Injective tensor norms and open problems in quantum information

Ashley Montanaro

Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

$$
\text { January 19, } 2012
$$

EPSRC
Engineering and Physical Sciences
Research Council

Introduction

This talk is about how several interesting open problems in quantum information can be phrased in terms of injective tensor norms:

- Finding the pure quantum state which is most entangled with respect to the geometric measure of entanglement;
- Determining whether multiple-prover quantum Merlin-Arthur games obey a parallel repetition theorem;
- Deciding whether quantum query algorithms can be simulated by classical query algorithms on most inputs.

Injective tensor norms

For me ...

- a n-index tensor T is a multidimensional $\overbrace{d \times d \times \cdots \times d}^{n}$ array of (usually complex) numbers.

Injective tensor norms

For me ...

- a n-index tensor T is a multidimensional $\overbrace{d \times d \times \cdots \times d}^{n}$ array of (usually complex) numbers.
- a tensor is identified with a multilinear form

$$
f_{T}:\left(\mathbb{C}^{d}\right)^{n} \rightarrow \mathbb{C} \text { by }
$$

$$
f_{T}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)=T_{x_{1}, \ldots, x_{n}},
$$

where $e^{x_{1}}, \ldots, e^{x_{n}}$ are vectors in the standard basis.

Injective tensor norms

For me ...

- a n-index tensor T is a multidimensional $\overbrace{d \times d \times \cdots \times d}^{n}$ array of (usually complex) numbers.
- a tensor is identified with a multilinear form

$$
f_{T}:\left(\mathbb{C}^{d}\right)^{n} \rightarrow \mathbb{C} \text { by }
$$

$$
f_{T}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)=T_{x_{1}, \ldots, x_{n}},
$$

where $e^{x_{1}}, \ldots, e^{x_{n}}$ are vectors in the standard basis.

- the injective tensor norm $\|T\|_{p}^{\text {inj }}$ is defined as

$$
\|T\|_{p}^{\text {inj }}:=\max \left\{\left|f_{T}\left(v_{1}, \ldots, v_{n}\right)\right|,\left\|v_{i}\right\|_{p} \leqslant 1, i=1, \ldots, n\right\}
$$

Injective tensor norms

For me ...

- a n-index tensor T is a multidimensional $\overbrace{d \times d \times \cdots \times d}$ array of (usually complex) numbers.
- a tensor is identified with a multilinear form

$$
f_{T}:\left(\mathbb{C}^{d}\right)^{n} \rightarrow \mathbb{C} \text { by }
$$

$$
f_{T}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)=T_{x_{1}, \ldots, x_{n}},
$$

where $e^{x_{1}}, \ldots, e^{x_{n}}$ are vectors in the standard basis.

- the injective tensor norm $\|T\|_{p}^{\text {inj }}$ is defined as

$$
\begin{aligned}
\|T\|_{p}^{\mathrm{inj}} & :=\max \left\{\left|f_{T}\left(v_{1}, \ldots, v_{n}\right)\right|,\left\|v_{i}\right\|_{p} \leqslant 1, i=1, \ldots, n\right\} \\
& =\max \left\{\left|\sum_{i_{1}, \ldots, i_{n}=1}^{d} T_{i_{1}, \ldots, i_{n}} \alpha_{i_{1}}^{1} \ldots \alpha_{i_{n}}^{n}\right|, \sum_{j=1}^{d}\left|\alpha_{j}^{i}\right|^{p} \leqslant 1\right\}
\end{aligned}
$$

Injective tensor norms

Examples:

- If T is a 0-index tensor (i.e. a scalar), $\|T\|_{p}^{\text {inj }}=|T|$.

Injective tensor norms

Examples:

- If T is a 0 -index tensor (i.e. a scalar), $\|T\|_{p}^{\text {inj }}=|T|$.
- If T is a 1-index tensor (i.e. a vector),

$$
\|T\|_{p}^{\mathrm{inj}}=\|T\|_{p^{\prime}}
$$

where p^{\prime} is dual to p, i.e. $1 / p+1 / p^{\prime}=1$.

Injective tensor norms

Examples:

- If T is a 0 -index tensor (i.e. a scalar), $\|T\|_{p}^{\text {inj }}=|T|$.
- If T is a 1-index tensor (i.e. a vector),

$$
\|T\|_{p}^{\mathrm{inj}}=\|T\|_{p^{\prime}}
$$

where p^{\prime} is dual to p, i.e. $1 / p+1 / p^{\prime}=1$.

- If T is a 2 -index tensor (i.e. a matrix),

$$
\|T\|_{p}^{\text {inj }}=\|T\|_{p \rightarrow p^{\prime}}
$$

where for any matrix M

$$
\|M\|_{p \rightarrow q}:=\max _{v,\|v\|_{p}=1}\|M v\|_{q}
$$

When $p=2$ this is the operator norm $\|T\|_{\text {op }}$, i.e. the largest singular value of T.

The geometric measure of entanglement

Let $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ be a pure quantum state of n d-dimensional systems.

- $|\psi\rangle$ is said to be product if

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle=\left|\psi_{1}, \ldots, \psi_{n}\right\rangle .
$$

The geometric measure of entanglement

Let $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ be a pure quantum state of n d-dimensional systems.

- $|\psi\rangle$ is said to be product if

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle=\left|\psi_{1}, \ldots, \psi_{n}\right\rangle .
$$

- The geometric measure of entanglement is defined as

$$
E_{\text {geom }}(|\psi\rangle):=-\log _{2} \max _{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n}\right\rangle \in B\left(\mathbb{C}^{d}\right)}\left|\left\langle\psi \mid \phi_{1}, \ldots, \phi_{n}\right\rangle\right|^{2} .
$$

The geometric measure of entanglement

Let $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ be a pure quantum state of n d-dimensional systems.

