Complexity classification of local Hamiltonian problems

Ashley Montanaro

Department of Computer Science, University of Bristol, UK

$$
27 \text { November } 2013
$$

arXiv:1311.3161

Introduction

Constraint satisfaction problems are ubiquitous in computer science.

Introduction

Constraint satisfaction problems are ubiquitous in computer science. Two classic examples:

- The 3-SAT problem: given a boolean formula in conjunctive normal form with at most 3 variables per clause, is there a satisfying assignment to the formula?

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{4}\right)
$$

Introduction

Constraint satisfaction problems are ubiquitous in computer science. Two classic examples:

- The 3-SAT problem: given a boolean formula in conjunctive normal form with at most 3 variables per clause, is there a satisfying assignment to the formula?

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{4}\right)
$$

- Solving 3-term linear equations: given a system of linear equations over \mathbb{F}_{2} with at most 3 variables per equation, is there a solution to all the equations?

$$
x_{1}+x_{2}+x_{4}=0, \quad x_{2}+x_{3}=1, \quad x_{1}+x_{4}=0
$$

Introduction

Constraint satisfaction problems are ubiquitous in computer science. Two classic examples:

- The 3-SAT problem: given a boolean formula in conjunctive normal form with at most 3 variables per clause, is there a satisfying assignment to the formula?

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{4}\right)
$$

- Solving 3-term linear equations: given a system of linear equations over \mathbb{F}_{2} with at most 3 variables per equation, is there a solution to all the equations?

$$
x_{1}+x_{2}+x_{4}=0, \quad x_{2}+x_{3}=1, \quad x_{1}+x_{4}=0
$$

The first of these is NP-complete, the second is in P.

General constraint satisfaction problems

A very general way to study these kind of problems is via the framework of the problem \mathcal{S}-CSP.

- Let \mathcal{S} be a set of constraints, where a constraint is a boolean function acting on a constant number of bits.

General constraint satisfaction problems

A very general way to study these kind of problems is via the framework of the problem \mathcal{S}-CSP.

- Let \mathcal{S} be a set of constraints, where a constraint is a boolean function acting on a constant number of bits.
- An example constraint: $f(a, b, c)=a \vee b \vee \neg c$.
- An instance of \mathcal{S}-CSP on n bits is specified by a sequence of constraints picked from \mathcal{S} applied to subsets of the bits.

General constraint satisfaction problems

A very general way to study these kind of problems is via the framework of the problem S-CSP.

- Let \mathcal{S} be a set of constraints, where a constraint is a boolean function acting on a constant number of bits.
- An example constraint: $f(a, b, c)=a \vee b \vee \neg c$.
- An instance of \mathcal{S}-CSP on n bits is specified by a sequence of constraints picked from \mathcal{S} applied to subsets of the bits.
- Our task is to determine whether there exists an assignment to the variables such that all the constraints are satisfied (evaluate to 1).

General constraint satisfaction problems

A very general way to study these kind of problems is via the framework of the problem S-CSP.

- Let \mathcal{S} be a set of constraints, where a constraint is a boolean function acting on a constant number of bits.
- An example constraint: $f(a, b, c)=a \vee b \vee \neg c$.
- An instance of \mathcal{S}-CSP on n bits is specified by a sequence of constraints picked from \mathcal{S} applied to subsets of the bits.
- Our task is to determine whether there exists an assignment to the variables such that all the constraints are satisfied (evaluate to 1).

The complexity of the \mathcal{S}-CSP problem depends on the set \mathcal{S}.

A dichotomy theorem

A remarkable theorem of Schaefer allows this complexity to be completely characterised.

Theorem [Schaefer '78]
\mathcal{S}-CSP is either in P or NP-complete. Further, which of these is the case can be determined easily for a given \mathcal{S}.

A dichotomy theorem

A remarkable theorem of Schaefer allows this complexity to be completely characterised.

Theorem [Schaefer '78]
\mathcal{S}-CSP is either in P or NP-complete. Further, which of these is the case can be determined easily for a given \mathcal{S}.

This result has since been improved in a number of directions.

- In particular, [Creignou '95] and [Khanna, Sudan and Williamson '97] have completely characterised the complexity of the maximisation problem k-Max-CSP for boolean constraints.

A dichotomy theorem

A remarkable theorem of Schaefer allows this complexity to be completely characterised.

Theorem [Schaefer '78]

\mathcal{S}-CSP is either in P or NP-complete. Further, which of these is the case can be determined easily for a given \mathcal{S}.

This result has since been improved in a number of directions.

- In particular, [Creignou '95] and [Khanna, Sudan and Williamson '97] have completely characterised the complexity of the maximisation problem k-Max-CSP for boolean constraints.
- Here we are again given a system of constraints, but the goal is to maximise the number of constraints we can satisfy.

A dichotomy theorem

A remarkable theorem of Schaefer allows this complexity to be completely characterised.

Theorem [Schaefer '78]

\mathcal{S}-CSP is either in P or NP-complete. Further, which of these is the case can be determined easily for a given \mathcal{S}.

This result has since been improved in a number of directions.

- In particular, [Creignou '95] and [Khanna, Sudan and Williamson '97] have completely characterised the complexity of the maximisation problem k-Max-CSP for boolean constraints.
- Here we are again given a system of constraints, but the goal is to maximise the number of constraints we can satisfy.
- An example problem of this kind is MAX-CUT.

Local Hamiltonian problems

The natural quantum generalisation of CSPs is called k-LOCAL Hamiltonian [Kitaev, Shen and Vyalyi '02].

- A k-local Hamiltonian is a Hermitian matrix H on the space of n qubits which can be written as

$$
H=\sum_{i} H^{(i)},
$$

where each $H^{(i)}$ acts non-trivially on at most k qubits.

Local Hamiltonian problems

The natural quantum generalisation of CSPs is called k-LOCAL Hamiltonian [Kitaev, Shen and Vyalyi '02].

- A k-local Hamiltonian is a Hermitian matrix H on the space of n qubits which can be written as

$$
H=\sum_{i} H^{(i)},
$$

where each $H^{(i)}$ acts non-trivially on at most k qubits.
> k-local Hamiltonian
> We are given a k-local Hamiltonian $H=\sum_{i=1}^{m} H^{(i)}$ on n qubits, and two numbers $a<b$ such that $b-a \geqslant 1 / \operatorname{poly}(n)$. Promised that the smallest eigenvalue of H is either at most a, or at least b, our task is to determine which of these is the case.

NB: we assume throughout that all parameters are "reasonable" (e.g. rational, polynomial in n).

Hardness of k-local Hamiltonian

How difficult is k-local Hamiltonian?

- k-local Hamiltonian is a generalisation of k-Max-CSP, so is at least NP-hard.

Hardness of k-local Hamiltonian

How difficult is k-local Hamiltonian?

- k-local Hamiltonian is a generalisation of k-Max-CSP, so is at least NP-hard.
- [Kitaev '02] proved that 5-local Hamiltonian is in fact QMA-complete, where QMA is the quantum analogue of NP.

Hardness of k-local Hamiltonian

How difficult is k-local Hamiltonian?

- k-local Hamiltonian is a generalisation of k-Max-CSP, so is at least NP-hard.
- [Kitaev '02] proved that 5-local Hamiltonian is in fact QMA-complete, where QMA is the quantum analogue of NP.
- Later improved to show that even 2-local Hamiltonian is QMA-complete [Kempe, Kitaev and Regev '06].

