
CDT in Quantum Engineering Spring 2016

ADVANCED QUANTUM INFORMATION THEORY

Lecture notes

Ashley Montanaro, University of Bristol
ashley.montanaro@bristol.ac.uk

Contents

1 Introduction 2

2 Classical and quantum computational complexity 4

3 Grover’s algorithm 10

4 The Quantum Fourier Transform and periodicity 17

5 Integer factorisation 22

6 Phase estimation 28

7 Hamiltonian simulation 31

8 Quantum walk 35

9 Noise and the framework of quantum channels 45

10 Quantum error-correction 50

11 Quantum state discrimination and tomography 57

Health warning: There are likely to be changes and corrections to these notes throughout the unit.
For updates, see http://www.maths.bris.ac.uk/~csxam/aqit2016/.

Version 1.5 (February 26, 2016).

1

http://www.maths.bris.ac.uk/~csxam/aqit2016/

1 Introduction

The field of quantum information theory studies the remarkable ways in which quantum information
– and the processing thereof – differs from information stored in classical systems. Nowhere is
this difference more pronounced than the dramatic speedups obtained by quantum computation
over classical computation. These notes aim to cover (some of) the theoretical topics which any
self-respecting quantum information theorist, or experimentalist working in the field of quantum
information processing, should know. These include the famous algorithms of Shor and Grover, and
the simulation of quantum systems; the more recent topic of quantum walk algorithms; decoherence
and quantum error-correction.

1.1 Complementary reading

These lecture notes have benefited significantly from the expositions in the following lecture courses,
which may be of interest for background reading:

• Quantum Computation, Richard Jozsa, University of Cambridge
http://www.qi.damtp.cam.ac.uk/node/261

The material here on the QFT and Shor’s algorithm follows this exposition closely.

• Quantum Algorithms, Andrew Childs, University of Maryland
http://cs.umd.edu/~amchilds/qa/

A combination of lecture notes for three graduate courses. The material here on quantum
walk algorithms is based on the exposition in these notes.

• Theory of Quantum Information, John Watrous, University of Waterloo
https://cs.uwaterloo.ca/~watrous/LectureNotes.html

A particularly useful resource for the theory of quantum channels.

The following books and survey papers may also be useful:

• Quantum Computation and Quantum Information, Nielsen and Chuang
Cambridge University Press, 2001
The Bible of quantum computing.

• Classical and Quantum Computation, Kitaev, Shen and Vyalyi
American Mathematical Society, 2002
A more concise introduction to many important topics in quantum computation.

• Quantum algorithms for algebraic problems, Childs and van Dam
Reviews of Modern Physics, 82:1, 2010; http://arxiv.org/pdf/0812.0380.pdf
Covers many other quantum algorithms than those discussed here.

1.2 Notation

We write [n] := {1, . . . , n} for the integers between 1 and n. dxe, bxc and bxe denote the smallest
integer y such that y ≥ x, the largest integer z such that z ≤ x, and the closest integer to x,
respectively. We use

(
n
k

)
for the binomial coefficient “n choose k”, n!/(k!(n − k)!). Finally, when

we say “bounded-error”, we mean with failure probability upper-bounded by some constant below
1/2.

2

http://www.qi.damtp.cam.ac.uk/node/261
http://cs.umd.edu/~amchilds/qa/
https://cs.uwaterloo.ca/~watrous/LectureNotes.html
http://arxiv.org/pdf/0812.0380.pdf

We use standard “computer science style” notation relating to asymptotic complexity:

• f(n) = O(g(n)) if there exist real c > 0 and integer n0 ≥ 0 such that for all n ≥ n0,
f(n) ≤ c g(n).

• f(n) = Ω(g(n)) if there exist real c > 0 and integer n0 ≥ 0 such that for all n ≥ n0,
f(n) ≥ c g(n). Clearly, f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

O, Ω and Θ can be viewed as asymptotic, approximate versions of ≤, ≥ and =.

Box 1: Big-O notation

1.3 Change log

• v1.0: first version covering first part of the 2016 unit.

• v1.1: addition of material on the QFT, periodicity and Shor’s algorithm.

• v1.2: addition of material on phase estimation and Hamiltonian simulation.

• v1.3: addition of material covering the remainder of the unit.

• v1.4: update tomography section to mention recent results.

• v1.5: correct typos in stabilizer quantum error-correction section.

3

2 Classical and quantum computational complexity

Computational complexity theory aims to classify different problems in terms of their difficulty, or
in other words the resources required in order to solve them. Two of the most important types of
resources one might study are time (the number of computational steps used by an algorithm solving
a problem) and space (the amount of additional work space used by the algorithm). Classically,
the formal model underpinning the notion of an “algorithm” is the Turing machine. We will not
go into details about this here, instead taking the informal approach that the number of steps used
by an algorithm corresponds to the number of lines of code executed when running the algorithm,
and the space usage is the amount of memory used by the algorithm. For much more on the topic,
see the book Computational Complexity by Papadimitriou, for example.

Rather than looking at the complexity of algorithms for solving one particular instance of a
problem, the theory considers asymptotics: given a family of problems, parametrised by an instance
size (usually denoted n), we study the resources used by the best possible algorithm for solving that
family of problems. The term “problem” is used henceforth as shorthand for “family of problems”.
A dividing line between efficient and inefficient algorithms is provided by the notion of polynomial-
time computation. An algorithm running in time polynomial in n, i.e. O(nc) for some fixed c, is
considered efficient. For example, consider the following two problems:

• Primality testing: given an integer N expressed as n binary digits, is it a prime number?

• Factorisation: given an integer N expressed as n binary digits, output the prime factors of
N .

As the input is of size n, we would like to solve these problems using an algorithm which runs in
time poly(n) (not poly(N)!). No such classical algorithm is known for the factorisation problem;
as we will see later, the situation is different for quantum algorithms. However, surprisingly, there
is a polynomial-time classical algorithm for the tantalisingly similar problem of primality testing.

An important class of problems is known as decision problems; these are problems that have a
yes-no answer. The first of the above problems is a decision problem, while the second is not. But
it can be made into a decision problem without changing its underlying complexity significantly:

• Factorisation (decision variant): given integers N and K expressed as n binary digits each,
does N have a prime factor smaller than K?

It is clear that, if we can solve the usual “search” variant of the factorisation problem, solving the
decision variant is easy. Further, solving the decision variant allows us to solve the search variant
of the problem using binary search. Given an integer N whose prime factors we would like to
determine, and an algorithm which solves the decision variant of the factorisation problem, we can
use O(logN) = O(n) evaluations of this algorithm with different values of K to find the smallest
prime factor M of N . The other factors can be found by dividing N by M and repeating. This is
a simple example of a reduction: conversion of one problem into another.

A natural way to compare the complexity of problems is via the notion of complexity classes,
where a complexity class is simply a set of problems. Some important classical complexity classes
are:

• P: the class of decision problems which can be solved in polynomial time by a classical
computer.

4

• NP: the class of decision problems such that, if the answer is “yes”, there is a proof of this
fact which can be verified in polynomial time by a classical computer.

• PSPACE: the class of decision problems which can be solved in polynomial space by a classical
computer.

Primality testing is in P, although this was shown for the first time only in 2002. The decision
variant of factorisation is in NP, because given a claimed prime factor of N smaller than K, it can
be easily checked whether the claim is correct. However, factorisation is not known to be in P. Every
problem in P is automatically in NP, because the verifier can simply ignore any claimed proof and
solve the problem directly. In addition, any problem in NP is automatically in PSPACE, because
one can loop over all polynomial-length proofs in polynomial space in order to determine whether
the answer to a problem instance should be “yes” or “no”. Thus we have P⊆NP⊆PSPACE.

A problem is said to be NP-complete if it is in NP, and every other problem in NP reduces to it
in polynomial time. So NP-complete problems are, informally, the “hardest” problems in NP. These
include many problems of practical importance in areas such as timetabling, resource allocation,
and optimisation. One simple example is the Subset Sum problem. An instance of this problem is
a sequence of integers x1, . . . , xn; our task, given such a sequence, is to determine whether there is
a subset of the integers which sums to 0. Given such a subset, we can easily check that it sums to
0; however, finding such a subset seems to require checking exponentially many subsets.

NP stands for “nondeterministic polynomial-time”, not “non-polynomial time”. In fact, it is
currently unknown whether every problem in NP can be solved in polynomial time. This is the
famous P vs. NP question; resolving it would win you a prize of $1M from the Clay Mathematics
Institute.

2.1 Quantum computational complexity

How are we to measure resource usage by a quantum algorithm running on a quantum computer?
One framework within which to do this is the quantum circuit model. A quantum computation
running for T steps and using space S corresponds to a unitary operation on S qubits (i.e. operating

on C2S) expressed as a product of T elementary operations picked from some family F . Each
elementary operation is assumed to take time O(1) and act on O(1) qubits. We assume that the
initial state of the quantum computer is |0〉⊗S and the computation finishes with a measurement
of some of the qubits in the computational basis, which gives the output of the computation. If
we prefer, we can allow intermediate measurements during the circuit; this turns out not to change
the power of the model.

The set F of allowed elementary operations will depend on our physical architecture. However,
it turns out that most “reasonable” sets of operations on O(1) qubits – called quantum gates, by
analogy with logic gates in classical circuits – are universal, in the sense that any unitary matrix
on S qubits can be decomposed as a product of these basic operations.

A quantum circuit can be drawn as follows. For convenience, in the diagram we have drawn
multi-qubit gates as only acting on nearest-neighbour qubits, but this is not an essential restriction

5

of the model.

|0〉 H
U

Z

W

H

|0〉
U

Y H

|0〉
V

H
U

|0〉 X H

Beware that a circuit is read left to right, with the starting input state on the far left, but the
corresponding unitary operators act right to left! For example, the circuit

H
U

V
X

corresponds to the unitary operator (I ⊗ V)(U ⊗ I)(H ⊗ I ⊗X) on 3 qubits. For any gate G, the
corresponding “controlled-G” gate CG uses an extra qubit to control whether the gate is applied
or not. That is,

CG|0〉|ψ〉 = |0〉|ψ〉, CG|1〉|ψ〉 = |1〉G|ψ〉.

In a circuit diagram, this is denoted using a filled circle on the control line:

•
G

A particularly useful such gate is controlled-NOT (CNOT), denoted
•

. Written as a matrix

with respect to the computational basis,

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For any fixed gate set F , some large unitary matrices cannot be decomposed efficiently in terms of
gates from F , in the sense that to write them as a product of gates from F requires exponentially
many such gates. For a rough way of seeing this, consider the problem of producing an arbitrary
quantum state of n qubits

∑
x∈{0,1}n αx|x〉, where each coefficient αx ∈ {±1/2n/2}. There are 22n

such states. Any circuit on n qubits made up of T gates, each acting on k qubits, picked from a
gate set of size G can be described by one of(

G

(
n

k

))T
= O

(
(Gnk)T

)
= O

(
2T log(Gnk)

)
different sequences of gates, so for k,G = O(1) we need T log n = Ω(2n) to be able to produce
2Ω(2n) different unitary operators, and hence 22n different states. A similar argument still works if
we allow approximate computation or continuous gate sets.

In general, just as in the classical world, we look for efficient quantum circuits which use poly(n)
qubits and poly(n) gates to solve a problem on an input of size n. The class of problems which

6

can be solved by a quantum computer, in time polynomial in the input size, with probability of
failure at most 1/3, is known as BQP (“bounded-error quantum polynomial-time”). This class
encapsulates the notion of efficient quantum computation. Observe that in the quantum circuit
picture we can perform multiple operations in parallel, so we in fact have two possible ways to
measure “time” complexity: circuit size (number of gates) and circuit depth (number of time steps
to execute all the gates). But these can only differ by a factor of O(S), where S is the number of
qubits.

2.2 Classical and reversible circuits

Any classical computation which maps a bit-string to another bit-string can be broken down into
a sequence of logical operations, each of which acts on a small number of bits (e.g. AND, OR
and NOT gates). Such a sequence is called a (classical) circuit. We would like to show that any
classical circuit can be implemented as a quantum circuit. But there is a difficulty: in quantum
mechanics, if we wish the state of our system to remain pure, the evolution that we apply has
to be unitary, and hence reversible. Some classical logical operations (such as AND, written ∧)
are not reversible. However, reversible variants of these can be developed using the following
trick. If we wish to compute an arbitrary classical operation f : {0, 1}n → {0, 1}m, we attach
an “ancilla” register of m bits, each orignally set to 0, and modify f to give a new operation
f ′ : {0, 1}n × {0, 1}m → {0, 1}n × {0, 1}m which performs the map

f ′(x, y) = (x, y ⊕ f(x)),

where ⊕ is bitwise XOR. Then if we input y = 0m, we get (x, f(x)), from which we can extract
our desired output f(x). If we perform f ′ twice, we get (x, y ⊕ f(x) ⊕ f(x)) = (x, y). So f
is reversible. And any reversible function that maps bit-strings to bit-strings corresponds to a
permutation matrix, which is unitary, so can be implemented as a sequence of quantum gates. If
we combine many gates of this form to compute a function f : {0, 1}n → {0, 1}, say, we will finish
with an output of the form (junk, x, f(x)). If we wish to remove the junk, we can simply copy the
output f(x) onto a fresh ancilla bit in state 0, and then repeat all the previous gates in reverse. As
each is its own inverse, the final state of the computation is (0, x, f(x)).

To obtain universal deterministic classical computation, it is sufficient to be able to implement
the NOT and AND gates. The NOT gate is immediately reversible. Applying the above construc-
tion to AND we get the map (x1, x2, y) 7→ (x1, x2, y ⊕ (x1 ∧ x2)). The unitary operator which
implements this is then simply the map

|x1〉|x2〉|y〉 7→ |x1〉|x2〉|y ⊕ (x1 ∧ x2)〉.

Written as a matrix with respect to the computational basis this is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

,

7

an operation known as the Toffoli gate. In a circuit diagram, the Toffoli gate is written as
“controlled-controlled-NOT”, i.e.

•
•

It is known that the Toffoli gate, together with the Hadamard gate, are even sufficient for universal
quantum computation. Another representative universal set of quantum gates is {H,X,CNOT, T},
where T =

(
1 0
0 eiπ/4

)
.

Randomised classical computation can also be embedded in a quantum circuit. Imagine we
have a classical computation which makes use of some random bits, each of which is 0 or 1 with
equal probability. We can simulate this by applying a Hadamard gate to |0〉 to produce the state

1√
2
(|0〉 + |1〉). Then we can either measure this qubit immediately to obtain a uniformly random

bit, or if we prefer, apply classical gates to it and then measure it at the end of the computation;
the result is the same.

2.3 Query complexity

While time complexity is a practically important measure of the complexity of algorithms, it suffers
from the difficulty that it is very hard to prove lower bounds on it, and that technical details can
sometimes obscure the key features of an algorithm. One way to sidestep this is to use a model which
is less realistic, but cleaner and more mathematically tractable: the model of query complexity.

In this model, we assume we have access to an oracle, or “black box”, to which we can pass
queries, and which returns answers to our queries. Our goal is to determine some property of the
oracle using the minimal number of queries. On a classical computer, we can think of the oracle as
a function f : {0, 1}n → {0, 1}m. We pass in inputs x ∈ {0, 1}n, and receive outputs f(x) ∈ {0, 1}m.
How does this fit into physical reality? We imagine we are given access to the oracle either as a
physical device which we cannot open and look inside, or as a circuit which we can see, but for
which it might be difficult to compute some property of the circuit. For example, even given a
description of a circuit computing some function f : {0, 1}n → {0, 1}, it might be hard to find an
input x such that f(x) = 1. Sometimes it is more natural to think of an oracle function f as a
memory storing n strings of m bits each, where we can retrieve an arbitrary string at the cost of
one query.

We can give a quantum computer access to a oracle using the standard reversible computation
construction discussed in the previous section. That is, instead of having a function f : {0, 1}n →
{0, 1}m, we produce a unitary operator Of which performs the map

Of |x〉|y〉 = |x〉|y ⊕ f(x)〉.

If m = 1, so f returns one bit, it would also make sense to consider an oracle Uf which does not
use an ancilla, but instead flips the phase of an input state |x〉 by applying the map

Uf |x〉 = (−1)f(x)|x〉.

This variant is thus sometimes known as the phase oracle. Given access to a bit oracle, we can
simulate a phase oracle by attaching an ancilla qubit in the state 1√

2
(|0〉 − |1〉):

Of |x〉
1√
2

(|0〉 − |1〉) =
1√
2

(|x〉|f(x)〉 − |x〉|f(x)⊕ 1〉) = (−1)f(x)|x〉 1√
2

(|0〉 − |1〉).

