A lower bound on the probability of error in quantum state discrimination

Ashley Montanaro ${ }^{1}$

${ }^{1}$ Department of Computer Science
University of Bristol
Bristol, UK
$9^{\text {th }}$ May 2008

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Problem

Given an unknown state $\rho_{\text {? }}$ picked from an ensemble $\mathcal{E}=\left\{\rho_{i}\right\}$ of quantum states, with a priori probabilities p_{i}, how hard is it to determine which state $\rho_{\text {? }}$ is?

Introduction

We consider the quantum analogue of hypothesis testing: quantum state discrimination.

Problem

Given an unknown state $\rho_{\text {? }}$ picked from an ensemble $\mathcal{E}=\left\{\rho_{i}\right\}$ of quantum states, with a priori probabilities p_{i}, how hard is it to determine which state $\rho_{\text {? }}$ is?

Formally: let $M=\left\{\mu_{i}\right\}$ be a quantum measurement (POVM), i.e. $\mu_{i} \geqslant 0, \sum_{i} \mu_{i}=I$. Define the probability of error

$$
P_{E}(M, \mathcal{E})=\sum_{i \neq j} p_{j} \operatorname{tr}\left(\mu_{i} \rho_{j}\right)
$$

Then what is

$$
P_{E}(\mathcal{E})=\min _{M} P_{E}(M, \mathcal{E}) ?
$$

Previous work

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states $\left(\mathcal{E}=\left\{\rho_{0}, \rho_{1}\right\}, p_{0}=p\right.$, $\left.p_{1}=(1-p)\right)$:

$$
P_{E}(\mathcal{E})=\frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

(note: p-norms $\|\rho\|_{p}=\left(\sum_{i} \sigma_{i}(\rho)^{p}\right)^{1 / p}, \sigma_{i}(\rho)=i^{\prime}$ th singular value of ρ)

Previous work

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states $\left(\mathcal{E}=\left\{\rho_{0}, \rho_{1}\right\}\right.$, $p_{0}=p$, $\left.p_{1}=(1-p)\right)$:

$$
P_{E}(\mathcal{E})=\frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

(note: p-norms $\|\rho\|_{p}=\left(\sum_{i} \sigma_{i}(\rho)^{p}\right)^{1 / p}, \sigma_{i}(\rho)=i^{\prime}$ th singular value of ρ)

But for more than 2 states, no exact solution is known.

Previous work

Pioneering work by Holevo and Helstrom in 1970s gives exact solution of problem for 2 states $\left(\mathcal{E}=\left\{\rho_{0}, \rho_{1}\right\}\right.$, $p_{0}=p$, $\left.p_{1}=(1-p)\right)$:

$$
P_{E}(\mathcal{E})=\frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

(note: p-norms $\|\rho\|_{p}=\left(\sum_{i} \sigma_{i}(\rho)^{p}\right)^{1 / p}, \sigma_{i}(\rho)=i^{\prime}$ th singular value of ρ)

But for more than 2 states, no exact solution is known.

So we concentrate on finding bounds on the probability of error.

Previous work

A useful upper bound [Barnum and Knill '02]:

$$
P_{E}(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_{i} p_{j}} \sqrt{F\left(\rho_{i}, \rho_{j}\right)}
$$

(has found applications in quantum algorithms; note fidelity $\left.F\left(\rho_{i}, \rho_{j}\right)=\left\|\sqrt{\rho_{i}} \sqrt{\rho_{j}}\right\|_{1}^{2}\right)$

Previous work

A useful upper bound [Barnum and Knill '02]:

$$
P_{E}(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_{i} p_{j}} \sqrt{F\left(\rho_{i}, \rho_{j}\right)}
$$

(has found applications in quantum algorithms; note fidelity $\left.F\left(\rho_{i}, \rho_{j}\right)=\left\|\sqrt{\rho_{i}} \sqrt{\rho_{j}}\right\|_{1}^{2}\right)$

This bound relates the pairwise (local) distinguishability of a set of states to their global distinguishability.