Hardness of k-local Hamiltonian

How difficult is k-local Hamiltonian?

- k-local Hamiltonian is a generalisation of k-Max-CSP, so is at least NP-hard.
- [Kitaev '02] proved that 5-local Hamiltonian is in fact QMA-complete, where QMA is the quantum analogue of NP.
- Later improved to show that even 2-local Hamiltonian is QMA-complete [Kempe, Kitaev and Regev '06].

- 1-local Hamiltonian is in P, so is this the end of the line?
k-local Hamiltonian and condensed-matter physics

A major motivation for this area is applications to physics.

- One of the most important themes in condensed-matter physics is calculating the ground-state energies of physical systems; this is essentially an instance of k-LOCAL Hamiltonian.

k-local Hamiltonian and condensed-matter

physics

A major motivation for this area is applications to physics.

- One of the most important themes in condensed-matter physics is calculating the ground-state energies of physical systems; this is essentially an instance of k-LOCAL Hamiltonian.
- For example, the (general) Ising model corresponds to the problem of finding the lowest eigenvalue of a Hamiltonian of the form

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}
$$

k-local Hamiltonian and condensed-matter physics

A major motivation for this area is applications to physics.

- One of the most important themes in condensed-matter physics is calculating the ground-state energies of physical systems; this is essentially an instance of k-LOCAL Hamiltonian.
- For example, the (general) Ising model corresponds to the problem of finding the lowest eigenvalue of a Hamiltonian of the form

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}
$$

- This connection to physics motivates the study of k-local Hamiltonian with restricted types of interactions.
- The aim: to prove QMA-hardness of problems of direct physical interest.

Previously known results

A number of special cases of k-local Hamiltonian have previously been shown to be QMA-complete, e.g.:

-

H=\sum_{(i, j) \in E} X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}+\sum_{k} \alpha_{k} X_{k}+\beta_{k} Y_{k}+\gamma_{k} Z_{k}
\]

where E is the set of edges of a 2-dimensional square lattice;

Previously known results

A number of special cases of k-local Hamiltonian have previously been shown to be QMA-complete, e.g.:

-

H=\sum_{(i, j) \in E} X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}+\sum_{k} \alpha_{k} X_{k}+\beta_{k} Y_{k}+\gamma_{k} Z_{k}
\]

where E is the set of edges of a 2-dimensional square lattice;

-

H=\sum_{i<j} J_{i j} X_{i} X_{j}+K_{i j} Z_{i} Z_{j}+\sum_{k} \alpha_{k} X_{k}+\beta_{k} Z_{k},
\]

or

$$
H=\sum_{i<j} J_{i j} X_{i} Z_{j}+K_{i j} Z_{i} X_{j}+\sum_{k} \alpha_{k} X_{k}+\beta_{k} Z_{k} .
$$

Previously known results

...but some other special cases are not thought to be QMA-complete:

- It has been shown by [Bravyi et al. '06] that k-local Hamiltonian is in the complexity class AM if the Hamiltonian is restricted to be stoquastic.

Previously known results

... but some other special cases are not thought to be QMA-complete:

- It has been shown by [Bravyi et al. '06] that k-local Hamiltonian is in the complexity class AM if the Hamiltonian is restricted to be stoquastic.
- A stoquastic Hamiltonian has all off-diagonal entries real and non-positive in the computational basis. Such Hamiltonians occur in a wide variety of physical systems.

Previously known results

... but some other special cases are not thought to be QMA-complete:

- It has been shown by [Bravyi et al. '06] that k-local Hamiltonian is in the complexity class AM if the Hamiltonian is restricted to be stoquastic.
- A stoquastic Hamiltonian has all off-diagonal entries real and non-positive in the computational basis. Such Hamiltonians occur in a wide variety of physical systems.
- As AM is in the polynomial hierarchy, it is considered unlikely that k-local Hamiltonian with stoquastic Hamiltonians is QMA-complete.

Previously known results

...but some other special cases are not thought to be QMA-complete:

- It has been shown by [Bravyi et al. '06] that k-local Hamiltonian is in the complexity class AM if the Hamiltonian is restricted to be stoquastic.
- A stoquastic Hamiltonian has all off-diagonal entries real and non-positive in the computational basis. Such Hamiltonians occur in a wide variety of physical systems.
- As AM is in the polynomial hierarchy, it is considered unlikely that k-local Hamiltonian with stoquastic Hamiltonians is QMA-complete.
- Later sharpened by [Bravyi, Bessen and Terhal '06], who showed that this problem is StoqMA-complete, where StoqMA is a complexity class between MA and AM.

The S-Hamiltonian problem

Let \mathcal{S} be a fixed subset of Hermitian matrices on at most k qubits, for some constant k.

S-Hamiltonian

S-Hamiltonian is the special case of k-local Hamiltonian where the overall Hamiltonian H is specified by a sum of matrices H_{i}, each of which acts non-trivially on at most k qubits, and whose non-trivial part is proportional to a matrix picked from \mathcal{S}.

The S-Hamiltonian problem

Let \mathcal{S} be a fixed subset of Hermitian matrices on at most k qubits, for some constant k.

S-Hamiltonian

\mathcal{S}-Hamiltonian is the special case of k-local Hamiltonian where the overall Hamiltonian H is specified by a sum of matrices H_{i}, each of which acts non-trivially on at most k qubits, and whose non-trivial part is proportional to a matrix picked from \mathcal{S}.

We then have the following general question:

Problem

Given \mathcal{S}, characterise the computational complexity of \mathcal{S}-Hamiltonian.

Some examples

The \mathcal{S}-Hamiltonian problem encapsulates many much-studied problems in physics. For example:

- The (general) Ising model:

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}
$$

For us this is the problem $\{Z Z\}$-Hamiltonian; it is known to be NP-complete.

Some examples

The \mathcal{S}-Hamiltonian problem encapsulates many much-studied problems in physics. For example:

- The (general) Ising model:

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}
$$

For us this is the problem $\{Z Z\}$-Hamiltonian; it is known to be NP-complete.

- The (general) Ising model with transverse magnetic fields:

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}+\sum_{k} \beta_{k} X_{k}
$$

For us this is the problem $\{Z Z, X\}$-Hamiltonian. We shorten the title to "transverse Ising model".

Some more examples

- The (general) Heisenberg model:

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

For us this is the problem $\{X X+Y Y+Z Z\}$-Hamiltonian.

Some more examples

- The (general) Heisenberg model:

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

For us this is the problem $\{X X+Y Y+Z Z\}$-Hamiltonian.

- The (general) XY model:

$$
\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}\right)
$$

For us this is the problem $\{X X+Y Y\}$-Hamiltonian.

Some more examples

- The (general) Heisenberg model:

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

For us this is the problem $\{X X+Y Y+Z Z\}$-Hamiltonian.

- The (general) XY model:

$$
\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}\right)
$$

For us this is the problem $\{X X+Y Y\}$-Hamiltonian.

We use "general" in the titles to emphasise that there is no implied spatial locality or underlying interaction graph.

Remarks on the problem

- We assume that, given a set of interactions \mathcal{S}, we are allowed to produce an overall Hamiltonian by applying each interaction $M \in \mathcal{S}$ scaled by an arbitrary real weight, which can be either positive or negative.