8

Note that the ancilla qubit is left unchanged by this operation, which is called the phase kickback
trick. Also note that the effect of the phase oracle is not observable if we apply it to just one basis
state |x〉, but only if we apply it to a superposition:∑

x∈{0,1}n
αx|x〉 7→

∑
x∈{0,1}n

(−1)f(x)αx|x〉.

Importantly, note that to implement the oracles Of and Uf we do not need to understand any
more about the inner workings of f than we do classically. That is, if we are given a classical
circuit computing f , we can follow a purely mechanical construction to create quantum circuits
implementing Of and Uf .

9

3 Grover’s algorithm

A simple example of a problem that fits into the query complexity model is unstructured search on
a set of N elements (Box 2).

In the unstructured search problem, we are given access to a function f : [N] → {0, 1}
with the promise that f(x0) = 1 for a unique element x0. Our task is to output x0.

Box 2: Unstructured search for a unique marked element

It is intuitively clear that the unstructured search problem should require about N queries to
be solved (classically!). We can formalise this as the following proposition:

Proposition 3.1. Let A be a classical algorithm which solves the unstructured search problem on a
set of N elements with failure probability δ < 1/2. Then A makes Ω(N) queries in the worst case.

Proof sketch. We can think of any classical algorithm A as choosing in advance, either determinis-
tically or randomly, a sequence S of distinct indices x1, . . . , xN to query, and then querying them
one by one. Imagine an adversary chooses the marked element x0 uniformly at random. Then,
on average, x0 will appear at position N/2 in the sequence S. As for a random choice of x0 the
algorithm makes Ω(N) queries on average, the average number of queries made in the worst case
must also be Ω(N).

In the quantum setting, we will see that the unstructured search problem can be solved with
significantly fewer queries.

Theorem 3.2 (Grover ’97). There is a quantum algorithm which solves the unstructured search
problem using O(

√
N) queries.

For simplicity, assume that N = 2n for some integer n (this is not an essential restriction).
Then Grover’s algorithm is described in Box 3.

We are given access to f : {0, 1}n → {0, 1} with the promise that f(x0) = 1 for a unique
element x0. We use a quantum circuit on n qubits with initial state |0〉⊗n. Let H denote
the Hadamard gate, and let U0 denote the n-qubit operation which inverts the phase of
|0〉: U0|0〉 = −|0〉, U0|x〉 = |x〉 for x 6= 0.

1. Apply H⊗n.

2. Repeat the following operations T times, where T = bπ4
√
Nc:

(a) Apply Uf .

(b) Apply D := −H⊗nU0H
⊗n.

3. Measure all the qubits and output the result.

Box 3: Grover’s algorithm

The overall unitary operation performed is thus (−H⊗nU0H
⊗nUf)TH⊗n, where T = bπ4

√
Nc.

(Incidentally, note that the minus sign in front of D can actually be omitted without affecting the

10

correctness of the algorithm, but it is helpful for the analysis.) In circuit diagram form, Grover’s
algorithm looks like this:

|0〉 H

Uf D Uf

. . .

D
|0〉 H . . .

...
...

|0〉 H . . .

It may be far from clear initially why this algorithm works, or indeed whether it does work. To
describe the algorithm, we introduce unitary operators I|ψ〉 and R|ψ〉, where |ψ〉 is an arbitrary
state. These are defined as follows:

I|ψ〉 := I − 2|ψ〉〈ψ|, R|ψ〉 := −I|ψ〉 = 2|ψ〉〈ψ| − I,

where I is the identity. I|ψ〉 can be seen as an “inversion about |ψ〉” operation, while R|ψ〉 can be
seen as an “reflection about |ψ〉” operation. An arbitrary state |φ〉 can be expanded as

|φ〉 = α|ψ〉+ β|ψ⊥〉

for some α and β, and some state |ψ⊥〉 such that 〈ψ|ψ⊥〉 = 0. Then

I|ψ〉|φ〉 = −α|ψ〉+ β|ψ⊥〉,

so I|ψ〉 has flipped the phase of the component corresponding to |ψ〉, and left the component
orthogonal to |ψ〉 unchanged. R|ψ〉 has the opposite effect. Observe that, in the unstructured
search problem with marked element x0, Uf = I|x0〉. Further observe that

H⊗nU0H
⊗n = H⊗n(I − 2|0〉〈0|)H⊗n = I − 2|+〉〈+| = I|+〉,

where |+〉 = 1√
2n

∑
x∈{0,1}n |x〉, so D = −I|+〉. By moving the minus sign, the algorithm can equally

well be thought of as alternating the operations −I|x0〉 and I|+〉, or equivalently R|x0〉 and −R|+〉.
We have the following claims:

1. For any states |ψ〉, |φ〉, and any state |ξ〉 in the 2d plane spanned by |ψ〉 and |φ〉, the states
R|ψ〉|ξ〉 and R|φ〉|ξ〉 remain in this 2d plane.

This is immediate from geometric arguments, but one can also calculate explicitly:

R|ψ〉(α|ψ〉+ β|φ〉) = R|ψ〉(α|ψ〉+ β(γ|ψ〉+ δ|ψ⊥〉)) = (α+ βγ)|ψ〉 − βδ|ψ⊥〉
= (α+ 2βγ)|ψ〉 − β(γ|ψ〉+ δ|ψ⊥〉) = (α+ 2βγ)|ψ〉 − β|φ〉.

2. Within the 2d plane spanned by orthogonal states |ψ〉, |ψ⊥〉, I|ψ〉 = −R|ψ〉 = R|ψ⊥〉 .

Again, one can calculate explicitly that

−R|ψ〉(α|ψ〉+ β|ψ⊥〉) = −α|ψ〉+ β|ψ⊥〉 = R|ψ⊥〉(α|ψ〉+ β|ψ⊥〉).

3. If |ξ〉 is within the 2d plane spanned by |ψ〉, |ψ⊥〉,

R|ψ〉|ξ〉 = 〈ψ|ξ〉|ψ〉 − 〈ψ⊥|ξ〉|ψ⊥〉.

This is just a straightforward calculation.

11

Combining these claims, we see that each step of Grover’s algorithm consists of two reflections
in the plane spanned by |+〉, |x0〉: a reflection about |x0〉 followed by a reflection about |+⊥〉,
a state orthogonal to |+〉 within this plane. We can illustrate this with the following diagram,
demonstrating the effect of these operations on an arbitrary state |ξ〉 within this 2d plane:

|+〉

|x0〉|+⊥〉
|ξ〉 R|x0〉 R|+⊥〉

|+〉

|x0〉|+⊥〉

|ξ〉

|+〉

|x0〉|+⊥〉
|ξ〉

We see that |ξ〉 has moved closer to |x0〉. In fact, geometrically speaking, the composition of
two reflections is a rotation! If the angle between |ξ〉 and |x0〉 is θ, and the angle between |x0〉
and |+⊥〉 is γ, composing these two reflections rotates |ξ〉 in the direction of |+⊥〉 by an angle of
2θ − 2(θ − γ) = 2γ. This is proven by picture in the following diagram but could also be shown
using the representation of rotations and reflections by 2d matrices.

|+〉

|x0〉|+⊥〉
|ξ〉

θ

γ
R|x0〉 R|+⊥〉

|+〉

|x0〉|+⊥〉

|ξ〉
θ
γ

|+〉

|x0〉|+⊥〉
|ξ〉θ − 2γ

Repeating the Grover iteration continues to rotate |ξ〉 within this plane by angle 2γ. We stop
when we are as close to |x0〉 as possible. We start with |ξ〉 = |+〉, so the initial angle between
|ξ〉 and |x0〉 is π/2 − γ. We can calculate what γ is by using the formula cos γ = 〈x0|+⊥〉, so
sin γ = 〈x0|+〉 = 1/

√
N . As sinx ≈ x for small x, we expect the number of iterations required to

move from an angle of π/2−γ down to an angle of 0 to be about (π/4)
√
N . One can calculate this

more precisely: after T iterations, the angle between |ξ〉 and |x0〉 is

γT := π/2− (2T + 1) arcsin(1/
√
N),

so the probability of obtaining the outcome x0 when we measure is precisely

|〈ξ|x0〉|2 = cos2(γT) = sin2((2T + 1) arcsin(1/
√
N)). (1)

Maximising this by taking T to be the integer nearest to

π

4 arcsin(1/
√
N)
− 1

2
=
π

4

√
N − 1

2
−O

(
1

N

)
,

we learn x0 with probability 1 − O(1/N) using O(
√
N) queries. (The above expression uses

arcsinx = x + O(x3) for small x.) Figure 4 illustrates the success probabilities for N = 100.

12

T

Success probability

1

10 20 30 40 50

Figure 4: Success probabilities of Grover’s algorithm for N = 100.

We see that, as the number of uses of the Grover iterate increases past (π/4)
√
N , the success

probability starts to decrease. This is sometimes referred to as the “soufflé” property of Grover’s
algorithm: if we open the oven too early, or too late, the soufflé falls.

A particularly nice case, where we can determine an exact solution, is N = 4. Here we have
arcsin(1/2) = π/6, so if we plug in T = 1 to Eqn. (1), the probability of getting the outcome x0 is
sin2(π/2) = 1; so we get the right answer with certainty after only one query.

We have calculated the query complexity of Grover’s algorithm; what is the time complexity?
As well as the calls to Uf , we need to implement the operation D. But this can be done efficiently:
D consists of two layers of n Hadamard gates and an operation which flips the phase if the input
is not all 0’s. This operation – which is based on computing the bitwise OR of n bits – can be
implented using O(log n) layers of classical gates. So the overhead is O(n) gates per iteration, and
depth only O(log n). This is minor compared with the number of iterations, which is Θ(2n/2).

3.1 Multiple marked elements

Grover’s algorithm can also be used when there are M > 1 marked elements. In this setting, the
operator Uf inverts the phase of input elements x ∈ S, for some unknown subset S ⊆ [N], where
|S| = M . Uf is still related to an inversion operator, but now an inversion about an M -dimensional
subspace:

Uf = I − 2ΠS ,

where ΠS =
∑

x∈S |x〉〈x|. If we define the state |S〉 := 1√
M

∑
x∈S |x〉, we see that

I|S〉|+〉 = (I − 2|S〉〈S|)|+〉 = |+〉 − 2

 1

M

∑
x,y∈S

|x〉〈y|

 1√
N

∑
x∈{0,1}n

|x〉

= |+〉 − 2√

N

∑
x∈S
|x〉 = (I − 2ΠS)|+〉 = Uf |+〉

and similarly
I|S〉|S〉 = −|S〉 = (I − 2ΠS)|S〉 = Uf |S〉.

That is, the Uf operation behaves like an inversion-about-|S〉 operator for any states in the subspace
spanned by |+〉 and |S〉. The whole of the previous analysis goes through, except that now the
angle γ moved at each step satisfies sin γ = 〈S|+〉 =

√
M/N . Thus after T iterations we have

|〈ξ|S〉|2 = cos2(γT) = sin2((2T + 1) arcsin(
√
M/N)).

13

By a similar argument to before we can pick T ≈ (π/4)
√
N/M to obtain overlap with |S〉 close

to 1. When we measure at the end of the algorithm, we get an element of the subset S (and in
fact a uniformly random such element) with probability |〈ξ|S〉|2. In particular, observe that when
M = N/4, we again measure an element of S with certainty using only one query.

What if we do not know the number of marked elements in advance? The following simple trick
can deal with this. First run the algorithm assuming there is 1 marked element; if it fails, try again
assuming there are 2 marked elements; then 4, 8, etc. The total number of queries used is roughly

log2N∑
k=0

π

4

√
N

2k
=
π

4

√
N

logN∑
k=0

2−k/2 = O(
√
N).

If the number of marked elements is M , at least one of the iterations must choose a value of T which
is within a factor of 2 of the optimal value T ′ ≈ (π/4)

√
N/M . Then, as (2T ′+1) arcsin(

√
M/N) =

π/2 +O(M/N),

sin2((2T + 1) arcsin(
√
M/N)) = sin2

(
2T + 1

2T ′ + 1
(2T ′ + 1) arcsin(

√
M/N)

)
= sin2

(
2T + 1

2T ′ + 1
(π/2 +O(M/N))

)
,

which is lower-bounded by a strictly positive constant if M is small with respect to N . Repeating
the whole algorithm O(1) times allows us to achieve an arbitrarily high success probability.

This algorithm might still have a high probability of failing in the case where M = Ω(N). To
find a marked element in this case we can just sample O(1) random values of f(x) classically; we
will find a marked element with high probability.

3.2 Problems in NP and “database search”

Grover’s algorithm is often presented as a way of searching an unstructured database, or a database
which is not structured in a way that is useful to us; for example, trying to search by phone number
in a phone book ordered by name. However, the primary use of Grover’s algorithm (at least initially)
is likely not to be searching physical databases, but instead searching for solutions to computational
problems.

Grover’s algorithm gives a quadratic quantum speedup over classical exhaustive search for any
problem in NP. This is because we can choose the oracle operation f to be the classical checking
circuit which takes an input a claimed solution, and outputs 1 if the solution is correct, and 0
otherwise. If there are N possible solutions to the problem, Grover’s algorithm lets us find a
solution using only O(

√
N) checks. Note that this does not immediately imply that Grover’s

algorithm is better than any classical algorithm; in some cases, there could be a more efficient
classical algorithm based on using the structure of the problem.

But could we also use Grover’s algorithm to search a real database? This would rely on the use
of a “quantum RAM” which allowed elements of the memory to be efficiently queried in superpo-
sition. In principle, there do not seem any fundamental reasons why such a memory could not be
constructed. However, in practice building a quantum RAM is likely to be challenging.

14

3.3 Amplitude amplification

The basic idea behind Grover’s algorithm can be generalised remarkably far, to an algorithm
for finding solutions to any problem using a heuristic. This algorithm is known as amplitude
amplification.

Imagine we have N possible solutions, of which a subset S are “good”, and we would like to find
a good solution. As well as having access to a “checking” algorithm f as before, where f(x) = 1
if and only if x is marked, we now have access to a “guessing” algorithm A, which has the job of
producing potential solutions to the problem. It performs the map

A|0〉 =
N−1∑
x=0

αx|x〉

for some coefficients {αx}. So, if we were to apply A and then measure, the probability that we
would obtain a good solution is

p :=
∑
x∈S
|αx|2;

we think of A as a heuristic which tries to output a good solution. We can use f to check whether
a claimed solution is actually good. If we repeated Algorithm A until we got a good solution, the
expected number of trials we would need is Θ(1/p).

We now describe the amplitude amplification algorithm.

We are given access to A and Uf as above.

1. Apply A to the starting state |0〉.

2. Repeat the following operations T times, for some T to be determined:

(a) Apply Uf .

(b) Apply −AI0A−1.

3. Measure all the qubits and output the result.

Box 5: Amplitude amplification

Note that this is exactly the same as Grover’s algorithm, except that we have replaced the H⊗n

operations with A or A−1. Write

|ψ〉 = A|0〉, |G〉 =
ΠS |ψ〉
‖ΠS |ψ〉‖

,

where again ΠS =
∑

x∈S |x〉〈x|. We now repeat the analysis of the previous section, except that
we replace |+〉 with |ψ〉 and |S〉 with |G〉. We observe that everything goes through just as before!
The first operation applied is equivalent to I|G〉, and the second is equivalent to −I|ψ〉. We start
with the state |ψ〉 and rotate towards |G〉. The angle γ moved at each step now satisfies

sin γ = 〈ψ|G〉 = ‖ΠS |ψ〉‖ =
√
p,

so the number of iterations required to move from |ψ〉 to |G〉 is O(1/
√
p) – a quadratic improvement.

15

Finally observe that we can generalise one step further, by replacing the algorithm Uf with
inversion about an arbitrary subspace, rather than a subspace defined in terms of computational
basis vectors. This allows us to use amplitude amplification to drive amplitude towards an arbitrary
subspace, or indeed to create an arbitrary quantum state, given the ability to reflect about that
state.

16

7 3 4 2 9 7 3 4 2 9 7 3 4 2 9 7 3 4 2 9

Figure 6: A periodic sequence, with period 5, which is one-to-one on each period.

