
Quantum Algorithms

Ashley Montanaro

School of Mathematics,
University of Bristol

20 July 2016

Introduction

What can we do with our (universal, general-purpose)
quantum computers?

This talk:
1 Classic applications
2 More recent applications
3 Applications with no quantum computer required

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 279 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

Introduction

What can we do with our (universal, general-purpose)
quantum computers?

This talk:
1 Classic applications
2 More recent applications
3 Applications with no quantum computer required

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 279 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

Introduction

What can we do with our (universal, general-purpose)
quantum computers?

This talk:
1 Classic applications
2 More recent applications
3 Applications with no quantum computer required

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 279 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

Some other cryptosystems are also known to be broken by
quantum algorithms (e.g. elliptic curves), but not all.

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

Some other cryptosystems are also known to be broken by
quantum algorithms (e.g. elliptic curves), but not all.

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

Some other cryptosystems are also known to be broken by
quantum algorithms (e.g. elliptic curves), but not all.

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Quadratic speedup

Is a quadratic speedup significant?

A concrete example: Circuit SAT with different clock speeds.

Classical Quantum
Input bits 1MHz 1GHz 1KHz 10KHz 1MHz

30 18s 1s 32s 3s 0.03s
40 13d 18m 17m 104s 1s
50 36y 13d 9h 55m 33s
60 37M 36y 12d 1d 18m

Speeds listed are approximate, effective speeds (i.e. number of
circuit evaluations per second) after overhead for
fault-tolerance.

Quadratic speedup

Is a quadratic speedup significant?

A concrete example: Circuit SAT with different clock speeds.

Classical Quantum
Input bits 1MHz 1GHz 1KHz 10KHz 1MHz

30 18s 1s 32s 3s 0.03s
40 13d 18m 17m 104s 1s
50 36y 13d 9h 55m 33s
60 37M 36y 12d 1d 18m

Speeds listed are approximate, effective speeds (i.e. number of
circuit evaluations per second) after overhead for
fault-tolerance.

Applications of Grover’s algorithm

An important generalisation of Grover’s algorithm is known
as amplitude amplification.

Amplitude amplification [Brassard et al ’00]

Assume we are given access to a “checking” function f , and a
probabilistic algorithm A such that

Pr[A outputs w such that f (w) = 1] = ε.

Then we can find w such that f (w) = 1 with O(1/
√
ε) uses of f .

Gives a quadratic speed-up over classical algorithms which are
based on heuristics.

Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Quantum simulation
The most important early application of quantum computers
is likely to be quantum simulation.

Here, we use “simulation” to mean approximating the
dynamical properties of a quantum system.

Problem
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

Quantum simulation
The most important early application of quantum computers
is likely to be quantum simulation.

Here, we use “simulation” to mean approximating the
dynamical properties of a quantum system.

Problem
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

Quantum simulation
The most important early application of quantum computers
is likely to be quantum simulation.

Here, we use “simulation” to mean approximating the
dynamical properties of a quantum system.

Problem
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

Quantum simulation

Applications of quantum simulation include quantum
chemistry, superconductivity, metamaterials, high-energy
physics, . . . [Georgescu et al ’13]

Some recent examples:

The Hubbard model used in the study of
superconductivity [Wecker et al ’15]

Quantum chemistry [Hastings et al ’14] [Wecker et al ’14]

Quantum field theories [Jordan et al ’11]

Many static properties of quantum systems are also interesting
(e.g. ground-state energy).

There is good evidence that these are hard to compute in
the worst case, but may be easy for physical systems of
interest.

Quantum simulation

Applications of quantum simulation include quantum
chemistry, superconductivity, metamaterials, high-energy
physics, . . . [Georgescu et al ’13]

Some recent examples:

The Hubbard model used in the study of
superconductivity [Wecker et al ’15]

Quantum chemistry [Hastings et al ’14] [Wecker et al ’14]

Quantum field theories [Jordan et al ’11]

Many static properties of quantum systems are also interesting
(e.g. ground-state energy).

There is good evidence that these are hard to compute in
the worst case, but may be easy for physical systems of
interest.

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08] [Ambainis ’10] [Berry et al ’15].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08] [Ambainis ’10] [Berry et al ’15].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08] [Ambainis ’10] [Berry et al ’15].

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Computing electromagnetic scattering cross-sections using
the finite element method [Clader et al ’13] [AM and Pallister ’16]

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’14]

Recommendation systems [Kerenidis and Prakash ’16]

Space-efficient matrix inversion [Ta-Shma ’13]

Quantum walks

A quantum walk on a graph is a quantum generalisation of a
classical random walk.

Two variants: continuous-time and discrete-time.

A continuous-time quantum walk for time t on a graph
with adjacency matrix A is the application of the unitary
operator e−iAt.

Continuous-time quantum walks can be efficiently
implemented as quantum circuits using Hamiltonian
simulation.

Quantum walks

Consider the graph formed by gluing two binary trees with N
vertices together, e.g.:

Quantum walks

Now add a random cycle in the middle:

Quantum walk on the glued trees graph

Theorem [Childs et al ’02]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).

Any classical algorithm given black-box access to the
graph requires O(N1/6) queries to find the exit.

Other applications of continuous-time quantum walks:

Spatial search [Childs and Goldstone ’03]

Evaluation of boolean formulae [Farhi et al ’07] [Childs et al ’07]

Quantum walk on the glued trees graph

Theorem [Childs et al ’02]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires O(N1/6) queries to find the exit.