Remarks on the problem

- We assume that, given a set of interactions \mathcal{S}, we are allowed to produce an overall Hamiltonian by applying each interaction $M \in \mathcal{S}$ scaled by an arbitrary real weight, which can be either positive or negative.
- We assume that we are allowed to apply the interactions in \mathcal{S} across any choice of subsets of the qubits. That is, the interaction pattern is not constrained by any spatial locality, planarity or symmetry considerations.

Remarks on the problem

- We assume that, given a set of interactions \mathcal{S}, we are allowed to produce an overall Hamiltonian by applying each interaction $M \in \mathcal{S}$ scaled by an arbitrary real weight, which can be either positive or negative.
- We assume that we are allowed to apply the interactions in S across any choice of subsets of the qubits. That is, the interaction pattern is not constrained by any spatial locality, planarity or symmetry considerations.
- Some of the interactions in \mathcal{S} could be non-symmetric under permutation of the qubits on which they act. We assume that we are allowed to apply such interactions to any permutation of the qubits.

Remarks on the problem

- We assume that, given a set of interactions \mathcal{S}, we are allowed to produce an overall Hamiltonian by applying each interaction $M \in \mathcal{S}$ scaled by an arbitrary real weight, which can be either positive or negative.
- We assume that we are allowed to apply the interactions in S across any choice of subsets of the qubits. That is, the interaction pattern is not constrained by any spatial locality, planarity or symmetry considerations.
- Some of the interactions in \mathcal{S} could be non-symmetric under permutation of the qubits on which they act. We assume that we are allowed to apply such interactions to any permutation of the qubits.
- We can assume without loss of generality that the identity matrix $I \in \mathcal{S}$ (we can add an arbitrary "energy shift").

Allowing local terms

One variant of this framework is to allow arbitrary local terms ("magnetic fields").

S-Hamiltonian with local terms
\mathcal{S}-Hamiltonian with local terms is the special case of \mathcal{S}-Hamiltonian where \mathcal{S} is assumed to contain X, Y, Z.

- This is equivalent to \mathcal{S} containing all 1-local interactions.

Allowing local terms

One variant of this framework is to allow arbitrary local terms ("magnetic fields").

S-Hamiltonian with local terms
\mathcal{S}-Hamiltonian with local terms is the special case of \mathcal{S}-Hamiltonian where S is assumed to contain X, Y, Z.

- This is equivalent to \mathcal{S} containing all 1-local interactions.
- For any \mathcal{S}, \mathcal{S}-Hamiltonian with local terms is at least as hard as \mathcal{S}-Hamiltonian.

Allowing local terms

One variant of this framework is to allow arbitrary local terms ("magnetic fields").

S-Hamiltonian with local terms

\mathcal{S}-Hamiltonian with local terms is the special case of δ-Hamiltonian where \mathcal{S} is assumed to contain X, Y, Z.

- This is equivalent to \mathcal{S} containing all 1-local interactions.
- For any \mathcal{S}, \mathcal{S}-Hamiltonian with local terms is at least as hard as \mathcal{S}-Hamiltonian.

It is known that \mathcal{S}-Hamiltonian with local terms is QMA-complete when:

- $\mathcal{S}=\{X X+Y Y+Z Z\}$ [Schuch and Verstraete '09](%5B)
- $\mathcal{S}=\{X X, Z Z\}$ or $\mathcal{S}=\{X Z\}$ [Biamonte and Love '08](%5B)

Our first result

Let \mathcal{S} be a fixed subset of Hermitian matrices on at most k qubits, for some constant k.

Theorem

Let \mathcal{S}^{\prime} be the subset formed by removing all 1-local terms from each element of \mathcal{S}, and then deleting all 0 -local matrices. Then:
(1) If \mathcal{S}^{\prime} is empty, \mathcal{S}-Hamiltonian with local terms is in P;

Our first result

Let \mathcal{S} be a fixed subset of Hermitian matrices on at most k qubits, for some constant k.

Theorem

Let \mathcal{S}^{\prime} be the subset formed by removing all 1-local terms from each element of \mathcal{S}, and then deleting all 0 -local matrices. Then:
(1) If \mathcal{S}^{\prime} is empty, \mathcal{S}-Hamiltonian with local terms is in P;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}^{\prime}, then \mathcal{S}-Hamiltonian with local terms is poly-time equivalent to the transverse Ising model;

Our first result

Let \mathcal{S} be a fixed subset of Hermitian matrices on at most k qubits, for some constant k.

Theorem

Let \mathcal{S}^{\prime} be the subset formed by removing all 1-local terms from each element of \mathcal{S}, and then deleting all 0 -local matrices. Then:
(1) If \mathcal{S}^{\prime} is empty, \mathcal{S}-Hamiltonian with local terms is in P;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}^{\prime}, then \mathcal{S}-Hamiltonian with local terms is poly-time equivalent to the transverse Ising model;
(3) Otherwise, S-Hamiltonian with local terms is QMA-complete.

Explaining the second case

The second case is stated in terms of "local diagonalisation":

- Let M be a k-qubit Hermitian matrix.
- We say that $U \in S U(2)$ locally diagonalises M if $U^{\otimes k} M\left(U^{\dagger}\right)^{\otimes k}$ is diagonal.

Explaining the second case

The second case is stated in terms of "local diagonalisation":

- Let M be a k-qubit Hermitian matrix.
- We say that $U \in S U(2)$ locally diagonalises M if $U^{\otimes k} M\left(U^{\dagger}\right)^{\otimes k}$ is diagonal.
- We say that U locally diagonalises \mathcal{S} if U locally diagonalises M for all $M \in \mathcal{S}$.

Explaining the second case

The second case is stated in terms of "local diagonalisation":

- Let M be a k-qubit Hermitian matrix.
- We say that $U \in S U(2)$ locally diagonalises M if $U^{\otimes k} M\left(U^{\dagger}\right)^{\otimes k}$ is diagonal.
- We say that U locally diagonalises \mathcal{S} if U locally diagonalises M for all $M \in \mathcal{S}$.
- Note that matrices in \mathcal{S} may be of different sizes.

Explaining the second case

The second case is stated in terms of "local diagonalisation":

- Let M be a k-qubit Hermitian matrix.
- We say that $U \in S U(2)$ locally diagonalises M if $U^{\otimes k} M\left(U^{\dagger}\right)^{\otimes k}$ is diagonal.
- We say that U locally diagonalises \mathcal{S} if U locally diagonalises M for all $M \in \mathcal{S}$.
- Note that matrices in S may be of different sizes.

This case is poly-time equivalent to the transverse Ising model $\{Z Z, X\}$-Hamiltonian, i.e. Hamiltonians of the form

$$
H=\sum_{i<j} \alpha_{i j} Z_{i} Z_{j}+\sum_{k} \beta_{k} X_{k} .
$$

What is the complexity of solving this model?

The complexity of the transverse Ising model

- The problem is clearly NP-hard, by taking the weights β_{k} of the X terms to be 0 .

The complexity of the transverse Ising model

- The problem is clearly NP-hard, by taking the weights β_{k} of the X terms to be 0 .
- By conjugating any transverse Ising model Hamiltonian by local Z operations on each qubit k such that $\beta_{k}>0$, which maps $X \mapsto-X$ and does not change the eigenvalues, we can assume $\beta_{k} \leqslant 0$.