4 The Quantum Fourier Transform and periodicity

We now introduce an important unitary transformation which is used in a number of different
contexts in quantum information theory: the quantum Fourier transform (QFT) over ZN , the
integers modulo N . This can be seen as a generalisation of the familiar Hadamard gate. The QFT
is the map

QN |x〉 =
1√
N

∑
y∈ZN

ωxyN ,

where ωN := e2πi/N , and xy is just the product of the two numbers x and y, thought of as integers.
We sometimes omit the subscript N where there is no ambiguity. Some examples of the QFT in
small dimension:

Q2 =
1√
2

(
1 1
1 −1

)
, Q3 =

1√
3

1 1 1

1 e2πi/3 eπi/3

1 eπi/3 e2πi/3

 , Q4 =
1

2

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

To see that the QFT is unitary, we calculate the inner product of rows x and z, which equals

1

N

∑
y∈ZN

(ωxyN)∗ωzyN =
1

N

∑
y∈ZN

ω
(z−x)y
N .

To compute this sum, we use the formula for the sum of a geometric series:

r−1∑
k=0

xk =

{
1−xr
1−x if x 6= 1

r if x = 1
, (2)

implying that the inner product is equal to 1 if z = x, and
1−ω(z−x)N

N
1−ωN otherwise. But as ωNN = 1,

the inner product is 0 if z 6= x. More generally, for any integer j,

1

N

∑
y∈ZN

ωjyN =

{
0 if j 6≡ 0 mod N

1 if j ≡ 0 mod N
, (3)

a fact which will be useful later.

The QFT is exactly the same transformation as the Discrete Fourier Transform (DFT) used for
classical computation and signal processing, up to the nonstandard normalisation of 1/

√
N .

4.1 Periodicity determination

One of the most important applications of the QFT is determining the period of a periodic function.
Imagine we are given access to an oracle function f : ZN → Z, such that:

17

• f is periodic: there exists r such that r divides N and f(x+ r) = f(x) for all x ∈ ZN ;

• f is one-to-one on each period: for all pairs (x, y) such that |x− y| < r, f(x) 6= f(y).

Our task is to determine r.

The periodicity determination algorithm is presented in Box 7.

We are given access to a periodic function f with period r, which is one-to-one on each
period. We start with the state |0〉|0〉.

1. Apply QN to the first register.

2. Apply Of to the two registers.

3. Measure the second register.

4. Apply QN to the first register.

5. Measure the first register; let the answer be k.

6. Simplify the fraction k/N as far as possible and return the denominator.

Box 7: Periodicity determination

The initial sequence of operations which occur during the algorithm is:

|0〉|0〉 17→ 1√
N

∑
x∈ZN

|x〉|0〉 27→ 1√
N

∑
x∈ZN

|x〉|f(x)〉.

When the second register is measured, we receive an answer, say z. By the periodic and one-to-one
properties of f , all input values x ∈ ZN for which f(x) = z are of the form x0 + jr for some x0 and
integer j. The state therefore collapses to something of the form√

r

N

N/r−1∑
j=0

|x0 + jr〉.

After we apply the QFT, we get the state

√
r

N

N/r−1∑
j=0

∑
y∈ZN

ω
y(x0+jr)
N |y〉

 =

√
r

N

∑
y∈ZN

ωyx0

N/r−1∑
j=0

ωjryN

 |y〉.
Observe that, as r divides N , ωrN = e2πi(r/N) = ωN/r. This state is thus equivalent to

√
r

N

∑
y∈ZN

ωyx0

N/r−1∑
j=0

ωjyN/r

 |y〉.
By Eqn. (3), the sum over j is 0 unless y ≡ 0 mod N/r, or in other words if y = `N/r for some
integer `. So we can rewrite this state as

1√
r

r−1∑
`=0

ω`x0N/r|`N/r〉.

18

0 2 4 6 8 10 12 14 16 18

0.25

0 2 4 6 8 10 12 14 16 18

0.25

Figure 8: Periodicity determination as above with N = 20, r = 5. First diagram illustrates the
probabilities of measurement outcomes after step 3 (for one possible measurement result for the
second register), second diagram illustrates probabilities after step 5.

When we perform the final measurement, we receive an outcome k = `0N/r, for some `0 picked
uniformly at random from 0, . . . , r − 1. We know that

k =
`0N

r
, so

k

N
=
`0
r
.

In this equation, we know N and k and would like to determine r. If it happened that `0 were
coprime to r, we could cancel the fraction on the left-hand side and output the denominator. What
is the probability that we are lucky in this way?

Fact 4.1. Fix an positive integer a and pick b uniformly at random from the integers between 0
and a. Then the probability that b is coprime to a is Ω(1/ log log a).

Thus, if we repeat the whole procedure O(log log r) = O(log logN) times, we are quite likely to
find the period r. Why? If we have a probabilistic procedure which succeeds with probability p,
the probability that it fails every time over R repetitions is exactly

(1− p)R ≤ e−pR,

so it suffices to take R = O(1/p) to achieve, say, 99% success probability. Each time the algorithm
returns a claimed period, we can check whether it is really a period of the function using two
additional queries. Each use of the quantum algorithm therefore makes 3 queries, so the whole
algorithm makes O(log logN) queries in total. In terms of time complexity, the most complicated
classical processing required is the elementary arithmetic in step 6, which can be implemented (via
Euclid’s algorithm) using poly(logN) arithmetic operations. However, we have not yet shown that
we can implement the QFT QN efficiently.

4.2 Efficient implementation of the QFT

We will show here how to implement QN efficiently – i.e. using a circuit of size O(poly logN) –
in the case where N is a power of 2. (In fact, the QFT can also be implemented (approximately)
efficiently when N is not a power of 2.) The efficient implementation is based on the same ideas
as the classical Fast Fourier Transform (FFT). To begin with, we observe that the output of the
QFT, when applied to a computational basis state, has an efficient description as a product state.

Assume that N = 2n for some integer n, and represent each y ∈ ZN by the n-bit string

19

(y0, y1, . . . , yn−1), where y = y0 + 2y1 + 4y2 + · · ·+ 2n−1yn−1. Then

QN |x〉 =
1

2n/2

∑
y∈Z2n

ωxy2n |y〉

=
1

2n/2

∑
y∈{0,1}n

ω
x(

∑n−1
j=0 2jyj)

2n |yn−1〉|yn−2〉 . . . |y0〉

=

 1√
2

∑
yn−1∈{0,1}

ω
2n−1xyn−1

2n |yn−1〉

 1√
2

∑
yn−2∈{0,1}

ω
2n−2xyn−2

2n |yn−2〉

 . . .

 1√
2

∑
y0∈{0,1}

ωxy02n |y0〉

=

n⊗
j=1

 1√
2

∑
yn−j∈{0,1}

ω
xyn−j
2j

|yn−j〉

 .

Because xyn−j ≡ 0 mod 2j when x is an integer multiple of 2j , we see that the j’th qubit of the
output only depends on the j bits x0, . . . , xj−1. We can write this another way, as

QN |x〉 =
1

2n/2

(
|0〉+ e2πi(.x0)|1〉

)(
|0〉+ e2πi(.x1x0)|1〉

)
. . .
(
|0〉+ e2πi(.xn−1...x0)|1〉

)
,

where the notation (.xj . . . x0) is used for the binary fraction

xj
2

+
xj−1

4
+ . . .

x0

2j−1
.

So we see that the first qubit of the output depends on only the last qubit of the input, the second
qubit depends on the last two, etc. We can utilise this structure by building up the output state
in reverse order. The last stage of the circuit creates the correct state for the first qubit, which is
then not used again; the last but one stage creates the correct state for the second qubit, etc. To
produce the correct state for each qubit, we can use the gates H and Rd, where

H =
1√
2

(
1 1
1 −1

)
, Rd =

(
1 0

0 eπi/2
d

)
.

Here we are assuming that we have access to Rd gates for arbitrary d; as briefly discussed in Section
2, this is not essential as any universal gate set will allow us to approximately implement these
gates. Observe that the Hadamard gate can be written as the map

H|x〉 =
1√
2

(
|0〉+ e2πi(.x)|1〉

)
for x ∈ {0, 1}. We can use this to start building up a binary fraction in the phase of the basis
state |1〉. Applying a Rd gate to this state will add 1/2d+1 to this binary fraction. To apply Rd
conditional on the bits of x, we will use controlled-Rd gates.

The easiest way to illustrate this process is with an example. The overall circuit for the QFT
on 4 qubits can be depicted as

|x3〉 H R1 R2 R3 |y0〉

|x2〉 • H R1 R2 |y1〉

|x1〉 • • H R1 |y2〉

|x0〉 • • • H |y3〉

20

Observe that the output state is backwards, i.e. the qubits appear in reverse order. They can be
returned to the original order, if desired, using swap gates. How many gates in total are used in
the circuit? The j’th stage of the circuit, for j = 1, . . . , n, uses one Hadamard gate and n − j Rd
gates. Thus the overall number of gates used is O(n2); n(n−1)/2 Rd gates and n Hadamard gates,
then n additional swap gates, if used. This is O(log2N), so we have indeed obtained an efficient
circuit.

This complexity can be improved further, to O(n log n), if we are content with an approximate
version of the QFT. The observation which implies this is that many of the operations in the circuit
are Rd gates for large values of d, which do not affect the output significantly. Indeed, it turns out
that there is a constant C such that if we omit the gates Rd with d ≥ C log n, for any input state
|x〉 the output is close to the input up to an error of at most 1/poly(n). The modified circuit uses
O(log n) gates at each stage, so O(n log n) in total.

21

5 Integer factorisation

The main application of periodicity determination is Shor’s quantum algorithm for integer factori-
sation. Given an n-digit integer N as input, this algorithm outputs a non-trivial factor of N (or that
N is prime, if this is the case) with success probability 1− ε, for any ε > 0, in time O(n3). The best

classical algorithm known (the general number field sieve) runs in time eO(n1/3 log2/3 n). In fact, this
is a heuristic bound and this algorithm’s worst-case runtime has not been rigorously determined;
the best proven bound is somewhat higher. Shor’s algorithm thus achieves a super-polynomial
improvement. This result might appear only of mathematical interest, were it not for the fact that
the widely-used RSA public-key cryptosystem relies on the hardness of integer factorisation. Shor’s
efficient factorisation algorithm implies that this cryptosystem is insecure against attack by a large
quantum computer.

Unfortunately (?), proving correctness of Shor’s algorithm requires going through a number of
technical details. First we need to show that factoring reduces to a periodicity problem – though in
this case an approximate periodicity problem. This part uses only classical number theory. Then we
need to show that periodicity can still be determined even in the setting where the input function
is only approximately periodic. This part uses the theory of continued fractions.

5.1 From factoring to periodicity

The basic skeleton of the quantum factorisation algorithm is given in Box 9. It is based on two
“magic” subroutines. The first is a classical algorithm for computing the greatest common divisor
(gcd) of two integers. This can be achieved efficiently using Euclid’s algorithm. The second ingre-
dient is an algorithm for computing the order of an integer a modulo N , i.e. the smallest integer r
such that ar ≡ 1 mod N ; this is where we will use periodicity determination. As long as a and N
are coprime, such an integer p exists:

Fact 5.1 (Euler’s theorem). If a and N are coprime then there exists p such that ar ≡ 1 mod N .

Let N denote the integer to be factorised. Assume that N is not even or a power of a
prime.

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop.

3. Determine the order r of a modulo N . If r is odd, the algorithm has failed; termi-
nate.

4. Compute s = gcd(ar/2 − 1, N). If s = 1, the algorithm has failed; terminate.

5. Output s.

Box 9: Integer factorisation algorithm (overview)

We start by showing that this algorithm does work, assuming that the subroutines used all
work correctly. If a is coprime to N , there exists r such that ar ≡ 1 mod N . If, further, such an r
is even, we can factor

ar − 1 = (ar/2 + 1)(ar/2 − 1) ≡ 0 mod N.

22

So N divides the product (ar/2 + 1)(ar/2− 1). Because r is the smallest integer x such that ax ≡ 1
mod N , we know that ar/2− 1 is not divisible by N . Then, if in addition s = gcd(ar/2− 1, N) 6= 1,
s would be a nontrivial factor of N . This condition would hold if ar/2 + 1 is not divisible by N .
This, and r being even, turn out to occur with quite high probability:

Fact 5.2. Let N be odd and not a power of a prime. If 1 < a < N is chosen uniformly at random
with gcd(a,N) = 1, then Pr[r is even and ar/2 6≡ −1 mod N] ≥ 1/2.

The algorithm thus succeeds with probability at least 1/2. If it fails, we simply repeat the
whole process. After K repetitions, we achieve a failure probability of at most 1/2K . Even if the
order-finding procedure has some small probability of error (which will turn out to be the case),
we can check whether the algorithm’s output s is correct by attempting to divide N by s.

We assumed throughout that N is not even or a power of a prime. If N is even, we simply
output 2 as a factor. To deal with the case that N = p` for some prime p and some integer ` > 0,
we observe that we can efficiently compute the roots N1/k, for k = 2, . . . , log2N . If any of these is
an integer, we have found a factor of N . Finally, what about if N is itself prime? In this case the
algorithm will fail every time. We can therefore output “prime” after a suitable number of failures.

Example 5.3. Consider N = 15. Imagine we choose a = 7 at random. Then gcd(7, 15) = 1.
The function f(x) = 7x mod 15 takes values 1, 7, 4, 13, 1, . . . for x ≥ 0. So r = 4 and we have
(72 + 1)(72 − 1) ≡ 0 mod 15. The greatest common divisor of 72 − 1 = 48 and 15 is 3, which is
indeed a factor of 15.

It remains to show how to implement step 3. Consider the function f : Z→ ZN defined by

f(x) = ax mod N.

We have f(x + y) = f(x)f(y) and, by Euler’s theorem, f(r) = 1. So f(x + r) = f(x)f(r) = f(x)
for all x, i.e. f is periodic with period r. Since r is the smallest integer such that f(r) = 1, we also
have that f is one-to-one on each period. However, although this function is periodic on the whole
domain Z, we will need to truncate it to a finite size. If we knew what the period was, we could
choose this size to make the function periodic again, but of course we do not know this in advance.
This will lead to the function becoming no longer exactly periodic, but just approximately periodic.

5.2 Approximate periodicity

We restrict the function f(x) = ax mod N to the set x ∈ {0, . . . ,M − 1}, where M = 2m is the
smallest power of 2 greater than N2 (we will see the reasons behind this choice later). Write
M = Br + b for 0 ≤ b < r, where B = bM/rc. That is, the function is periodic up to the last
period, which is truncated and contains only b elements, rather than r. We apply the steps of the
periodicity-determination algorithm to f as in Section 4.1. That is, we first construct the state

1√
M

M−1∑
x=0

|x〉|f(x)〉,

then measure the second register to receive an answer z = f(x0) for some x0. The state of the first
register then becomes

|ψ〉 =
1√
A

A−1∑
j=0

|x0 + jr〉,

23

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

Figure 10: The probabilities of different measurement outcomes for a function with period 5, with
M = 32. Note the peaks around multiples of 32/5 = 6.4.

where A = B + 1 if x0 < b, and A = B if x0 ≥ b. Write

QM |ψ〉 =

M−1∑
y=0

αy|y〉

for the resulting state when we apply the QFT to |ψ〉. By direct calculation we have

αy =
1√
MA

A−1∑
j=0

ω
y(x0+jr)
M =

ωyx0M√
MA

A−1∑
j=0

(
ωyrM
)j
.

Using the formula (2) for the sum of a geometric series, the sum evaluates to

1− ωyrAM

1− ωyrM

if yr 6≡ 0 mod M , and evaluates to A otherwise. Previously, in the case of exact periodicity
determination, we had A = B = M/r, so the numerator was 0 unless yr 6≡ 0 mod M , or in other
words y is a multiple of M/r. Now we aim to show that, when we measure, we get an outcome y
which is close to a multiple of the non-integer value M/r with high probability. This situation is
illustrated in Figure 10.

When we measure, the probability of obtaining outcome y is

Pr[y] =
1

MA

∣∣∣∣∣1− ωyrAM

1− ωyrM

∣∣∣∣∣
2

=
1

MA

∣∣∣∣∣1− e2πiyrA/M

1− e2πiyr/M

∣∣∣∣∣
2

=
sin2(πyrA/M)

MA sin2(πyr/M)
.

To see the third equality, note that |1 − eiθ| = |eiθ/2 − e−iθ/2| = 2| sin(θ/2)| for any real θ. Now
consider values y of the form y = b`M/re for some integer `. We can write any such integer as
y = `M/r + ε for some small ε such that |ε| ≤ 1/2. Indeed, we have the slightly stronger bound
(which we will need) that |ε| ≤ 1/2− 1/r. This holds because (a) `M/r is an integer divided by r,
so the distance from the closest integer is an multiple of 1/r; (b) r < N and M > N2 is a power
of 2, so any factors of 2 in the denominator of the fraction `M/r can be cancelled and we cannot
have |ε| = 1/2.