Could we find a similar lower bound?

Previous work

A useful upper bound [Barnum and Knill '02]:

$$
P_{E}(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_{i} p_{j}} \sqrt{F\left(\rho_{i}, \rho_{j}\right)}
$$

(has found applications in quantum algorithms; note fidelity $\left.F\left(\rho_{i}, \rho_{j}\right)=\left\|\sqrt{\rho_{i}} \sqrt{\rho_{j}}\right\|_{1}^{2}\right)$

This bound relates the pairwise (local) distinguishability of a set of states to their global distinguishability.

Could we find a similar lower bound?
Potential applications:

- Security proofs in quantum cryptography
- Lower bounds in quantum query complexity

Lower bounds

Some recently developed lower bounds:

- A bound based only on the individual states [Hayashi et al '08]:

$$
P_{E}(\mathcal{E}) \geqslant 1-n \max _{i} p_{i}\left\|\rho_{i}\right\|_{\infty}
$$

(gives nothing when any of the states are pure)

Lower bounds

Some recently developed lower bounds:

- A bound based only on the individual states [Hayashi et al '08]:

$$
P_{E}(\varepsilon) \geqslant 1-n \max _{i} p_{i}\left\|\rho_{i}\right\|_{\infty}
$$

(gives nothing when any of the states are pure)

- A recent bound in terms of the trace distance [Qiu '08]:

$$
P_{E}(\mathcal{E}) \geqslant \frac{1}{2}\left(1-\frac{1}{n-1} \sum_{i>j}\left\|p_{i} \rho_{i}-p_{j} \rho_{j}\right\|_{1}\right)
$$

($n=$ number of states)

The new lower bound

Theorem

Let \mathcal{E} be an ensemble of quantum states $\left\{\rho_{i}\right\}$ with a priori probabilities $\left\{p_{i}\right\}$. Then

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

The new lower bound

Theorem

Let \mathcal{E} be an ensemble of quantum states $\left\{\rho_{i}\right\}$ with a priori probabilities $\left\{p_{i}\right\}$. Then

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

Note:

- ...the similarity to $P_{E}(\mathcal{E}) \leqslant 2 \sum_{i>j} \sqrt{p_{i} p_{j}} \sqrt{F\left(\rho_{i}, \rho_{j}\right)}$.
- ...it's easy to use this bound in a multiple-copy scenario.

Proving the lower bound

The bound is based on matrix inequalities. We need some definitions:

Proving the lower bound

The bound is based on matrix inequalities. We need some definitions:

- Decompose $p_{i} \rho_{i}=\sum_{j}\left|e_{i j}\right\rangle\left\langle e_{i j}\right|$, assume ρ_{i} is d-dimensional and write

$$
S_{i}=\left(\left|e_{i 1}\right\rangle \cdots\left|e_{i d}\right\rangle\right), S=\left(S_{1} \cdots S_{n}\right)
$$

Proving the lower bound

The bound is based on matrix inequalities. We need some definitions:

- Decompose $p_{i} \rho_{i}=\sum_{j}\left|e_{i j}\right\rangle\left\langle e_{i j}\right|$, assume ρ_{i} is d-dimensional and write

$$
S_{i}=\left(\left|e_{i 1}\right\rangle \cdots\left|e_{i d}\right\rangle\right), S=\left(S_{1} \cdots S_{n}\right)
$$

- Similarly, decompose $\mu_{i}=\sum_{j}\left|f_{i j}\right\rangle\left\langle f_{i j}\right|$ and write

$$
N_{i}=\left(\left|f_{i 1}\right\rangle \cdots\left|f_{i d}\right\rangle\right), N=\left(N_{1} \cdots N_{n}\right)
$$

Proving the lower bound

The bound is based on matrix inequalities. We need some definitions:

