)
$$

where $\left|\psi_{i}\right\rangle$ is the n-dimensional complex unit vector whose real and imaginary parts are given by $\xi_{i} \in S^{2 n-1}$ in the obvious way.
As before, we want to relate $\|f\|_{L^{4}\left(\left(S^{2 n-1}\right)^{k}\right)}$ to $\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}$.

Arbitrary k

Here's where the magic happens: the $L^{p} \rightarrow L^{q}$ norm is multiplicative, so as a corollary of Beckner's result. . .

Corollary

Let $f:\left(S^{n}\right)^{k} \rightarrow \mathbb{R}$. If $1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$, then

$$
\left\|P_{\epsilon}^{\otimes k} f\right\|_{L^{q}\left(\left(S^{n}\right)^{k}\right)} \leqslant\|f\|_{L^{p}\left(\left(S^{n}\right)^{k}\right)}
$$

Arbitrary k

Here's where the magic happens: the $L^{p} \rightarrow L^{q}$ norm is multiplicative, so as a corollary of Beckner's result. . .

Corollary

Let $f:\left(S^{n}\right)^{k} \rightarrow \mathbb{R}$. If $1 \leqslant p \leqslant q \leqslant \infty$ and $\epsilon \leqslant \sqrt{\frac{p-1}{q-1}}$, then

$$
\left\|P_{\epsilon}^{\otimes k} f\right\|_{L^{q}\left(\left(S^{n}\right)^{k}\right)} \leqslant\|f\|_{L^{p}\left(\left(S^{n}\right)^{k}\right)} .
$$

Also, the same corollary goes through!

Corollary

Let $f:\left(\mathbb{R}^{n+1}\right)^{k} \rightarrow \mathbb{R}$ be a degree d polynomial in the components of each $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n+1}$. Then, for any $q \geqslant 2$,

$$
\|f\|_{L^{q}\left(\left(S^{n}\right)^{k}\right)} \leqslant(q-1)^{d k / 2}\|f\|_{L^{2}\left(\left(S^{n}\right)^{k}\right)} .
$$

Completing the proof

We have

$$
\|\Delta\|_{M} \geqslant n^{k} \frac{\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}^{3}}{\|f\|_{L^{4}\left(\left(S^{2 n-1}\right)^{k}\right)}^{2}} \geqslant\left(\frac{n}{9}\right)^{k}\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}
$$

Completing the proof

We have

$$
\|\Delta\|_{M} \geqslant n^{k} \frac{\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}^{3}}{\|f\|_{L^{4}\left(\left(S^{2 n-1}\right)^{k}\right)}^{2}} \geqslant\left(\frac{n}{9}\right)^{k}\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}
$$

All that remains is to explicitly calculate

$$
\begin{aligned}
\|f\|_{L^{2}\left(\left(S^{2 n-1}\right)^{k}\right)}^{2} & =\operatorname{tr}\left(\int \ldots \int d \psi_{1} \ldots d \psi_{k}\left|\psi_{1}\right\rangle\left\langle\left.\psi_{1}\right|^{\otimes 2} \otimes \cdots \otimes \mid \psi_{k}\right\rangle\left\langle\left.\psi_{k}\right|^{\otimes 2}\right) \Delta^{\otimes 2}\right. \\
& =\operatorname{tr}\left(\frac{I+F}{n(n+1)}\right)^{\otimes k} \Delta^{\otimes 2} \\
& =\frac{1}{n^{k}(n+1)^{k}} \sum_{S \subseteq[k]} \operatorname{tr}\left[\left(\operatorname{tr}_{S} \Delta\right)^{2}\right] .
\end{aligned}
$$

Comparison to previous work

The approach of [Lancien and Winter '12] has definite advantages:

- Better constants
- Based only on clever use of "elementary" techniques (e.g. Cauchy-Schwarz)
- More "concrete".

Comparison to previous work

The approach of [Lancien and Winter '12] has definite advantages:

- Better constants
- Based only on clever use of "elementary" techniques (e.g. Cauchy-Schwarz)
- More "concrete".

But the hypercontractive approach has good points too:

- Extension to arbitrary k is essentially immediate
- Can be extended to t-designs for $t>4$ with little effort
- Gives an intuitive explanation of the exponential prefactor
- More "natural" (if one already knows hypercontractivity!)

Summary

- Hypercontractive inequalities seem to be a powerful tool for proving results in quantum information theory.
- The proofs given here were of previously known results: in both cases the results appear somewhat less technical, at the expense of being less concrete (and giving worse constants).

Open problems:

- Prove the Aaronson-Ambainis conjecture (using hypercontractivity!).
- Explore connections between the results of [Lancien and Winter '12] and testing product states.

Summary

- Hypercontractive inequalities seem to be a powerful tool for proving results in quantum information theory.
- The proofs given here were of previously known results: in both cases the results appear somewhat less technical, at the expense of being less concrete (and giving worse constants).

Open problems:

- Prove the Aaronson-Ambainis conjecture (using hypercontractivity!).
- Explore connections between the results of [Lancien and Winter '12] and testing product states.

Thanks!