Then

Pr[y] =
sin2(π(`M/r + ε)rA/M)

MA sin2(π(`M/r + ε)r/M)
=

sin2(`Aπ + εrAπ/M)

MA sin2(`π + εrπ/M)
=

sin2(εrAπ/M)

MA sin2(εrπ/M)

24

by periodicity of the function | sin θ|. We now claim (see (4) in Box 11) that the following pair of
inequalities hold for any θ in the range 0 ≤ θ ≤ π/2:

(2/π)θ ≤ sin θ ≤ θ.

Assuming these inequalities, we have

Pr[y] ≥ (2εrA/M)2

MA(εrπ/M)2
=

4A

π2M
≥ 4

π2M

(
M

r
− 1

)
=

4

π2r
−O(1/N2).

Note that the lower bound on the numerator is valid because |ε|rAπ/M ≤ π/2, which was a
consequence of |ε| ≤ 1/2− 1/r:

|ε|rAπ
M

≤
(

1
2 −

1
r

)
r
(
M
r + 1

)
π

M
=
π

2

(
1− 2

r

)(
1 +

r

M

)
≤ π

2

(
1− 2

r

)(
1 +

2

r

)
=
π

2

(
1− 4

r2

)
<
π

2
,

where the second inequality holds because r2 ≤ N2 ≤ 2M . Therefore, as there are r “good” integers
y of the form b`M/rc, the probability of obtaining at least one of them is at least 4/π2 −O(1/N).

The following trigonometric inequalities will be useful for the analysis of various quantum
algorithms. We state them without proof, instead referring to the figure below.

(2/π)θ ≤ sin θ ≤ θ for 0 ≤ θ ≤ π/2; (4)

cos θ ≥ 1− θ2/2 for all θ. (5)

sin θ

(2/π)θ

θπ/2

π/4

π/2π/4

cos θ

1− θ2/2

1

0.5

π/2π/4

Box 11: Trigonometric inequalities

5.3 Learning r from an approximate period

It remains to extract r from an integer y of the form y = b`M/re. Divide y by M to obtain a
rational number z such that ∣∣∣∣ `r − z

∣∣∣∣ < 1

2M
<

1

2N2
.

We would like to find the fraction `/r from z. We first claim that there is at most one fraction of
the form `′/r′ with r′ < N satisfying the above bound. To prove this, imagine there were two such
fractions `′/r′, `′′/r′′. Then ∣∣∣∣ `′r′ − `′′

r′′

∣∣∣∣ =
|`′r′′ − r′`′′|

r′r′′
≥ 1

r′r′′
>

1

N2
.

But, as `′/r′, `′′/r′′ are each within 1/(2N2) of z, they must be at most distance 1/N2 apart, so
we have a contradiction.

25

We have seen that it suffices to find any fraction `′/r′ such that r′ < N to learn `/r. To do
this, we use the theory of continued fractions. The continued fraction expansion (CFE) of z is an
expression of the form

z =
1

a1 + 1
a2+ 1

a3+...

,

where the ai are positive integers. To find the integers ai, we start by writing

z =
1

z′
,

where z′ = a1 + b for some integer a1 and some b < 1; then repeating this process on b. Note
that, for any rational z, this expansion must terminate after some number of iterations C. One can
show that in fact, for any rational z = s/t where s and t are m-bit integers, C = O(m). Once we
have calculated this expansion, if we truncate it after some smaller number of steps, we obtain an
approximation to z. These approximations are called convergents of the CFE.

Example 5.4. The continued fraction expansion of z = 31/64 is

31

64
=

1

2 + 1
15+ 1

2

.

The convergents are
1

2
,

1

2 + 1
15

=
15

31
.

Fact 5.5. Any fraction p/q with |p/q − z| < 1/(2q2) will appear as one of the convergents of the
CFE of z.

Therefore, if we carry out the continued fraction expansion of z, we are guaranteed to find `/r,
as the unique fraction close enough to z.

Example 5.6. Imagine we want to factor N = 21. We set M = 512 > 212 and choose a = 10 at
random. The order of a mod 21 is 6. So we would expect the measurement outcomes we receive
to be close to multiples of 512/6 = 851

3 . Imagine we receive a measurement result of 427. This is
a “good” result, as the closest integer to 5× (512/6) = 4262

3 . The continued fraction expansion of
z = 427/512 is

427

512
=

1

1 + 1
5+ 1

42+1
2

.

From this we obtain the sequence of convergents

1,
1

1 + 1
5

=
5

6
,

1

1 + 1
5+ 1

42

=
211

253
.

Only the second of these has a denominator smaller than N and is within 1/(2N2) of z. Therefore,
we have `/r = 5/6. We output the denominator, 6, as our guess for the period r. . . which is correct!

26

5.4 Complexity analysis

How complex is the final, overall algorithm? Recall that N is n bits in length. We have seen that
the QFT on ZM can be implemented in time O(log2M) = O(n2). To implement the modular
exponentiation operation f(x) = ax mod N efficiently, we can use repeated squaring to produce
f(2k) for any integer k in k squaring operations. Multiplying the different values f(2k) together
for each k such that the k’th bit of a is nonzero produces f(x). So we require O(n) multiplications
of n-bit integers to compute f(x). Multiplying two n-bit numbers can be achieved classically using
standard long multiplication in time O(n2), so we get an overall complexity of O(n3).

It turns out (though we will not show it here) that the classical processing of the measurement
results based on Euclid’s algorithm and the continued fractions algorithm can also be done in time
O(n3). Thus the overall time complexity of the whole algorithm is O(n3), whereas the best known
classical algorithm runs in time exponential in n1/3. The asymptotic quantum complexity can in
fact be improved a bit further, to O(n2 poly log n), by using more advanced multiplication and
division algorithms with runtime O(n poly log n). However, these algorithms only become more
efficient in practice for very large values of n.

27

6 Phase estimation

We now discuss an important primitive used in quantum algorithms called phase estimation, which
provides a different and unifying perspective on the quantum algorithms which you have just seen.
Phase estimation is once again based on the QFT over ZN , where N = 2n.

Imagine we are given a unitary operator U . U may either be written down as a quantum circuit,
or we may be given access to a black box which allows us to apply a controlled-U j operation for
integer values of j. We are also given a state |ψ〉 which is an eigenvector of U : U |ψ〉 = e2πiφ|ψ〉 for
some real φ such that 0 ≤ φ < 1. We would like to determine φ to n bits of precision, for some
arbitrary n.

To do so, we prepend an n qubit register to |ψ〉, initially in the state |0〉, and create the state

1√
N

N−1∑
x=0

|x〉|ψ〉

by applying Hadamards to each qubit in the first register. We then apply the unitary operator

U ′ =
N−1∑
x=0

|x〉〈x| ⊗ Ux.

This operator can be described as: if the first register contains x, apply U x times to the second
register. We are left with the state

1√
N

N−1∑
x=0

e2πiφx|x〉|ψ〉;

note that the second register is left unchanged by this operation. We now apply the operator Q−1

to the first register and then measure it, receiving outcome x (say). We output the binary fraction

0.x1x2 . . . xn =
x1

2
+
x2

4
+ · · ·+ xn

2n

as our guess for φ. The following is an explicit circuit for the above algorithm.

|0〉 H . . . •

Q−1

...
...

|0〉 H • . . .

|0〉 H • . . .

|ψ〉 U20 U21 . . . U2n−1

Why does this algorithm work? When we perform the final measurement, the probability of getting
the outcome x is

1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiφy−2iπxy/N

∣∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiy(φ−x/N)

∣∣∣∣∣∣
2

.

28

First imagine that the binary expansion of φ is at most n bits long, or in other words φ = z/N for
some 0 ≤ z ≤ N − 1. In this case we have

1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiy(φ−x/N)

∣∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiy(z−x)/N

∣∣∣∣∣∣
2

= δxz

by the unitarity of the QFT, so the measurement outcome is guaranteed to be z, implying that
the algorithm outputs φ with certainty. If the binary expansion of φ is longer than n bits, we now
show that we still get the best possible answer with probability Ω(1), and indeed are very likely
to get an answer close to φ. The proof turns out to be very similar to that of correctness of the
periodicity determination algorithm in the approximate case.

Theorem 6.1. The probability that the above algorithm outputs the real number with n binary
digits which is closest to φ is at least 4/π2. Further, the probability that the algorithm outputs θ
such that |θ − φ| ≥ ε is at most O(1/(Nε)).

Proof. If the binary expansion of φ has n binary digits or fewer, we are done by the argument
above. So, assuming it does not, let φ̃ be the closest approximation to φ that has n binary digits,
and write φ̃ = a/N for some integer 0 ≤ a ≤ N−1. For any z, define δ(z) := φ−z/N and note that
0 < |δ(a)| ≤ 1/(2N). For any φ, the probability of getting outcome z from the final measurement
is

Pr[z] =
1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiy(φ−z/N)

∣∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣∣
N−1∑
y=0

e2πiyδ(z)

∣∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣1− e2πiNδ(z)

1− e2πiδ(z)

∣∣∣∣∣
2

=
sin2(πNδ(z))

N2 sin2(πδ(z))
,

(6)
where we evaluate the sum using the formula for a geometric series. This quantity should be
familiar from the proof of correctness of the periodicity determination algorithm.

We first lower bound this expression for z = a to prove the first part of the lemma. As
|δ(a)| ≤ 1/(2N), we have Nπδ(a) ≤ π/2. Then

Pr[a] =
sin2(πNδ(a))

N2 sin2(πδ(a))
≥ (2Nδ(a))2

N2(πδ(a))2
=

4

π2

using the trigonometric inequalities (4).

In order to prove the second part of the theorem, we now find an upper bound on expression
(6). First, it is clear that sin2(πNδ(z)) ≤ 1 always. For the denominator, by the same argument
to above we have sin(πδ(z)) ≥ 2δ(z) and hence, for all z,

Pr[get outcome z] ≤ 1

N2

(
1

2δ(z)

)2

=
1

4N2δ(z)2
.

We now sum this expression over all z such that |δ(z)| ≥ ε. The sum is symmetric about δ(z) = 0,
and as z is an integer, the terms in this sum corresponding to δ(z) > 0 are δ0, δ0 + 1/N, . . . , for
some δ0 ≥ ε. The sum will be maximised when δ0 = ε, when we obtain

Pr[get outcome z with |δ(z)| ≥ ε] ≤ 1

4N2

∞∑
k=0

1

(ε+ k/N)2
≤ 1

4

∫ ∞
0

1

(Nε+ k)2
dk

=
1

4

∫ ∞
Nε

1

k2
dk = O

(
1

Nε

)
.

29

We observe the following points regarding the behaviour of this algorithm.

• What happens if we do not know an eigenvector of U? If we input an arbitrary state |ϕ〉
to the phase estimation algorithm, we can write it as a superposition |ϕ〉 =

∑
j αj |ψj〉 over

eigenvectors {|ψj〉}. Therefore, the algorithm will output an estimate of each corresponding
eigenvalue φj with probability |αj |2. This may or may not allow us to infer anything useful,
depending on what we know about U in advance.

• In order to approximate φ to n bits of precision, we needed to apply the operator U2m , for
all 0 ≤ m ≤ n− 1. If we are given U as a black box, this may be prohibitively expensive as
we need to use the black box exponentially many times in n. However, if we have an explicit
circuit for U , we may be able to find a more efficient way of computing U2m . An example of
this is modular exponentiation, where we can efficiently perform repeated squaring.

6.1 Application to quantum counting

An elegant application of phase estimation is to a generalisation of the unstructured (Grover) search
problem. Imagine we have an oracle f : {0, 1}n → {0, 1} which takes the value 1 on k inputs, for
some unknown k, and again set N = 2n. We would like to estimate k by querying f .

Classically, a natural way to do this is by sampling. Imagine that we query f on q random
inputs and get that f is 1 on ` of those inputs. Then as our estimate of k we output k̃ = `N/q.
One can show using properties of the binomial distribution that this achieves

|k̃ − k| = O

(√
k(N − k)

q

)

with high probability. We can achieve improved accuracy by using the phase estimation algorithm.
Consider the “Grover iteration” G = −H⊗nU0H

⊗nUf . As G is a rotation through angle 2θ in
a 2-dimensional plane, where θ satisfies sin θ =

√
k/N , its eigenvalues are e2iθ and e−2iθ. In

order to estimate k, we can apply the phase estimation algorithm to G to estimate either one of
these eigenvalues. As it does not matter which we estimate, we can input any state within this
2-dimensional plane to the phase estimation algorithm as a claimed eigenvector of G. In particular,
the state 1√

N

∑
x∈{0,1}n |x〉 will work.

By Theorem 6.1, if we apply the phase estimation algorithm to G, we can find the closest m-
digit number to θ, for any m, with constant probability of success using O(2m) queries. For small θ,
we have θ ≈

√
k/N , so we learn

√
k/N up to additive error O(1/2m) using O(2m) queries. Setting

2m =
√
N/δ for some real δ > 0, we have learnt

√
k up to additive error O(δ) using O(

√
N/δ)

queries; or in other words have learnt k up to additive error O(δ
√
k) using O(

√
N/δ) queries. In

order to achieve a similar level of accuracy classically, we would need Ω(N/δ2) queries for small k.

Another application of phase estimation, to the order finding problem, is discussed in the
Exercises.

30

7 Hamiltonian simulation

One of the earliest – and most important – applications of a quantum computer is likely to be
the simulation of quantum mechanical systems. There are quantum systems for which no efficient
classical simulation is known, but which we can simulate on a universal quantum computer. What
does it mean to “simulate” a physical system? According to the OED, simulation is “the technique
of imitating the behaviour of some situation or process (whether economic, military, mechanical,
etc.) by means of a suitably analogous situation or apparatus”. What we will take simulation to
mean here is approximating the dynamics of a physical system. Rather than tailoring our simulator
to simulate only one type of physical system (which is sometimes called analogue simulation), we
seek a general simulation algorithm which can simulate many different types of system (sometimes
called digital simulation).

According to the laws of quantum mechanics, time evolution of the state |ψ〉 of a quantum
system is governed by Schrödinger’s equation:

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is the Hamiltonian of the system (for convenience, we will henceforth absorb ~ into
H(t)). An important special case on which we will focus is the time-independent setting where
H(t) = H is constant. In this case the solution of this equation is

|ψ(t)〉 = e−iHt|ψ(0)〉.

Given a physical system specified by some Hamiltonian H, we would like to simulate the evolution
of the system on an arbitrary initial state for a certain amount of time t. In other words, given H,
we would like to implement a unitary operator which approximates

U(t) = e−iHt.

What does it mean to approximate a unitary? The “gold standard” of approximation is approxi-
mation in the operator norm (aka spectral norm)

‖A‖ := max
|ψ〉6=0

‖A|ψ〉‖
‖|ψ〉‖

,

where ‖|ψ〉‖ =
√
〈ψ|ψ〉 is the usual Euclidean norm of |ψ〉. Note that this is indeed a norm, and

in particular satisfies the triangle inequality ‖A+ B‖ ≤ ‖A‖+ ‖B‖. We say that Ũ approximates
U to within ε if

‖Ũ − U‖ ≤ ε.

This is a natural definition of approximation because it implies that, for any state |ψ〉, Ũ |ψ〉 and
U |ψ〉 are only distance at most ε apart.

7.1 Simulation of k-local Hamiltonians

For simplicity, assume that H is a Hamiltonian of n two-level systems (qubits). In order for our
quantum simulation of H to be efficient, we need U = e−iHt to be approximable by a quantum
circuit containing poly(n) gates. A fairly straightforward counting argument shows that not all

31

Hamiltonians H can be simulated efficiently. However, it turns out that several important phys-
ically motivated classes can indeed be simulated. Perhaps the most important of these is k-local
Hamiltonians.

A Hamiltonian H of n qubits is said to be k-local if it can be written as a sum

H =
m∑
j=1

Hj

for some m, where each Hj is a Hermitian matrix which acts non-trivially on at most k qubits. That
is, Hj is the tensor product of a matrix H ′j on k qubits, and the identity matrix on the remaining
n− k qubits. For example, the operator on 3 qubits

H = X ⊗ I ⊗ I − 2I ⊗ Z ⊗ Y

is 2-local. Many interesting physical systems are k-local for small k (say k ≤ 3), some of which you
may have heard of. Simple examples include the two-dimensional Ising model on a n × n square
lattice,

H = J
n∑

i,j=1

Z(i,j)Z(i,j+1) + Z(i,j)Z(i+1,j)

and the Heisenberg model on a line,

H =

n∑
i=1

JxX
(i)X(i+1) + JyY

(i)Y (i+1) + JzZ
(i)Z(i+1),

both of which are used in the study of magnetism (in the above, M (j) denotes a single qubit operator
acting on the j’th qubit, and J, Jx, Jy, Jz are constants).

