Quantum Computing

Ashley Montanaro

ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

12 February 2014

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 1/16

Quantum computing

A quantum computer is a machine designed to use the principles of quantum mechanics to do things which are fundamentally impossible for any computer built only based on classical physics.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 2/16

Quantum computing

A quantum computer is a machine designed to use the principles of quantum mechanics to do things which are fundamentally impossible for any computer built only based on classical physics.

Google tries to save the world: Internet giant explains how its move into quantum computing could solve global warming

- . Google's D-Wave computer is 3,600 times faster than a normal computer
- · It uses qubits to perform calculations and solve optimisation problems
- . In the video, Google and Nasa explain the basics of quantum computing
- . They discuss multi-verse theory and give an example of optimisation
- Faster speeds mean it can tackle complex problems such as disease, climate change and genetics
- Google hopes it will help develop sophisticated artificial life, and find
 aliens

Daily Mail, 15 October 2013

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

This talk

- 1. A brief introduction to the quantum computing model
- 2. Quantum algorithms: what quantum computers can do
- 3. Experimental implementations
- 4. Further reading

On a normal ("classical") computer, we store information as bits.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

On a normal ("classical") computer, we store information as bits.

• A bit can be either in the state 0, or the state 1.

On a normal ("classical") computer, we store information as bits.

- A bit can be either in the state 0, or the state 1.
- Physically, we can store a bit in some object that has two states:

Pic: coins-of-the-uk.co.uk

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

On a normal ("classical") computer, we store information as bits.

- A bit can be either in the state 0, or the state 1.
- Physically, we can store a bit in some object that has two states:

Pic: coins-of-the-uk.co.uk

A qubit ("quantum bit") is stored in a tiny physical system like an individual atom that behaves quantum mechanically.

As well as being in states corresponding to 0 or 1, a qubit can be anywhere in between!

► Here α and β are any numbers (in fact, more generally complex numbers...) satisfying $\alpha^2 + \beta^2 = 1$.

As well as being in states corresponding to 0 or 1, a qubit can be anywhere in between!

- ► Here α and β are any numbers (in fact, more generally complex numbers...) satisfying $\alpha^2 + \beta^2 = 1$.
- This is called superposition.

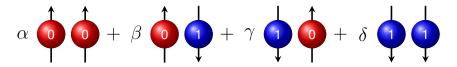
As well as being in states corresponding to 0 or 1, a qubit can be anywhere in between!

- ► Here α and β are any numbers (in fact, more generally complex numbers...) satisfying $\alpha^2 + \beta^2 = 1$.
- This is called superposition.

If we have *n* qubits, they can be in a superposition of 2^n different states:

$$\alpha \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \beta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \gamma \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} + \delta \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet$$

Ashley Montanaro
Quantum computing

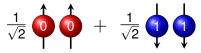


As well as being in states corresponding to 0 or 1, a qubit can be anywhere in between!

- ► Here α and β are any numbers (in fact, more generally complex numbers...) satisfying $\alpha^2 + \beta^2 = 1$.
- This is called superposition.

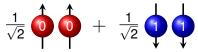
If we have *n* qubits, they can be in a superposition of 2^n different states:

This allows a quantum computer to run an algorithm on many possible inputs simultaneously.

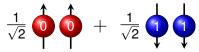

Ashley Montanaro		
		University of BRISTOL
Quantum computing	Slide 5/16	💁 🖓 BRISTOL

If we measure some qubits, we see each outcome with probability equal to its corresponding coefficient squared.

Slide 6/16


- If we measure some qubits, we see each outcome with probability equal to its corresponding coefficient squared.
- For example, imagine we have two qubits in the state

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing


- If we measure some qubits, we see each outcome with probability equal to its corresponding coefficient squared.
- For example, imagine we have two qubits in the state

► Then if we measure the qubits, we get outcome 00 with probability ¹/₂, and outcome 11 with probability ¹/₂.

- If we measure some qubits, we see each outcome with probability equal to its corresponding coefficient squared.
- For example, imagine we have two qubits in the state

- ► Then if we measure the qubits, we get outcome 00 with probability ¹/₂, and outcome 11 with probability ¹/₂.
- But what if the first qubit is in Bristol, and the second is on the Moon?

Slide 6/16

- If we measure some qubits, we see each outcome with probability equal to its corresponding coefficient squared.
- For example, imagine we have two qubits in the state

- ► Then if we measure the qubits, we get outcome 00 with probability ¹/₂, and outcome 11 with probability ¹/₂.
- But what if the first qubit is in Bristol, and the second is on the Moon?

- It seems that the measurement result in Bristol has instantaneously affected the qubit on the Moon...
- This bizarre phenomenon is known as quantum entanglement.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Shor's algorithm

Integer factorisation

Given an integer *N* such that $N = p \times q$ for prime numbers *p* and *q*, find *p* and *q*.

For example: given 15 as input, the output should be 3 and 5.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 7/16

Shor's algorithm

Integer factorisation

Given an integer *N* such that $N = p \times q$ for prime numbers *p* and *q*, find *p* and *q*.

For example: given 15 as input, the output should be 3 and 5.

Shor's algorithm

- In 1994, Peter Shor described a quantum algorithm which can factorise large integers efficiently.
- No efficient classical algorithm is known for this problem.

Pic: physik.uni-graz.at

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Why should we care about integer factorisation?

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 8/16

Why should we care about integer factorisation?