- $|\psi\rangle$ is said to be product if

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle=\left|\psi_{1}, \ldots, \psi_{n}\right\rangle .
$$

- The geometric measure of entanglement is defined as

$$
E_{\text {geom }}(|\psi\rangle):=-\log _{2} \max _{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n}\right\rangle \in B\left(\mathbb{C}^{d}\right)}\left|\left\langle\psi \mid \phi_{1}, \ldots, \phi_{n}\right\rangle\right|^{2} .
$$

- If we think of $|\psi\rangle$ as an n-index tensor ψ, where $\psi_{i_{1}, \ldots, i_{n}}=\left\langle\psi \mid i_{1}, \ldots, i_{n}\right\rangle$,

$$
E_{\text {geom }}(|\psi\rangle)=-2 \log _{2}\|\psi\|_{2}^{\mathrm{inj}}
$$

The geometric measure of entanglement

Let $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ be a pure quantum state of n d-dimensional systems.

- $|\psi\rangle$ is said to be product if

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle=\left|\psi_{1}, \ldots, \psi_{n}\right\rangle .
$$

- The geometric measure of entanglement is defined as

$$
E_{\text {geom }}(|\psi\rangle):=-\log _{2} \max _{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n}\right\rangle \in B\left(\mathbb{C}^{d}\right)}\left|\left\langle\psi \mid \phi_{1}, \ldots, \phi_{n}\right\rangle\right|^{2} .
$$

- If we think of $|\psi\rangle$ as an n-index tensor ψ, where $\psi_{i_{1}, \ldots, i_{n}}=\left\langle\psi \mid i_{1}, \ldots, i_{n}\right\rangle$,

$$
E_{\text {geom }}(|\psi\rangle)=-2 \log _{2}\|\psi\|_{2}^{\text {inj }}
$$

- Observe that trivially $0 \leqslant E_{\text {geom }}(|\psi\rangle) \leqslant n \log _{2} d$, by writing $|\psi\rangle$ in an arbitrary product basis.

The geometric measure of entanglement

Open problem 1
What is

$$
\max _{|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)} E_{\text {geom }}(|\psi\rangle) ?
$$

The geometric measure of entanglement

Open problem 1
What is

$$
\max _{|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)} E_{\text {geom }}(|\psi\rangle) ?
$$

- In other words, what is $\min _{T}\|T\|_{2}^{\text {inj }}$, given that $\sum_{i_{1}, \ldots, i_{n}}\left|T_{i_{1}, \ldots, i_{n}}\right|^{2}=1$?

The geometric measure of entanglement

Open problem 1
What is

$$
\max _{|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)} E_{\text {geom }}(|\psi\rangle) ?
$$

- In other words, what is $\min _{T}\|T\|_{2}^{\text {inj }}$, given that $\sum_{i_{1}, \ldots, i_{n}}\left|T_{i_{1}, \ldots, i_{n}}\right|^{2}=1$?
- As far as I know, still open for $d=2$ (qubits)!

The geometric measure of entanglement

Open problem 1

What is

$$
\max _{|\psi\rangle \in B\left(\mid \mathbb{C}^{d}\right)^{\otimes n)}} E_{\text {geom }}(|\psi\rangle) ?
$$

- In other words, what is $\min _{T}\|T\|_{2}^{\text {inj }}$, given that $\sum_{i_{1}, \ldots, i_{n}}\left|T_{i_{1}, \ldots, i_{n}}\right|^{2}=1$?
- As far as I know, still open for $d=2$ (qubits)!
- Application: Can be used to replace finding the ground-state energy of a local Hamiltonian (a QMA-hard problem) with an optimisation over product states (in the complexity class NP) [Gharibian and Kempe '11].

The geometric measure of entanglement

Open problem 1

What is

$$
\max _{|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)} E_{\text {geom }}(|\psi\rangle) ?
$$

- In other words, what is $\min _{T}\|T\|_{2}^{\text {inj }}$, given that $\sum_{i_{1}, \ldots, i_{n}}\left|T_{i_{1}, \ldots, i_{n}}\right|^{2}=1$?
- As far as I know, still open for $d=2$ (qubits)!
- Application: Can be used to replace finding the ground-state energy of a local Hamiltonian (a QMA-hard problem) with an optimisation over product states (in the complexity class NP) [Gharibian and Kempe '11].
- But a very natural question in its own right! "What is the most entangled quantum state?"

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right), E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2} d$, which is achieved by

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle .
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right), E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2} d$, which is achieved by

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle .
$$

Proof:

$$
E_{\text {geom }}(|\psi\rangle)=-2 \log _{2}\|\psi\|_{2}^{\text {inj }}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right), E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2} d$, which is achieved by

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle .
$$

Proof:

$$
\begin{aligned}
E_{\text {geom }}(|\psi\rangle) & =-2 \log _{2}\|\psi\|_{2}^{\text {inj }} \\
& =\log _{2}\left(1 /\|\psi\|_{\text {op }}^{2}\right)
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right), E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2} d$, which is achieved by

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle .
$$

Proof:

$$
\begin{aligned}
E_{\text {geom }}(|\psi\rangle) & =-2 \log _{2}\|\psi\|_{2}^{\text {inj }} \\
& =\log _{2}\left(1 /\|\psi\|_{\text {op }}^{2}\right) \\
& \leqslant \log _{2}\left(d /\|\psi\|_{2}^{2}\right)
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right), E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2} d$, which is achieved by

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle .
$$

Proof:

$$
\begin{aligned}
E_{\text {geom }}(|\psi\rangle) & =-2 \log _{2}\|\psi\|_{2}^{\text {inj }} \\
& =\log _{2}\left(1 /\|\psi\|_{\mathrm{op}}^{2}\right) \\
& \leqslant \log _{2}\left(d /\|\psi\|_{2}^{2}\right) \\
& =\log _{2} d .
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.
Comments on this result:

- Has been rediscovered independently several times in the quantum information literature, e.g. [Jung et al '08], [Gharibian and Kempe '11], . . .

