COMS21103

All-pairs shortest paths

Ashley Montanaro

ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

5 November 2013

Ashley Montanaro
ashley@cs.bris.ac.uk
COMS21103: All-pairs shortest paths

Slide 1/22

All-pairs shortest paths

▶ In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$W_{ij} = egin{cases} 0 & ext{if } i = j \ ext{the weight of the edge } i
ightarrow j & ext{if such an edge exists} \ \infty & ext{otherwise.} \end{cases}$$

- ▶ We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- ► For a path $p = p_1, ..., p_k$, define the intermediate vertices of p to be the vertices $p_2, ..., p_{k-1}$.
- Let $d_{ij}^{(k)}$ be the weight of a shortest path from i to j such that the intermediate vertices are all in the set $\{1, \ldots, k\}$.
- ▶ If there is no shortest path from *i* to *j* of this form, then $d_{ii}^{(k)} = \infty$.
- ► In the case k = 0, $d_{ij}^{(0)} = W_{ij}$.
- ▶ On the other hand, for k = n, $d_{ij}^{(n)} = \delta(i, j)$.

All-pairs shortest paths

- ▶ We have seen two different ways of determining the shortest path from a vertex *s* to all other vertices.
- ► What if we want to determine the shortest paths between all pairs of vertices?
- ► For example, we might want to store these paths in a database for efficient access later.
- We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity O(VE + V² log V) and O(V²E) respectively.
- Can we do better?

Today: algorithms for general graphs with better runtimes than this.

- ▶ The Floyd-Warshall algorithm: time $O(V^3)$.
- ▶ Johnson's algorithm: time $O(VE + V^2 \log V)$.

Assume for simplicity that the input graph has no negative-weight cycles.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 2/2

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- ▶ If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, ..., k-1\}$.
- ▶ If k is an intermediate vertex of p, then we decompose p into a path p_1 between i and k, and a path p_2 between k and j.
- ▶ By the triangle inequality, *p*₁ is a shortest path from *i* to *k*. Further, it does not include *k* (as otherwise it would contain a cycle).
- ▶ The same reasoning shows that p_2 is a shortest path from k to j.

We therefore have the following recurrence for $d_{ij}^{(k)}$:

$$d_{ij}^{(k)} = \begin{cases} W_{ij} & \text{if } k = 0\\ \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\} & \text{if } k \geq 1. \end{cases}$$

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{ii}^{(n)}$ for all pairs i, j.

FloydWarshall(W)

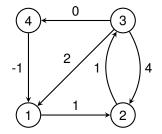
- 1. $d^{(0)} \leftarrow W$
- 2. for k=1 to n
- 3. for i = 1 to n
- 4. for j = 1 to n
- 5. $d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
- 6. return *d*^(*n*).
- ▶ The time complexity is clearly $O(n^3)$ and the algorithm is very simple.
- ▶ Correctness follows from the argument on the previous slide.

Ashley Montanaro
ashley@cs.bris.ac.uk
COMS21103: All-pairs shortest paths

Slide 5/22

Example

Consider the following graph and its corresponding adjacency matrix:



$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

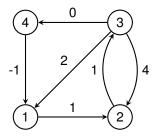
$$d^{(1)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & \infty & 0 \end{pmatrix}, \quad d^{(2)} = \begin{pmatrix} 0 & 1 & 2 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

CI:4- C/00

Example

Consider the following graph and its corresponding adjacency matrix:



$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$d^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}, \quad d^{(4)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}.$$

Constructing the shortest paths

- ▶ We would like to construct a predecessor matrix Π such that Π_{ij} is the predecessor vertex of j in a shortest path from i to j.
- ▶ We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi^{(k)}_{ij}$ is the predecessor of j in a shortest path from i to j only using vertices in the set $\{1, \ldots, k\}$.
- ▶ Then, for k = 0,

$$\Pi_{ij}^{(0)} = egin{cases} \mathsf{nil} & \mathsf{if} \ i = j \ \mathsf{or} \ W_{ij} = \infty \ i & \mathsf{if} \ i \neq j \ \mathsf{and} \ W_{ij} \neq \infty. \end{cases}$$

► For $k \ge 1$, we have essentially the same recurrence as for $d^{(k)}$. Formally,

$$\Pi_{ij}^{(k)} = \begin{cases} \Pi_{ij}^{(k-1)} & \text{if } a_{ij}^{(k-1)} \leq a_{ik}^{(k-1)} + a_{kj}^{(k-1)} \\ \Pi_{kj}^{(k-1)} & \text{otherwise.} \end{cases}$$

The Floyd-Warshall algorithm with predecessors

FloydWarshall(W)

1.
$$d^{(0)} \leftarrow W$$

2. for
$$k=1$$
 to n

3. for
$$i = 1$$
 to n

4. for
$$j = 1$$
 to n

5. if
$$d_{ii}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$$

$$d_{ij}^{(k)} \leftarrow d_{ij}^{(k-1)}$$

7.
$$\Pi_{ii}^{(k)} \leftarrow \Pi_{ii}^{(k-1)}$$

9.
$$d_{ii}^{(k)} \leftarrow d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$$

10.
$$\Pi_{ii}^{(k)} \leftarrow \Pi_{ki}^{(k-1)}$$

11. return $d^{(n)}$.

COMS21103: All-pairs shortest paths

University of BRISTOL

University of BRISTOI

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- ▶ Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.
- ► For sparse graphs, its complexity $O(VE + V^2 \log V)$ (the same as Dijkstra) is faster than the Floyd-Warshall algorithm.
- ▶ We assume that we are given *G* as an adjacency list, and have access to a weight function w(u, v) which tells us the weight of the edge $u \rightarrow v$.

