

Ashley Montanaro

ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

5 November 2013

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 1/22

We have seen two different ways of determining the shortest path from a vertex s to all other vertices.

Slide 2/22

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?

Slide 2/22

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- ► We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity O(VE + V² log V) and O(V²E) respectively.

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- ► We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity O(VE + V² log V) and O(V²E) respectively.
- Can we do better?

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- ► We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity O(VE + V² log V) and O(V²E) respectively.
- Can we do better?

Today: algorithms for general graphs with better runtimes than this.

- The Floyd-Warshall algorithm: time $O(V^3)$.
- Johnson's algorithm: time $O(VE + V^2 \log V)$.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

- We have seen two different ways of determining the shortest path from a vertex s to all other vertices.
- What if we want to determine the shortest paths between all pairs of vertices?
- For example, we might want to store these paths in a database for efficient access later.
- ► We could use Dijkstra (if the edge weights are non-negative) or Bellman-Ford, with each vertex in turn as the source, which would achieve complexity O(VE + V² log V) and O(V²E) respectively.
- Can we do better?

Today: algorithms for general graphs with better runtimes than this.

- The Floyd-Warshall algorithm: time $O(V^3)$.
- ► Johnson's algorithm: time $O(VE + V^2 \log V)$.

Assume for simplicity that the input graph has no negative-weight cycles.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

$$W_{ij} = egin{cases} 0 & ext{if } i = j \ ext{the weight of the edge } i o j & ext{if such an edge exists} \ \infty & ext{otherwise.} \end{cases}$$

In the Floyd-Warshall algorithm, we assume we are given access to a graph G with n vertices as a n × n adjacency matrix W. The weights of the edges in G are represented as follows:

$$W_{ij} = \begin{cases} 0 & \text{if } i = j \\ ext{the weight of the edge } i \to j & \text{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.

$$W_{ij} = \begin{cases} 0 & ext{if } i = j \\ ext{the weight of the edge } i \to j & ext{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path p = p₁,..., p_k, define the intermediate vertices of p to be the vertices p₂,..., p_{k-1}.

$$W_{ij} = \begin{cases} 0 & ext{if } i = j \\ ext{the weight of the edge } i \to j & ext{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path p = p₁,..., p_k, define the intermediate vertices of p to be the vertices p₂,..., p_{k-1}.
- ► Let d^(k)_{ij} be the weight of a shortest path from *i* to *j* such that the intermediate vertices are all in the set {1,...,k}.

$$W_{ij} = \begin{cases} 0 & ext{if } i = j \\ ext{the weight of the edge } i \to j & ext{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path p = p₁,..., p_k, define the intermediate vertices of p to be the vertices p₂,..., p_{k-1}.
- Let d^(k)_{ij} be the weight of a shortest path from i to j such that the intermediate vertices are all in the set {1,...,k}.
- ▶ If there is no shortest path from *i* to *j* of this form, then $d_{ii}^{(k)} = \infty$.

$$W_{ij} = \begin{cases} 0 & ext{if } i = j \\ ext{the weight of the edge } i \to j & ext{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path p = p₁,..., p_k, define the intermediate vertices of p to be the vertices p₂,..., p_{k-1}.
- Let d^(k)_{ij} be the weight of a shortest path from i to j such that the intermediate vertices are all in the set {1,...,k}.
- ▶ If there is no shortest path from *i* to *j* of this form, then $d_{ij}^{(k)} = \infty$.

• In the case
$$k = 0, d_{ij}^{(0)} = W_{ij}$$
.

$$W_{ij} = \begin{cases} 0 & ext{if } i = j \\ ext{the weight of the edge } i \to j & ext{if such an edge exists} \\ \infty & ext{otherwise.} \end{cases}$$

- We use the optimal substructure property of shortest paths (the triangle inequality) to write down a dynamic programming recurrence.
- For a path p = p₁,..., p_k, define the intermediate vertices of p to be the vertices p₂,..., p_{k-1}.
- Let d^(k)_{ij} be the weight of a shortest path from i to j such that the intermediate vertices are all in the set {1,...,k}.
- ▶ If there is no shortest path from *i* to *j* of this form, then $d_{ii}^{(k)} = \infty$.
- In the case $k = 0, d_{ii}^{(0)} = W_{ij}$.
- On the other hand, for k = n, $d_{ij}^{(n)} = \delta(i, j)$.