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.
Comments on this result:

- Has been rediscovered independently several times in the quantum information literature, e.g. [Jung et al '08], [Gharibian and Kempe '11], . . .
- [Jung et al '08] show that this cannot be tight for $n>2$.

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$, $E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.
Comments on this result:

- Has been rediscovered independently several times in the quantum information literature, e.g. [Jung et al '08], [Gharibian and Kempe '11], . . .
- [Jung et al "08] show that this cannot be tight for $n>2$.
- For any symmetric state $|\psi\rangle$, the (often much tighter) bound

$$
E_{\text {geom }}(|\psi\rangle) \leqslant \log _{2}\binom{n+d-1}{d-1}=O(d(\log n+\log d))
$$

holds (e.g. see [Aulbach '11]).

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

$$
\left(\|\psi\|_{2}^{\text {inj }}\right)^{2}=\max _{\phi^{1}, \ldots, \phi^{n}}\left|\sum_{i_{1}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{1}}^{1} \ldots \phi_{i_{n}}^{n}\right|^{2}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

$$
\begin{aligned}
\left(\|\psi\|_{2}^{\operatorname{inj}}\right)^{2} & =\max _{\phi^{1}, \ldots, \phi^{n}}\left|\sum_{i_{1}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{1}}^{1} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& =\max _{\phi^{2}, \ldots, \phi^{n}} \sum_{i_{1}=1}^{d}\left|\sum_{i_{2}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{2}}^{2} \ldots \phi_{i_{n}}^{n}\right|^{2}
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

$$
\begin{aligned}
\left(\|\psi\|_{2}^{\mathrm{nj}}\right)^{2} & =\max _{\phi^{1}, \ldots, \phi^{n}}\left|\sum_{i_{1}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{1}}^{1} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& =\max _{\phi^{2}, \ldots, \phi^{n}} \sum_{i_{1}=1}^{d}\left|\sum_{i_{2}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{2}}^{2} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& \geqslant \sum_{i_{1}=1}^{d} \mathbb{E}_{\phi^{2}, \ldots, \phi^{n}}\left|\sum_{i_{2}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{2}}^{2} \ldots \phi_{i_{n}}^{n}\right|^{2}
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

For any $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right), E_{\text {geom }}(|\psi\rangle) \leqslant(n-1) \log _{2} d$.
Equivalently, $\left(\|\psi\|_{2}^{\text {inj }}\right)^{2} \geqslant d^{1-n}$.

$$
\begin{aligned}
\left(\|\Psi\|_{2}^{\text {inj }}\right)^{2} & =\max _{\phi^{1}, \ldots, \phi^{n}}\left|\sum_{i_{1}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{1}}^{1} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& =\max _{\phi^{2}, \ldots, \Phi^{n}} \sum_{i_{1}=1}^{d}\left|\sum_{i_{2}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{2}}^{2} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& \geqslant \sum_{i_{1}=1}^{d} \mathbb{E}_{\phi^{2}, \ldots, \phi^{n}}\left|\sum_{i_{2}, \ldots, i_{n}=1}^{d} \psi_{i_{1}, \ldots, i_{n}} \phi_{i_{2}}^{2} \ldots \phi_{i_{n}}^{n}\right|^{2} \\
& =\frac{1}{d^{n-1}} \sum_{i_{1}=1}^{d} \sum_{i_{2}, \ldots, i_{n}=1}^{d}\left|\psi_{i_{1}, \ldots, i_{n}}\right|^{2}=\frac{1}{d^{n-1}} .
\end{aligned}
$$

Some (easy and well-known) partial results

Proposition

Pick $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ at random (according to Haar measure). Then with high probability

$$
E_{\text {geom }}(|\psi\rangle) \geqslant\left(n-\log _{2} n\right) \log _{2} d-\log _{2}(9 / 2)
$$

Some (easy and well-known) partial results

Proposition

Pick $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ at random (according to Haar measure). Then with high probability

$$
E_{\text {geom }}(|\psi\rangle) \geqslant\left(n-\log _{2} n\right) \log _{2} d-\log _{2}(9 / 2)
$$

- So random quantum states have geometric measure which is close to maximal.

Some (easy and well-known) partial results

Proposition

Pick $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ at random (according to Haar measure). Then with high probability

$$
E_{\text {geom }}(|\psi\rangle) \geqslant\left(n-\log _{2} n\right) \log _{2} d-\log _{2}(9 / 2)
$$

- So random quantum states have geometric measure which is close to maximal.
- In the quantum information literature, originally proven for $d=2$ by [Gross, Flammia, Eisert '08], and extended to general d by [Zhu, Chen, Hayashi '10].

