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Introduction
We consider the quantum analogue of hypothesis testing:
quantum state discrimination.

Problem
Given an unknown state ρ? picked from an ensemble E = {ρi}

of quantum states, with a priori probabilities pi, how hard is it
to determine which state ρ? is?

Formally: let M = {µi} be a quantum measurement (POVM),
i.e. µi > 0,

∑
i µi = I. Define the probability of error

PE(M, E) =
∑
i 6=j

pj tr(µiρj)

Then what is

PE(E) = min
M

PE(M, E)?
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Previous work

Pioneering work by Holevo and Helstrom in 1970s gives exact
solution of problem for 2 states (E = {ρ0, ρ1}, p0 = p,
p1 = (1 − p)):

PE(E) =
1
2

−
1
2
‖pρ0 − (1 − p)ρ1‖1

(note: p-norms ‖ρ‖p = (
∑

i σi(ρ)
p)1/p, σi(ρ) = i’th singular

value of ρ)

But for more than 2 states, no exact solution is known.

So we concentrate on finding bounds on the probability of
error.
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Previous work

A useful upper bound [Barnum and Knill ’02]:

PE(E) 6 2
∑
i>j

√
pipj

√
F(ρi, ρj)

(has found applications in quantum algorithms; note fidelity
F(ρi, ρj) = ‖√ρi

√
ρj‖2

1)

This bound relates the pairwise (local) distinguishability of a
set of states to their global distinguishability.

Could we find a similar lower bound?

Potential applications:
Security proofs in quantum cryptography
Lower bounds in quantum query complexity
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Lower bounds

Some recently developed lower bounds:

A bound based only on the individual states [Hayashi et
al ’08]:

PE(E) > 1 − n max
i

pi‖ρi‖∞
(gives nothing when any of the states are pure)

A recent bound in terms of the trace distance [Qiu ’08]:

PE(E) >
1
2

1 −
1

n − 1

∑
i>j

‖piρi − pjρj‖1


(n = number of states)
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The new lower bound

Theorem
Let E be an ensemble of quantum states {ρi} with a priori
probabilities {pi}. Then

PE(E) >
∑
i>j

pipjF(ρi, ρj).

Note:
...the similarity to PE(E) 6 2

∑
i>j
√pipj

√
F(ρi, ρj).

...it’s easy to use this bound in a multiple-copy scenario.
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Proving the lower bound

The bound is based on matrix inequalities. We need some
definitions:

Decompose piρi =
∑

j |eij〉〈eij|, assume ρi is d-dimensional
and write

Si = (|ei1〉 · · · |eid〉) , S = (S1 · · ·Sn)

Similarly, decompose µi =
∑

j |fij〉〈fij| and write

Ni = (|fi1〉 · · · |fid〉) , N = (N1 · · ·Nn)

Define the block matrix A = N†S (so Aij = N†
i Sj)
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The first equality

We want to show that

PE(M, E) =
∑
i 6=j

‖Aij‖2
2

This is immediate:

‖Aij‖2
2 = tr((N†

i Sj)(S
†
j Ni)) = tr((NiN

†
i )(SjS

†
j )) = pj tr(µiρj)
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The inequality

We want to show that∑
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‖A1i‖2
2 + ‖Ai1‖2

2

First step: can show that∑
i>1

‖(A†A)1i‖2
1 6

∥∥∥((A†A)12 · · · (A†A)1n

)∥∥∥2

1

(proof: by a majorisation argument)
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Getting the fidelities from S†S

We want to show the final equality∑
i>j

‖(S†S)ij‖2
1 =

∑
i>j

pipjF(ρi, ρj)

It is immediate that SiS
†
i = piρi, so by the polar decomposition,

for some unitary U
Si =

√
piρiU

Implies that in terms of the blocks of S,

‖S†i Sj‖2
1 = ‖U†√piρi

√
pjρj V‖2

1 = pipj‖
√
ρi
√
ρj‖2

1 = pipjF(ρi, ρj)

and the proof is complete.
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Tightness

Even for an ensemble of 2 states, this bound is not always tight
(i.e. does not reduce to the Holevo-Helstrom bound).

Consider an ensemble E = {ρ1, ρ2} where ρ1 = ρ2, p1 = p,
p2 = 1 − p. Then

PE(E) =
1
2

−
1
2
‖(p − (1 − p))ρ‖1 =

1
2

− |p −
1
2
|

but the bound here guarantees only

PE(E) > p(1 − p)

p 1

1/2

PE(E)

Holevo-Helstrom bound

New bound
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Summary

PE(E) >
∑
i>j

pipjF(ρi, ρj).

We’ve seen a new lower bound on the probability of error
in quantum state discrimination.
It can be thought of as a converse of an upper bound of
Barnum and Knill.
It’s comparable to a recent bound of Qiu.

Applications?

Further reading: arXiv:0711.2012.

Thanks for your time!

arXiv:0711.2012
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