Note that, if H is k-local, we can assume that m ≤
(
n
k

)
= O(nk). We usually assume that

k is constant, in which case m is polynomial in n. We first show that each of the individual Hj

operators can be simulated efficiently, which will be immediate from the following theorem, which
formalises a claim made at the start of the course.

Theorem 7.1 (Solovay-Kitaev theorem). Let U be a unitary operator which acts non-trivially
on k = O(1) qubits, and let S be an arbitrary universal set of quantum gates. Then U can be
approximated in the operator norm to within ε using O(logc(1/ε)) gates from S, for some c < 4.

Proof. Sadly beyond the scope of this course. For a readable explanation, see Andrew Childs’
lecture notes.

As each e−iHjt acts non-trivially on only at most k qubits, it follows from the Solovay-Kitaev the-
orem that we can approximate each of these operators individually to within ε in timeO(polylog(1/ε)).
In the special case where all of the Hj operators commute, we have

e−iHt = e−i(
∑m
j=1Hj)t =

m∏
j=1

e−iHjt.

Thus a natural way to find a unitary operator approximating e−iHt is to take the product of our
approximations of e−iH1t, . . . , e−iHmt. Although each of these approximates e−iHjt to within ε, this
does not imply that their product approximates e−iHt to within ε. However, we now show that the
approximation error only scales linearly.

32

Lemma 7.2. Let (Ui), (Vi) be sequences of m unitary operators satisfying ‖Ui − Vi‖ ≤ ε for all
1 ≤ i ≤ m. Then ‖Um . . . U1 − Vm . . . V1‖ ≤ mε.

Proof. The proof is by induction on m. The claim trivially holds for m = 1. Assuming that it
holds for a given m, we have

‖Um+1Um . . . U1 − Vm+1Vm . . . V1‖
= ‖Um+1Um . . . U1 − Um+1Vm . . . V1 + Um+1Vm . . . V1 − Vm+1Vm . . . V1‖
≤ ‖Um+1Um . . . U1 − Um+1Vm . . . V1‖+ ‖Um+1Vm . . . V1 − Vm+1Vm . . . V1‖
= ‖Um+1(Um . . . U1 − Vm . . . V1)‖+ ‖(Um+1 − Vm+1)Vm . . . V1‖
= ‖Um . . . U1 − Vm . . . V1‖+ ‖Um+1 − Vm+1‖
≤ (m+ 1)ε.

Thus, in order to approximate
∏m
j=1 e

−iHjt to within ε, it suffices to approximate each of the
Hj to within ε/m. We formalise this as the following proposition.

Proposition 7.3. Let H be a Hamiltonian which can be written as the sum of m commuting terms
Hj, each acting non-trivially on k = O(1) qubits. Then, for any t, there exists a quantum circuit
which approximates the operator e−iHt to within ε in time O(m polylog(m/ε)).

7.2 The non-commuting case

Unfortunately, this simulation technique does not necessarily work for non-commuting Hj . The rea-
son is that if A and B are non-commuting operators, it need not hold that e−i(A+B)t = e−iAte−iBt.
However, we can simulate non-commuting Hamiltonians via an observation known as the Lie-Trotter
product formula.

In what follows, the notation X +O(ε), for a matrix X, is used as shorthand for X +E, where
E is a matrix satisfying ‖E‖ ≤ Cε, for some universal constant C (not depending on X or ε).

Lemma 7.4 (Lie-Trotter product formula). Let A and B be Hermitian matrices such that ‖A‖ ≤ K
and ‖B‖ ≤ K, for some real K ≤ 1. Then

e−iAe−iB = e−i(A+B) +O(K2).

Proof. From the Taylor series for ex, for any matrix A such that ‖A‖ = K ≤ 1, we have

e−iA = I − iA+

∞∑
k=2

(−iA)k

k!
= I − iA+ (−iA)2

∞∑
k=0

(−iA)k

(k + 2)!
= I − iA+O(K2).

Hence

e−iAe−iB =
(
I − iA+O(K2)

) (
I − iB +O(K2)

)
= I − iA− iB +O(K2) = e−i(A+B) +O(K2).

33

Applying this formula multiple times, for any Hermitian matrices H1, . . . ,Hm satisfying ‖Hj‖ ≤
K ≤ 1 for all j,

e−iH1e−iH2 . . . e−iHm =
(
e−i(H1+H2) +O(K2)

)
e−iH3 . . . e−iHm

=
(
e−i(H1+H2+H3) +O((2K)2)

)
e−iH4 . . . e−iHm +O(K2)

= e−i(H1+···+Hm) +O(K2) +O((2K)2) + · · ·+O(((m− 1)K)2)

= e−i(H1+···+Hm) +O(m3K2).

Therefore, there is a universal constant C such that if n ≥ Cm3(Kt)2/ε,∥∥∥e−iH1t/ne−iH2t/n . . . e−iHmt/n − e−i(H1+···+Hm)t/n
∥∥∥ ≤ ε/n.

By Lemma 7.2, for any such n∥∥∥(e−iH1t/ne−iH2t/n . . . e−iHmt/n
)n
− e−i(H1+···+Hm)t

∥∥∥ ≤ ε.
Given this result, we can simulate a k-local Hamiltonian simply by simulating the evolution of
each term for time t/n to high enough accuracy and concatenating the individual simulations. We
formalise this as the following theorem.

Theorem 7.5. Let H be a Hamiltonian which can be written as the sum of m terms Hj, each acting
non-trivially on k = O(1) qubits and satisfying ‖Hj‖ ≤ K for some K. Then, for any t, there exists
a quantum circuit which approximates the operator e−iHt to within ε in time O(m3(Kt)2/ε), up to
polylogarithmic factors.

It seems somewhat undesirable that, in order to simulate a Hamiltonian for time t, this algorithm
has dependence on t which is O(t2). In fact, using more complicated simulation techniques, the
overall complexity in Theorem 7.5 can be improved to time O(mKt), up to polylogarithmic factors.

34

8 Quantum walk

We now discuss a quantum generalisation of the classical concept of random walk. Classically,
random walks are an important algorithmic tool, and the same has proven to be true for quantum
walks. We begin by introducing the most basic variant of quantum walk, walk on the line.

8.1 Quantum walk on the line

Classically, the simple random walk on the line is defined as follows. A particle (“walker”) is placed
on an infinite line at position 0. At each time step, the walker flips an unbiased coin. If the result is
heads, it moves left by 1; otherwise, it moves right by 1. The probability of being found at position
x after t steps is exactly

1

2t

(
t
t+x

2

)
,

where we define
(
t
r

)
= 0 for non-integer r. (This is easily derived as follows: there are 2t different

paths of n steps that could be taken; the paths which end up at x are exactly those with (t+ x)/2
right-moving steps; and there are

(
t

(t+x)/2

)
such paths.) We can see from this that the probability

decays quickly for |x| outside the range O(
√
t), and indeed one can calculate the variance of the

position p as

E[p2] = E

(t∑
i=1

Zi

)2
 =

t∑
i,j=1

E[ZiZj] =

t∑
i=1

E[Z2
i] = t,

where the Zi ∈ {±1} are random variables determining whether the i’th step is to the left or the
right. We look for a quantum generalisation of this simple process.

One natural generalisation is as follows. Consider a quantum system with two registers |x〉|c〉,
where the first holds an integer position1 x and the second holds a coin state c ∈ {L,R}. As in the
classical case, at each step our quantum walk will flip a coin and then decide in which direction to
move. These two operations will be unitary: a coin operator C, and a shift operator S. The coin
operator acts solely on the coin register, and consists of a Hadamard operation:

C|L〉 =
1√
2

(|L〉+ |R〉) , C|R〉 =
1√
2

(|L〉 − |R〉) .

The shift operator acts on both registers, and simply moves the walker in the direction indicated
by the coin state:

S|x〉|L〉 = |x− 1〉|L〉, S|x〉|R〉 = |x+ 1〉|R〉.

Then a quantum walk on the line for t steps consists of applying the unitary operator (S(I⊗C))t to
some initial state. Remarkably, these simple dynamics can lead to some fairly complicated results.
Consider the first few steps of a quantum walk with initial state |0〉|L〉 (position 0, facing left).

1The reader might object to a register that stores an arbitrary integer. In this case, consider it to store an integer
mod m for some large m.

35

One can calculate that the state evolves as follows.

|0〉|L〉 7→ 1√
2

(|−1〉|L〉+ |1〉|R〉)

7→ 1

2
(|−2〉|L〉+ |0〉|R〉+ |0〉|L〉 − |2〉|R〉)

7→ 1

2
√

2
(|−3〉|L〉+ |−1〉|R〉+ 2|−1〉|L〉 − |1〉|L〉+ |3〉|R〉)

7→ . . .

Consider the result of measuring the position register after the third step. Positions −3, 1 and 3
are obtained with probability 1/8 each, and position −1 is obtained with probability 5/8. In other
words, the most likely position for the particle to be found in is −1. By contrast, the classical
random walk is symmetric about 0 (and in fact is found in position −3 or 3 with probability 1/8
each, and −1 and 1 with probability 3/8 each). The bias of the quantum walk is an effect of
interference. If the quantum walk is run for more steps before measuring the position, we obtain
the pattern illustrated in Figure 12.

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 12: The distribution of positions following a quantum walk on the line for 100 steps using
the Hadamard coin. Only even positions are shown as the amplitude at odd positions is 0.

Note that, unlike the classical walk, the quantum walk is not symmetric about 0. Intuitively,
this is caused by the Hadamard coin treating the L and R directions differently: only the |R〉
state gets mapped to a state containing a negative amplitude, leading to destructive interference
in this direction. This asymmetry can be removed by changing the initial state of the coin register
to 1√

2
|0〉(|L〉 + i|R〉), or alternatively by using a different coin operator. Figure 13 compares the

distribution of probabilities obtained for classical and (symmetric) quantum walks.

The quantum walk seems to spread out from the origin faster than the classical walk. Indeed,
it can be shown that the variance is Ω(t2), noticeably faster than the classical O(t). Unlike the
straightforward analysis of the classical random walk, the effect of interference means that it is quite
involved to prove this, so we will not do so here. This difference between quantum and classical
walks will become more pronounced when we consider more general graphs.

36

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 13: Quantum walk on the line for 100 steps with starting coin state 1√
2
|0〉(|L〉 + i|R〉),

compared with classical walk for 100 steps (red dashed line). Only even positions are shown as the
amplitude at odd positions is 0.

8.2 Quantum walk on general graphs

There is a natural generalisation of the classical random walk on the line to a random walk on an
arbitrary graph G with m vertices. The walker is positioned at a vertex of G, and at each time
step, it chooses an adjacent vertex to move to, uniformly at random. Here we will consider only
undirected graphs where the ability to move from A to B implies the ability to move from B to
A. Further, we restrict to regular graphs for simplicity, i.e. those whose every vertex has degree d.
Labelling vertices by integers between 1 and m, the probability of being at vertex j after t steps,
given that the walk started at vertex i, can then be written in compact form as 〈j|M t|i〉 for some
matrix M , where

Mij =

{
1
d if i is connected to j

0 otherwise.

Random walks on graphs have been intensively studied in computer science for their many algorith-
mic applications, as well as for their intrinsic mathematical interest. For example, one of the most
efficient (and simplest) algorithms known for the fundamental problem of boolean satisfiability
(SAT) is based on a random walk.

We now consider how a quantum generalisation of this process can be found. We still have
position and coin registers, but now the position register is m-dimensional and the coin register is
d-dimensional. Label each vertex with a distinct integer between 1 and m, and for each vertex,
label its outgoing edges with distinct integers between 1 and d such that, for each i, the edges
labelled with i form a cycle. For each vertex v ∈ {1, . . . ,m}, let N(v, i) denote the i’th neighbour
of v (i.e. the vertex at the other end of the i’th edge).

Then our quantum walk will once again consist of alternating shift and coin operators S and
C, i.e. each step is of the form (S(I ⊗ C)). The shift operator simply performs the map

S|v〉|i〉 = |N(v, i)〉|i〉,

and the coin operator C once again acts only on the coin register. However, as this is now d-
dimensional, we have many possible choices for C. One reasonable choice is the so-called Grover

37

coin,

C =

2
d − 1 2

d . . . 2
d

2
d

2
d − 1 . . . 2

d
...

...
. . .

...
2
d

2
d . . . 2

d − 1

 .

This is just the iteration used in Grover’s algorithm. This operator is an appealing choice because it
is permutation-symmetric (i.e. treats all edges equally), and it is far away from the identity matrix
(i.e. has a large mixing effect). If d = 2, we would get C = (0 1

1 0), so in this case the coins used
earlier for the walk on the line lead to more interesting behaviour.

8.3 Exponentially faster hitting on the hypercube

We now focus on one particularly interesting graph: the n-dimensional hypercube (aka the Cayley
graph of the group Zn2). This is the graph whose vertices are n-bit strings which are adjacent if
they differ in exactly one bit. Each edge x ↔ y of this graph is naturally labelled by the index
of the single bit where x and y differ. We will be interested in the expected time it takes for a
random walk on this graph to travel from the “all zeroes” string 0n to the “all ones” string 1n, i.e.
to traverse the graph from one extremity to the other, which is known as the hitting time from 0n

to 1n.

Classically, this time can be analysed by mapping the walk to a (biased) random walk on the
line. Imagine the walker is currently at a vertex with Hamming weight k. The probability of
moving to a vertex with Hamming weight (k− 1) is k/n, and the probability of moving to a vertex
with Hamming weight (k + 1) is 1 − k/n. Observe that, as k increases, the probability of a step
leading to the Hamming weight increasing decreases, so intuitively the walker becomes “stuck” in
the “middle” of the graph (i.e. near Hamming weight n/2).

More rigorously, we have the following proposition.

Proposition 8.1. The hitting time from 0n to 1n is at least 2n − 1.

Proof. Let h(k) be the expected number of steps until the walk hits 1n, given that it starts with
Hamming weight k. We have the recurrence

h(k) =
k

n
h(k − 1) +

(
1− k

n

)
h(k + 1) + 1,

with the boundary case h(n) = 0. Writing δ(k) = h(k)− h(k + 1), this can be simplified to

δ(k) =

(
n

k + 1
− 1

)
δ(k + 1)− n

k + 1

and the recurrence solved to give

δ(k) =
1(
n−1
k

) k∑
j=0

(
n

j

)
, and hence h(0) =

n−1∑
k=0

δ(n) =

n−1∑
k=0

1(
n−1
k

) k∑
j=0

(
n

j

)
.

Thus h(0) can be lower bounded by rearranging the sum to give

h(0) =

n−1∑
j=0

(
n

j

) n−1∑
k=j

1(
n−1
k

) ≥ n−1∑
j=0

(
n

j

)
= 2n − 1.

38

We thus see that the expected time to reach the 1n vertex is exponential in n. However, for
quantum walks the situation is very different, and we have the following result.

Theorem 8.2. If a quantum walk on the hypercube is performed for T ≈ π
2n steps starting in

position 0n, and the position register is measured, the outcome 1n is obtained with probability
1−O(polylog(n)/n).

Once again, the proof of this result is too technical to include here. However, we can give a
sketch of the first part of one proof strategy, which is analogous to the classical case, and consists of
simplifying to a walk on the line. Define a set of 2n states {|υk, L〉, |υk, R〉} indexed by an integer
k = 0, . . . , n as follows:

|υk, L〉 :=
1√
k
(
n
k

) ∑
x,|x|=k

∑
i,xi=1

|x〉|i〉, |υk, R〉 :=
1√

(n− k)
(
n
k

) ∑
x,|x|=k

∑
i,xi=0

|x〉|i〉,

with the exception of the special cases |υ0, L〉 and |υn, R〉, which will not be used and are undefined.
Now observe that the quantum walk on the hypercube preserves tbe subspace spanned by this set
of states:

S|υk, L〉 =
1√
k
(
n
k

) ∑
x,|x|=k

∑
i,xi=1

|x⊕ ei〉|i〉 =
1√
k
(
n
k

) ∑
x,|x|=k−1

∑
i,xi=0

|x〉|i〉 = |υk−1, R〉,

and similarly S|υk, R〉 = |υk+1, L〉. In the case of the coin operator, it turns out that

(I ⊗ C)|υk, L〉 =

(
2k

n
− 1

)
|υk, L〉+

2
√
k(n− k)

n
|υk, R〉

and (I ⊗ C)|υk, R〉 =
2
√
k(n− k)

n
|υk, L〉+

(
1− 2k

n

)
|υk, R〉.