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 4/22

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$. Then observe that:

If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set {1,..., k − 1}.

Slide 4/22

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set {1,..., k − 1}.
- If k is an intermediate vertex of p, then we decompose p into a path p₁ between i and k, and a path p₂ between k and j.

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set {1,..., k − 1}.
- If k is an intermediate vertex of p, then we decompose p into a path p₁ between i and k, and a path p₂ between k and j.
- ▶ By the triangle inequality, *p*₁ is a shortest path from *i* to *k*. Further, it does not include *k* (as otherwise it would contain a cycle).

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set {1,..., k − 1}.
- If k is an intermediate vertex of p, then we decompose p into a path p₁ between i and k, and a path p₂ between k and j.
- ▶ By the triangle inequality, *p*₁ is a shortest path from *i* to *k*. Further, it does not include *k* (as otherwise it would contain a cycle).
- The same reasoning shows that p_2 is a shortest path from k to j.

Let *p* be a shortest (i.e. minimum-weight) path from *i* to *j* with all intermediate vertices in the set $\{1, ..., k\}$. Then observe that:

- If k is not an intermediate vertex of p, then p is also a minimum-weight path with all intermediate vertices in the set {1,..., k − 1}.
- If k is an intermediate vertex of p, then we decompose p into a path p₁ between i and k, and a path p₂ between k and j.
- ▶ By the triangle inequality, *p*₁ is a shortest path from *i* to *k*. Further, it does not include *k* (as otherwise it would contain a cycle).
- The same reasoning shows that p_2 is a shortest path from k to j.

We therefore have the following recurrence for $d_{ii}^{(k)}$:

$$d_{ij}^{(k)} = \begin{cases} W_{ij} & \text{if } k = 0\\ \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right\} & \text{if } k \ge 1. \end{cases}$$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{ii}^{(n)}$ for all pairs *i*, *j*.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 5/22

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{ii}^{(n)}$ for all pairs *i*, *j*.

FloydWarshall(W)

1. $d^{(0)} \leftarrow W$ 2. for k = 1 to n3. for i = 1 to n4. for j = 1 to n5. $d^{(k)}_{ij} \leftarrow \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj})$ 6. return $d^{(n)}$.

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up algorithm for computing $d_{ii}^{(n)}$ for all pairs *i*, *j*.

FloydWarshall(W)

- 1. $d^{(0)} \leftarrow W$ 2. for k = 1 to n3. for i = 1 to n4. for j = 1 to n5. $d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 6. return $d^{(n)}$.
 - The time complexity is clearly $O(n^3)$ and the algorithm is very simple.
 - Correctness follows from the argument on the previous slide.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Consider the following graph and its corresponding adjacency matrix:

(0	1	∞	∞
∞	0	1	∞
2	4	0	0
\ −1	∞	∞	0/

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 6/22

Consider the following graph and its corresponding adjacency matrix:

(0	1	∞	∞
∞	0	1	∞
2	4	0	0
\ −1	∞	∞	0/

Ashley Montanaro

ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 6/22

Consider the following graph and its corresponding adjacency matrix:

Ashley Montanaro

ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 6/22

Consider the following graph and its corresponding adjacency matrix:

 $\begin{pmatrix} \mathbf{0} & \mathbf{1} & \infty & \infty \\ \infty & \mathbf{0} & \mathbf{1} & \infty \\ \mathbf{2} & \mathbf{4} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \infty & \infty & \mathbf{0} \end{pmatrix}$

Ashley Montanaro

ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 7/22

Consider the following graph and its corresponding adjacency matrix:

Ashley Montanaro

ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 7/22

We would like to construct a predecessor matrix Π such that Π_{ij} is the predecessor vertex of j in a shortest path from i to j.

