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All-pairs shortest paths
I We have seen two different ways of determining the shortest path

from a vertex s to all other vertices.

I What if we want to determine the shortest paths between all pairs of
vertices?

I For example, we might want to store these paths in a database for
efficient access later.

I We could use Dijkstra (if the edge weights are non-negative) or
Bellman-Ford, with each vertex in turn as the source, which would
achieve complexity O(VE + V 2 log V ) and O(V 2E) respectively.

I Can we do better?

Today: algorithms for general graphs with better runtimes than this.

I The Floyd-Warshall algorithm: time O(V 3).
I Johnson’s algorithm: time O(VE + V 2 log V ).

Assume for simplicity that the input graph has no negative-weight cycles.
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All-pairs shortest paths
I In the Floyd-Warshall algorithm, we assume we are given access to a

graph G with n vertices as a n × n adjacency matrix W . The weights
of the edges in G are represented as follows:

Wij =


0 if i = j
the weight of the edge i → j if such an edge exists
∞ otherwise.

I We use the optimal substructure property of shortest paths (the
triangle inequality) to write down a dynamic programming recurrence.

I For a path p = p1, . . . ,pk , define the intermediate vertices of p to be
the vertices p2, . . . ,pk−1.

I Let d (k)
ij be the weight of a shortest path from i to j such that the

intermediate vertices are all in the set {1, . . . , k}.
I If there is no shortest path from i to j of this form, then d (k)

ij =∞.

I In the case k = 0, d (0)
ij = Wij .

I On the other hand, for k = n, d (n)
ij = δ(i , j).
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A dynamic-programming recurrence
Let p be a shortest (i.e. minimum-weight) path from i to j with all
intermediate vertices in the set {1, . . . , k}.

Then observe that:

I If k is not an intermediate vertex of p, then p is also a minimum-weight
path with all intermediate vertices in the set {1, . . . , k − 1}.

I If k is an intermediate vertex of p, then we decompose p into a path p1
between i and k , and a path p2 between k and j .

I By the triangle inequality, p1 is a shortest path from i to k . Further, it
does not include k (as otherwise it would contain a cycle).

I The same reasoning shows that p2 is a shortest path from k to j .

We therefore have the following recurrence for d (k)
ij :

d (k)
ij =

{
Wij if k = 0

min
{

d (k−1)
ij ,d (k−1)

ik + d (k−1)
kj

}
if k ≥ 1.
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The Floyd-Warshall algorithm
Based on the above recurrence, we can give the following bottom-up
algorithm for computing d (n)

ij for all pairs i , j .

FloydWarshall(W )

1. d (0) ←W
2. for k = 1 to n
3. for i = 1 to n
4. for j = 1 to n

5. d (k)
ij ← min(d (k−1)

ij ,d (k−1)
ik + d (k−1)

kj )

6. return d (n).

I The time complexity is clearly O(n3) and the algorithm is very simple.
I Correctness follows from the argument on the previous slide.
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Example

Consider the following graph and its corresponding adjacency matrix:

1 2

34

1

1 4-1

0

2


0 1 ∞ ∞
∞ 0 1 ∞
2 4 0 0
−1 ∞ ∞ 0
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Constructing the shortest paths
I We would like to construct a predecessor matrix Π such that Πij is the

predecessor vertex of j in a shortest path from i to j .

I We can do this in a similar way to computing the distance matrix. We
define a sequence of matrices Π(0), . . . ,Π(n) such that Π

(k)
ij is the

predecessor of j in a shortest path from i to j only using vertices in the
set {1, . . . , k}.

I Then, for k = 0,

Π
(0)
ij =

{
nil if i = j or Wij =∞
i if i 6= j and Wij 6=∞.