This behaviour is similar to the quantum walk on the line, with two differences: first, the direction
in which the walker is moving flips with each shift, and second, the coin is different at each position
(i.e. depends on k). Based on this reduction, it is easy to plot the behaviour of this quantum walk
numerically for small n, as shown in Figure 14.

8.4 A general approach for quantising Markov chains

The method described in the previous section, suitably generalised, allows us to define a quantum
walk on any undirected graph. However, we now describe a different approach, due to Szegedy,
which simultaneously allows us to handle directed graphs, and allows us to analyse the properties
of the quantum walk produced.

In the most general setting, a random walk on a directed graph G with n vertices is described
by an N ×N matrix P with non-negative entries such that

∑N
i=1 Pij = 1 for all j (such matrices

are called stochastic). Pij is the probability of moving to vertex i from vertex j. The quantum walk
corresponding to P is a unitary operation WP on CN ⊗ CN . We can think of this as operating on
a space spanned by edges of the graph G. To define WP , we first introduce states

|ψj〉 :=
N∑
i=1

√
Pij |j〉|i〉

39

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 14: Quantum walk on a 50-dimensional hypercube for 60 steps starting in state |υ0, R〉,
compared with classical walk for 1000 steps (red dashed line). Graph plots probability of being at
a point with Hamming weight k. Only even positions are shown as the amplitude at odd positions
is 0.

for j = 1, . . . , N . As P is stochastic, these are all normalised states. Write

Π :=
N∑
j=1

|ψj〉〈ψj |

for the projector onto the subspace spanned by {|ψj〉}, and let S =
∑N

i,j=1 |ij〉〈ji| be the operator
that swaps the two registers. Then a step of the quantum walk is the unitary operator

WP = S(2Π− I).

2Π−I is a reflection about the subspace spanned by {|ψj〉}. If P is a random walk on a regular graph
with uniform probability of moving to each neighbour, following this procedure gives a quantum
walk as described in the previous section using the Grover coin. We now analyse the eigenvalues
of WP .

Theorem 8.3. For any N ×N stochastic matrix P , let D be the matrix defined by Dij =
√
PijPji.

Then, for each eigenvalue λ of D, WP has eigenvalues λ ± i
√

1− λ2 = e±i arccosλ. WP also has
eigenvalues ±1.

Proof. Set T :=
∑N

j=1 |ψj〉〈j|, and for each eigenvector |λ〉 of D, let |λ̃〉 = T |λ〉. T is an isometry:

T †T =
N∑

j,k=1

|j〉〈ψj |ψk〉〈k| =
N∑

j,k,`,m=1

√
P`jPmk〈j|k〉〈`|m〉|j〉〈k| =

N∑
j,`=1

P`j |j〉〈j| = I.

On the other hand,

TT † =

N∑
j,k=1

|ψj〉〈j|k〉〈ψk| =
N∑
j=1

|ψj〉〈ψj | = Π

and finally

T †ST =

N∑
j,k=1

|j〉〈ψj |S|ψk〉〈k| =
N∑

j,k,`,m=1

√
P`jPmk〈j, `|S|k,m〉|j〉〈k| =

N∑
j,k=1

√
PjkPkj |j〉〈k| = D.

40

If we apply WP to |λ̃〉, we get

WP |λ̃〉 = S(2Π− I)|λ̃〉 = S(2TT † − I)T |λ〉 = S(2T − T)|λ〉 = S|λ̃〉,

and if we apply WP again we get

WPS|λ̃〉 = S(2TT † − I)ST |λ〉 = (2STD − T)|λ〉 = (2λS − I)|λ̃〉.

So WP preserves the subspace spanned by {|λ̃〉, S|λ̃〉}, implying that there is an eigenvector of WP

within this subspace. Let
|µ〉 = |λ̃〉 − νS|λ̃〉

for some µ ∈ C chosen such that |µ〉 is indeed an eigenvector of WP . Then

WP |µ〉 = S|λ̃〉 − µ(2λS − I)|λ̃〉 = µ|λ̃〉+ (1− 2λµ)S|λ̃〉,

so for |µ〉 to be an eigenvector we must have

(1− 2λµ) = µ(−µ), so µ2 − 2λµ+ 1 = 0

and hence µ = λ± i
√

1− λ2. Finally, for any vector orthogonal to all the states {|ψj〉}, WP simply
acts as −S, which has eigenvalues ±1.

The matrix D occurring in this theorem is like a “symmetrised” version of P . If P is already
symmetric, D = P .

8.5 Search by quantum walk

A natural use for random, or quantum walks, on graphs is search. Imagine that a set S of k vertices
are marked. A natural approach to find a marked vertex is to start with some arbitrary vertex,
then perform a random walk according to P until we find a marked vertex, when we stop. This
process can be modelled by modifying the initial matrix P to produce a new matrix P ′ where

P ′ij =

1 if i = j and j ∈ S
0 if i 6= j and j ∈ S
Pij otherwise.

Assume that P is symmetric and let PS be the matrix obtained by deleting all the rows and columns
of P corresponding to vertices in S. P ’s largest eigenvalue is 1; let the second largest, in absolute
value, be 1− δ. δ is known as the spectral gap of P .

We first calculate a bound on the largest eigenvalue of PS .

Lemma 8.4. If the second largest eigenvalue of P , in absolute value, is at most 1− δ and k = εN ,
then ‖PS‖ ≤ 1− δε.

Proof. Consider the principal eigenvector |v〉 ∈ RN−k of PS , and let |w〉 ∈ RN be the vector
produced by adding zeroes at positions corresponding to the marked vertices. We perform the
eigendecomposition of P ,

P =
N∑
i=1

λi|λi〉〈λi|

41

where λ1 = 1, and compute

〈v|PS |v〉 = 〈w|P |w〉 =

N∑
i=1

λi|〈λi|w〉|2 = |〈λ1|w〉|2 +

N∑
i=2

λi|〈λi|w〉|2

≤ |〈λ1|w〉|2 + (1− δ)
N∑
i=2

|〈λi|w〉|2

= 1− δ
N∑
i=2

|〈λi|w〉|2

= 1− δ(1− |〈λ1|w〉|2).

Observe that, as P is symmetric, |λ1〉must actually be the uniform superposition |λ1〉 = 1√
N

∑N
i=1 |i〉.

Then, if we expand |w〉 =
∑

i/∈S αi|i〉, we have

|〈λ1|w〉|2 =
1

N

∣∣∣∣∣∑
i/∈S

αi

∣∣∣∣∣
2

≤ N − |S|
N

(∑
i/∈S

|αi|2
)

=
N − k
N

= 1− ε,

where the inequality is Cauchy-Schwarz. Hence ‖PS‖ ≤ 1− δε as claimed.

We now describe an algorithm which uses a quantum walk to solve the more restricted problem
of distinguishing between the case where there are no marked vertices, and the case where there are
εN marked vertices. The algorithm applies phase estimation to the operator WP ′ using as input
the state

|ψ〉 =
1√

N − k

∑
j /∈S

|ψj〉,

the uniform superposition over non-marked vertices. This state can be prepared by starting with
the uniform superposition over all vertices, then applying the isometry T , and measuring whether
the first register corresponds to a marked vertex. If so, we are done; if not, we have prepared
|ψ〉. Assuming without loss of generality that the last k elements of [N] are marked, the matrix D
corresponding to the walk P ′ is

D =

(
PS 0
0 I

)
,

so by Theorem 8.3 the eigenvalues of WP ′ are ±1 and e±i arccosλ for each eigenvalue λ of PS . If
S = ∅, then PS = P ′ = P and |ψ〉 is an eigenvector of WP with eigenvalue 1. So phase estimation
will return a phase of 0. On the other hand, if S 6= ∅, |ψ〉 is contained entirely within the subspace
corresponding to the PS block, in which WP ′ has eigenvalues e±i arccosλ. We have

cos θ ≥ 1− θ2/2

for any θ, so arccosλ ≥
√

2(1− λ). By Lemma 8.4, the phase of each eigenvalue is at least
√

2δε
in absolute value.

So, using phase estimation, it suffices to make O(1/
√
δε) steps of the quantum walk to distin-

guish between the two cases that (a) there are no marked elements, and (b) there are k = εN
marked elements. One might wonder what the point of all this work was, when Grover’s algo-
rithm solves the unstructured search problem with an ε fraction of marked elements using O(1/

√
ε)

queries, which is faster. The point is that, unlike Grover’s algorithm, the quantum walk algorithm

42

is based around making local moves which respect the structure of the graph. If the data within
which we are searching are laid out physically in a particular graph structure, a search algorithm
which respects this structure may be more efficient. Even if there is no such physical restriction,
bearing a notion of locality in mind can sometimes lead to more efficient algorithms. We will now
see an example of this.

8.6 Element distinctness

Given query access to a function f : {1, . . . , N} → X for some set X, the element distinctness
problem is to determine whether there exists a pair (x, y) such that f(x) = f(y). Classically,
solving this problem requires Ω(N) queries to f , as it is at least as hard as unstructured search.
Indeed, if we are given the additional promise that any collision is of the form (1, x) for some
x > 1, then solving element distinctness is equivalent to determining whether f(x) = f(1) for
x ∈ {2, . . . , N − 1}, which is the unstructured search problem on N − 1 elements.

We will now describe a quantum algorithm due to Ambainis which solves the element distinct-
ness problem using O(N2/3) queries to f , which is known to be optimal.

The algorithm is based around a quantum walk on the graph whose vertices are subsets of
{1, . . . , N} of size M , which is called the Johnson graph. Here we will actually consider the graph
with NM vertices whose vertices are M -tuples made up of elements of {1, . . . , N} (i.e. ordered
subsets of {1, . . . , N} where repetitions are allowed), which makes the analysis a bit simpler; this
is called the Hamming graph. In this graph there is an edge between any pair of vertices whose
corresponding M -tuples differ in exactly one element. For example, with N = 4, M = 3, there
would be an edge between the vertices (1, 3, 1) and (1, 3, 2). A vertex is marked if its corresponding
M -tuple contains a pair of duplicate elements.

During the walk, if we are at vertex v = (v1, . . . , vM), we will maintain the values (f(v1), . . . , f(vM)).
To set this up initially requires M queries to f . However, once we have created this M -tuple, to
move from a vertex v to an adjacent vertex v′, differing at index i, requires only two queries: one
to uncompute f(vi) and one to compute f(v′i). Checking whether we are at a marked vertex can be
done using no additional queries, as we have already computed all the values f(vi) and just need
to check whether there are any collisions among them.

If the elements are not all distinct, the total number of marked vertices is at least M(M −
1)(N − 2)M−2, so the fraction of marked vertices is

ε ≥ M(M − 1)(N − 2)M−2

NM
= Ω

(
M2

N2

)
for M � N . We now compute the spectral gap of the Hamming graph. The adjacency matrix A
can be written down as

A =

M∑
i=1

Ci,

where C is the adjacency matrix of the N × N complete graph, and the subscript i means that
it acts at position i. C has one eigenvalue N , and N − 1 eigenvalues −1, and all the matrices Ci
commute. So eigenvalues of A are sums of sequences of M eigenvalues of C. Overall the largest
eigenvalue of A is M(N − 1) (the same as the degree of the graph, as expected) and the second
largest is (M − 1)(N − 1) − 1. After normalising by dividing by the degree, the second largest
eigenvalue is

M − 1

M
− 1

M(N − 1)
≤ 1− 1

M
,

43

so the spectral gap δ = Ω(1/M). So a marked vertex (i.e. pair of equal elements) can be found
using

M +O

(
1√
δε

)
= M +O

(
N√
M

)
queries. To minimise this, we set M = Θ(N2/3) to achieve an overall complexity of O(N2/3) queries,
as claimed.

44

9 Noise and the framework of quantum channels

Not all processes which occur in quantum mechanics are reversible. As a very simple example,
consider the operation of throwing away the input state and replacing it with the state |0〉:

|ψ〉 7→ |0〉

for all |ψ〉. This clearly cannot be implemented as a unitary operator. Just as mixed states
generalise pure states, we can generalise unitary operations to so-called completely positive trace-
preserving (CPTP) maps, also known as quantum channels. These occur throughout quantum
information theory and are particularly useful for describing noisy operations and decoherence, the
bane of quantum computers.

Recall that a mixed state ρ of n qubits, which describes a probabilistic mixture of pure states |ψ〉,
is a Hermitian 2n × 2n matrix which is positive semidefinite (all its eigenvalues are non-negative)
and has trace 1. What axioms would we like a physically reasonable map (“superoperator”) E ,
which takes mixed states to mixed states, to satisfy?

1. E should be linear: E(pρ+ qσ) = p E(ρ) + q E(σ) for all real p, q.

2. E should be trace-preserving: tr E(ρ) = tr ρ.

3. E should preserve positivity: if ρ ≥ 0, then E(ρ) ≥ 0. But there is a further constraint: if
we apply E to part of an entangled quantum state, the whole state should remain positive
semidefinite. That is, (E ⊗ I)(ρ) ≥ 0 for ρ ≥ 0, where I is the identity map on an arbitrarily
large ancilla system. This constraint is called complete positivity.

A completely positive, trace-preserving linear map is called a quantum channel.

9.1 Representations of quantum channels

There are a number of ways in which quantum channels can be represented. We describe two here.

We first consider the Kraus (aka “operator-sum”) representation. Here a channel E with input
dimension din and output dimension dout is described by a sequence of dout × din matrices Ek such
that ∑

k

E†kEk = I.

The effect of E on a state ρ is then

E(ρ) =
∑
k

EkρE
†
k.

A trivial example of a channel in Kraus form is the identity channel I(ρ) = ρ, which has one Kraus
operator E1 = I. For a product channel E = E1 ⊗ E2, where

E1(ρ) =
∑
k

E
(1)
k ρ(E

(1)
k)†, E2(σ) =

∑
k

E
(2)
k σ(E

(2)
k)†

we have

E(ρ⊗ σ) = E1(ρ)⊗ E2(σ) =

(∑
k

E
(1)
k ρ(E

(1)
k)†

)
⊗

(∑
`

E
(2)
` σ(E

(2)
`)†

)
=

∑
k,`

(E
(1)
k ⊗ E

(2)
`)(ρ⊗ σ)((E

(1)
k)† ⊗ (E

(2)
`)†,

45

so E must have Kraus operators which are tensor products of each pair of those of E1 and E2.

We claim that any superoperator in Kraus form obeys our three axioms:

1. E is linear: for any X and Y ,

E(X + Y) =
∑
k

Ek(X + Y)E†k =
∑
k

EkXE
†
k +

∑
k

EkY E
†
k = E(X) + E(Y).

2. E is trace-preserving:

tr E(ρ) = tr

(∑
k

EkρE
†
k

)
=
∑
k

tr
(
EkρE

†
k

)
=
∑
k

tr
(
ρE†kEk

)
= tr

(
ρ
∑
k

E†kEk

)
= tr ρ,

where in the second and fourth equalities we use linearity of trace, and in the third we use
its invariance under cyclic shifts.

3. E is completely positive. Here it is sufficient to show that E ⊗ I maps positive operators
to positive operators. Let ρ be an arbitrary positive operator on the extended system (with
ancilla). Then

(E ⊗ I)(ρ) =
∑
k

(Ek ⊗ I)ρ(E†k ⊗ I).

For this to be positive semidefinite, it is sufficient that for any positive semidefinite ρ and any
matrix M , MρM † is positive semidefinite. This holds because we can expand ρ as a convex
combination of pure states |ψi〉, and

M |ψi〉〈ψi|M † = |ψ′i〉〈ψ′i|

for some (unnormalised) vector |ψ′i〉, which is positive semidefinite.

In fact, it turns out that the equivalence goes the other way too: every quantum channel can be
written in Kraus form. We omit the proof (see Nielsen & Chuang, Theorem 8.1).

The Kraus representation is not unique. For example, the channels described by pairs of Kraus
operators

E1 =
1√
2

(
1 0
0 1

)
, E2 =

1√
2

(
1 0
0 −1

)
, and F1 =

(
1 0
0 0

)
, F2 =

(
0 0
0 1

)
have different representations, but are actually the same channel. This can be seen by writing
F1 = (E1 + E2)/

√
2, F2 = (E1 − E2)/

√
2, and calculating

F1ρF
†
1 + F2ρF

†
2 =

(E1 + E2)ρ(E†1 + E†2) + (E1 − E2)ρ(E†1 − E
†
2)

2
= E1ρE

†
1 + E2ρE

†
2.

Second, we describe the Stinespring representation. In this representation, a channel E from
system A to system B, E : B(CdA) → B(CdB), is described by an isometry from A to the pair of
systems B and E, V : CdA → CdB ⊗ CdE , such that

E(ρ) = trE(V ρV †).