Slide 8/22

- We would like to construct a predecessor matrix Π such that Π_{ij} is the predecessor vertex of j in a shortest path from i to j.
- ▶ We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{ij}^{(k)}$ is the predecessor of *j* in a shortest path from *i* to *j* only using vertices in the set $\{1, \ldots, k\}$.

Slide 8/22

- We would like to construct a predecessor matrix Π such that Π_{ij} is the predecessor vertex of j in a shortest path from i to j.
- ▶ We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{ij}^{(k)}$ is the predecessor of *j* in a shortest path from *i* to *j* only using vertices in the set $\{1, \ldots, k\}$.
- Then, for k = 0,

$$\Pi_{ij}^{(0)} = \begin{cases} \text{nil} & \text{if } i = j \text{ or } W_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } W_{ij} \neq \infty. \end{cases}$$

- We would like to construct a predecessor matrix Π such that Π_{ij} is the predecessor vertex of j in a shortest path from i to j.
- ▶ We can do this in a similar way to computing the distance matrix. We define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ such that $\Pi_{ij}^{(k)}$ is the predecessor of *j* in a shortest path from *i* to *j* only using vertices in the set $\{1, \ldots, k\}$.
- Then, for k = 0,

$$\Pi_{ij}^{(0)} = \begin{cases} \text{nil} & \text{if } i = j \text{ or } W_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } W_{ij} \neq \infty. \end{cases}$$

For $k \ge 1$, we have essentially the same recurrence as for $d^{(k)}$. Formally,

$$\Pi_{ij}^{(k)} = \begin{cases} \Pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \Pi_{kj}^{(k-1)} & \text{otherwise.} \end{cases}$$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

The Floyd-Warshall algorithm with predecessors

FloydWarshall(W)

1.
$$d^{(0)} \leftarrow W$$

2. for $k = 1$ to n
3. for $i = 1$ to n
4. for $j = 1$ to n
5. if $d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$
6. $d_{ij}^{(k)} \leftarrow d_{ij}^{(k-1)}$
7. $\Pi_{ij}^{(k)} \leftarrow \Pi_{ij}^{(k-1)}$
8. else
9. $d_{ij}^{(k)} \leftarrow d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$
10. $\Pi_{ij}^{(k)} \leftarrow \Pi_{kj}^{(k-1)}$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Johnson's algorithm

For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.

Slide 10/22

Johnson's algorithm

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.

Slide 10/22

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.
- ► For sparse graphs, its complexity $O(VE + V^2 \log V)$ (the same as Dijkstra) is faster than the Floyd-Warshall algorithm.

Slide 10/22

- For sparse graphs with non-negative weight edges, running Dijkstra with each vertex in turn as the source is more efficient than the Floyd-Warshall algorithm.
- Johnson's algorithm uses Dijkstra's algorithm to solve the all-pairs shortest paths problem for graphs which may have negative-weight edges. It is based around the idea of first reweighting G so that all the weights are non-negative, then using Dijkstra.
- ► For sparse graphs, its complexity $O(VE + V^2 \log V)$ (the same as Dijkstra) is faster than the Floyd-Warshall algorithm.
- We assume that we are given G as an adjacency list, and have access to a weight function w(u, v) which tells us the weight of the edge u → v.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 10/22

For any edge $u \rightarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \ldots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function *w*.

Slide 11/22

For any edge $u \rightarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \ldots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function *w*.

Proof

The total weights of p under \hat{w} and w are closely related:

$$\sum_{i=1}^{k} \widehat{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$

Ashley Montanaro

COMS21103: All-pairs shortest paths

For any edge $u \rightarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \ldots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function *w*.

Proof

The total weights of p under \hat{w} and w are closely related:

$$\sum_{i=1}^{k} \widehat{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$
$$= h(v_0) - h(v_k) + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Ashley Montanaro

ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

. . .

Slide 11/22

For any edge $u \leftarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \ldots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function *w*.

Proof

So the weight of p under \hat{w} only differs from its weight under w by an additive term which does not depend on p.

For any edge $u \leftarrow v$, define

$$\widehat{w}(u,v) := w(u,v) + h(u) - h(v),$$

where *h* is an arbitrary function mapping vertices to real numbers. Then any path $p = v_0, \ldots, v_k$ is a shortest path from v_0 to v_k with respect to the weight function \hat{w} if and only if it is a shortest path with respect to the weight function *w*.

