COMS21103

All-pairs shortest paths

Ashley Montanaro

Department of Computer Science, University of Bristol Bristol, UK

5 November 2013

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity $O\left(V E+V^{2} \log V\right)$ and $O\left(V^{2} E\right)$ respectively.

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity $O\left(V E+V^{2} \log V\right)$ and $O\left(V^{2} E\right)$ respectively.
- Can we do better?

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity $O\left(V E+V^{2} \log V\right)$ and $O\left(V^{2} E\right)$ respectively.
- Can we do better?

Today: algorithms for general graphs with better runtimes than this.

- The Floyd-Warshall algorithm: time $O\left(V^{3}\right)$.
- Johnson's algorithm: time $O\left(V E+V^{2} \log V\right)$.

All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity $O\left(V E+V^{2} \log V\right)$ and $O\left(V^{2} E\right)$ respectively.
- Can we do better?

Today: algorithms for general graphs with better runtimes than this.

- The Floyd-Warshall algorithm: time $O\left(V^{3}\right)$.
- Johnson's algorithm: time $O\left(V E+V^{2} \log V\right)$.

Assume for simplicity that the input graph has no negative-weight cycles.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path $p=p_{1}, \ldots, p_{k}$, define the intermediate vertices of p to be the vertices p_{2}, \ldots, p_{k-1}.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path $p=p_{1}, \ldots, p_{k}$, define the intermediate vertices of p to be the vertices p_{2}, \ldots, p_{k-1}.
- Let $d_{i j}^{(k)}$ be the weight of a shortest path from i to j such that the intermediate vertices are all in the set $\{1, \ldots, k\}$.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path $p=p_{1}, \ldots, p_{k}$, define the intermediate vertices of p to be the vertices p_{2}, \ldots, p_{k-1}.
- Let $d_{i j}^{(k)}$ be the weight of a shortest path from i to j such that the intermediate vertices are all in the set $\{1, \ldots, k\}$.
- If there is no shortest path from i to j of this form, then $d_{i j}^{(k)}=\infty$.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path $p=p_{1}, \ldots, p_{k}$, define the intermediate vertices of p to be the vertices p_{2}, \ldots, p_{k-1}.
- Let $d_{i j}^{(k)}$ be the weight of a shortest path from i to j such that the intermediate vertices are all in the set $\{1, \ldots, k\}$.
- If there is no shortest path from i to j of this form, then $d_{i j}^{(k)}=\infty$.
- In the case $k=0, d_{i j}^{(0)}=W_{i j}$.

All-pairs shortest paths

- In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a $n \times n$ adjacency matrix W. The weights of the edges in G are represented as follows:

$$
W_{i j}= \begin{cases}0 & \text { if } i=j \\ \text { the weight of the edge } i \rightarrow j & \text { if such an edge exists } \\ \infty & \text { otherwise }\end{cases}
$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path $p=p_{1}, \ldots, p_{k}$, define the intermediate vertices of p to be the vertices p_{2}, \ldots, p_{k-1}.
- Let $d_{i j}^{(k)}$ be the weight of a shortest path from i to j such that the intermediate vertices are all in the set $\{1, \ldots, k\}$.
- If there is no shortest path from i to j of this form, then $d_{i j}^{(k)}=\infty$.
- In the case $k=0, d_{i j}^{(0)}=W_{i j}$.
- On the other hand, for $k=n, d_{i j}^{(n)}=\delta(i, j)$.

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$.

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, \ldots, k-1\}$.

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- If k is an intermediate vertex of p, then we decompose p into a path p_{1} between i and k, and a path p_{2} between k and j.

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- If k is an intermediate vertex of p, then we decompose p into a path p_{1} between i and k, and a path p_{2} between k and j.
- By the triangle inequality, p_{1} is a shortest path from i to k. Further, it does not include k (as otherwise it would contain a cycle).

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- If k is an intermediate vertex of p, then we decompose p into a path p_{1} between i and k, and a path p_{2} between k and j.
- By the triangle inequality, p_{1} is a shortest path from i to k. Further, it does not include k (as otherwise it would contain a cycle).
- The same reasoning shows that p_{2} is a shortest path from k to j.

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from i to j with all intermediate vertices in the set $\{1, \ldots, k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set $\{1, \ldots, k-1\}$.
- If k is an intermediate vertex of p, then we decompose p into a path p_{1} between i and k, and a path p_{2} between k and j.
- By the triangle inequality, p_{1} is a shortest path from i to k. Further, it does not include k (as otherwise it would contain a cycle).
- The same reasoning shows that p_{2} is a shortest path from k to j.

