A lower bound on the probability of error in quantum state discrimination

Ashley Montanaro¹

¹Department of Computer Science University of Bristol Bristol, UK

9th May 2008

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Problem

Given an unknown state $\rho_{?}$ picked from an ensemble $\mathcal{E} = {\rho_i}$ of quantum states, with a priori probabilities p_i , how hard is it to determine which state $\rho_{?}$ is?

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Problem

Given an unknown state $\rho_{?}$ picked from an ensemble $\mathcal{E} = {\rho_i}$ of quantum states, with a priori probabilities p_i , how hard is it to determine which state $\rho_{?}$ is?

Formally: let $M = {\mu_i}$ be a quantum measurement (POVM), i.e. $\mu_i \ge 0$, $\sum_i \mu_i = I$. Define the probability of error

$$P_E(M, \mathcal{E}) = \sum_{i \neq j} p_j \operatorname{tr}(\mu_i \rho_j)$$

Then what is

$$P_E(\mathcal{E}) = \min_M P_E(M, \mathcal{E})?$$

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states ($\mathcal{E} = \{\rho_0, \rho_1\}, p_0 = p, p_1 = (1-p)$):

$$P_E(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$$

(note: *p*-norms $\|\rho\|_p = (\sum_i \sigma_i(\rho)^p)^{1/p}$, $\sigma_i(\rho) = i$ 'th singular value of ρ)

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states ($\mathcal{E} = \{\rho_0, \rho_1\}, p_0 = p, p_1 = (1-p)$):

$$P_E(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$$

(note: *p*-norms $\|\rho\|_p = (\sum_i \sigma_i(\rho)^p)^{1/p}$, $\sigma_i(\rho) = i$ 'th singular value of ρ)

But for more than 2 states, no exact solution is known.

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states ($\mathcal{E} = \{\rho_0, \rho_1\}, p_0 = p, p_1 = (1-p)$):

$$P_E(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$$

(note: *p*-norms $\|\rho\|_p = (\sum_i \sigma_i(\rho)^p)^{1/p}$, $\sigma_i(\rho) = i$ 'th singular value of ρ)

But for more than 2 states, no exact solution is known.

So we concentrate on finding **bounds** on the probability of error.

A useful upper bound [Barnum and Knill '02]:

$$P_E(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_i p_j} \sqrt{F(\rho_i, \rho_j)}$$

(has found applications in quantum algorithms; note fidelity $F(\rho_i, \rho_j) = \|\sqrt{\rho_i}\sqrt{\rho_j}\|_1^2$)

A useful upper bound [Barnum and Knill '02]:

$$P_E(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_i p_j} \sqrt{F(\rho_i, \rho_j)}$$

(has found applications in quantum algorithms; note fidelity $F(\rho_i, \rho_j) = \|\sqrt{\rho_i}\sqrt{\rho_j}\|_1^2$)

This bound relates the pairwise (local) distinguishability of a set of states to their global distinguishability.

Could we find a similar lower bound?

A useful upper bound [Barnum and Knill '02]:

$$P_E(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_i p_j} \sqrt{F(\rho_i, \rho_j)}$$

(has found applications in quantum algorithms; note fidelity $F(\rho_i, \rho_j) = \|\sqrt{\rho_i}\sqrt{\rho_j}\|_1^2$)

This bound relates the pairwise (local) distinguishability of a set of states to their global distinguishability.

Could we find a similar lower bound?

Potential applications:

- Security proofs in quantum cryptography
- Lower bounds in quantum query complexity

Lower bounds

Some recently developed lower bounds:

• A bound based only on the individual states [Hayashi et al '08]:

 $P_E(\mathcal{E}) \ge 1 - n \max_i p_i \|\rho_i\|_{\infty}$

(gives nothing when any of the states are pure)

Lower bounds

Some recently developed lower bounds:

• A bound based only on the individual states [Hayashi et al '08]:

$$P_E(\mathcal{E}) \ge 1 - n \max_i p_i \|\rho_i\|_{\infty}$$

(gives nothing when any of the states are pure)

• A recent bound in terms of the trace distance [Qiu '08]:

$$P_E(\mathcal{E}) \ge \frac{1}{2} \left(1 - \frac{1}{n-1} \sum_{i>j} \|p_i \rho_i - p_j \rho_j\|_1 \right)$$

(n = number of states)

The new lower bound

Theorem

Let \mathcal{E} be an ensemble of quantum states $\{\rho_i\}$ with a priori probabilities $\{p_i\}$. Then

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

The new lower bound

Theorem

Let \mathcal{E} be an ensemble of quantum states $\{\rho_i\}$ with a priori probabilities $\{p_i\}$. Then

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

Note:

- ...the similarity to $P_E(\mathcal{E}) \leq 2 \sum_{i>j} \sqrt{p_i p_j} \sqrt{F(\rho_i, \rho_j)}$.
- ...it's easy to use this bound in a multiple-copy scenario.