That is, the channel consists of applying an isometry to ρ, mapping it into a larger-dimensional
space, then tracing out part of the space. We can think of this picture as modelling the dynamics

46

of an open quantum system, where ρ interacts with the outside environment E, then to calculate
the final state of the system we discard the environment.

Given a Kraus representation of a channel with operators Ek, we can write down a Stinespring
representation in a straightforward way:

V =
∑
k

Ek ⊗ |k〉. (7)

Then
V †V =

∑
k,`

E†kE`〈k|`〉 =
∑
k

E†kEk = I,

so V is indeed an isometry. Further, for any ρ,

trE(V ρV †) =
∑
k,`

trE [(Ek ⊗ |k〉)ρ(E†` ⊗ 〈`|)] =
∑
k,`

trE [(Ekρ⊗ |k〉)(E†` ⊗ 〈`|)]

=
∑
k,`

(EkρE
†
`)〈`|k〉 =

∑
k

EkρE
†
k,

so this faithfully represents the original channel. Also observe that any isometry V can be decom-
posed as in Eqn. (7), so the equivalence goes both ways. As we can think of any isometry as a
unitary operator on a larger space, this correspondence implies that any quantum channel can be
thought of as unitary evolution of a larger system, followed by tracing out a subsystem.

9.2 Examples of quantum channels

• Unitary evolution is a quantum channel described by one Kraus operator: ρ 7→ UρU †.

• Discarding ρ and replacing it with some state |ψ〉 is a quantum channel. If ρ is d-dimensional,
we have d Kraus operators |ψ〉〈k|, k = 1, . . . , d. Then, for any state ρ,

d∑
k=1

|ψ〉〈k|ρ|k〉〈ψ| = |ψ〉

(
d∑

k=1

〈k|ρ|k〉

)
〈ψ| = (tr ρ)|ψ〉〈ψ| = |ψ〉〈ψ|.

• The qubit depolarising channel replaces the input state ρ with the maximally mixed state
I/2, with probability p; with probability 1− p, the input state is unchanged. That is,

ED(ρ) = p
I

2
+ (1− p)ρ.

This represents a simple form of noise: with probability p, our knowledge of the qubit is com-
pletely randomised, and with probability 1−p the qubit is unharmed. The qubit depolarising
channel has Kraus operators

E1 =
√

1− 3p/4I, E2 = (
√
p/2)X, E3 = (

√
p/2)Y, E4 = (

√
p/2)Z.

This can be generalised to d dimensions, where we have

ED(ρ) = p
I

d
+ (1− p)ρ.

47

• The amplitude damping channel models a scenario in quantum optics where a photon
may be lost, with some probability. We imagine that we have a basis {|0〉, |1〉} where 0
represents “no photon” and 1 represents “photon” (so this is a very simple example of Fock
space). Then the Kraus operators of the amplitude damping channel EAD are

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0
√
γ

0 0

)
for some γ, which corresponds to the probability of losing a photon. So

EAD(|0〉〈0|) = |0〉〈0|, EAD(|1〉〈1|) = γ|0〉〈0|+ (1− γ)|1〉〈1|

as expected.

• Every measurement is a quantum channel. Imagine we have a projective measurement, i.e.
a set of orthogonal projectors {Pk} such that

∑
k Pk = I. Then the probability that we get

outcome k when we perform this measurement on state ρ is trPkρ, and the resulting state if
this occurs is

ρ′k :=
PkρPk
tr(Pkρ)

.

The Kraus operators of this channel are just the projectors Pk. This is correct because∑
k

PkρPk =
∑
k

tr(Pkρ)
PkρPk
tr(Pkρ)

;

the output state is a probabilistic mixture of the states ρ′k with the correct probabilities.

If we think of a qubit as a point in R3 using the Bloch ball representation, any channel mapping a
qubit to a qubit can be thought of as an affine map on this space. That is, if

ρ =
I

2
+ αxX + αyY + αzZ,

a channel corresponds to an affine map acting on the 3-dimensional vector v = (αx, αy, αz)
T , i.e. a

map of the form
v 7→ Av + b

for some 3× 3 matrix A and 3-dimensional vector b.

9.3 Master equations

We remark that it is frequently physically reasonable to think of noise as being a continuous process
parametrised by a time t. This leads to the concept of Markovian quantum channels (aka “Markov
processes”). A Markovian channel is a member of a family {Et} such that

Es+t = Es ◦ Et

for all times s, t. This implies that
Et = etL

48

for some superoperator L. If we write ρ(t) = Et(ρ(0)), d
dtρ(t) = L(ρ(t)). If we demand that Et is

completely positive for all times t, it can be shown that L satisfies the master equation

L(ρ) = i[ρ,H] +
∑
α,β

Gα,β(FαρF
†
β −

1

2
{F †βFα, ρ}+),

where H is a Hamiltonian, G and Fα are matrices defining a decoherence process, and [., .] and
{., .} denote the commutator and anticommutator, respectively (with the subscript + denoting the
positive part of this operator).

The qubit depolarising and amplitude damping channels, for example, are Markovian. However,
not all quantum channels are Markovian.

49

10 Quantum error-correction

Modern computer hardware is extremely reliable. Indeed, it can usually be assumed to be error-free
for all intents and purposes1. However, early quantum computing hardware is likely to be far from
reliable. Even worse, efficient quantum algorithms rely on delicate quantum effects (superposition
and entanglement) which must be preserved in the presence of errors. Luckily, it turns out that
errors can be fought using the notion of quantum error-correcting codes. To understand these
codes, it is helpful to first consider a basic classical notion of error correction.

Imagine we have a single bit x which we would like to store in a noisy storage device. A natural
model for this noise is that each bit stored in the device gets flipped with probability p, for some
0 ≤ p ≤ 1, and is left the same with probability 1−p. So if we store x in the device and then read it
back later, we get the wrong answer with probability p. One way to improve this works as follows.
Instead of just storing x, store the string xxx, i.e. repeat x three times. Then read out each of the
bits of the (potentially corrupted) string to get y := y1y2y3, and output 0 if the majority of the
bits of y are 0, and 1 otherwise.

What is the probability of failing to output x if this strategy is followed? The wrong answer will
be returned if two or more of the bits of y are flipped by noise, which will occur with probability
3p2(1− p) + p3 = p2(3− 2p) = O(p2). Thus, if p is small, this strategy has improved our resistance
to noise. Indeed, for any p such that 0 < p < 1/2, we have

p2(3− 2p) < p,

so the probability of error has been reduced. Another way of looking at this situation is that we
have stored a bit in such a way that it is impervious to an error affecting a single bit in the storage
device. The map x 7→ xxx is a very simple example of an error correcting code known as the binary
repetition code of length 3.

10.1 Quantum errors and error-correction

We would like to find a quantum analogue of this notion of error correction. Rather than preserving
classical bits x, our quantum error correcting code should preserve a qubit |ψ〉 under some notion
of error. For the time being, we pretend that an error affecting one or more qubits is simply an
arbitrary and unknown unitary operator N applied to those qubits. The classical bit-flip error
discussed above is an example of this, as it can be seen as simply applying the operator X to
a qubit in a computational basis state (recall that X|0〉 = |1〉 and X|1〉 = |0〉). The process of
correcting errors in a qubit state |ψ〉 can be written diagrammatically as

|ψ〉
E N D

|ψ′〉
|0n〉

for some unitary encoding operation E, noise operation N , and decoding operation D. In other
words, we encode some qubit state |ψ〉 as a larger state |E(ψ)〉 using some ancilla qubits (initially
in the state |0n〉), some noise is applied, and later we decode the noisy encoded state to produce a
state |ψ′〉. The goal is that after this process |ψ′〉 ≈ |ψ〉 for some set of correctable noise operations
N .

There are two obvious ways in which the classical repetition code could be translated to the
quantum regime, both of which unfortunately do not work. First, we could measure |ψ〉 in the

1Software, of course, is another matter.

50

computational basis to obtain a bit 0 or 1, then just encode this with the classical repetition code.
This is not suitable for quantum error correction because it does not preserve quantum coherence:
if |ψ〉 is in a superposition of 0 and 1 and will be used as input to a subsequent quantum algorithm,
it is necessary to preserve this superposition to see any interesting quantum effects. A second idea is
that we could map |ψ〉 7→ |ψ〉|ψ〉|ψ〉, by analogy with the classical code. However, this is impossible
(for general |ψ〉) by the no-cloning theorem.

We therefore have to take a different approach, which will be split into two steps. In the first
step, we try encoding |ψ〉 = α|0〉+β|1〉 as |E(ψ)〉 = α|000〉+β|111〉. Note that this is not the same
as the “cloning” map discussed previously. Indeed, the map α|0〉+ β|1〉 7→ α|000〉+ β|111〉 can be
implemented via the following simple quantum circuit.

α|0〉+ β|1〉 • •
|0〉
|0〉

Our decoding algorithm for this code will be based on the following quantum circuit.

|x1〉 • •
|x2〉 •
|x3〉 •
|0〉
|0〉

Call the first three qubits the input qubits and the last two the output qubits. Following this
circuit, for any basis state input |x1x2x3〉, the first of the two output qubits contains x1 ⊕ x2, and
the second contains x1 ⊕ x3. Each of these quantities is invariant under the operation of flipping
all the bits of x. Thus, for any input superposition of the form α|x1x2x3〉 + β|x1x2x3 ⊕ 111〉, the
circuit performs the map

(α|x1x2x3〉+ β|x1x2x3 ⊕ 111〉)|0〉|0〉 7→ (α|x1x2x3〉+ β|x1x2x3 ⊕ 111〉)|x1 ⊕ x2〉|x1 ⊕ x3〉.

This implies that, if we measure the two output qubits, we learn both x1⊕ x2 and x1⊕ x3 without
disturbing the input quantum state. Now observe that the encoded state of |ψ〉 is always of this
form, even after arbitrary bit-flip errors are applied to |E(ψ)〉:

|E(ψ)〉 = α|000〉+ β|111〉,
(X ⊗ I ⊗ I)|E(ψ)〉 = α|100〉+ β|011〉,

(X ⊗X ⊗X)|E(ψ)〉 = α|111〉+ β|000〉, etc.

The result of measuring the output qubits is known as the syndrome. We now consider the different
syndromes we get when different noise operators N are applied to |E(ψ)〉. First, if N = I (so there
has been no error applied to |E(ψ)〉), we always measure 00. On the other hand, if N = X ⊗ I ⊗ I
(i.e. a bit-flip error on the first qubit) we obtain 11 with certainty. We can write all the possible

51

outcomes in a table as follows.
N Syndrome

I ⊗ I ⊗ I 00
I ⊗ I ⊗X 01
I ⊗X ⊗ I 10
I ⊗X ⊗X 11
X ⊗ I ⊗ I 11
X ⊗ I ⊗X 10
X ⊗X ⊗ I 01
X ⊗X ⊗X 00

Observe that the syndromes corresponding to no error, and to bit flips on single qubits (i.e. I⊗I⊗I,
I ⊗ I ⊗X, I ⊗X ⊗ I and X ⊗ I ⊗ I) are all distinct. This means that, if one of these four errors
occurs, we can detect it. After we detect a bit-flip error on a given qubit, we can simply apply the
same bit-flip operation to that qubit to restore the original encoded state α|000〉 + β|111〉, which
can easily then be mapped to α|0〉+ β|1〉 by reversing the original encoding circuit. On the other
hand, if bit-flip errors occur on more than one qubit, we do not detect them (and indeed this “error
correction” process can make matters worse!).

While this code is sufficient to protect against single bit-flip errors, there are other, less classical,
errors acting on single qubits which it does not protect against. For example, consider the effect
of a Z (“phase”) error acting on the first qubit of the encoded state |E(ψ)〉, which maps it to
α|000〉 − β|111〉 (recall that Z =

(
1 0
0 −1

)
). It is easy to see that the syndrome measurement still

returns 00, so the error correction operation does nothing and the Z error is not corrected.

However, these Z errors can be detected using a different code. Observe that Z = HXH, where
H is the Hadamard gate. Thus Z acts in the same way as X, up to a change of basis. If we use
the same code as before, but perform this change of basis for each qubit, we obtain a code which
corrects against Z errors. In other words, we now encode |ψ〉 as α|+ + +〉 + β|− − −〉. Our new
encoding circuit is simply

α|0〉+ β|1〉 • • H

|0〉 H

|0〉 H

and our decoding circuit is
|x1〉 H • •

|x2〉 H •

|x3〉 H •

|0〉

|0〉
The analysis for the previous code goes through without change to show that this code protects
against Z errors on an individual qubit. However, it is easy to see that the new code no longer
protects against X errors! Can we protect against both errors simultaneously? The answer is
yes, by concatenating these two codes. We first encode |ψ〉 = α|0〉+ β|1〉 using the code protecting
against phase flips, and then encode each of the resulting qubits using the code that protects against

52

bit flips. In other words, we perform the map

α|0〉+ β|1〉 7→ 1

2
√

2
(α(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉) + β(|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉))

7→ 1

2
√

2
(α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)).

The single qubit |ψ〉 is now encoded using 9 qubits. These qubits can naturally be split into three
blocks, each of which encodes one qubit of the state α|+ + +〉+β|− − −〉. To decode this encoded
state, first the decoding circuit for the bit-flip code is applied to each block. Assuming at most one
bit-flip error has occurred in each block, the result will be the state α|+ + +〉+ β|− − −〉, perhaps
with a Z error applied to one of the qubits. This state can then be mapped back to α|0〉 + β|1〉
using the decoding algorithm for the phase-flip code.

Example. Imagine a ZX error occurs on the fourth qubit of the encoded state. The input to
the decoding algorithm is thus the state

1

2
√

2
(α(|000〉+ |111〉)(|100〉− |011〉)(|000〉+ |111〉) + β(|000〉− |111〉)(|100〉+ |011〉)(|000〉− |111〉)).

We apply the bit-flip decoding algorithm to each of the three blocks of three qubits, and get
syndromes of 00, 11, 00 (“no error”, “error on first qubit”, “no error”). So we perform an X
operation on the fourth qubit to correct this, and then the map |000〉 7→ |0〉, |111〉 7→ |1〉 on each
block of three qubits. The result is the state

α|+−+〉+ β|−+−〉.

Applying the phase-flip decoding algorithm to this state gives α|0〉+ β|1〉 as required.

We now have a code that can protect against X or Z errors acting on an arbitrary qubit. It
may seem that this is only the beginning of the gargantuan task of protecting against every one of
the infinitely many possible errors that can occur. In fact, it turns out that we have already done
this! The key observation is that the matrices {I,X, Y, Z}, where Y = ZX, form a basis for the
complex vector space of all 2× 2 matrices, so an arbitrary error operation acting on a single qubit
can be written as a linear combination of these matrices.

To be more precise, if we have a quantum channel N representing some noise process, defined
by

N (ρ) =
∑
k

NkρN
†
k ,

observe that to protect |ψ〉 against N it is sufficient to produce an encoded state |E(ψ)〉 such that,
after the decoding operation, Nk|E(ψ)〉 is mapped to a vector proportional to |ψ〉, for all k. If
N represents noise acting on at most one qubit, we can expand the nontrivial part of each Nk as
Nk = αkI + βkX + γkY + δkZ. If our code protects against (say) an X error on the first qubit, we
know that (X ⊗ I ⊗ · · · ⊗ I)|E(ψ)〉 is decoded to |ψ〉. The same applies to all other single-qubit
errors. By linearity, this implies that N (|E(ψ)〉〈E(ψ)|) is decoded to |ψ〉〈ψ|, so our code in fact
can correct an arbitrary error on an individual qubit.

The following general statement about when quantum error-correction is possible is known, but
we will not prove it here.

53

Theorem 10.1 (Quantum error correction criterion). Assume we have a code subspace with basis
{|ψi〉}. A necessary and sufficient condition for the set of errors {Ea} to be correctable is

〈ψi|E†aEb|ψj〉 = Cabδij

for all a, b, i and j.

10.2 The stabilizer formalism

We now describe an elegant way of describing quantum states which is particularly useful in the
setting of quantum error-correction, but is also an important tool elsewhere in quantum information
theory: the stabilizer formalism. This provides a concise way of describing states of n qubits which
can be highly entangled.