Proof

- So the weight of p under \hat{w} only differs from its weight under w by an additive term which does not depend on p.
- So p is a shortest path with respect to ŵ if and only if it is a shortest path with respect to w.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \hat{w} if and only if if has one under weight function w.

Proof

• Let $c = v_0, \ldots, v_k$, where $v_0 = v_k$, be any cycle.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 13/22

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \hat{w} if and only if if has one under weight function w.

Proof

- Let $c = v_0, \ldots, v_k$, where $v_0 = v_k$, be any cycle.
- As $v_0 = v_k$, $h(v_0) = h(v_k)$, so the weight of *c* under \hat{w} is the same as its weight under *w*.

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function \hat{w} if and only if if has one under weight function w.

Proof

- Let $c = v_0, \ldots, v_k$, where $v_0 = v_k$, be any cycle.
- As $v_0 = v_k$, $h(v_0) = h(v_k)$, so the weight of *c* under \hat{w} is the same as its weight under *w*.
- So c is negative-weight under \hat{w} if and only if it is negative-weight under w.

Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.

Slide 14/22

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.

Slide 14/22

- Given a graph G, to define our new weight function, we add a new vertex s which has an edge of weight 0 to all other vertices in G.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v) = \delta(s, v)$ for all vertices v in G.

- ► Given a graph *G*, to define our new weight function, we add a new vertex *s* which has an edge of weight 0 to all other vertices in *G*.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v) = \delta(s, v)$ for all vertices v in G.
- ▶ Now observe that $\delta(s, v) \le \delta(s, u) + w(u, v)$ for all edges $u \to v$ by the triangle inequality, so $h(v) h(u) \le w(u, v)$.

- ► Given a graph *G*, to define our new weight function, we add a new vertex *s* which has an edge of weight 0 to all other vertices in *G*.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v) = \delta(s, v)$ for all vertices v in G.
- ▶ Now observe that $\delta(s, v) \le \delta(s, u) + w(u, v)$ for all edges $u \to v$ by the triangle inequality, so $h(v) h(u) \le w(u, v)$.
- ▶ So, if we reweight according to the function *h*,

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v) \geq 0$$

for all edges $u \rightarrow v$.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

- ► Given a graph *G*, to define our new weight function, we add a new vertex *s* which has an edge of weight 0 to all other vertices in *G*.
- This cannot create a new negative-weight cycle if there was not one there already.
- We then define $h(v) = \delta(s, v)$ for all vertices v in G.
- ▶ Now observe that $\delta(s, v) \le \delta(s, u) + w(u, v)$ for all edges $u \to v$ by the triangle inequality, so $h(v) h(u) \le w(u, v)$.
- ► So, if we reweight according to the function *h*,

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v) \geq 0$$

for all edges $u \rightarrow v$.

► Then, if $\hat{\delta}(u, v)$ is the weight of a shortest path from *u* to *v* with weight function \hat{w} , $\delta(u, v) = \hat{\delta}(u, v) + h(v) - h(u)$.

Imagine we want to reweight the following graph:

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 15/22

Imagine we want to reweight the following graph:

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 15/22

Imagine we want to reweight the following graph:

Using Bellman-Ford, we compute

 $h(A) = -2, \quad h(B) = -1, \quad h(C) = 0, \quad h(D) = -1.$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 15/22

Reweighting according to *h* gives the following graph:

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 16/22

Reweighting according to *h* gives the following graph:

► For each pair of vertices $u, v, \delta(u, v) = \hat{\delta}(u, v) + h(v) - h(u)$.

▶ For example, $\delta(C, A) = 0 - 2 - 0 = -2$ as expected.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 16/22

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G' by adding s to G, as defined above

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 17/22

From the above discussion, we can write down the following algorithm.

Johnson(G)

- 1. form a new graph G' by adding s to G, as defined above
- 2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord

Slide 17/22

From the above discussion, we can write down the following algorithm.