The bound is based on matrix inequalities. We need some definitions:

The bound is based on matrix inequalities. We need some definitions:

• Decompose $p_i \rho_i = \sum_j |e_{ij}\rangle \langle e_{ij}|$, assume ρ_i is *d*-dimensional and write

$$S_i = (|e_{i1}\rangle \cdots |e_{id}\rangle)$$
 , $S = (S_1 \cdots S_n)$

The bound is based on matrix inequalities. We need some definitions:

• Decompose $p_i \rho_i = \sum_j |e_{ij}\rangle \langle e_{ij}|$, assume ρ_i is *d*-dimensional and write

$$S_i = (|e_{i1}
angle \cdots |e_{id}
angle)$$
 , $S = (S_1 \cdots S_n)$

• Similarly, decompose $\mu_i = \sum_j |f_{ij}\rangle \langle f_{ij}|$ and write

$$N_i = (|f_{i1}\rangle \cdots |f_{id}\rangle)$$
 , $N = (N_1 \cdots N_n)$

The bound is based on matrix inequalities. We need some definitions:

• Decompose $p_i \rho_i = \sum_j |e_{ij}\rangle \langle e_{ij}|$, assume ρ_i is *d*-dimensional and write

$$S_i = (|e_{i1}\rangle \cdots |e_{id}
angle)$$
 , $S = (S_1 \cdots S_n)$

• Similarly, decompose $\mu_i = \sum_j |f_{ij}\rangle \langle f_{ij}|$ and write

$$N_i = (|f_{i1}\rangle \cdots |f_{id}\rangle)$$
 , $N = (N_1 \cdots N_n)$

• Define the block matrix $A = N^{\dagger}S$ (so $A_{ij} = N_i^{\dagger}S_j$)

We will prove the following.

$$P_{E}(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_{2}^{2} \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_{1}^{2}$$
$$= \sum_{i > j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i > j} p_{i}p_{j}F(\rho_{i}, \rho_{j})$$

We will prove the following.

$$P_{E}(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_{2}^{2} \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_{1}^{2}$$
$$= \sum_{i > j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i > j} p_{i}p_{j}F(\rho_{i}, \rho_{j})$$

The red equality follows from:

$$\sum_{i} \mu_{i} = I$$

We will prove the following.

$$P_{E}(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_{2}^{2} \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_{1}^{2}$$
$$= \sum_{i > j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i > j} p_{i}p_{j}F(\rho_{i}, \rho_{j})$$

The red equality follows from:

$$\sum_{i} \mu_{i} = I \Rightarrow NN^{\dagger} = I$$

We will prove the following.

$$P_{E}(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_{2}^{2} \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_{1}^{2}$$
$$= \sum_{i > j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i > j} p_{i}p_{j}F(\rho_{i}, \rho_{j})$$

The red equality follows from:

$$\sum_{i} \mu_{i} = I \Rightarrow NN^{\dagger} = I \Rightarrow A^{\dagger}A = S^{\dagger}NN^{\dagger}S = S^{\dagger}S$$

We want to show that

$$P_E(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_2^2$$

We want to show that

$$P_E(M,\mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_2^2$$

This is immediate:

$$||A_{ij}||_2^2 = \operatorname{tr}((N_i^{\dagger}S_j)(S_j^{\dagger}N_i))$$

We want to show that

$$P_E(M,\mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_2^2$$

This is immediate:

$$\|A_{ij}\|_2^2 = \operatorname{tr}((N_i^{\dagger}S_j)(S_j^{\dagger}N_i)) = \operatorname{tr}((N_iN_i^{\dagger})(S_jS_j^{\dagger}))$$

We want to show that

$$P_E(M,\mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_2^2$$

This is immediate:

$$\|A_{ij}\|_2^2 = \operatorname{tr}((N_i^{\dagger}S_j)(S_j^{\dagger}N_i)) = \operatorname{tr}((N_iN_i^{\dagger})(S_jS_j^{\dagger})) = p_j \operatorname{tr}(\mu_i \rho_j)$$

The inequality

We want to show that

$$\sum_{i \neq j} \|A_{ij}\|_2^2 \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_1^2$$

The inequality

We want to show that

$$\sum_{i \neq j} \|A_{ij}\|_2^2 \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_1^2$$

Will follow from the following inequality:

$$\sum_{i>1} \|(A^{\dagger}A)_{1i}\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

The inequality

We want to show that

$$\sum_{i \neq j} \|A_{ij}\|_2^2 \ge \sum_{i > j} \|(A^{\dagger}A)_{ij}\|_1^2$$

Will follow from the following inequality:

$$\sum_{i>1} \|(A^{\dagger}A)_{1i}\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

First step: can show that

$$\sum_{i>1} \|(A^{\dagger}A)_{1i}\|_{1}^{2} \leq \left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2}$$

(proof: by a majorisation argument)

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

Group A into "super-blocks":

$$A = \begin{pmatrix} (A_{11}) & (A_{12} & \dots & A_{1n}) \\ \begin{pmatrix} A_{21} \\ \vdots \\ A_{n2} \end{pmatrix} & \begin{pmatrix} A_{22} & \dots & A_{2n} \\ \vdots & \ddots & \vdots \\ A_{n2} & \dots & A_{nn} \end{pmatrix} \end{pmatrix}$$