The starting point is the Pauli matrices on n qubits: the set of n-qubit matrices of the form

M = M1 ⊗M2 ⊗ · · · ⊗Mn,

where for each i, Mi ∈ {I,X, Y, Z}. If we multiply by a global phase from the set {1, i,−1,−i},
this set becomes a group under multiplication, called the Pauli group. Every pair of Pauli matrices
either commutes or anticommutes. Consider a set M of k Pauli matrices on n qubits, such that
all pairs of matrices in the set commute. We can write down such a set as an k × n matrix whose
entries are picked from the set {I,X, Y, Z}, where the i’th row specifies an n-qubit Pauli matrix
M (i). For example: (

X X
Z Z

)
,

 I X Z
Y Y X
X Z X

 ,

(
I X Z I
X Y X Z

)
.

We say that |ψ〉 is stabilized by M (i) if

M (i)|ψ〉 = |ψ〉.

Observe that if M (i) and M (j) stabilize |ψ〉, so does M (i)M (j). Assume that all the matrices M (i)

are independent; that is, none of them can be expressed as the product of any of the others (even
up to a phase), and consider the set S of all n-qubit states stabilized by all of these matrices, i.e.
the set of states |ψ〉 such that

M (i)|ψ〉 = |ψ〉
for all i = 1, . . . , k. S is a subspace of C2n . As all the matrices commute, the projector onto S, ΠS ,
is the product of the projectors onto all the +1 eigenspaces of the matrices M (i):

ΠS =
1

2k

k∏
i=1

(I +M (i)).

We have

tr ΠS =
1

2k
tr

k∏
i=1

(I +M (i)) =
1

2k

∑
T⊆[k]

tr
∏
i∈T

M (i) = 2n−k.

The final equality holds because
∏
i∈T M

(i) 6= ±I for all T 6= ∅, by our assumption that the matrices
are all independent. If the product is not proportional to the identity, it must be a Pauli matrix
with trace 0.

Therefore, the subspace S has dimension 2n−k. If k = n, there is a unique state stabilized by
all the matrices; such a state is known as a stabilizer state.

54

Example 10.2. |1〉 and 1√
2
(|00〉 + |11〉) are both stabilizer states. |1〉 is stabilized by {−Z}, and

1√
2
(|00〉+ |11〉) is stabilized by {XX,ZZ}.

A stabilizer state can thus be described by the pair of an n×n matrix whose entries are picked
from {I,X, Y, Z}, and n signs ±1; this is significantly more concise than the 2n complex numbers
required to describe a generic quantum state. As well as this static description, we can efficiently
describe some dynamics using this picture. Consider a unitary operation U that preserves the Pauli
group under conjugation: UPU † = P ′ for some Pauli matrix P . Then, if P stabilizes |ψ〉, we have

P ′(U |ψ〉) = UPU †U |ψ〉 = UP |ψ〉 = U |ψ〉,

so P ′ stabilizes U |ψ〉. The set of operations which preserve the Pauli group in this way is a group
too, called the Clifford group. All of the following gates are in the Clifford group:

C = {X, (1 0
0 i) , H,CNOT},

and in fact it turns out that the Clifford group is generated by the above set. This is the basis of
the following result:

Theorem 10.3 (Gottesman-Knill Theorem). Any quantum circuit consisting of gates picked from
C and single-qubit measurements can be simulated efficiently classically.

On the other hand, if we have a set M of k < n commuting Pauli matrices, we can view the
subspace S stabilized by all of these matrices as encoding n− k qubits. One reason for doing this
is that such a subspace may have good error-correction properties. Imagine the state |ψ〉 which we
would like to preserve is contained in S and let E be a Pauli error. Then, if E ∈ M, E|ψ〉 = |ψ〉,
so |ψ〉 is unaffected by the error E. On the other hand, if E anticommutes with some element
M ∈M, we have

ME|ψ〉 = −EM |ψ〉 = −E|ψ〉,

so if we measure M and get the answer −1, we will detect that an error has occurred.

We claim that the quantum error-correction condition (Theorem 10.1) will be satisfied if for
each pair of error operations Ea, Eb, either:

1. E†aEb ∈M, or

2. There exists M ∈M that anticommutes with E†aEb.

In case (1),
〈ψi|E†aEb|ψj〉 = 〈ψi|ψj〉 = δij ;

in case (2),
〈ψi|E†aEb|ψj〉 = 〈ψi|E†aEbM |ψj〉 = −〈ψi|ME†aEb|ψj〉,

so we must have 〈ψi|E†aEb|ψj〉 = 0. In either case, the condition of Theorem 10.1 is satisfied.

A stabilizer code has distance d if each Pauli error matrix E = E†aEb of weight strictly less than
d satisfies conditions (1) and (2), but there exists such a matrix E of weight d that fails to satisfy
these conditions. A code correcting errors on up to t qubits must have d ≥ 2t+ 1. That is, for all
E of weight < d,

E ∈ S, or there exists M ∈M that anticommutes with E.

55

Imagine we have a unitary matrix N such that N commutes with everything in the stabilizer,
but is not contained within it. These are precisely the errors which we cannot correct. Looked at
another way, such matrices allow us to perform logical operations on data encoded in a stabilizer
code, by moving around the code space. In particular, if we can find two such matrices N1, N2

such that N1 and N2 anticommute, this lets us make logical X and Z operations.

Shor’s 9 qubit code is a stabilizer code, with the following stabilizer:

Z Z I I I I I I I
Z I Z I I I I I I
I I I Z Z I I I I
I I I Z I Z I I I
I I I I I I Z Z I
I I I I I I Z I Z
X X X X X X I I I
X X X I I I X X X

It can be verified from this representation that the code has distance 3 and encodes one qubit.
In addition, the operators X⊗9 and Z⊗9 commute with everything in the stabilizer but are not
contained within it. These therefore function as our logical X and Z operators. A smaller code (in
fact, the smallest that can encode a qubit) is the five qubit code

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

 .

This code also has distance 3 and encodes one qubit. Another beautiful example of a stabilizer
code, but one which is just beyond the scope of this course, is the toric code due to Kitaev.

56

11 Quantum state discrimination and tomography

It is a fundamental feature of quantum mechanics that nonorthogonal states cannot be distinguished
with certainty. But just how well can they be distinguished? This question is addressed by the
field of quantum state discrimination. A prototypical problem studied here is: given a quantum
state |ψ〉, promised to be picked from a known set of states {|ψ1〉, . . . , |ψn〉} uniformly at random,
determine which of the states |ψ〉 is, with optimal success probability. As well as being a useful
subroutine in the design of quantum algorithms, this problem occurs in many other quantum
information processing tasks.

To study this problem, we first need to define what a quantum measurement is in full generality.
There are measurements that occur in quantum mechanics which go beyond the simple computa-
tional basis measurements we have seen so far. The most general measurements we can perform are
known as positive operator-valued measures (POVMs), sometimes also referred to as probability
operator measures (POMs). A POVM is described by a sequence of positive semidefinite operators
µk such that

∑
k µk = I. The probability of getting outcome k when the measurement is applied

to state ρ is tr(µkρ). This makes sense because

∑
k

tr(µkρ) = tr

((∑
k

µk

)
ρ

)
= tr ρ = 1,

so the total probability of getting one or other of the measurement outcomes is equal to 1. A
computational basis measurement of n qubits, for example, fits into this picture: here the operators
are the orthogonal rank 1 projectors |x〉〈x|, x ∈ {0, 1}n.

An arbitrary POVM can in fact be expressed as a combination of a unitary operation on a
bigger space, followed by a computational basis measurement. This result is known as (a special
case of) Neumark’s Theorem, and can ultimately be seen as a consequence of the Stinespring
dilation discussed previously. For a POVM with measurement operators µk, define corresponding
operators Mk such that M †kMk = µk. Such operators can always be found by non-negativity of the
operators µk. Then define an isometry

V =
∑
k

Mk ⊗ |k〉

from the original system into a system-plus-ancilla space. V is indeed an isometry because

V †V =
∑
k,`

M †kM`〈k|`〉 =
∑
k

M †kMk =
∑
k

µk = I.

The desired POVM can be implemented by applying V to the input state ρ, then measuring the
ancilla system in the computational basis. The probability of obtaining outcome i is

tr((I ⊗ |i〉〈i|)(V ρV †)) = tr

(I ⊗ |i〉〈i|)
∑
j,k

(MjρM
†
k)⊗ |j〉〈k|

 = trMiρM
†
i = trµiρ

as desired, using cyclicity of the trace. Unlike the projective measurements you have seen so far,
note that the post-measurement state depends on how the POVM is implemented in terms of
operators Mk. Assuming we receive measurement outcome i, the resulting state is

MiρM
†
i

trµiρ
.

57

11.1 Optimal discrimination of two quantum states

In the case where we have only two states to discriminate, the optimal success probability can be
characterised exactly, via a result known as the Holevo-Helstrom theorem. Assume we are given
one copy of a state promised to be either ρ0 or ρ1. The probability the state is ρ0 is p, and the
probability the state is ρ1 is 1− p. Then we have the following theorem.

Theorem 11.1. The optimal probability of success of deciding whether we are given ρ0 or ρ1 is
precisely

1

2
+

1

2
‖pρ0 − (1− p)ρ1‖1, (8)

where ‖ · ‖1 is the trace norm ‖M‖1 =
∑

i |λi(M)|, with λi being the i’th eigenvalue of M .

Proof sketch. We first show that (8) is an upper bound on the success probability, and then that it
can be achieved. Let {µ0, µ1} be an arbitrary POVM with two measurement outcomes. Then the
average success probability achieved by this POVM is

p tr(µ0ρ0) + (1− p) tr(µ1ρ1).

Using some algebraic manipulations and µ0 + µ1 = I, the following equality holds:

p tr(µ0ρ0) + (1− p) tr(µ1ρ1) =
1

2
+

1

2
tr ((µ0 − µ1)(pρ0 − (1− p)ρ1)) .

As µ0 − µ1 = 2µ0 − I, and the eigenvalues of µ0 are bounded between 0 and 1, the eigenvalues of
µ0 − µ1 are bounded between ±1, i.e. ‖µ0 − µ1‖ ≤ 1. By Hölder’s inequality for Schatten p-norms
(which we will not prove here, but should be plausible. . .),

tr ((µ0 − µ1)(pρ0 − (1− p)ρ1)) ≤ ‖µ0 − µ1‖‖pρ0 − (1− p)ρ1)‖1 ≤ ‖pρ0 − (1− p)ρ1)‖1.

This completes the proof of the upper bound. To see that it can be achieved, consider the POVM
with two elements {µ0, µ1}, where µ0 is the projector onto the non-negative part of pρ0− (1− p)ρ1

(the subspace spanned by eigenvectors with non-negative eigenvalues), and µ1 is the projector onto
the negative part of this operator. Then

tr ((µ0 − µ1)(pρ0 − (1− p)ρ1)) = ‖pρ0 − (1− p)ρ1)‖1
as desired.

In the case where ρ0 and ρ1 are pure states, the expression (8) can be simplified using the
following lemma.

Lemma 11.2. For states |ψ〉, |φ〉,

‖p|ψ〉〈ψ| − (1− p)|φ〉〈φ|‖1 =
√

1− 4p(1− p)|〈ψ|φ〉|2.

Proof. We can apply an arbitrary unitary operation to both of |ψ〉, |φ〉 without changing the left-
hand side. So map

√
p|ψ〉 to

√
p|0〉, and map

√
1− p|φ〉 to

√
1− pα|0〉 +

√
1− p

√
1− α|1〉 for

α, β ∈ R. Then |〈ψ|φ〉|2 = α2. We can now explicitly compute

‖p|ψ〉〈ψ| − (1− p)|φ〉〈φ|‖1 =

∥∥∥∥(p− (1− p)α2 −(1− p)α
√

1− α
−(1− p)α

√
1− α −(1− p)(1− α2)

)∥∥∥∥
1

=
√

1− 4p(1− p)α2.

In the case where we wish to optimally discriminate between n > 2 quantum states, unfortu-
nately no concise expression like (8) is known.

58

11.2 Quantum state tomography

What if we don’t have the prior information that ρ is picked from a known set of states, but
instead are asked to determine an input state ρ which is completely unknown? In this setting it is
intuitively obvious that we can learn no useful information from only one copy of ρ. However, if
we are given n copies of ρ, for some large n, we can attempt to characterise ρ using measurement
statistics. This procedure is known as quantum state tomography.

Assume that we are given an n-qubit state ρ that we wish to determine. The simplest quantum
state tomography procedure is based around measuring observables corresponding to n-qubit Pauli
matrices. This relies on the fact that any n-qubit state can be expressed in terms of Pauli matrices.
Indeed, for any state ρ we can write

ρ =
∑

s∈{I,X,Y,Z}n
ρ̂(s)s1 ⊗ s2 ⊗ · · · ⊗ sn

for some real coefficients ρ̂(s), which have the nice characterisation

ρ̂(s) =
1

2n
tr(ρ(s1 ⊗ s2 ⊗ · · · ⊗ sn)).

Therefore, if we can learn all the coefficients ρ̂(s), we can learn ρ. To estimate an individual
coefficient ρ̂(s), we measure a number of copies of ρ in the eigenbasis of the n-qubit Pauli matrix
corresponding to s. Each such matrix has eigenvalues ±1 corresponding to eigenspaces projected
onto by projectors P+, P−, so

tr(ρ(s1 ⊗ s2 ⊗ · · · ⊗ sn)) = tr(ρ(P+ − P−)) = Pr[get outcome +1]− Pr[get outcome −1].

So, if we can estimate these probabilities, we can estimate ρ. Measuring in the eigenbasis of an
n-qubit Pauli matrix M = M1⊗M2⊗· · ·⊗Mn is easy. For each qubit i such that Mi = X we apply
a Hadamard gate; for each qubit i such that Mi = Y we apply 1√

2

(
i 1
−i 1

)
; and for each qubit i such

that Mi = Z, we do nothing. We then measure each qubit in the computational basis, associating
0 with 1, and 1 with −1; and finally take the product of the results. If we take the average of many
samples, we will get something approximating ρ̂(s).

Given a list of estimates ˜̂ρ(s), we need to combine these to produce an overall estimate of ρ.
This is not a trivial task; for example, given our noisy measurement results we should attempt to
output a guess ρ̃ which is actually a quantum state, i.e. positive semidefinite with trace 1. Good
strategies for achieving this are currently an active topic of research.

Note that this process is fundamentally inefficient: to characterise an n-qubit state we needed
to estimate the probabilities of 4n different measurement outcomes. This was inevitable as a
mixed quantum state of n qubits depends on roughly 4n parameters. Surprisingly, tight bounds on
the complexity of quantum state tomography were only obtained very recently. It was shown by
O’Donnell and Wright that an arbitrary d-dimensional state ρ can be learnt up to accuracy ε in
the trace norm with O(d2/ε2) copies of ρ (an independent result of Haah et al. achieves a similar
bound, with slightly worse parameters but a shorter proof). These results use a different protocol
to that described here.

11.3 Limits on quantum data compression

As we have just discussed, a quantum state of n qubits can be seen as having exponential complexity
in terms of n. However, here we finish by describing a way in which an n-qubit state can be seen as

59

only “really” encoding n bits of information. This is surprising given the many ways, some of which
have been discussed in this course, that quantum computation seems to exponentially outperform
classical computation.

Imagine we want to encode n bits of information in an m-qubit quantum state, for some m ≤ n.
We do this by associating a state ρx with each input bit-string x ∈ {0, 1}n. To extract the
information, we apply a POVM described by measurement operators {µy}, and output the bit-
string corresponding to the measurement outcome. Assuming that each bit-string x is equally
likely, the probability that we output the correct answer is

1

2n

∑
x∈{0,1}n

tr(µxρx) ≤ 1

2n

∑
x∈{0,1}n

‖µx‖1‖ρx‖ ≤
1

2n

∑
x∈{0,1}n

‖µx‖1 =
1

2n

∑
x∈{0,1}n

trµx = 2m−n.

Here the first inequality is Hölder’s inequality for Schatten p-norms; the second inequality is the
fact that a density matrix’s eigenvalues are bounded between 0 and 1; the first equality holds
because µx is positive semidefinite; and the second equality is

∑
x∈{0,1}n µx = I. Therefore, even

for m = n/2 (for example), the probability of successfully decoding x goes down exponentially with
n. In particular, we cannot learn x with certainty unless m ≥ n.

This bound, a variant of which is originally due to Nayak but has since been rediscovered
multiple times, can be seen as a “toy version” of a famous result called Holevo’s Theorem. Roughly
speaking, this result states that the amount of accessible information in an n-qubit quantum state
is upper bounded by n bits.

60

	Introduction
	Classical and quantum computational complexity
	Grover's algorithm
	The Quantum Fourier Transform and periodicity
	Integer factorisation
	Phase estimation
	Hamiltonian simulation
	Quantum walk
	Noise and the framework of quantum channels
	Quantum error-correction
	Quantum state discrimination and tomography