Johnson(G)

- 1. form a new graph G' by adding s to G, as defined above
- 2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord
- 3. for each edge $u \rightarrow v$ in G

4.
$$\widehat{w}(u, v) \leftarrow w(u, v) + \delta(s, u) - \delta(s, v)$$

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

From the above discussion, we can write down the following algorithm.

Johnson(G)

- 1. form a new graph G' by adding s to G, as defined above
- 2. compute $\delta(s, v)$ for all $v \in G$ using BellmanFord
- 3. for each edge $u \rightarrow v$ in G

4.
$$\widehat{w}(u, v) \leftarrow w(u, v) + \delta(s, u) - \delta(s, v)$$

- 5. for each vertex $u \in G$
- 6. compute $\hat{\delta}(u, v)$ for all v using Dijkstra
- 7. for each vertex $v \in G$

8.
$$d_{uv} \leftarrow \widehat{\delta}(u, v) + \delta(s, v) - \delta(s, u)$$

9. return d

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

University of BRISTOL

We have now seen two different algorithms for this problem.

 Both algorithms work for graphs which may have negative-weight edges.

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- ► The Floyd-Warshall algorithm runs in time O(V³) and is based on ideas from dynamic programming.

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- ► The Floyd-Warshall algorithm runs in time O(V³) and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- ► The Floyd-Warshall algorithm runs in time O(V³) and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.
- The runtime of Johnson's algorithm is dominated by the complexity of running Dijkstra's algorithm once for each vertex, which is O(VE + V² log V) if implemented using a Fibonacci heap, and O(VE log V) if implemented using a binary heap.

We have now seen two different algorithms for this problem.

- Both algorithms work for graphs which may have negative-weight edges.
- ► The Floyd-Warshall algorithm runs in time O(V³) and is based on ideas from dynamic programming.
- Johnson's algorithm is based on reweighting edges in the graph and running Dijkstra's algorithm.
- The runtime of Johnson's algorithm is dominated by the complexity of running Dijkstra's algorithm once for each vertex, which is O(VE + V² log V) if implemented using a Fibonacci heap, and O(VE log V) if implemented using a binary heap.
- This can be significantly smaller than the runtime of the Floyd-Warshall algorithm if the input graph is sparse.

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is...

- unweighted: use breadth-first search in time O(V + E);
- ▶ weighted with non-negative weights: use Dijkstra's algorithm in time O(E + V log V);
- ▶ weighted with negative weights: use Bellman-Ford in time O(VE).

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is...

- unweighted: use breadth-first search in time O(V + E);
- weighted with non-negative weights: use Dijkstra's algorithm in time O(E + V log V);
- ▶ weighted with negative weights: use Bellman-Ford in time O(VE).

To compute all-pairs shortest paths in a directed graph G which is...

- unweighted: use breadth-first search from each vertex in time O(VE + V²);
- weighted with non-negative weights: use Dijkstra's algorithm from each vertex in time O(VE + V² log V);
- ► weighted with negative weights: use Johnson's algorithm in time O(VE + V² log V).

Further Reading

Introduction to Algorithms

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

Chapter 25 – All-Pairs Shortest Paths

Algorithms lecture notes, University of Illinois Jeff Erickson

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Lecture 20 – All-pairs shortest paths

Slide 20/22

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Biographical notes

The Floyd-Warshall algorithm was invented independently by Floyd and Warshall (and also Bernard Roy).

Robert W. Floyd (1936-2001)

- American computer scientist who did major work on compilers and initiated the field of programming language semantics.
- He completed his first degree (in liberal arts) at the age of 17 and won the Turing Award in 1978.
- Had his middle name legally changed to "W".

Pic: IEEE

Biographical notes

Stephen Warshall (1935–2006)

- Another American computer scientist whose other work included operating systems and compiler design.
- Supposedly he and a colleague bet a bottle of rum on who could first prove correctness of his algorithm.
- Warshall found his proof overnight and won the bet (and the rum).

Donald B. Johnson (d. 1994)

 Yet another American computer scientist. Founded the computer science department at Dartmouth College and invented the *d*-ary heap.

Ashley Montanaro ashley@cs.bris.ac.uk COMS21103: All-pairs shortest paths

Slide 22/22