Some (easy and well-known) partial results

Proposition

Pick $|\psi\rangle \in B\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ at random (according to Haar measure). Then with high probability

$$
E_{\text {geom }}(|\psi\rangle) \geqslant\left(n-\log _{2} n\right) \log _{2} d-\log _{2}(9 / 2)
$$

- So random quantum states have geometric measure which is close to maximal.
- In the quantum information literature, originally proven for $d=2$ by [Gross, Flammia, Eisert '08], and extended to general d by [Zhu, Chen, Hayashi '10].
- No known candidate for an explicit quantum state which beats this bound!

From injective tensor norms to quantum Merlin-Arthur games

- A separable state $\rho \in \mathrm{SEP} \subset \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is a state of the form

$$
\rho=\sum_{i} p_{i} \rho_{i} \otimes \sigma_{i}
$$

where ρ_{i}, σ_{i} are quantum states (density matrices).

From injective tensor norms to quantum Merlin-Arthur games

- A separable state $\rho \in \operatorname{SEP} \subset \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is a state of the form

$$
\rho=\sum_{i} p_{i} \rho_{i} \otimes \sigma_{i},
$$

where ρ_{i}, σ_{i} are quantum states (density matrices).

- Define the support function of the separable states,

$$
\begin{aligned}
h_{\mathrm{SEP}}(M) & :=\max _{\rho \in \mathrm{SEP}} \operatorname{tr} M \rho \\
& =\max _{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle \in B\left(\mathbb{C}^{d}\right)}\left\langle\phi_{1}\right|\left\langle\phi_{2}\right| M\left|\phi_{1}\right\rangle\left|\phi_{2}\right\rangle
\end{aligned}
$$

From injective tensor norms to quantum Merlin-Arthur games

- A separable state $\rho \in \operatorname{SEP} \subset \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is a state of the form

$$
\rho=\sum_{i} p_{i} \rho_{i} \otimes \sigma_{i},
$$

where ρ_{i}, σ_{i} are quantum states (density matrices).

- Define the support function of the separable states,

$$
\begin{aligned}
h_{\mathrm{SEP}}(M) & :=\max _{\rho \in \mathrm{SEP}} \operatorname{tr} M \rho \\
& =\max _{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle \in B\left(\mathbb{C}^{d}\right)}\left\langle\phi_{1}\right|\left\langle\phi_{2}\right| M\left|\phi_{1}\right\rangle\left|\phi_{2}\right\rangle
\end{aligned}
$$

- It turns out that $h_{\text {SEP }}$ can be expressed in terms of injective tensor norms.

$h_{\text {SEP }}$ and injective tensor norms

Let $T_{i, j, k}$ be an arbitrary 3-index tensor. Then

$$
\left(\|T\|_{2}^{\text {inj }}\right)^{2}=\max _{x, y, z \in B\left(\mathbb{C}^{d}\right)}\left|\sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j} z_{k}\right|^{2}
$$

$h_{\text {SEP }}$ and injective tensor norms

Let $T_{i, j, k}$ be an arbitrary 3-index tensor. Then

$$
\begin{aligned}
\left(\|T\|_{2}^{\text {inj }}\right)^{2} & =\max _{x, y, z \in B\left(\mathbb{C}^{d}\right)}\left|\sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j} z_{k}\right|^{2} \\
& =\max _{x, y \in B\left(\mathbb{C}^{d}\right)} \| \sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j}|k\rangle \|_{2}^{2}
\end{aligned}
$$

$h_{\text {SEP }}$ and injective tensor norms

Let $T_{i, j, k}$ be an arbitrary 3-index tensor. Then

$$
\begin{aligned}
\left(\|T\|_{2}^{\text {inj }}\right)^{2} & =\max _{x, y, z \in B\left(\mathbb{C}^{d}\right)}\left|\sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j} z_{k}\right|^{2} \\
& =\max _{x, y \in B\left(\mathbb{C}^{d}\right)} \| \sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j}|k\rangle \|_{2}^{2} \\
& =\max _{x, y \in B\left(\mathbb{C}^{d}\right)} \sum_{i, j, i^{\prime}, j^{\prime}, k=1}^{d} T_{i, j, k} T_{i^{\prime}, j^{\prime}, k}^{*} x_{i} y_{j} x_{i^{\prime}, y_{j^{\prime}}^{*}}^{*}
\end{aligned}
$$

$h_{\text {SEP }}$ and injective tensor norms

Let $T_{i, j, k}$ be an arbitrary 3-index tensor. Then

$$
\begin{aligned}
\left(\|T\|_{2}^{\text {inj }}\right)^{2} & =\max _{x, y, z \in B\left(\mathbb{C}^{d}\right)}\left|\sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j} z_{k}\right|^{2} \\
& =\max _{x, y \in B\left(\mathbb{C}^{d}\right)} \| \sum_{i, j, k=1}^{d} T_{i, j, k} x_{i} y_{j}|k\rangle \|_{2}^{2} \\
& =\max _{x, y \in B\left(\mathbb{C}^{d}\right)} \sum_{i, j, i^{\prime}, j^{\prime}, k=1}^{d} T_{i, j, k} T_{i^{\prime}, j^{\prime}, k}^{*} x_{i} y_{j} x_{i^{\prime}}^{*} y_{j^{\prime}}^{*} \\
& =h_{\operatorname{SEP}}\left(\sum_{i, j, i^{\prime}, j^{\prime}, k=1}^{d} T_{i, j, k} T_{i^{\prime}, j^{\prime}, k}^{*}|i\rangle\left\langle i^{\prime}\right| \otimes|j\rangle\left\langle j^{\prime}\right|\right) .
\end{aligned}
$$

Quantum Merlin-Arthur games

The complexity class QMA is the quantum analogue of NP.