The complexity of the transverse Ising model

- The problem is clearly NP-hard, by taking the weights β_{k} of the X terms to be 0 .
- By conjugating any transverse Ising model Hamiltonian by local Z operations on each qubit k such that $\beta_{k}>0$, which maps $X \mapsto-X$ and does not change the eigenvalues, we can assume $\beta_{k} \leqslant 0$.
- The resulting Hamiltonian is stoquastic, so $\{Z Z, X\}$-Hamiltonian \in StoqMA.

The complexity of the transverse Ising model

- The problem is clearly NP-hard, by taking the weights β_{k} of the X terms to be 0 .
- By conjugating any transverse Ising model Hamiltonian by local Z operations on each qubit k such that $\beta_{k}>0$, which maps $X \mapsto-X$ and does not change the eigenvalues, we can assume $\beta_{k} \leqslant 0$.
- The resulting Hamiltonian is stoquastic, so $\{Z Z, X\}$-Hamiltonian \in StoqMA.
- We have not been able to characterise the complexity of this problem more precisely, so encapsulate it in a new complexity class TIM, where NP \subseteq TIM \subseteq StoqMA.

The complexity of the transverse Ising model

- The problem is clearly NP-hard, by taking the weights β_{k} of the X terms to be 0 .
- By conjugating any transverse Ising model Hamiltonian by local Z operations on each qubit k such that $\beta_{k}>0$, which maps $X \mapsto-X$ and does not change the eigenvalues, we can assume $\beta_{k} \leqslant 0$.
- The resulting Hamiltonian is stoquastic, so $\{Z Z, X\}$-Hamiltonian \in StoqMA.
- We have not been able to characterise the complexity of this problem more precisely, so encapsulate it in a new complexity class TIM, where NP \subseteq TIM \subseteq StoqMA.
- Future work: the Transverse Ordered Boson Ynteraction and Anisotropic Symmetric Hamiltonians with Local Extensive Ynteractions. . .

Our second result

Let \mathcal{S} be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.

Theorem
(1) If every matrix in \mathcal{S} is 1-local, \mathcal{S}-Hamiltonian is in P;

Our second result

Let \mathcal{S} be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.

Theorem

(1) If every matrix in \mathcal{S} is 1-local, \mathcal{S}-Hamiltonian is in P;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}, then \mathcal{S}-Hamiltonian is NP-complete;

Our second result

Let \mathcal{S} be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.

Theorem

(1) If every matrix in \mathcal{S} is 1-local, \mathcal{S}-Hamiltonian is in P ;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}, then \mathcal{S}-Hamiltonian is NP-complete;
(3) Otherwise, if there exists $U \in S U(2)$ such that, for each 2-qubit matrix $H_{i} \in \mathcal{S}, U^{\otimes 2} H_{i}\left(U^{\dagger}\right)^{\otimes 2}=\alpha_{i} Z^{\otimes 2}+A_{i} I+I B_{i}$, where $\alpha_{i} \in \mathbb{R}$ and A_{i}, B_{i} are arbitrary single-qubit Hermitian matrices, then \mathcal{S}-Hamiltonian is
TIM-complete;

Our second result

Let \mathcal{S} be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.

Theorem

(1) If every matrix in \mathcal{S} is 1-local, \mathcal{S}-Hamiltonian is in P ;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}, then \mathcal{S}-Hamiltonian is NP-complete;
(3) Otherwise, if there exists $U \in S U(2)$ such that, for each 2-qubit matrix $H_{i} \in \mathcal{S}, U^{\otimes 2} H_{i}\left(U^{\dagger}\right)^{\otimes 2}=\alpha_{i} Z^{\otimes 2}+A_{i} I+I B_{i}$, where $\alpha_{i} \in \mathbb{R}$ and A_{i}, B_{i} are arbitrary single-qubit Hermitian matrices, then \mathcal{S}-Hamiltonian is TIM-complete;
(9) Otherwise, \mathcal{S}-Hamiltonian is QMA-complete.

Corollaries

In particular, we have that:

- The (general) Heisenberg model is QMA-complete $(\mathcal{S}=\{X X+Y Y+Z Z\})$
- The (general) $X Y$ model is QMA-complete $(\mathcal{S}=\{X X+Y Y\})$
... as well as many other cases.

We can think of this result as a quantum analogue of Schaefer's dichotomy theorem.

Proof techniques

We follow the standard pattern for proving dichotomy-type theorems:

66 Isolate some special cases and prove that they are easy, then prove that everything else is hard.

Proof techniques

We follow the standard pattern for proving dichotomy-type theorems:

66 Isolate some special cases and prove that they are easy, then prove that everything else is hard.

- The two results are proven using (fairly) different techniques, but both are based on reductions, rather than direct proofs using clock constructions or similar.
- The starting point for both is a normal form for 2-qubit Hermitian matrices.

The normal form

We use a very similar normal form to one identified by [Dür et al. '01, Bennett et al. '02]. An important special case:

Lemma

Let H be a 2-qubit interaction which is symmetric under swapping qubits. Then there exists $U \in S U(2)$ such that the 2-local part of $U^{\otimes 2} H\left(U^{\dagger}\right)^{\otimes 2}$ is of the form

$$
\alpha X X+\beta Y Y+\gamma Z Z
$$

The normal form

We use a very similar normal form to one identified by [Dür et al. '01, Bennett et al. '02]. An important special case:

Lemma

Let H be a 2-qubit interaction which is symmetric under swapping qubits. Then there exists $U \in S U(2)$ such that the 2-local part of $U^{\otimes 2} H\left(U^{\dagger}\right)^{\otimes 2}$ is of the form

$$
\alpha X X+\beta Y Y+\gamma Z Z
$$

Why is this useful? If we conjugate each term by $U^{\otimes 2}$ in a 2-local Hamiltonian with only H interactions, it doesn't change the eigenvalues:

$$
\sum_{i \neq j} \alpha_{i j}\left(U^{\otimes 2} H\left(U^{\dagger}\right)^{\otimes 2}\right)_{i j}=U^{\otimes n}\left(\sum_{i \neq j} \alpha_{i j} H_{i j}\right)\left(U^{\dagger}\right)^{\otimes n}
$$

The next step

The basic idea:
66 To prove QMA-hardness of \mathcal{A}-Hamiltonian, approximately simulate some other set of interactions \mathcal{B}, where \mathcal{B}-Hamiltonian is QMA-hard.

The next step

The basic idea:
66 To prove QMA-hardness of \mathcal{A}-Hamiltonian, approximately simulate some other set of interactions \mathcal{B}, where \mathcal{B}-Hamiltonian is QMA-hard.

- To do this, we use two kinds of reductions, both based on perturbation theory.

The next step

The basic idea:
66 To prove QMA-hardness of \mathcal{A}-Hamiltonian, approximately simulate some other set of interactions \mathcal{B}, where \mathcal{B}-Hamiltonian is QMA-hard.

- To do this, we use two kinds of reductions, both based on perturbation theory.
- The first-order perturbative gadgets we use are based on ideas going back to [Oliveira and Terhal '08] and [Schuch and Verstraete '08].

The next step

The basic idea:
66 To prove QMA-hardness of \mathcal{A}-Hamiltonian, approximately simulate some other set of interactions \mathcal{B}, where \mathcal{B}-Hamiltonian is QMA-hard.