- Decompose $p_{i} \rho_{i}=\sum_{j}\left|e_{i j}\right\rangle\left\langle e_{i j}\right|$, assume ρ_{i} is d-dimensional and write

$$
S_{i}=\left(\left|e_{i 1}\right\rangle \cdots\left|e_{i d}\right\rangle\right), S=\left(S_{1} \cdots S_{n}\right)
$$

- Similarly, decompose $\mu_{i}=\sum_{j}\left|f_{i j}\right\rangle\left\langle f_{i j}\right|$ and write

$$
N_{i}=\left(\left|f_{i 1}\right\rangle \cdots\left|f_{i d}\right\rangle\right), N=\left(N_{1} \cdots N_{n}\right)
$$

- Define the block matrix $A=N^{\dagger} S$ (so $\left.A_{i j}=N_{i}^{\dagger} S_{j}\right)$

Proof outline

We will prove the following.

$$
\begin{aligned}
P_{E}(M, \mathcal{E}) & =\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2} \\
& =\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
\end{aligned}
$$

Proof outline

We will prove the following.

$$
\begin{aligned}
P_{E}(M, \mathcal{E}) & =\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2} \\
& =\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
\end{aligned}
$$

The red equality follows from:

$$
\sum_{i} \mu_{i}=I
$$

Proof outline

We will prove the following.

$$
\begin{aligned}
P_{E}(M, \mathcal{E}) & =\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2} \\
& =\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
\end{aligned}
$$

The red equality follows from:

$$
\sum_{i} \mu_{i}=I \Rightarrow N N^{\dagger}=I
$$

Proof outline

We will prove the following.

$$
\begin{aligned}
P_{E}(M, \mathcal{E}) & =\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2} \\
& =\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
\end{aligned}
$$

The red equality follows from:

$$
\sum_{i} \mu_{i}=I \Rightarrow N N^{\dagger}=I \Rightarrow A^{\dagger} A=S^{\dagger} N N^{\dagger} S=S^{\dagger} S
$$

The first equality

We want to show that

$$
P_{E}(M, \mathcal{E})=\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2}
$$

The first equality

We want to show that

$$
P_{E}(M, \mathcal{E})=\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2}
$$

This is immediate:

$$
\left\|A_{i j}\right\|_{2}^{2}=\operatorname{tr}\left(\left(N_{i}^{\dagger} S_{j}\right)\left(S_{j}^{\dagger} N_{i}\right)\right)
$$

The first equality

We want to show that

$$
P_{E}(M, \mathcal{E})=\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2}
$$

This is immediate:

$$
\left\|A_{i j}\right\|_{2}^{2}=\operatorname{tr}\left(\left(N_{i}^{\dagger} S_{j}\right)\left(S_{j}^{\dagger} N_{i}\right)\right)=\operatorname{tr}\left(\left(N_{i} N_{i}^{\dagger}\right)\left(S_{j} S_{j}^{\dagger}\right)\right)
$$

The first equality

We want to show that

$$
P_{E}(M, \mathcal{E})=\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2}
$$

This is immediate:

$$
\left\|A_{i j}\right\|_{2}^{2}=\operatorname{tr}\left(\left(N_{i}^{\dagger} S_{j}\right)\left(S_{j}^{\dagger} N_{i}\right)\right)=\operatorname{tr}\left(\left(N_{i} N_{i}^{\dagger}\right)\left(S_{j} S_{j}^{\dagger}\right)\right)=p_{j} \operatorname{tr}\left(\mu_{i} \rho_{j}\right)
$$

The inequality

We want to show that

$$
\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2}
$$

The inequality

We want to show that

$$
\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2}
$$

Will follow from the following inequality:

$$
\sum_{i>1}\left\|\left(A^{\dagger} A\right)_{1 i}\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