Quantum Merlin-Arthur games

The complexity class QMA is the quantum analogue of NP.

- Arthur has some decision problem of size n to solve, and Merlin wants to convince him that the answer is "yes".

Quantum Merlin-Arthur games

The complexity class QMA is the quantum analogue of NP.

- Arthur has some decision problem of size n to solve, and Merlin wants to convince him that the answer is "yes".
- Merlin sends him a quantum state $|\psi\rangle$ of $\operatorname{poly}(n)$ qubits. Arthur runs some polynomial-time quantum algorithm \mathcal{A} on $|\psi\rangle$ and his input and outputs "yes" if the algorithm says "accept".

Quantum Merlin-Arthur games

QMA(2) is a variant where Arthur has access to two unentangled Merlins.

Quantum Merlin-Arthur games

QMA(2) is a variant where Arthur has access to two unentangled Merlins.

Quantum Merlin-Arthur games

QMA(2) is a variant where Arthur has access to two unentangled Merlins.

- This might be more powerful than QMA because the lack of entanglement helps Arthur tell when the Merlins are cheating.

Quantum Merlin-Arthur games

QMA(2) is a variant where Arthur has access to two unentangled Merlins.

- This might be more powerful than QMA because the lack of entanglement helps Arthur tell when the Merlins are cheating.
- For example, 3-SAT on n clauses can be solved by a QMA(2) protocol with constant probability of error using proofs of length $O(\sqrt{n}$ polylog $(n))$ qubits [Harrow and AM '10].

QMA(2) and $h_{\text {SEP }}$

Fact

For a given "no" problem instance, let Arthur's measurement operator corresponding to a "yes" outcome be M. Then the maximal probability with which the Merlins can force Arthur to incorrectly output "yes" is precisely $h_{\text {SEP }}(M)$.

QMA(2) and $h_{\text {SEP }}$

Fact

For a given "no" problem instance, let Arthur's measurement operator corresponding to a "yes" outcome be M. Then the maximal probability with which the Merlins can force Arthur to incorrectly output "yes" is precisely $h_{\text {SEP }}(M)$.

- Via the connection to 3-SAT, implies computational hardness of approximating $h_{\text {SEP }}(M)$.
- Unless there exists a subexponential-time algorithm for 3-SAT, there is no polynomial-time algorithm for estimating $h_{\mathrm{SEP}}(M)$ up to an additive constant.

Multiplicativity of $h_{\text {SEP }}$

Open problem 2

Is $h_{\text {SEP }}$ weakly multiplicative? i.e. does it hold that, for all M,

$$
h_{\mathrm{SEP}}\left(M^{\otimes n}\right) \leqslant h_{\mathrm{SEP}}(M)^{\alpha n}
$$

for some $0<\alpha<1$?

Multiplicativity of $h_{\text {SEP }}$

Open problem 2

Is $h_{\text {SEP }}$ weakly multiplicative? i.e. does it hold that, for all M,

$$
h_{\mathrm{SEP}}\left(M^{\otimes n}\right) \leqslant h_{\mathrm{SEP}}(M)^{\alpha n}
$$

for some $0<\alpha<1$?

- If true, this would imply that QMA(2) protocols obey a form of parallel repetition: to achieve exponentially small failure probability, Arthur can simply repeat the protocol n times in parallel.

Multiplicativity of $h_{\text {SEP }}$

Open problem 2

Is $h_{\text {SEP }}$ weakly multiplicative? i.e. does it hold that, for all M,

$$
h_{\mathrm{SEP}}\left(M^{\otimes n}\right) \leqslant h_{\mathrm{SEP}}(M)^{\alpha n}
$$

for some $0<\alpha<1$?

- If true, this would imply that QMA(2) protocols obey a form of parallel repetition: to achieve exponentially small failure probability, Arthur can simply repeat the protocol n times in parallel.
- There are also connections to many other open additivity/multiplicativity problems in quantum information theory via a link to maximum output p-norms of quantum channels.

Some known partial results

Theorem [Werner and Holevo '02], [Grudka et al '09]
There exists M such that

$$
h_{\mathrm{SEP}}\left(M^{\otimes 2}\right)=h_{\mathrm{SEP}}(M)(1-o(1)) .
$$

Some known partial results

Theorem [Werner and Holevo '02], [Grudka et al '09]

There exists M such that

$$
h_{\mathrm{SEP}}\left(M^{\otimes 2}\right)=h_{\mathrm{SEP}}(M)(1-o(1))
$$

- One can take M to be the projector onto the antisymmetric subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, or alternatively a random subspace of $\mathbb{R}^{d} \otimes \mathbb{R}^{d}$.

Some known partial results

Theorem [Werner and Holevo '02], [Grudka et al '09]

There exists M such that

$$
h_{\mathrm{SEP}}\left(M^{\otimes 2}\right)=h_{\mathrm{SEP}}(M)(1-o(1))
$$

- One can take M to be the projector onto the antisymmetric subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, or alternatively a random subspace of $\mathbb{R}^{d} \otimes \mathbb{R}^{d}$.
- This result implies that strict parallel repetition does not hold for QMA(2) protocols.

Some known partial results

Theorem [Werner and Holevo '02], [Grudka et al '09]

There exists M such that

$$
h_{\mathrm{SEP}}\left(M^{\otimes 2}\right)=h_{\mathrm{SEP}}(M)(1-o(1))
$$

- One can take M to be the projector onto the antisymmetric subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, or alternatively a random subspace of $\mathbb{R}^{d} \otimes \mathbb{R}^{d}$.
- This result implies that strict parallel repetition does not hold for QMA(2) protocols.
- Connected to the failure of the famous additivity conjecture for Holevo capacity of quantum channels [Hastings '09].