- To do this, we use two kinds of reductions, both based on perturbation theory.
- The first-order perturbative gadgets we use are based on ideas going back to [Oliveira and Terhal '08] and [Schuch and Verstraete '08].
- The basic idea: to implement an effective interaction across two qubits a and c, add a new mediator qubit b interacting with each of a and c, and put a strong 1-local interaction on b.

Example

Claim (similar to results of [Schuch and Verstraete '08])
For any $\gamma \neq 0,\{X X+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.

Example

Claim (similar to results of [Schuch and Verstraete '08])
For any $\gamma \neq 0,\{X X+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.

- We use the following perturbative gadget, taking Δ to be a large coefficient:

Example

Claim (similar to results of [Schuch and Verstraete '08])

For any $\gamma \neq 0,\{X X+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.

- We use the following perturbative gadget, taking Δ to be a large coefficient:

- This forces qubit b to (approximately) be in the state $|0\rangle$.

Example

Claim (similar to results of [Schuch and Verstraete '08])

For any $\gamma \neq 0,\{X X+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.

- We use the following perturbative gadget, taking Δ to be a large coefficient:

- This forces qubit b to (approximately) be in the state $|0\rangle$.
- It turns out that, up to local and lower-order terms, the effective interaction across the remaining qubits is

$$
H_{\mathrm{eff}} \propto X_{a} X_{c} .
$$

Example

- So, given access to terms of the form $X X+\gamma Z Z$, we can effectively make $X X$ terms. By subtracting from $X X+\gamma Z Z$, we can also make $Z Z$ terms.

Example

- So, given access to terms of the form $X X+\gamma Z Z$, we can effectively make $X X$ terms. By subtracting from $X X+\gamma Z Z$, we can also make $Z Z$ terms.
- The claim follows from the result of [Biamonte and Love '08](%5B) that $\{X X, Z Z\}$-Hamiltonian with local terms is QMA-complete.

Example

- So, given access to terms of the form $X X+\gamma Z Z$, we can effectively make $X X$ terms. By subtracting from $X X+\gamma Z Z$, we can also make $Z Z$ terms.
- The claim follows from the result of [Biamonte and Love '08](%5B) that $\{X X, Z Z\}$-Hamiltonian with local terms is QMA-complete.

We can similarly show that:

- For any $\beta, \gamma \neq 0,\{X X+\beta Y Y+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.
- $\{X Z-Z X\}$-Hamiltonian with local terms is QMA-complete.

Example

- So, given access to terms of the form $X X+\gamma Z Z$, we can effectively make $X X$ terms. By subtracting from $X X+\gamma Z Z$, we can also make $Z Z$ terms.
- The claim follows from the result of [Biamonte and Love '08](%5B) that $\{X X, Z Z\}$-Hamiltonian with local terms is QMA-complete.

We can similarly show that:

- For any $\beta, \gamma \neq 0,\{X X+\beta Y Y+\gamma Z Z\}$-Hamiltonian with local terms is QMA-complete.
- $\{X Z-Z X\}$-Hamiltonian with local terms is QMA-complete.

This turns out to be all the cases we need to complete the characterisation of \mathcal{S}-Hamiltonian with local terms!

Recap: Our second result

Let \mathcal{S} be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.

Theorem

(1) If every matrix in δ is 1-local, δ-Hamiltonian is in P ;
(2) Otherwise, if there exists $U \in S U(2)$ such that U locally diagonalises \mathcal{S}, then \mathcal{S}-Hamiltonian is NP-complete;

- Otherwise, if there exists $U \in S U(2)$ such that, for each 2-qubit matrix $H_{i} \in S, U^{\otimes 2} H_{i}\left(U^{\dagger}\right)^{\otimes 2}=\alpha_{i} Z^{\otimes 2}+A_{i} I+I B_{i}$, where $\alpha_{i} \in \mathbb{R}$ and A_{i}, B_{i} are arbitrary single-qubit Hermitian matrices, then \mathcal{S}-Hamiltonian is TIM-complete;
(9) Otherwise, \mathcal{S}-Hamiltonian is QMA-complete.

The easier cases

Cases (1) and (2) are the easiest:
(1) The minimal eigenvalue of a sum of 1-local terms is the sum of the minimal eigenvalues.

The easier cases

Cases (1) and (2) are the easiest:
(1) The minimal eigenvalue of a sum of 1-local terms is the sum of the minimal eigenvalues.
(2) If every interaction in \mathcal{S} is diagonal, the minimal eigenvalue is achieved on a computational basis state; NP-completeness follows from showing that any 2-body diagonal interaction can be produced.

The easier cases

Cases (1) and (2) are the easiest:
(1) The minimal eigenvalue of a sum of 1-local terms is the sum of the minimal eigenvalues.
(2) If every interaction in \mathcal{S} is diagonal, the minimal eigenvalue is achieved on a computational basis state; NP-completeness follows from showing that any 2-body diagonal interaction can be produced.

Case (3) is clearly no harder than S-Hamiltonian with local TERMS, so is contained in TIM; TIM-completeness follows by a reduction from $\{Z Z\}$-Hamiltonian with local terms.

The easier cases

Cases (1) and (2) are the easiest:
(1) The minimal eigenvalue of a sum of 1-local terms is the sum of the minimal eigenvalues.
(2) If every interaction in \mathcal{S} is diagonal, the minimal eigenvalue is achieved on a computational basis state; NP-completeness follows from showing that any 2-body diagonal interaction can be produced.

Case (3) is clearly no harder than \mathcal{S}-Hamiltonian with local TERMS, so is contained in TIM; TIM-completeness follows by a reduction from $\{Z Z\}$-Hamiltonian with local terms.

The most interesting case is (4)...

Proof techniques

If we do not have access to arbitrary 1-local terms, we can no longer use the same perturbative gadgets, so we rely on a different (and in some sense simpler) technique.

Proof techniques

If we do not have access to arbitrary 1-local terms, we can no longer use the same perturbative gadgets, so we rely on a different (and in some sense simpler) technique.

- The basic idea: encode interactions within a subspace.

Proof techniques

If we do not have access to arbitrary 1-local terms, we can no longer use the same perturbative gadgets, so we rely on a different (and in some sense simpler) technique.

- The basic idea: encode interactions within a subspace.
- Given two Hamiltonians H and V, we form $\widetilde{H}=V+\Delta H$, where Δ is a large parameter.
- Then $\widetilde{H}_{<\Delta / 2}$, the low-energy part of \widetilde{H}, is effectively the same as V_{-}, the projection of V onto the lowest-energy eigenspace of H.

Proof techniques

If we do not have access to arbitrary 1-local terms, we can no longer use the same perturbative gadgets, so we rely on a different (and in some sense simpler) technique.

- The basic idea: encode interactions within a subspace.
- Given two Hamiltonians H and V, we form $\widetilde{H}=V+\Delta H$, where Δ is a large parameter.
- Then $\widetilde{H}_{<\Delta / 2}$, the low-energy part of \widetilde{H}, is effectively the same as V_{-}, the projection of V onto the lowest-energy eigenspace of H.