We therefore have the following recurrence for $d_{i j}^{(k)}$:

$$
d_{i j}^{(k)}= \begin{cases}W_{i j} & \text { if } k=0 \\ \min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\} & \text { if } k \geq 1 .\end{cases}
$$

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{i j}^{(n)}$ for all pairs i, j.

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{i j}^{(n)}$ for all pairs i, j.

FloydWarshall(W)

1. $d^{(0)} \leftarrow W$
2. for $k=1$ to n
3. for $i=1$ to n
4. for $j=1$ to n
5. $d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$
6. return $d^{(n)}$.

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{i j}^{(n)}$ for all pairs i, j.

FloydWarshall(W)

1. $d^{(0)} \leftarrow W$
2. for $k=1$ to n
3. for $i=1$ to n
4. for $j=1$ to n
5. $d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$
6. return $d^{(n)}$.

- The time complexity is clearly $O\left(n^{3}\right)$ and the algorithm is very simple.
- Correctness follows from the argument on the previous slide.

Example

Consider the following graph and its corresponding adjacency matrix:

$$
\left(\begin{array}{cccc}
0 & 1 & \infty & \infty \\
\infty & 0 & 1 & \infty \\
2 & 4 & 0 & 0 \\
-1 & \infty & \infty & 0
\end{array}\right)
$$

Example

Consider the following graph and its corresponding adjacency matrix:

Example

Consider the following graph and its corresponding adjacency matrix:

Example

Consider the following graph and its corresponding adjacency matrix:

Example

Consider the following graph and its corresponding adjacency matrix:

Constructing the shortest paths

- We would like to construct a predecessor matrix Π such that $\Pi_{i j}$ is the predecessor vertex of j in a shortest path from i to j.

Constructing the shortest paths

- We would like to construct a predecessor matrix Π such that $\Pi_{i j}$ is the predecessor vertex of j in a shortest path from i to j.
- We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{i j}^{(k)}$ is the predecessor of j in a shortest path from i to j only using vertices in the set $\{1, \ldots, k\}$.

Constructing the shortest paths

- We would like to construct a predecessor matrix Π such that $\Pi_{i j}$ is the predecessor vertex of j in a shortest path from i to j.
- We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{i j}^{(k)}$ is the predecessor of j in a shortest path from i to j only using vertices in the set $\{1, \ldots, k\}$.
- Then, for $k=0$,

$$
\Pi_{i j}^{(0)}= \begin{cases}\text { nil } & \text { if } i=j \text { or } W_{i j}=\infty \\ i & \text { if } i \neq j \text { and } W_{i j} \neq \infty .\end{cases}
$$

Constructing the shortest paths

- We would like to construct a predecessor matrix Π such that $\Pi_{i j}$ is the predecessor vertex of j in a shortest path from i to j.
- We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{i j}^{(k)}$ is the predecessor of j in a shortest path from i to j only using vertices in the set $\{1, \ldots, k\}$.
- Then, for $k=0$,

$$
\Pi_{i j}^{(0)}= \begin{cases}\text { nil } & \text { if } i=j \text { or } W_{i j}=\infty \\ i & \text { if } i \neq j \text { and } W_{i j} \neq \infty .\end{cases}
$$

- For $k \geq 1$, we have essentially the same recurrence as for $d^{(k)}$. Formally,

$$
\Pi_{i j}^{(k)}= \begin{cases}\Pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \Pi_{k j}^{(k-1)} & \text { otherwise. }\end{cases}
$$

The Floyd-Warshall algorithm with predecessors

FloydWarshall(W)

1. $d^{(0)} \leftarrow W$
2. for $k=1$ to n
3. for $i=1$ to n
4. for $j=1$ to n
5. if $d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}$
6.

$d_{i j}^{(k)} \leftarrow d_{i j}^{(k-1)}$
7.
$\Pi_{i j}^{(k)} \leftarrow \Pi_{i j}^{(k-1)}$
8.
9.

$$
\begin{aligned}
& d_{i j}^{(k)} \leftarrow d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
& \Pi_{i j}^{(k)} \leftarrow \Pi_{k j}^{(k-1)}
\end{aligned}
$$

11. return $d^{(n)}$.

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.
- For sparse graphs, its complexity $O\left(V E+V^{2} \log V\right.$) (the same as Dijkstra) is faster than the Floyd-Warshall algorithm.