Some known partial results

Theorem [AM '11]

Pick the subspace onto which M projects at random (according to Haar measure) from the set of all dimension r subspaces of $\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$. Then the probability that $h_{\mathrm{SEP}}(M)$ is not weakly multiplicative with exponent $1 / 2-o(1)$ is exponentially small in $\min \left\{r, d_{A}, d_{B}\right\}$.

Some known partial results

Theorem [AM '11]

Pick the subspace onto which M projects at random (according to Haar measure) from the set of all dimension r subspaces of $\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$. Then the probability that $h_{\text {SEP }}(M)$ is not weakly multiplicative with exponent $1 / 2-o(1)$ is exponentially small in $\min \left\{r, d_{A}, d_{B}\right\}$.

Note: The above result holds with the following (fairly weak) restrictions on r, d_{A}, d_{B} :

- $r=o\left(d_{A} d_{B}\right)$.
- $\min \left\{r, d_{A}, d_{B}\right\} \geqslant 2\left(\log _{2} \max \left\{d_{A}, d_{B}\right\}\right)^{3 / 2}$.

Some known partial results

Theorem [AM '11]

Pick the subspace onto which M projects at random (according to Haar measure) from the set of all dimension r subspaces of $\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$. Then the probability that $h_{\text {SEP }}(M)$ is not weakly multiplicative with exponent $1 / 2-o(1)$ is exponentially small in $\min \left\{r, d_{A}, d_{B}\right\}$.

Note: The above result holds with the following (fairly weak) restrictions on r, d_{A}, d_{B} :

- $r=o\left(d_{A} d_{B}\right)$.
- $\min \left\{r, d_{A}, d_{B}\right\} \geqslant 2\left(\log _{2} \max \left\{d_{A}, d_{B}\right\}\right)^{3 / 2}$.

The proof uses ideas from random matrix theory.

Simulation of quantum query algorithms

- In the model of quantum query complexity, we want to compute some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using the minimum number of queries to the input.

Simulation of quantum query algorithms

- In the model of quantum query complexity, we want to compute some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using the minimum number of queries to the input.
- Let $x \in\{0,1\}^{n}$ be an n-bit string and imagine we can query bits of x at unit cost. We want to compute $f(x)$.

Simulation of quantum query algorithms

- In the model of quantum query complexity, we want to compute some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using the minimum number of queries to the input.
- Let $x \in\{0,1\}^{n}$ be an n-bit string and imagine we can query bits of x at unit cost. We want to compute $f(x)$.
- It is known (e.g. [Simon '94]) that some partial functions f (i.e. functions where is a promise on the input) can be computed using exponentially fewer quantum queries than would be required for any classical algorithm.

Simulation of quantum query algorithms

- In the model of quantum query complexity, we want to compute some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using the minimum number of queries to the input.
- Let $x \in\{0,1\}^{n}$ be an n-bit string and imagine we can query bits of x at unit cost. We want to compute $f(x)$.
- It is known (e.g. [Simon '94]) that some partial functions f (i.e. functions where is a promise on the input) can be computed using exponentially fewer quantum queries than would be required for any classical algorithm.
- On the other hand, for any total function f, there can be at most a polynomial separation between quantum and classical query complexity [Beals et al '01].

Simulation of quantum query algorithms

- In the model of quantum query complexity, we want to compute some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using the minimum number of queries to the input.
- Let $x \in\{0,1\}^{n}$ be an n-bit string and imagine we can query bits of x at unit cost. We want to compute $f(x)$.
- It is known (e.g. [Simon '94]) that some partial functions f (i.e. functions where is a promise on the input) can be computed using exponentially fewer quantum queries than would be required for any classical algorithm.
- On the other hand, for any total function f, there can be at most a polynomial separation between quantum and classical query complexity [Beals et al '01].
- Raises the natural question: how strict does the promise on the input have to be in order to get an exponential speed-up?

Quantum queries and injective tensor norms

Conjecture A [Aaronson and Ambainis '09]

Let Q be a quantum algorithm which makes T queries to x. Then, for any $\epsilon>0$, there is a classical algorithm which makes $\operatorname{poly}(T, 1 / \epsilon, 1 / \delta)$ queries to x, and approximates Q 's success probability to within $\pm \epsilon$ on a $1-\delta$ fraction of inputs.

Quantum queries and injective tensor norms

Conjecture A [Aaronson and Ambainis '09]

Let Q be a quantum algorithm which makes T queries to x. Then, for any $\epsilon>0$, there is a classical algorithm which makes $\operatorname{poly}(T, 1 / \epsilon, 1 / \delta)$ queries to x, and approximates Q 's success probability to within $\pm \epsilon$ on a $1-\delta$ fraction of inputs.

- Given known results, essentially the strongest conjecture one could make about classical simulation of quantum query algorithms.

Quantum queries and injective tensor norms

Conjecture A [Aaronson and Ambainis '09]

Let Q be a quantum algorithm which makes T queries to x. Then, for any $\epsilon>0$, there is a classical algorithm which makes poly $(T, 1 / \epsilon, 1 / \delta)$ queries to x, and approximates Q 's success probability to within $\pm \epsilon$ on a $1-\delta$ fraction of inputs.

- Given known results, essentially the strongest conjecture one could make about classical simulation of quantum query algorithms.
- Aaronson and Ambainis show that Conjecture A follows from the following, more mathematical conjecture...