The RSA cryptosystem which underlies Internet security relies on the hardness of integer factorisation.

Slide 8/16

Why should we care about integer factorisation?

- The RSA cryptosystem which underlies Internet security relies on the hardness of integer factorisation.
- If we could factorise large numbers efficiently, we could break this cryptosystem.

Why should we care about integer factorisation?

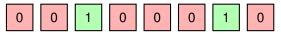
- The RSA cryptosystem which underlies Internet security relies on the hardness of integer factorisation.
- If we could factorise large numbers efficiently, we could break this cryptosystem.

In 2009, a 232-digit number was factorised using hundreds of computers over a period of 2 years... by comparison, a large quantum computer could factorise a number with thousands of digits in a matter of minutes.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 8/16

 One of the most basic problems in computer science is unstructured search.

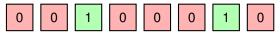

Pic: Bell Labs

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 9/16

- One of the most basic problems in computer science is unstructured search.
- Imagine we have n boxes, each containing a 0 or a 1. We can look inside a box at a cost of one query.

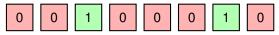
• We want to find a box containing a 1.


Pic: Bell Labs

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 9/16

- One of the most basic problems in computer science is unstructured search.
- Imagine we have n boxes, each containing a 0 or a 1. We can look inside a box at a cost of one query.


- We want to find a box containing a 1.
- On a classical computer, this task could require n queries in the worst case.

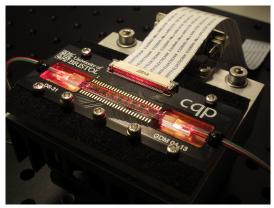
Pic: Bell Labs

- One of the most basic problems in computer science is unstructured search.
- Imagine we have n boxes, each containing a 0 or a 1. We can look inside a box at a cost of one query.

- We want to find a box containing a 1.
- ► On a classical computer, this task could require n queries in the worst case. But on a quantum computer, Grover's algorithm can solve the problem with roughly √n queries.

Pic: Bell Labs

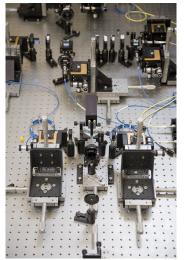
Slide 9/16


There are a number of different technologies which could be used to implement a quantum computer.

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 10/16

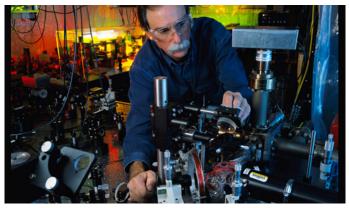
There are a number of different technologies which could be used to implement a quantum computer.


Photonic quantum circuits on silicon (University of Bristol)

Pic: University of Bristol

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 10/16


"Bulk" optics (University of Bristol)

Pic: Carmel King

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 11/16

Ion trap (David Wineland group, NIST)

Pic: nobelprize.org

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 12/16

1. When can I have one?

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 13/16

- 1. When can I have one?
- 2. Will I have one on my desk?

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Slide 13/16

- 1. When can I have one?
- 2. Will I have one on my desk?
- 3. Can they help discover aliens?

Slide 13/16

- 1. When can I have one?
- 2. Will I have one on my desk?
- 3. Can they help discover aliens?

To summarise:

- Quantum computing is a new and exciting model of computation which can do things that classical computing simply cannot.
- A massive international effort is ongoing to build a large-scale quantum computer, including here at Bristol.
- ► There are still many fascinating open problems to address.

Further reading

Winning a Game Show with a Quantum Computer Ashley Montanaro http://www.cs.bris.ac.uk/~montanar/gameshow.pdf

Quantum Computing Since Democritus Scott Aaronson http://www.scottaaronson.com/democritus/

Introduction to Quantum Computing, University of Waterloo John Watrous https://cs.uwaterloo.ca/~watrous/LectureNotes.html

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

Partial timeline: Theory of quantum computing

- 1984 Quantum cryptographic key distribution invented [Bennett+Brassard]
- 1985 General quantum computational model proposed [Deutsch]
- 1992 First exponential quantum speed-up discovered [Deutsch and Jozsa]
- 1993 Quantum teleportation invented [Bennett et al.]
- 1994 Shor's algorithm rewrites the rulebook of classical cryptography
- 1995 Quantum error-correcting codes invented [Shor]
- 1996 Quantum simulation algorithm proposed [Lloyd]
- 1996 Quantum speed-up for unstructured search problems [Grover]
- 1998 Efficient quantum communication protocols [Buhrman et al.]
- 2003 Exponential speed-ups by quantum walks invented [Childs et al.]

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

1

Slide 15/16

Partial timeline: Quantum computing experiments

1997-8	Quantum teleportation demonstrated [Innsbruck, Rome, Caltech,]
1998	Quantum error-correction demonstrated [MIT]
2001	Shor's algorithm factorises $15 = 3 \times 5$ using NMR [IBM]
2005	8 qubits controlled in ion trap [Innsbruck]
2008	Photonic waveguide quantum circuits demonstrated [Bristol]
2010	Entangled states of 14 qubits created in ion trap [Innsbruck]
2012	$21 = 3 \times 7$ factorised using quantum optics [Bristol]
2012	100 μ s coherence for superconducting electronic qubits [IBM]
2013	First publicly-accessible "quantum cloud" [Bristol]

Ashley Montanaro ashley@cs.bris.ac.uk Quantum computing

L.

Slide 16/16