The inequality

We want to show that

$$
\sum_{i \neq j}\left\|A_{i j}\right\|_{2}^{2} \geqslant \sum_{i>j}\left\|\left(A^{\dagger} A\right)_{i j}\right\|_{1}^{2}
$$

Will follow from the following inequality:

$$
\sum_{i>1}\left\|\left(A^{\dagger} A\right)_{1 i}\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

First step: can show that

$$
\sum_{i>1}\left\|\left(A^{\dagger} A\right)_{1 i}\right\|_{1}^{2} \leqslant\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2}
$$

(proof: by a majorisation argument)

A block matrix inequality

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

A block matrix inequality

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

Group A into "super-blocks":

$$
A=\left(\begin{array}{cc}
\left(A_{11}\right) & \left(\begin{array}{ccc}
A_{12} & \ldots & A_{1 n}
\end{array}\right) \\
\left(\begin{array}{c}
A_{21} \\
\vdots \\
A_{n 2}
\end{array}\right) & \left(\begin{array}{ccc}
A_{22} & \ldots & A_{2 n} \\
\vdots & \ddots & \vdots \\
A_{n 2} & \ldots & A_{n n}
\end{array}\right)
\end{array}\right)
$$

A block matrix inequality (2)

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

Define a new 2×2 "super-block matrix" B by padding each of these "super-blocks" in A with 0's so that each super-block is square and the same size. Then
$\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2}=\left\|B_{11}^{\dagger} B_{12}+B_{21}^{\dagger} B_{22}\right\|_{1}^{2}$

A block matrix inequality (2)

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

Define a new 2×2 "super-block matrix" B by padding each of these "super-blocks" in A with 0's so that each super-block is square and the same size. Then

$$
\begin{aligned}
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} & =\left\|B_{11}^{\dagger} B_{12}+B_{21}^{\dagger} B_{22}\right\|_{1}^{2} \\
& \leqslant\left(\left\|B_{11}\right\|_{2}^{2}+\left\|B_{22}\right\|_{2}^{2}\right)\left(\left\|B_{12}\right\|_{2}^{2}+\left\|B_{21}\right\|_{2}^{2}\right)
\end{aligned}
$$

A block matrix inequality (2)

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

Define a new 2×2 "super-block matrix" B by padding each of these "super-blocks" in A with 0's so that each super-block is square and the same size. Then

$$
\begin{aligned}
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} & =\left\|B_{11}^{\dagger} B_{12}+B_{21}^{\dagger} B_{22}\right\|_{1}^{2} \\
& \leqslant\left(\left\|B_{11}\right\|_{2}^{2}+\left\|B_{22}\right\|_{2}^{2}\right)\left(\left\|B_{12}\right\|_{2}^{2}+\left\|B_{21}\right\|_{2}^{2}\right) \\
& \leqslant\left\|B_{12}\right\|_{2}^{2}+\left\|B_{21}\right\|_{2}^{2}
\end{aligned}
$$

A block matrix inequality (2)

We want to show that

$$
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} \leqslant \sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
$$

Define a new 2×2 "super-block matrix" B by padding each of these "super-blocks" in A with 0's so that each super-block is square and the same size. Then

$$
\begin{aligned}
\left\|\left(\left(A^{\dagger} A\right)_{12} \cdots\left(A^{\dagger} A\right)_{1 n}\right)\right\|_{1}^{2} & =\left\|B_{11}^{\dagger} B_{12}+B_{21}^{\dagger} B_{22}\right\|_{1}^{2} \\
& \leqslant\left(\left\|B_{11}\right\|_{2}^{2}+\left\|B_{22}\right\|_{2}^{2}\right)\left(\left\|B_{12}\right\|_{2}^{2}+\left\|B_{21}\right\|_{2}^{2}\right) \\
& \leqslant\left\|B_{12}\right\|_{2}^{2}+\left\|B_{21}\right\|_{2}^{2} \\
& =\sum_{i>1}\left\|A_{1 i}\right\|_{2}^{2}+\left\|A_{i 1}\right\|_{2}^{2}
\end{aligned}
$$