Quantum queries and injective tensor norms

Conjecture B [Aaronson and Ambainis '09, slightly modified]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a degree d multivariate polynomial such that $|f(x)| \leqslant 1$ for all $x \in\{ \pm 1\}^{n}$ and $\operatorname{Var}(f) \geqslant \epsilon$. Then there exists $j \in\{1, \ldots, n\}$ such that

$$
\operatorname{Inf}_{j}(f) \geqslant \operatorname{poly}(\epsilon / d) .
$$

Quantum queries and injective tensor norms

Conjecture B [Aaronson and Ambainis '09, slightly modified]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a degree d multivariate polynomial such that $|f(x)| \leqslant 1$ for all $x \in\{ \pm 1\}^{n}$ and $\operatorname{Var}(f) \geqslant \epsilon$. Then there exists
$j \in\{1, \ldots, n\}$ such that

$$
\operatorname{Inf}_{j}(f) \geqslant \operatorname{poly}(\epsilon / d)
$$

In this conjecture:
$\operatorname{Var}(f)=\mathbb{E}_{x}\left[(f(x)-\mathbb{E}[f])^{2}\right]=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}}\left(f(x)-\frac{1}{2^{n}} \sum_{y \in\{ \pm 1\}^{n}} f(x)\right)^{2}$
$\operatorname{Inf}_{j}(f)=\frac{1}{2^{n+2}} \sum_{x \in\{ \pm 1\}^{n}}\left(f(x)-f\left(x^{j}\right)\right)^{2}$

A very special case of this conjecture

- Let $f:\left(\mathbb{R}^{s}\right)^{t} \rightarrow \mathbb{R}$ be the multilinear form corresponding to a tensor $T \in\left(\mathbb{R}^{s}\right)^{t}$.

A very special case of this conjecture

- Let $f:\left(\mathbb{R}^{s}\right)^{t} \rightarrow \mathbb{R}$ be the multilinear form corresponding to a tensor $T \in\left(\mathbb{R}^{s}\right)^{t}$.
- Observe that f depends on t s variables $x_{(j, k)}$, where $1 \leqslant j \leqslant t$ and $1 \leqslant k \leqslant s$, and has degree t.

A very special case of this conjecture

- Let $f:\left(\mathbb{R}^{s}\right)^{t} \rightarrow \mathbb{R}$ be the multilinear form corresponding to a tensor $T \in\left(\mathbb{R}^{s}\right)^{t}$.
- Observe that f depends on t s variables $x_{(j, k)}$, where $1 \leqslant j \leqslant t$ and $1 \leqslant k \leqslant s$, and has degree t.
- The influence of variable (j, k) on f is

$$
\operatorname{Inf}_{(j, k)}(f)=\sum_{i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{t}} T_{i_{1}, \ldots, i_{j-1}, k, i_{j+1}, \ldots, i_{t}}^{2} .
$$

A very special case of this conjecture

- Let $f:\left(\mathbb{R}^{s}\right)^{t} \rightarrow \mathbb{R}$ be the multilinear form corresponding to a tensor $T \in\left(\mathbb{R}^{s}\right)^{t}$.
- Observe that f depends on t s variables $x_{(j, k)}$, where $1 \leqslant j \leqslant t$ and $1 \leqslant k \leqslant s$, and has degree t.
- The influence of variable (j, k) on f is

$$
\operatorname{Inf}_{(j, k)}(f)=\sum_{i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{t}} T_{i_{1}, \ldots, i_{j-1}, k, i_{j+1}, \ldots, i_{t}}^{2} .
$$

Open problem 3

Assume that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$. Show that, for all $1 \leqslant j \leqslant t$,

$$
\sum_{k=1}^{s} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \leqslant \operatorname{poly}(t)
$$

A very special case of this conjecture

- Let $f:\left(\mathbb{R}^{s}\right)^{t} \rightarrow \mathbb{R}$ be the multilinear form corresponding to a tensor $T \in\left(\mathbb{R}^{s}\right)^{t}$.
- Observe that f depends on $t s$ variables $x_{(j, k)}$, where $1 \leqslant j \leqslant t$ and $1 \leqslant k \leqslant s$, and has degree t.
- The influence of variable (j, k) on f is

$$
\operatorname{Inf}_{(j, k)}(f)=\sum_{i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{t}} T_{i_{1}, \ldots, i_{j-1}, k, i_{j+1}, \ldots, i_{t}}^{2}
$$

Open problem 3

Assume that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$. Show that, for all $1 \leqslant j \leqslant t$,

$$
\sum_{k=1}^{s} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \leqslant \operatorname{poly}(t)
$$

This would imply Conjecture B of Aaronson and Ambainis for the special case where f is a multilinear form.

Open problem 3 implies a special case of Conjecture B

- First observe that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$ is equivalent to $|f(x)| \leqslant 1$ for $x \in\{ \pm 1\}^{s t}$.