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.
- For sparse graphs, its complexity $O\left(V E+V^{2} \log V\right.$) (the same as Dijkstra) is faster than the Floyd-Warshall algorithm.
- We assume that we are given G as an adjacency list, and have access to a weight function $w(u, v)$ which tells us the weight of the edge $u \rightarrow v$.

Claim

For any edge $u \rightarrow v$, define

$$
\widehat{w}(u, v):=w(u, v)+h(u)-h(v),
$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p=v_{0}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k} with respect to the weight function \widehat{w} if and only if it is a shortest path with respect to the weight function w.

Claim

For any edge $u \rightarrow v$, define

$$
\widehat{w}(u, v):=w(u, v)+h(u)-h(v),
$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p=v_{0}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k} with respect to the weight function \widehat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

The total weights of p under \widehat{w} and w are closely related:

$$
\sum_{i=1}^{k} \widehat{w}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)
$$

Claim

For any edge $u \rightarrow v$, define

$$
\widehat{w}(u, v):=w(u, v)+h(u)-h(v),
$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p=v_{0}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k} with respect to the weight function \widehat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

The total weights of p under \widehat{w} and w are closely related:

$$
\begin{aligned}
\sum_{i=1}^{k} \widehat{w}\left(v_{i-1}, v_{i}\right) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Claim

For any edge $u \leftarrow v$, define

$$
\widehat{w}(u, v):=w(u, v)+h(u)-h(v),
$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p=v_{0}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k} with respect to the weight function \widehat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

- So the weight of p under \widehat{w} only differs from its weight under w by an additive term which does not depend on p.

Claim

For any edge $u \leftarrow v$, define

$$
\widehat{w}(u, v):=w(u, v)+h(u)-h(v),
$$

where h is an arbitrary function mapping vertices to real numbers. Then any path $p=v_{0}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k} with respect to the weight function \widehat{w} if and only if it is a shortest path with respect to the weight function w.

Proof

- So the weight of p under \widehat{w} only differs from its weight under w by an additive term which does not depend on p.
- So p is a shortest path with respect to \widehat{w} if and only if it is a shortest path with respect to w.

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \widehat{w} if and only if if has one under weight function w.

Proof

- Let $c=v_{0}, \ldots, v_{k}$, where $v_{0}=v_{k}$, be any cycle.

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \widehat{w} if and only if if has one under weight function w.

Proof

- Let $c=v_{0}, \ldots, v_{k}$, where $v_{0}=v_{k}$, be any cycle.
- As $v_{0}=v_{k}, h\left(v_{0}\right)=h\left(v_{k}\right)$, so the weight of c under \widehat{w} is the same as its weight under w.

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \widehat{w} if and only if if has one under weight function w.

Proof

- Let $c=v_{0}, \ldots, v_{k}$, where $v_{0}=v_{k}$, be any cycle.
- As $v_{0}=v_{k}, h\left(v_{0}\right)=h\left(v_{k}\right)$, so the weight of c under \widehat{w} is the same as its weight under w.
- So c is negative-weight under \widehat{w} if and only if it is negative-weight under w.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v)=\delta(s, v)$ for all vertices v in G.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v)=\delta(s, v)$ for all vertices v in G.
- Now observe that $\delta(s, v) \leq \delta(s, u)+w(u, v)$ for all edges $u \rightarrow v$ by the triangle inequality, so $h(v)-h(u) \leq w(u, v)$.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v)=\delta(s, v)$ for all vertices v in G.
- Now observe that $\delta(s, v) \leq \delta(s, u)+w(u, v)$ for all edges $u \rightarrow v$ by the triangle inequality, so $h(v)-h(u) \leq w(u, v)$.
- So, if we reweight according to the function h,

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v) \geq 0
$$

for all edges $u \rightarrow v$.

Reweighting

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v)=\delta(s, v)$ for all vertices v in G.
- Now observe that $\delta(s, v) \leq \delta(s, u)+w(u, v)$ for all edges $u \rightarrow v$ by the triangle inequality, so $h(v)-h(u) \leq w(u, v)$.
- So, if we reweight according to the function h,

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v) \geq 0
$$

for all edges $u \rightarrow v$.

- Then, if $\widehat{\delta}(u, v)$ is the weight of a shortest path from u to v with weight function $\widehat{w}, \delta(u, v)=\widehat{\delta}(u, v)+h(v)-h(u)$.