Projection Lemma (informal, based on [Oliveira + Terhal '08])

If $\Delta=\delta\|V\|^{2}$, then

$$
\left\|\tilde{H}_{<\Delta / 2}-V_{-}\right\|=O(1 / \delta)
$$

Example: the Heisenberg model

The case $\mathcal{S}=\{X X+Y Y+Z Z\}$ illustrates the difficulties that we face when we do not have access to all 1-local terms. Let

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

Example: the Heisenberg model

The case $\mathcal{S}=\{X X+Y Y+Z Z\}$ illustrates the difficulties that we face when we do not have access to all 1-local terms. Let

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

- $X X+Y Y+Z Z$ is invariant under conjugation by $U^{\otimes 2}$ for all $U \in S U(2)$.

Example: the Heisenberg model

The case $\mathcal{S}=\{X X+Y Y+Z Z\}$ illustrates the difficulties that we face when we do not have access to all 1-local terms. Let

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

- $X X+Y Y+Z Z$ is invariant under conjugation by $U^{\otimes 2}$ for all $U \in S U(2)$.
- So the eigenspaces of H are all invariant under conjugation by $U^{\otimes n}$!

This means that we cannot hope to implement an arbitrary Hamiltonian using only this interaction.

Example: the Heisenberg model

The case $\mathcal{S}=\{X X+Y Y+Z Z\}$ illustrates the difficulties that we face when we do not have access to all 1-local terms. Let

$$
H=\sum_{i<j} \alpha_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)
$$

- $X X+Y Y+Z Z$ is invariant under conjugation by $U^{\otimes 2}$ for all $U \in S U(2)$.
- So the eigenspaces of H are all invariant under conjugation by $U^{\otimes n}$!

This means that we cannot hope to implement an arbitrary Hamiltonian using only this interaction.

Just as with classical CSPs, the way round this is to use encodings.

Example: the Heisenberg model

- We would like to find a gadget that encodes qubits, and lets us encode operations across qubits.

Example: the Heisenberg model

- We would like to find a gadget that encodes qubits, and lets us encode operations across qubits.
- We try to encode a logical qubit within a triangle of 3 physical qubits:

Example: the Heisenberg model

- We would like to find a gadget that encodes qubits, and lets us encode operations across qubits.
- We try to encode a logical qubit within a triangle of 3 physical qubits:

- This is inspired by previous work on universality of the exchange interaction [Kempe et al. '00].

Example: the Heisenberg model

The Heisenberg interaction is equivalent to the swap (flip) operation

$$
F=\frac{1}{2}(I+X X+Y Y+Z Z)
$$

Example: the Heisenberg model

The Heisenberg interaction is equivalent to the swap (flip) operation

$$
F=\frac{1}{2}(I+X X+Y Y+Z Z)
$$

- The first step: decompose the three qubits (labelled 1-3) into the 4 -dim symmetric subspace S_{1} of 3 qubits and its orthogonal complement S_{2}.

Example: the Heisenberg model

The Heisenberg interaction is equivalent to the swap (flip) operation

$$
F=\frac{1}{2}(I+X X+Y Y+Z Z)
$$

- The first step: decompose the three qubits (labelled 1-3) into the 4 -dim symmetric subspace S_{1} of 3 qubits and its orthogonal complement S_{2}.
- On S_{1}, F acts as the identity. On S_{2}, with respect to the right basis we have

$$
F_{12}+F_{13}+F_{23}=0, \quad-F_{12}=\mathrm{Z} \otimes I, \quad \frac{1}{\sqrt{3}}\left(F_{13}-F_{23}\right)=X \otimes I
$$

Example: the Heisenberg model

The Heisenberg interaction is equivalent to the swap (flip) operation

$$
F=\frac{1}{2}(I+X X+Y Y+Z Z)
$$

- The first step: decompose the three qubits (labelled 1-3) into the 4 -dim symmetric subspace S_{1} of 3 qubits and its orthogonal complement S_{2}.
- On S_{1}, F acts as the identity. On S_{2}, with respect to the right basis we have

$$
F_{12}+F_{13}+F_{23}=0, \quad-F_{12}=Z \otimes I, \quad \frac{1}{\sqrt{3}}\left(F_{13}-F_{23}\right)=X \otimes I .
$$

- By applying strong F interactions across all pairs of qubits, we can effectively project onto S_{2}.

Example: the Heisenberg model

The Heisenberg interaction is equivalent to the swap (flip) operation

$$
F=\frac{1}{2}(I+X X+Y Y+Z Z)
$$

- The first step: decompose the three qubits (labelled 1-3) into the 4 -dim symmetric subspace S_{1} of 3 qubits and its orthogonal complement S_{2}.
- On S_{1}, F acts as the identity. On S_{2}, with respect to the right basis we have

$$
F_{12}+F_{13}+F_{23}=0, \quad-F_{12}=\mathrm{Z} \otimes I, \quad \frac{1}{\sqrt{3}}\left(F_{13}-F_{23}\right)=X \otimes I
$$

- By applying strong F interactions across all pairs of qubits, we can effectively project onto S_{2}.
- Then we can apply Z and X on two logical pseudo-qubits.

Example: the Heisenberg model

We would now like to apply pairwise interactions across logical qubits.

Example: the Heisenberg model

We would now like to apply pairwise interactions across logical qubits.

- This can almost be done by applying F interactions across different choices of physical qubits.

Example: the Heisenberg model

We would now like to apply pairwise interactions across logical qubits.

- This can almost be done by applying F interactions across different choices of physical qubits.
- Let the logical qubits in the first (resp. second) triangle be labelled $(1,2)$ (resp. $(3,4))$.

Example: the Heisenberg model

We would now like to apply pairwise interactions across logical qubits.

- This can almost be done by applying F interactions across different choices of physical qubits.
- Let the logical qubits in the first (resp. second) triangle be labelled $(1,2)$ (resp. $(3,4))$.
- It turns out that, by applying suitable linear combinations across qubits, we can effectively make

$$
X_{1} X_{3}(2 F-I)_{24}, \quad Z_{1} \mathrm{Z}_{3}(2 F-I)_{24}, \quad I_{1} I_{3}(2 F-I)_{24} .
$$

Example: the Heisenberg model

So, using Heisenberg interactions alone, we can implement an arbitrary (logical) Hamiltonian of the form

$$
H=\sum_{k=1}^{n}\left(\alpha_{k} X_{k}+\beta_{k} Z_{k}\right) I_{k^{\prime}}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)(2 F-I)_{i^{\prime} j^{\prime}}
$$

where we identify the i^{\prime} th logical qubit pair with indices $\left(i, i^{\prime}\right)$.

Example: the Heisenberg model

So, using Heisenberg interactions alone, we can implement an arbitrary (logical) Hamiltonian of the form

$$
H=\sum_{k=1}^{n}\left(\alpha_{k} X_{k}+\beta_{k} Z_{k}\right) I_{k^{\prime}}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)(2 F-I)_{i^{\prime} j^{\prime}}
$$

where we identify the i^{\prime} th logical qubit pair with indices $\left(i, i^{\prime}\right)$.

- We would like to remove the $(2 F-I)$ operators.

Example: the Heisenberg model

So, using Heisenberg interactions alone, we can implement an arbitrary (logical) Hamiltonian of the form

$$
H=\sum_{k=1}^{n}\left(\alpha_{k} X_{k}+\beta_{k} Z_{k}\right) I_{k^{\prime}}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)(2 F-I)_{i^{\prime} j^{\prime}},
$$

where we identify the i^{\prime} th logical qubit pair with indices $\left(i, i^{\prime}\right)$.