Open problem 3 implies a special case of Conjecture B

- First observe that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$ is equivalent to $|f(x)| \leqslant 1$ for $x \in\{ \pm 1\}^{s t}$.
- Now we have

$$
\operatorname{Var}(f) \leqslant \sum_{j, k} \operatorname{Inf}_{(j, k)}(f)
$$

Open problem 3 implies a special case of Conjecture B

- First observe that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$ is equivalent to $|f(x)| \leqslant 1$ for $x \in\{ \pm 1\}^{s t}$.
- Now we have

$$
\operatorname{Var}(f) \leqslant \sum_{j, k} \operatorname{Inf}_{(j, k)}(f) \leqslant \max _{j, k} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \sum_{j, k} \operatorname{Inf}_{(j, k)}(f)^{1 / 2}
$$

Open problem 3 implies a special case of Conjecture B

- First observe that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$ is equivalent to $|f(x)| \leqslant 1$ for $x \in\{ \pm 1\}^{s t}$.
- Now we have

$$
\begin{aligned}
\operatorname{Var}(f) & \leqslant \sum_{j, k} \operatorname{Inf}_{(j, k)}(f) \leqslant \max _{j, k} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \sum_{j, k} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \\
& \leqslant \operatorname{poly}(t) \max _{j, k} \operatorname{Inf}_{(j, k)}(f)^{1 / 2}
\end{aligned}
$$

so

$$
\max _{j, k} \operatorname{Inf}_{(j, k)}(f) \geqslant \operatorname{poly}(\operatorname{Var}(f) / t)
$$

Partial results

Theorem [Bohnenblust and Hille '31]

Assume that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$. Then there is a universal constant $C>1$ such that, for all $1 \leqslant j \leqslant t$,

$$
\sum_{k=1}^{s} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \leqslant C^{t}
$$

Partial results

Theorem [Bohnenblust and Hille '31]

Assume that $\|T\|_{\infty}^{\text {inj }} \leqslant 1$. Then there is a universal constant $C>1$ such that, for all $1 \leqslant j \leqslant t$,

$$
\sum_{k=1}^{s} \operatorname{Inf}_{(j, k)}(f)^{1 / 2} \leqslant C^{t}
$$

- This is a generalisation of Littlewood's $4 / 3$ inequality [Littlewood '30].
- The constant C has gradually been improved over the years...

Partial results

Theorem [AM '11, folklore?]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a symmetric degree d multivariate polynomial such that $|f(x)| \leqslant 1$ for all $x \in\{ \pm 1\}^{n}$ and $\operatorname{Var}(f) \geqslant \epsilon$. Then, for all $j \in\{1, \ldots, n\}$,

$$
\operatorname{Inf}_{j}(f) \geqslant \operatorname{poly}(\epsilon / d)
$$

Partial results

Theorem [AM '11, folklore?]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a symmetric degree d multivariate polynomial such that $|f(x)| \leqslant 1$ for all $x \in\{ \pm 1\}^{n}$ and $\operatorname{Var}(f) \geqslant \epsilon$. Then, for all $j \in\{1, \ldots, n\}$,

$$
\operatorname{Inf}_{j}(f) \geqslant \operatorname{poly}(\epsilon / d)
$$

- A symmetric polynomial $f(x)$ depends only on the Hamming weight of $x \in\{ \pm 1\}^{n}$, i.e. the number of 1 s in x.
- For such polynomials, all influences are equal.

Conclusions

- Injective tensor norms are a powerful general framework in which to attack many open problems in quantum information theory.
- Many of these problems are accessible and can be stated purely mathematically, with no reference to quantum information.
- This doesn't stop them from probably being very hard!

Thanks!

Further reading:

- "Classification of Entanglement in Symmetric States" [Aulbach '11] - an entire PhD thesis on the geometric measure of entanglement (!)
- "An efficient test for product states, with applications to quantum Merlin-Arthur games" [Harrow and AM '10] (arXiv:1001.0017) - stay tuned for a new version giving many other interpretations of $h_{\text {SEP }}(M)$
- "Weak multiplicativity for random quantum channels" [AM '11] (arXiv:1112.5271) - includes references to many other papers on multiplicativity questions
- "The role of structure in quantum speed-ups" [Aaronson and Ambainis '09].

Conjecture B implies Conjecture A (sketch)

Consider the following algorithm:
(1) If $\operatorname{Var}(f) \leqslant(\delta \epsilon)^{2}$, stop and return $\mathbb{E}_{x}[f(x)]$.
(2) Query the variable j such that $\operatorname{Inf}_{j}(f)$ is maximal and set f to be the resulting function.
(3) Go to step 1 .

Theorem [Aaronson and Ambainis '09]
Assuming Conjecture B, this algorithm terminates in expected time poly $(d, 1 / \epsilon, 1 / \delta)$, where the expectation is taken over x, and computes $f(x)$ to within ϵ on at least a $1-\delta$ fraction of inputs x.

Conjecture B implies Conjecture A (sketch)

- Let \tilde{f} be the function computed by the algorithm (observe that it always terminates).
- We have

$$
\operatorname{Pr}_{x}[|f(x)-\tilde{f}(x)| \geqslant \epsilon] \leqslant \frac{\mathbb{E}_{x}[|f(x)-\tilde{f}(x)|]}{\epsilon} \leqslant \frac{\operatorname{Var}(f)^{1 / 2}}{\epsilon} \leqslant \delta .
$$

- The algorithm terminates when $\operatorname{Var}(f) \leqslant(\delta \epsilon)^{2}$, and at the beginning of the algorithm $\operatorname{Var}(f) \leqslant \sum_{j} \operatorname{Inf}_{j}(f) \leqslant d$.
- The expected decrease in the total influence with each query is $\max _{j} \operatorname{Inf}_{j}(f)$.
- Assuming Conjecture B, this is lower bounded by $\operatorname{poly}(\operatorname{Var}(f) / d) \geqslant \operatorname{poly}(\delta \epsilon / d)$.
- Thus the expected number of queries until the algorithm terminates is at most $\operatorname{poly}(d, 1 / \epsilon, 1 / \delta)$.