I For k ≥ 1, we have essentially the same recurrence as for d (k).
Formally,

Π
(k)
ij =

{
Π

(k−1)
ij if d (k−1)

ij ≤ d (k−1)
ik + d (k−1)

kj

Π
(k−1)
kj otherwise.
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define a sequence of matrices Π(0), . . . ,Π(n) such that Π
(k)
ij is the

predecessor of j in a shortest path from i to j only using vertices in the
set {1, . . . , k}.

I Then, for k = 0,

Π
(0)
ij =

{
nil if i = j or Wij =∞
i if i 6= j and Wij 6=∞.

I For k ≥ 1, we have essentially the same recurrence as for d (k).
Formally,

Π
(k)
ij =

{
Π

(k−1)
ij if d (k−1)

ij ≤ d (k−1)
ik + d (k−1)

kj

Π
(k−1)
kj otherwise.
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The Floyd-Warshall algorithm with predecessors
FloydWarshall(W )

1. d (0) ←W
2. for k = 1 to n
3. for i = 1 to n
4. for j = 1 to n

5. if d (k−1)
ij ≤ d (k−1)

ik + d (k−1)
kj

6. d (k)
ij ← d (k−1)

ij

7. Π
(k)
ij ← Π

(k−1)
ij

8. else
9. d (k)

ij ← d (k−1)
ik + d (k−1)

kj

10. Π
(k)
ij ← Π

(k−1)
kj

11. return d (n).
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Johnson’s algorithm

I For sparse graphs with non-negative weight edges, running Dijkstra
with each vertex in turn as the source is more efficient than the
Floyd-Warshall algorithm.

I Johnson’s algorithm uses Dijkstra’s algorithm to solve the all-pairs
shortest paths problem for graphs which may have negative-weight
edges. It is based around the idea of first reweighting G so that all the
weights are non-negative, then using Dijkstra.

I For sparse graphs, its complexity O(VE + V 2 log V ) (the same as
Dijkstra) is faster than the Floyd-Warshall algorithm.

I We assume that we are given G as an adjacency list, and have
access to a weight function w(u, v) which tells us the weight of the
edge u → v .
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Claim
For any edge u → v , define

ŵ(u, v) := w(u, v) + h(u)− h(v),

where h is an arbitrary function mapping vertices to real numbers. Then
any path p = v0, . . . , vk is a shortest path from v0 to vk with respect to the
weight function ŵ if and only if it is a shortest path with respect to the
weight function w .

Proof
The total weights of p under ŵ and w are closely related:

k∑
i=1

ŵ(vi−1, vi ) =
k∑

i=1

w(vi−1, vi ) + h(vi−1)− h(vi )

= h(v0)− h(vk ) +
k∑

i=1

w(vi−1, vi ) . . .
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ŵ(u, v) := w(u, v) + h(u)− h(v),

where h is an arbitrary function mapping vertices to real numbers. Then
any path p = v0, . . . , vk is a shortest path from v0 to vk with respect to the
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Claim
For any edge u ← v , define

ŵ(u, v) := w(u, v) + h(u)− h(v),

where h is an arbitrary function mapping vertices to real numbers. Then
any path p = v0, . . . , vk is a shortest path from v0 to vk with respect to the
weight function ŵ if and only if it is a shortest path with respect to the
weight function w .

Proof

I So the weight of p under ŵ only differs from its weight under w by an
additive term which does not depend on p.

I So p is a shortest path with respect to ŵ if and only if it is a shortest
path with respect to w .

�
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Negative-weight cycles

Claim
A graph has a negative-weight cycle under weight function ŵ if and only if
if has one under weight function w .

Proof

I Let c = v0, . . . , vk , where v0 = vk , be any cycle.

I As v0 = vk , h(v0) = h(vk ), so the weight of c under ŵ is the same as
its weight under w .

I So c is negative-weight under ŵ if and only if it is negative-weight
under w .

�
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its weight under w .
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Reweighting
I Given a graph G, to define our new weight function, we add a new

vertex s which has an edge of weight 0 to all other vertices in G.