COMS21103: All-pairs shortest paths

Slide 10/22

Claim

For any edge $u \rightarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \dots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

The total weights of p under \hat{w} and w are closely related:

$$\sum_{i=1}^{k} \widehat{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$

$$= h(v_0) - h(v_k) + \sum_{i=1}^{k} w(v_{i-1}, v_i) ...$$

Claim

For any edge $u \leftarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \dots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

- So the weight of p under \hat{w} only differs from its weight under w by an additive term which does not depend on p.
- So p is a shortest path with respect to \hat{w} if and only if it is a shortest path with respect to w.

Slide 9/22

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \hat{w} if and only if if has one under weight function w.

Proof

- ▶ Let $c = v_0, \ldots, v_k$, where $v_0 = v_k$, be any cycle.
- As $v_0 = v_k$, $h(v_0) = h(v_k)$, so the weight of c under \hat{w} is the same as its weight under w.
- So c is negative-weight under \hat{w} if and only if it is negative-weight under w.

COMS21103: All-pairs shortest paths

Slide 13/22

Reweighting

- ▶ Given a graph *G*, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- ▶ This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v) = \delta(s, v)$ for all vertices v in G.
- Now observe that $\delta(s, v) < \delta(s, u) + w(u, v)$ for all edges $u \to v$ by the triangle inequality, so h(v) - h(u) < w(u, v).
- ▶ So, if we reweight according to the function *h*,

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v) \ge 0$$

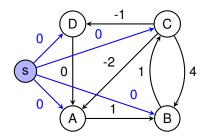
for all edges $u \rightarrow v$.

▶ Then, if $\hat{\delta}(u, v)$ is the weight of a shortest path from u to v with weight function \widehat{w} , $\delta(u, v) = \widehat{\delta}(u, v) + h(v) - h(u)$.

COMS21103: All-pairs shortest paths

Example

Imagine we want to reweight the following graph:

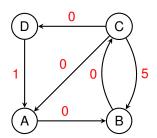


Using Bellman-Ford, we compute

$$h(A) = -2$$
, $h(B) = -1$, $h(C) = 0$, $h(D) = -1$.

Example

Reweighting according to *h* gives the following graph:



- ► For each pair of vertices $u, v, \delta(u, v) = \widehat{\delta}(u, v) + h(v) h(u)$.
- ▶ For example, $\delta(C, A) = 0 2 0 = -2$ as expected.

Johnson's algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

- 1. form a new graph G' by adding s to G, as defined above
- 2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord
- 3. for each edge $u \rightarrow v$ in G
- 4. $\widehat{w}(u, v) \leftarrow w(u, v) + \delta(s, u) \delta(s, v)$
- 5. for each vertex $u \in G$
- 6. compute $\widehat{\delta}(u, v)$ for all v using Dijkstra
- 7. for each vertex $v \in G$
- 8. $d_{uv} \leftarrow \widehat{\delta}(u, v) + \delta(s, v) \delta(s, u)$
- 9. return d

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 17/22

Slide 19/22

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph *G* which is...

- unweighted: use breadth-first search in time O(V + E);
- weighted with non-negative weights: use Dijkstra's algorithm in time $O(E + V \log V)$;
- weighted with negative weights: use Bellman-Ford in time O(VE).

To compute all-pairs shortest paths in a directed graph *G* which is. . .

- unweighted: use breadth-first search from each vertex in time $O(VE + V^2)$;
- weighted with non-negative weights: use Dijkstra's algorithm from each vertex in time $O(VE + V^2 \log V)$;
- weighted with negative weights: use Johnson's algorithm in time $O(VE + V^2 \log V)$.

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- ▶ Both algorithms work for graphs which may have negative-weight edges.
- ▶ The Floyd-Warshall algorithm runs in time $O(V^3)$ and is based on ideas from dynamic programming.
- ▶ Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.
- ► The runtime of Johnson's algorithm is dominated by the complexity of running Dijkstra's algorithm once for each vertex, which is O(VE + V² log V) if implemented using a Fibonacci heap, and O(VE log V) if implemented using a binary heap.
- ► This can be significantly smaller than the runtime of the Floyd-Warshall algorithm if the input graph is sparse.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 18/22

Further Reading

Introduction to Algorithms

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

- Chapter 25 All-Pairs Shortest Paths
- Algorithms lecture notes, University of Illinois Jeff Erickson

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

► Lecture 20 – All-pairs shortest paths

Biographical notes

The Floyd-Warshall algorithm was invented independently by Floyd and Warshall (and also Bernard Roy).

Robert W. Floyd (1936-2001)

- American computer scientist who did major work on compilers and initiated the field of programming language semantics.
- ► He completed his first degree (in liberal arts) at the age of 17 and won the Turing Award in 1978.
- ► Had his middle name legally changed to "W".

Pic: IFFF

Slide 21/22

Ashley Montanaro

ashley@cs.bris.ac.uk

DMS21103: All-pairs shortest paths

Biographical notes

Stephen Warshall (1935–2006)

- ► Another American computer scientist whose other work included operating systems and compiler design.
- ▶ Supposedly he and a colleague bet a bottle of rum on who could first prove correctness of his algorithm.
- ▶ Warshall found his proof overnight and won the bet (and the rum).

Donald B. Johnson (d. 1994)

▶ Yet another American computer scientist. Founded the computer science department at Dartmouth College and invented the *d*-ary heap.

Ashley Montanaro ashley@cs.bris.ac.uk MS21103: All-pairs shortest path

Slide 22/22