Example

Imagine we want to reweight the following graph:

Example

Imagine we want to reweight the following graph:

Example

Imagine we want to reweight the following graph:

- Using Bellman-Ford, we compute

$$
h(A)=-2, \quad h(B)=-1, \quad h(C)=0, \quad h(D)=-1 .
$$

Example

Reweighting according to h gives the following graph:

Example

Reweighting according to h gives the following graph:

- For each pair of vertices $u, v, \delta(u, v)=\widehat{\delta}(u, v)+h(v)-h(u)$.
- For example, $\delta(C, A)=0-2-0=-2$ as expected.

Johnson's algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G^{\prime} by adding s to G, as defined above

Johnson's algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G^{\prime} by adding s to G, as defined above
2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord

Johnson's algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G^{\prime} by adding s to G, as defined above
2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord
3. for each edge $u \rightarrow v$ in G
4.

$$
\widehat{w}(u, v) \leftarrow w(u, v)+\delta(s, u)-\delta(s, v)
$$

Johnson's algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G^{\prime} by adding s to G, as defined above
2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord
3. for each edge $u \rightarrow v$ in G
4.

$$
\widehat{w}(u, v) \leftarrow w(u, v)+\delta(s, u)-\delta(s, v)
$$

5. for each vertex $u \in G$
6. compute $\widehat{\delta}(u, v)$ for all v using Dijkstra
7. for each vertex $v \in G$
8.

$$
d_{u v} \leftarrow \widehat{\delta}(u, v)+\delta(s, v)-\delta(s, u)
$$

9. return d

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- The Floyd-Warshall algorithm runs in time $O\left(V^{3}\right)$ and is based on ideas from dynamic programming.

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- The Floyd-Warshall algorithm runs in time $O\left(V^{3}\right)$ and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- The Floyd-Warshall algorithm runs in time $O\left(V^{3}\right)$ and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.
- The runtime of Johnson's algorithm is dominated by the complexity of running Dijkstra's algorithm once for each vertex, which is $O\left(V E+V^{2} \log V\right)$ if implemented using a Fibonacci heap, and $O(V E \log V)$ if implemented using a binary heap.

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- The Floyd-Warshall algorithm runs in time $O\left(V^{3}\right)$ and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.
- The runtime of Johnson's algorithm is dominated by the complexity of running Dijkstra's algorithm once for each vertex, which is $O\left(V E+V^{2} \log V\right)$ if implemented using a Fibonacci heap, and $O(V E \log V)$ if implemented using a binary heap.
- This can be significantly smaller than the runtime of the Floyd-Warshall algorithm if the input graph is sparse.

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is. . .

- unweighted: use breadth-first search in time $O(V+E)$;
- weighted with non-negative weights: use Dijkstra's algorithm in time $O(E+V \log V)$;
- weighted with negative weights: use Bellman-Ford in time $O(V E)$.

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is. . .

- unweighted: use breadth-first search in time $O(V+E)$;
- weighted with non-negative weights: use Dijkstra's algorithm in time $O(E+V \log V)$;
- weighted with negative weights: use Bellman-Ford in time $O(V E)$.

To compute all-pairs shortest paths in a directed graph G which is...

- unweighted: use breadth-first search from each vertex in time $O\left(V E+V^{2}\right)$;
- weighted with non-negative weights: use Dijkstra's algorithm from each vertex in time $O\left(V E+V^{2} \log V\right)$;
- weighted with negative weights: use Johnson's algorithm in time $O\left(V E+V^{2} \log V\right)$.

Further Reading

- Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.
- Chapter 25 - All-Pairs Shortest Paths
- Algorithms lecture notes, University of Illinois Jeff Erickson http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/
- Lecture 20 - All-pairs shortest paths

Biographical notes

The Floyd-Warshall algorithm was invented independently by Floyd and Warshall (and also Bernard Roy).

Robert W. Floyd (1936-2001)

- American computer scientist who did major work on compilers and initiated the field of programming language semantics.
- He completed his first degree (in liberal arts) at the age of 17 and won the Turing Award in 1978.
- Had his middle name legally changed to "W".

Biographical notes

Stephen Warshall (1935-2006)

- Another American computer scientist whose other work included operating systems and compiler design.
- Supposedly he and a colleague bet a bottle of rum on who could first prove correctness of his algorithm.
- Warshall found his proof overnight and won the bet (and the rum).

Donald B. Johnson (d. 1994)

- Yet another American computer scientist. Founded the computer science department at Dartmouth College and invented the d-ary heap.