Other applications of continuous-time quantum walks:

Spatial search [Childs and Goldstone ’03]

Evaluation of boolean formulae [Farhi et al ’07] [Childs et al ’07]

Quantum walk on the glued trees graph

Theorem [Childs et al ’02]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires O(N1/6) queries to find the exit.

Other applications of continuous-time quantum walks:

Spatial search [Childs and Goldstone ’03]

Evaluation of boolean formulae [Farhi et al ’07] [Childs et al ’07]

Some examples
Quantum walks can be used to solve many different search
problems, such as:

Finding a triangle in a graph: O(n1.25) queries, vs. classical
O(n2) [Le Gall ’14] [Jeffery et al ’12] [Magniez et al ’03]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Whether n integers are all distinct: O(n2/3) queries, vs.
classical O(n) [Ambainis ’03]

Some examples
Quantum walks can be used to solve many different search
problems, such as:

Finding a triangle in a graph: O(n1.25) queries, vs. classical
O(n2) [Le Gall ’14] [Jeffery et al ’12] [Magniez et al ’03]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Whether n integers are all distinct: O(n2/3) queries, vs.
classical O(n) [Ambainis ’03]

Some examples
Quantum walks can be used to solve many different search
problems, such as:

Finding a triangle in a graph: O(n1.25) queries, vs. classical
O(n2) [Le Gall ’14] [Jeffery et al ’12] [Magniez et al ’03]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Whether n integers are all distinct: O(n2/3) queries, vs.
classical O(n) [Ambainis ’03]

Some examples
Quantum walks can be used to solve many different search
problems, such as:

Finding a triangle in a graph: O(n1.25) queries, vs. classical
O(n2) [Le Gall ’14] [Jeffery et al ’12] [Magniez et al ’03]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Whether n integers are all distinct: O(n2/3) queries, vs.
classical O(n) [Ambainis ’03]

Some examples
Quantum walks can be used to solve many different search
problems, such as:

Finding a triangle in a graph: O(n1.25) queries, vs. classical
O(n2) [Le Gall ’14] [Jeffery et al ’12] [Magniez et al ’03]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Whether n integers are all distinct: O(n2/3) queries, vs.
classical O(n) [Ambainis ’03]

Yet more algorithms

There are a number of other quantum algorithms which I
don’t have time to go into:

Hidden subgroup problems (e.g. [Bacon et al ’05])
Number-theoretic problems (e.g. [Fontein and Wocjan ’11], . . .)
Formula evaluation (e.g. [Reichardt and Špalek ’07])
Tensor contraction (e.g. [Arad and Landau ’08])
Hidden shift problems (e.g. [Gavinsky et al ’11])
Adiabatic optimisation (e.g. [Farhi et al ’00])
. . .

. . . as well as the entire field of quantum communication
complexity.

Quantum computing without a quantum
computer

Although we don’t have a large-scale quantum computer yet,
quantum algorithmic thinking has already paid dividends:

The burgeoning field of Hamiltonian complexity and
QMA-completeness has characterised the hardness of
ground-state energy estimation problems for a variety of
physical systems (e.g. [Kitaev, Shen and Vyalyi ’02] [Schuch and
Verstraete ’09] [Cubitt and AM ’13])

Understanding multiple-prover quantum Merlin-Arthur
proof systems has given new lower bounds on the
classical complexity of computing tensor and matrix
norms [Harrow and AM ’10]

New limitations on classical data structures, codes and
formulas (see e.g. [Drucker and de Wolf ’09])

Quantum computing without a quantum
computer

Although we don’t have a large-scale quantum computer yet,
quantum algorithmic thinking has already paid dividends:

The burgeoning field of Hamiltonian complexity and
QMA-completeness has characterised the hardness of
ground-state energy estimation problems for a variety of
physical systems (e.g. [Kitaev, Shen and Vyalyi ’02] [Schuch and
Verstraete ’09] [Cubitt and AM ’13])

Understanding multiple-prover quantum Merlin-Arthur
proof systems has given new lower bounds on the
classical complexity of computing tensor and matrix
norms [Harrow and AM ’10]

New limitations on classical data structures, codes and
formulas (see e.g. [Drucker and de Wolf ’09])

Quantum computing without a quantum
computer

Although we don’t have a large-scale quantum computer yet,
quantum algorithmic thinking has already paid dividends:

The burgeoning field of Hamiltonian complexity and
QMA-completeness has characterised the hardness of
ground-state energy estimation problems for a variety of
physical systems (e.g. [Kitaev, Shen and Vyalyi ’02] [Schuch and
Verstraete ’09] [Cubitt and AM ’13])

Understanding multiple-prover quantum Merlin-Arthur
proof systems has given new lower bounds on the
classical complexity of computing tensor and matrix
norms [Harrow and AM ’10]

New limitations on classical data structures, codes and
formulas (see e.g. [Drucker and de Wolf ’09])

Quantum computing without a quantum
computer

Although we don’t have a large-scale quantum computer yet,
quantum algorithmic thinking has already paid dividends:

The burgeoning field of Hamiltonian complexity and
QMA-completeness has characterised the hardness of
ground-state energy estimation problems for a variety of
physical systems (e.g. [Kitaev, Shen and Vyalyi ’02] [Schuch and
Verstraete ’09] [Cubitt and AM ’13])

Understanding multiple-prover quantum Merlin-Arthur
proof systems has given new lower bounds on the
classical complexity of computing tensor and matrix
norms [Harrow and AM ’10]

New limitations on classical data structures, codes and
formulas (see e.g. [Drucker and de Wolf ’09])

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

www.nature.com/articles/npjqi201523

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

www.nature.com/articles/npjqi201523