Getting the fidelities from $S^{\dagger} S$

We want to show the final equality

$$
\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

Getting the fidelities from $S^{\dagger} S$

We want to show the final equality

$$
\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

It is immediate that $S_{i} S_{i}^{\dagger}=p_{i} \rho_{i}$, so by the polar decomposition, for some unitary U

$$
S_{i}=\sqrt{p_{i} \rho_{i}} U
$$

Getting the fidelities from $S^{\dagger} S$

We want to show the final equality

$$
\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

It is immediate that $S_{i} S_{i}^{\dagger}=p_{i} \rho_{i}$, so by the polar decomposition, for some unitary U

$$
S_{i}=\sqrt{p_{i} \rho_{i}} U
$$

Implies that in terms of the blocks of S,

$$
\left\|S_{i}^{\dagger} S_{j}\right\|_{1}^{2}=\left\|U^{\dagger} \sqrt{p_{i} \rho_{i}} \sqrt{p_{j} \rho_{j}} V\right\|_{1}^{2}
$$

Getting the fidelities from $S^{\dagger} S$

We want to show the final equality

$$
\sum_{i>j}\left\|\left(S^{\dagger} S\right)_{i j}\right\|_{1}^{2}=\sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

It is immediate that $S_{i} S_{i}^{\dagger}=p_{i} \rho_{i}$, so by the polar decomposition, for some unitary U

$$
S_{i}=\sqrt{p_{i} \rho_{i}} U
$$

Implies that in terms of the blocks of S,

$$
\left\|S_{i}^{\dagger} S_{j}\right\|_{1}^{2}=\left\|U^{\dagger} \sqrt{p_{i} \rho_{i}} \sqrt{p_{j} \rho_{j}} V\right\|_{1}^{2}=p_{i} p_{j}\left\|\sqrt{\rho_{i}} \sqrt{\rho_{j}}\right\|_{1}^{2}=p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right)
$$

and the proof is complete.

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound).

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound). Consider an ensemble $\mathcal{E}=\left\{\rho_{1}, \rho_{2}\right\}$ where $\rho_{1}=\rho_{2}, p_{1}=p$, $p_{2}=1-p$. Then

$$
P_{E}(\mathcal{E})=\frac{1}{2}-\frac{1}{2}\|(p-(1-p)) \rho\|_{1}=\frac{1}{2}-\left|p-\frac{1}{2}\right|
$$

but the bound here guarantees only

$$
P_{E}(\mathcal{E}) \geqslant p(1-p)
$$

Tightness

Even for an ensemble of 2 states, this bound is not always tight (i.e. does not reduce to the Holevo-Helstrom bound). Consider an ensemble $\mathcal{E}=\left\{\rho_{1}, \rho_{2}\right\}$ where $\rho_{1}=\rho_{2}, p_{1}=p$, $p_{2}=1-p$. Then

$$
P_{E}(\mathcal{E})=\frac{1}{2}-\frac{1}{2}\|(p-(1-p)) \rho\|_{1}=\frac{1}{2}-\left|p-\frac{1}{2}\right|
$$

but the bound here guarantees only

$$
P_{E}(\mathcal{E}) \geqslant p(1-p)
$$

Holevo-Helstrom bound

New bound

Summary

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right) .
$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Summary

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right) .
$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?

Summary

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right) .
$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?
Further reading: arXiv:0711.2012.

Summary

$$
P_{E}(\mathcal{E}) \geqslant \sum_{i>j} p_{i} p_{j} F\left(\rho_{i}, \rho_{j}\right) .
$$

- We've seen a new lower bound on the probability of error in quantum state discrimination.
- It can be thought of as a converse of an upper bound of Barnum and Knill.
- It's comparable to a recent bound of Qiu.

Applications?
Further reading: arXiv:0711.2012.
Thanks for your time!