I This cannot create a new negative-weight cycle if there was not one
there already.

I We then define h(v) = δ(s, v) for all vertices v in G.

I Now observe that δ(s, v) ≤ δ(s,u) + w(u, v) for all edges u → v by
the triangle inequality, so h(v)− h(u) ≤ w(u, v).

I So, if we reweight according to the function h,

ŵ(u, v) = w(u, v) + h(u)− h(v) ≥ 0

for all edges u → v .

I Then, if δ̂(u, v) is the weight of a shortest path from u to v with weight
function ŵ , δ(u, v) = δ̂(u, v) + h(v)− h(u).
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Example

Imagine we want to reweight the following graph:

A B

CD

1

1 40

-1

-2

I Using Bellman-Ford, we compute

h(A) = −2, h(B) = −1, h(C) = 0, h(D) = −1.
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Example

Reweighting according to h gives the following graph:

A B

CD

0

0 51

0

0

I For each pair of vertices u, v , δ(u, v) = δ̂(u, v) + h(v)− h(u).

I For example, δ(C,A) = 0− 2− 0 = −2 as expected.
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Johnson’s algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G′ by adding s to G, as defined above

2. compute δ(s, v) for all v ∈ G using BellmanFord
3. for each edge u → v in G
4. ŵ(u, v)← w(u, v) + δ(s,u)− δ(s, v)

5. for each vertex u ∈ G
6. compute δ̂(u, v) for all v using Dijkstra
7. for each vertex v ∈ G
8. duv ← δ̂(u, v) + δ(s, v)− δ(s,u)

9. return d
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Summary of all-pairs shortest paths algorithms
We have now seen two different algorithms for this problem.

I Both algorithms work for graphs which may have negative-weight
edges.

I The Floyd-Warshall algorithm runs in time O(V 3) and is based on
ideas from dynamic programming.

I Johnson’s algorithm is based on reweighting edges in the graph and
running Dijkstra’s algorithm.

I The runtime of Johnson’s algorithm is dominated by the complexity of
running Dijkstra’s algorithm once for each vertex, which is
O(VE + V 2 log V ) if implemented using a Fibonacci heap, and
O(VE log V ) if implemented using a binary heap.

I This can be significantly smaller than the runtime of the
Floyd-Warshall algorithm if the input graph is sparse.
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Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is. . .

I unweighted: use breadth-first search in time O(V + E);
I weighted with non-negative weights: use Dijkstra’s algorithm in time

O(E + V log V );
I weighted with negative weights: use Bellman-Ford in time O(VE).

To compute all-pairs shortest paths in a directed graph G which is. . .

I unweighted: use breadth-first search from each vertex in time
O(VE + V 2);

I weighted with non-negative weights: use Dijkstra’s algorithm from
each vertex in time O(VE + V 2 log V );

I weighted with negative weights: use Johnson’s algorithm in time
O(VE + V 2 log V ).
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Further Reading

I Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

I Chapter 25 – All-Pairs Shortest Paths

I Algorithms lecture notes, University of Illinois
Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

I Lecture 20 – All-pairs shortest paths
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Biographical notes

The Floyd-Warshall algorithm was invented independently by Floyd and
Warshall (and also Bernard Roy).

Robert W. Floyd (1936–2001)

I American computer scientist who did major work
on compilers and initiated the field of
programming language semantics.

I He completed his first degree (in liberal arts) at
the age of 17 and won the Turing Award in 1978.

I Had his middle name legally changed to “W”.

Pic: IEEE
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Biographical notes

Stephen Warshall (1935–2006)

I Another American computer scientist whose other work included
operating systems and compiler design.

I Supposedly he and a colleague bet a bottle of rum on who could first
prove correctness of his algorithm.

I Warshall found his proof overnight and won the bet (and the rum).

Donald B. Johnson (d. 1994)

I Yet another American computer scientist. Founded the computer
science department at Dartmouth College and invented the d-ary
heap.
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