- We would like to remove the ($2 F-I$) operators.
- To do this, we force the primed qubits to be in some state by very strong $F_{i^{\prime} j^{\prime}}$ interactions: we add the (logical) term

$$
G=\Delta \sum_{i<j} w_{i j} F_{i^{\prime} j^{\prime}}
$$

where $w_{i j}$ are some weights and Δ is very large.

Example: the Heisenberg model

So, using Heisenberg interactions alone, we can implement an arbitrary (logical) Hamiltonian of the form

$$
H=\sum_{k=1}^{n}\left(\alpha_{k} X_{k}+\beta_{k} Z_{k}\right) I_{k^{\prime}}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)(2 F-I)_{i^{\prime} j^{\prime}},
$$

where we identify the i^{\prime} th logical qubit pair with indices $\left(i, i^{\prime}\right)$.

- We would like to remove the ($2 F-I$) operators.
- To do this, we force the primed qubits to be in some state by very strong $F_{i^{\prime} j^{\prime}}$ interactions: we add the (logical) term

$$
G=\Delta \sum_{i<j} w_{i j} F_{i^{\prime} j^{\prime}}
$$

where $w_{i j}$ are some weights and Δ is very large.

- We can do this by making $I_{i} I_{j}(2 F-I)_{i^{\prime} j^{\prime}}$ as on last slide.

Example: the Heisenberg model

If the ground state $|\psi\rangle$ of G is non-degenerate, the primed qubits will all be effectively projected onto the ground state, and H will become (up to a small additive error)

$$
\widetilde{H}=\sum_{k=1}^{n} \alpha_{k} X_{k}+\beta_{k} Z_{k}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle
$$

Example: the Heisenberg model

If the ground state $|\psi\rangle$ of G is non-degenerate, the primed qubits will all be effectively projected onto the ground state, and H will become (up to a small additive error)

$$
\widetilde{H}=\sum_{k=1}^{n} \alpha_{k} X_{k}+\beta_{k} Z_{k}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle
$$

- So we need to find a G such that the ground state is non-degenerate and $\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle \neq 0$ for all i, j (and also these quantities should be easily computable).

Example: the Heisenberg model

If the ground state $|\psi\rangle$ of G is non-degenerate, the primed qubits will all be effectively projected onto the ground state, and H will become (up to a small additive error)

$$
\widetilde{H}=\sum_{k=1}^{n} \alpha_{k} X_{k}+\beta_{k} Z_{k}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle
$$

- So we need to find a G such that the ground state is non-degenerate and $\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle \neq 0$ for all i, j (and also these quantities should be easily computable).
- Not so easy! This corresponds to an exactly solvable special case of the Heisenberg model, and not many of these are known.

Example: the Heisenberg model

If the ground state $|\psi\rangle$ of G is non-degenerate, the primed qubits will all be effectively projected onto the ground state, and H will become (up to a small additive error)

$$
\widetilde{H}=\sum_{k=1}^{n} \alpha_{k} X_{k}+\beta_{k} Z_{k}+\sum_{i<j}\left(\gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}\right)\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}\langle\psi\rangle .
$$

- So we need to find a G such that the ground state is non-degenerate and $\langle\psi|(2 F-I)_{i^{\prime} j^{\prime}}|\psi\rangle \neq 0$ for all i, j (and also these quantities should be easily computable).
- Not so easy! This corresponds to an exactly solvable special case of the Heisenberg model, and not many of these are known.
- Luckily for us, the Lieb-Mattis model [Lieb and Mattis '62] has precisely the properties we need.

The Lieb-Mattis model

The Lieb-Mattis model describes Hamiltonians of the form

$$
H_{L M}=\sum_{i \in A, j \in B} X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}
$$

where A and B are disjoint subsets of qubits.

The Lieb-Mattis model

The Lieb-Mattis model describes Hamiltonians of the form

$$
H_{L M}=\sum_{i \in A, j \in B} X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}
$$

where A and B are disjoint subsets of qubits.
Claim [Lieb and Mattis '62, ...]
If $|A|=|B|=n$, the ground state $|\phi\rangle$ of $H_{L M}$ is unique. For i and j such that $i, j \in A$ or $i, j \in B,\langle\phi| F_{i j}|\phi\rangle=1$. Otherwise, $\langle\phi| F_{i j}|\phi\rangle=-2 / n$.

The Lieb-Mattis model

The Lieb-Mattis model describes Hamiltonians of the form

$$
H_{L M}=\sum_{i \in A, j \in B} X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}
$$

where A and B are disjoint subsets of qubits.
Claim [Lieb and Mattis '62, ...]
If $|A|=|B|=n$, the ground state $|\phi\rangle$ of $H_{L M}$ is unique. For i and j such that $i, j \in A$ or $i, j \in B,\langle\phi| F_{i j}|\phi\rangle=1$. Otherwise, $\langle\phi| F_{i j}|\phi\rangle=-2 / n$.

Using this claim, we can effectively implement any Hamiltonian of the form

$$
\widetilde{H}=\sum_{k=1}^{n} \alpha_{k} X_{k}+\beta_{k} Z_{k}+\sum_{i<j} \gamma_{i j} X_{i} X_{j}+\delta_{i j} Z_{i} Z_{j}
$$

which suffices for QMA-completeness [Biamonte and Love '08](%5B).

The other QMA-complete cases

We've dealt with the Heisenberg model. . . what about everything else?

- Our normal form drastically reduces the number of interactions we have to consider to a few special cases.
- The XY model $\mathcal{S}=\{X X+Y Y\}$ uses similar techniques to the Heisenberg model, but the gadgets are a bit simpler.
- For $\mathcal{S}=\{X X+\alpha Y Y+\beta Z Z\}$, we can reduce from the $X Y$ model.
- For interactions with 1-local terms, using gadgets we can effectively delete the 1-local parts.

The other QMA-complete cases

We've dealt with the Heisenberg model. . . what about everything else?

- Our normal form drastically reduces the number of interactions we have to consider to a few special cases.
- The XY model $\mathcal{S}=\{X X+Y Y\}$ uses similar techniques to the Heisenberg model, but the gadgets are a bit simpler.
- For $\mathcal{S}=\{X X+\alpha Y Y+\beta Z Z\}$, we can reduce from the $X Y$ model.
- For interactions with 1-local terms, using gadgets we can effectively delete the 1-local parts.

Finding and verifying each of the gadgets required was somewhat painful and required the use of a computer algebra package.

Conclusions and open problems

We have (almost) completely characterised the complexity of 2-local qubit Hamiltonians.
Despite this, our work is only just beginning...

Conclusions and open problems

We have (almost) completely characterised the complexity of 2-local qubit Hamiltonians.
Despite this, our work is only just beginning...

- What about k-qubit interactions for $k>2$? We only resolved this case for \mathcal{S}-Hamiltonian with local terms.

Conclusions and open problems

We have (almost) completely characterised the complexity of 2-local qubit Hamiltonians.

Despite this, our work is only just beginning...

- What about k-qubit interactions for $k>2$? We only resolved this case for \mathcal{S}-Hamiltonian with local terms.

- What about local dimension $d>2$? Classically, the complexity of d-ary CSPs is still unresolved.