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} = \|B_{11}^{\dagger}B_{12} + B_{21}^{\dagger}B_{22}\|_{1}^{2}$$

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} = \|B_{11}^{\dagger}B_{12} + B_{21}^{\dagger}B_{22}\|_{1}^{2} \\ \leqslant (\|B_{11}\|_{2}^{2} + \|B_{22}\|_{2}^{2})(\|B_{12}\|_{2}^{2} + \|B_{21}\|_{2}^{2})$$

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

$$\begin{aligned} \left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} &= \|B_{11}^{\dagger}B_{12} + B_{21}^{\dagger}B_{22}\|_{1}^{2} \\ &\leqslant (\|B_{11}\|_{2}^{2} + \|B_{22}\|_{2}^{2})(\|B_{12}\|_{2}^{2} + \|B_{21}\|_{2}^{2}) \\ &\leqslant \|B_{12}\|_{2}^{2} + \|B_{21}\|_{2}^{2} \end{aligned}$$

We want to show that

$$\left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} \leq \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2}$$

$$\begin{aligned} \left\| \left((A^{\dagger}A)_{12} \cdots (A^{\dagger}A)_{1n} \right) \right\|_{1}^{2} &= \|B_{11}^{\dagger}B_{12} + B_{21}^{\dagger}B_{22}\|_{1}^{2} \\ &\leqslant (\|B_{11}\|_{2}^{2} + \|B_{22}\|_{2}^{2})(\|B_{12}\|_{2}^{2} + \|B_{21}\|_{2}^{2}) \\ &\leqslant \|B_{12}\|_{2}^{2} + \|B_{21}\|_{2}^{2} \\ &= \sum_{i>1} \|A_{1i}\|_{2}^{2} + \|A_{i1}\|_{2}^{2} \end{aligned}$$

We want to show the final equality

$$\sum_{i>j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i>j} p_{i}p_{j}F(\rho_{i},\rho_{j})$$

We want to show the final equality

$$\sum_{i>j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i>j} p_{i}p_{j}F(\rho_{i},\rho_{j})$$

It is immediate that $S_i S_i^{\dagger} = p_i \rho_i$, so by the polar decomposition, for some unitary *U*

$$S_i = \sqrt{p_i \rho_i} U$$

We want to show the final equality

$$\sum_{i>j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i>j} p_{i}p_{j}F(\rho_{i},\rho_{j})$$

It is immediate that $S_i S_i^{\dagger} = p_i \rho_i$, so by the polar decomposition, for some unitary *U*

$$S_i = \sqrt{p_i \rho_i} U$$

Implies that in terms of the blocks of *S*,

$$||S_{i}^{\dagger}S_{j}||_{1}^{2} = ||U^{\dagger}\sqrt{p_{i}\rho_{i}}\sqrt{p_{j}\rho_{j}}V||_{1}^{2}$$

We want to show the final equality

$$\sum_{i>j} \|(S^{\dagger}S)_{ij}\|_{1}^{2} = \sum_{i>j} p_{i}p_{j}F(\rho_{i},\rho_{j})$$

It is immediate that $S_i S_i^{\dagger} = p_i \rho_i$, so by the polar decomposition, for some unitary *U*

$$S_i = \sqrt{p_i \rho_i} U$$

Implies that in terms of the blocks of *S*,

$$\|S_{i}^{\dagger}S_{j}\|_{1}^{2} = \|U^{\dagger}\sqrt{p_{i}\rho_{i}}\sqrt{p_{j}\rho_{j}}V\|_{1}^{2} = p_{i}p_{j}\|\sqrt{\rho_{i}}\sqrt{\rho_{j}}\|_{1}^{2} = p_{i}p_{j}F(\rho_{i},\rho_{j})$$

and the proof is complete.

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound).

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound). Consider an ensemble $\mathcal{E} = \{\rho_1, \rho_2\}$ where $\rho_1 = \rho_2, p_1 = p$, $p_2 = 1 - p$. Then

$$P_E(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} ||(p - (1 - p))\rho||_1 = \frac{1}{2} - |p - \frac{1}{2}|$$

but the bound here guarantees only

 $P_E(\mathcal{E}) \geq p(1-p)$

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound). Consider an ensemble $\mathcal{E} = \{\rho_1, \rho_2\}$ where $\rho_1 = \rho_2, p_1 = p$, $p_2 = 1 - p$. Then

$$P_E(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} ||(p - (1 - p))\rho||_1 = \frac{1}{2} - |p - \frac{1}{2}|$$

but the bound here guarantees only

$$P_E(\mathcal{E}) \ge p(1-p)$$

Holevo-Helstrom bound

New bound

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?

Further reading: arXiv:0711.2012.

$$P_E(\mathcal{E}) \geqslant \sum_{i>j} p_i p_j F(\rho_i, \rho_j).$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?

Further reading: arXiv:0711.2012.

Thanks for your time!