More open problems

- What about restrictions on the interaction pattern or weights? e.g. the antiferromagnetic Heisenberg model etc.
- See very recent independent work proving QMA-hardness for $\mathcal{S}=\{X X+Y Y, Z\}$ when weights of $X X+Y Y$ terms are positive and weights of Z terms are negative [Childs, Gosset and Webb '13]. . .
- What about quantum k-SAT?
- Finally, what is the complexity of TIM? Our intuition: at least MA-hard...

Thanks!

arXiv:1311.3161

The different cases in the characterisation

To finish off the 2-local special case of \mathcal{S}-Hamiltonian with LOCAL TERMS:

- If the 2-local part of any interaction in \mathcal{S} is locally equivalent to $X X+\beta Y Y+\gamma Z Z$ or $X Z-Z X$, we have QMA-completeness;

The different cases in the characterisation

To finish off the 2-local special case of \mathcal{S}-Hamiltonian with LOCAL TERMS:

- If the 2-local part of any interaction in \mathcal{S} is locally equivalent to $X X+\beta Y Y+\gamma Z Z$ or $X Z-Z X$, we have QMA-completeness;
- If the 2-local part of all the interactions is locally equivalent to ZZ , using local rotations we can show equivalence to the transverse Ising model;

The different cases in the characterisation

To finish off the 2-local special case of \mathcal{S}-Hamiltonian with LOCAL TERMS:

- If the 2-local part of any interaction in \mathcal{S} is locally equivalent to $X X+\beta Y Y+\gamma Z Z$ or $X Z-Z X$, we have QMA-completeness;
- If the 2-local part of all the interactions is locally equivalent to $Z Z$, using local rotations we can show equivalence to the transverse Ising model;
- If neither of these is true, we must have one interaction equivalent to $X X$, another to $A A$ for some $A \neq X$ (exercise!).

The different cases in the characterisation

To finish off the 2-local special case of \mathcal{S}-Hamiltonian with LOCAL TERMS:

- If the 2-local part of any interaction in \mathcal{S} is locally equivalent to $X X+\beta Y Y+\gamma Z Z$ or $X Z-Z X$, we have QMA-completeness;
- If the 2-local part of all the interactions is locally equivalent to ZZ , using local rotations we can show equivalence to the transverse Ising model;
- If neither of these is true, we must have one interaction equivalent to $X X$, another to $A A$ for some $A \neq X$ (exercise!).
- So we can make $X X+A A$, which suffices for QMA-completeness.

The k-local case for $k>2$

We can generalise to \mathcal{S}-Hamiltonian with local terms when \mathcal{S} contains k-qubit interactions, for any constant $k>2$.

The k-local case for $k>2$

We can generalise to \mathcal{S}-Hamiltonian with local terms when \mathcal{S} contains k-qubit interactions, for any constant $k>2$.

- Basic idea: using local terms, produce effective $(k-1)$ qubit interactions from k-qubit interactions, via the gadget

$$
\stackrel{\Delta}{\stackrel{\circ}{a}} \underset{\sim}{\langle }\rangle\langle\psi| \quad I \otimes A+X \otimes B+Y \otimes C+\mathrm{Z} \otimes D
$$

The k-local case for $k>2$

We can generalise to \mathcal{S}-Hamiltonian with local terms when \mathcal{S} contains k-qubit interactions, for any constant $k>2$.

- Basic idea: using local terms, produce effective $(k-1)$ qubit interactions from k-qubit interactions, via the gadget

- By letting $|\psi\rangle$ be the eigenvector of X, Y or Z with eigenvalue ± 1, we can produce the effective interactions $A \pm B, A \pm C$ and $A \pm D$ (up to a small additive error).

The k-local case for $k>2$

We can generalise to \mathcal{S}-Hamiltonian with local terms when \mathcal{S} contains k-qubit interactions, for any constant $k>2$.

- Basic idea: using local terms, produce effective $(k-1)$ qubit interactions from k-qubit interactions, via the gadget

- By letting $|\psi\rangle$ be the eigenvector of X, Y or Z with eigenvalue ± 1, we can produce the effective interactions $A \pm B, A \pm C$ and $A \pm D$ (up to a small additive error).
- By adding/subtracting these matrices we can make each of $\{A, B, C, D\}$.

The k-local case for $k>2$

We can generalise to \mathcal{S}-Hamiltonian with local terms when \mathcal{S} contains k-qubit interactions, for any constant $k>2$.

- Basic idea: using local terms, produce effective $(k-1)$ qubit interactions from k-qubit interactions, via the gadget

$$
\stackrel{\Delta \psi\rangle}{\stackrel{a}{a}}\langle\boldsymbol{\psi}| \quad I \otimes A+X \otimes B+Y \otimes C+\mathrm{Z} \otimes D
$$

- By letting $|\psi\rangle$ be the eigenvector of X, Y or Z with eigenvalue ± 1, we can produce the effective interactions $A \pm B, A \pm C$ and $A \pm D$ (up to a small additive error).
- By adding/subtracting these matrices we can make each of $\{A, B, C, D\}$.
- So either \mathcal{S} is QMA-complete, or all 2-local "parts" of each interaction in \mathcal{S} are simultaneously diagonalisable by local unitaries. This case turns out to be in TIM.

S-Hamiltonian: The list of lemmas

It suffices to prove QMA-completeness of the following cases:
© $\{X X+Y Y+Z Z\}$-Hamiltonian;
(2) $\{X X+Y Y\}$-Hamiltonian;
© $\{\mathrm{XZ}-\mathrm{ZX}\}$-Hamiltonian;
© $\{X X+\beta Y Y+\gamma Z Z\}$-Hamiltonian;
© $\{X X+\beta Y Y+\gamma Z Z+A I+I A\}$-Hamiltonian;
© $\{\mathrm{XZ}-\mathrm{ZX}+A I-I A\}$-Hamiltonian.
In the above, β, γ are real numbers such that at least one of β and γ is non-zero, and A is an arbitrary single-qubit Hermitian matrix.

S-Hamiltonian: The list of lemmas

We also need some reductions from cases which are not necessarily QMA-complete:

- $\{Z Z, X, Z\}$-Hamiltonian reduces to $\{\mathrm{ZZ}+A I+I A\}$-Hamiltonian;
- $\{Z Z, X, Z\}$-Hamiltonian reduces to $\{Z Z, A I-I A\}$-Hamiltonian.

In the above, A is any single-qubit Hermitian matrix which does not commute with Z .

And the very final case to consider:

- Let \mathcal{S} be a set of diagonal Hermitian matrices on at most 2 qubits. Then, if every matrix in \mathcal{S} is 1-local, \mathcal{S}-Hamiltonian is in P. Otherwise, \mathcal{S}-Hamiltonian is NP-complete.

Example gadget for cases with 1-local terms

Let $H:=X X+\beta Y Y+\gamma Z Z+A I+I A$, where β or γ is non-zero.

Lemma

$\{H\}$-Hamiltonian is QMA-complete.
The gadget used looks like:

- The ground state of $G:=H_{a b}+H_{c d}-H_{a c}-H_{b d}$ is maximally entangled across the split ($a-c: d$).
- So if we project $H_{d e}$ onto this state, the effective interaction produced is A on qubit e.
- This allows us to effectively delete the 1-local part of H.

