COMS21103

Finding the shortest path

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

28 October 2013

Ashley Montanaro

ashley@cs. bris. ac. uk
COMS21103: Finding the shortest path
Slide $1 / 39$

```
2 \({ }^{2}\) University of
2 2 BRISTOL
```


Other applications

- Internet routing (e.g. the OSPF routing algorithm)
- VLSI routing
- Traffic information systems
- Robot motion planning
- Routing telephone calls
- Avoiding nuclear contamination
- Destabilising currency markets
- ...

Given a (weighted, directed) graph G and a pair of vertices s and t, we would like to find a shortest path from s to t.

A fundamental task with many applications:

Ashley Montanaro

COMS21103: Finding the shortest pat
Slide 2/39

Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence $v_{1}, v_{2}, \ldots, v_{m}$ such that the total weight of the edges $s \rightarrow v_{1}, v_{1} \rightarrow v_{2}, \ldots$, $v_{m} \rightarrow t$ is minimal.

Single-source shortest paths

- In fact, the algorithms we will discuss for this problem give us more: given a source s, they output a shortest path from s to every other vertex.
- This is known as the single-source shortest path problem (SSSP).

Today's lecture

- Today we will discuss an algorithm for the single-source shortest paths problem called the Bellman-Ford algorithm.
- The algorithm can be used for graphs with negative weights and can detect negative-weight cycles.
- It also has applications to solving systems of difference constraints and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn't work is to try every possible path from s to t in turn.

- There can be exponentially many paths so such an algorithm cannot be efficient.

Negative-weight edges

- If some of the edges have negative weights, the idea of a shortest path might not make sense.
- If there is a cycle in G which is reachable on a path from s to t, and the sum of the weights of the edges in the cycle is negative, then we can get from s to t with a path of arbitrarily low weight by repeatedly going round the cycle.

Notation

We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.
- We write $u \rightarrow v$ for an edge from u to v, and $w(u, v)$ for the weight of this edge.
- We write $\delta(u, v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.
- We write $\delta(u, v)=\infty$ when there is no path from u to v. (Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)
- For each vertex v, we will maintain a guess for its distance from s; call this v.d.

Predecessors and shortest paths

- For each vertex v, we try to determine its predecessor $v . \pi$, which is the previous vertex in some shortest path from s to v.
- Knowledge of v 's predecessor suffices to compute the whole path from s to v, by following the predecessors back to s and reversing the path.

Slide 9/39

2 2 University of

The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex $v \in G: v . d \leftarrow \infty, v . \pi \leftarrow$ nil
2. $s . d \leftarrow 0$
3. for $i=1$ to $V-1$
4. for each edge $u \rightarrow v$ in G
5. $\operatorname{Relax}(u, v)$
6. for each edge $u \rightarrow v$ in G
7. if $v . d>u . d+w(u, v)$
8. error("Negative-weight cycle detected")

- Time complexity: $\Theta(V)+\Theta(V E)+\Theta(E)=\Theta(V E)$.

A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess $v . d$ for the distance from the source s : $s . d=0$, and $v . d=\infty$ for all other vertices v.
2. Update our guesses by relaxing edges:

- If there is an edge $u \rightarrow v$ and our guess for the distance from s to v is greater than our guess for the distance from s to u, plus $w(u, v)$, then we can improve our guess by using this edge.

Relax (u, v)

```
1. if \(v . d>u . d+w(u, v)\)
2. \(\quad v . d \leftarrow u . d+w(u, v)\)
3. \(v . \pi=u\)
```

Note that $\infty+x=\infty$ for any real number x.

Example 1: no negative-weight cycles

Imagine we want to find shortest paths from vertex A in the following graph:

Example 1: no negative-weight cycles

At the start of the algorithm:

- In the above diagram, the red text is the distance from the source A, (i.e. $v . d$), and the green text is the predecessor vertex (i.e. $v . \pi$).

Astrey Nonanaio

COMS21103: Finding the shortest path

Slide $13 / 39$

Example 1: no negative-weight cycles

The first iteration of the for loop:

- Note that the edges are picked in arbitrary order.

Ashley Montanaro

ashley@cs. bris.ac. uk
COMS21103: Finding the shortest pat
Slide 14/39
解 University of

Example 1: no negative-weight cycles

The 4 iterations of the for loop that follow do not update any distance or predecessor values, so the final state is:

- So the shortest path from A to G (for example) has weight 1.
- To output a shortest path itself, we can trace back the predecessor values from G.
$\begin{aligned} & \text { Ashley Montanaro } \\ & \text { ashleyecs. }\end{aligned}$.nris. ac.
COMS21103: Finding the shortest paith

Example 2: negative-weight cycle

We now consider an input graph that has a negative-weight cycle.

Ashley Montanaro

Example 2: negative-weight cycle

The first iteration of the for loop:

- As before, the order in which we consider the edges is arbitrary (here we use the order $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{C} \rightarrow \mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}$).

Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a shortest path from s to t cannot contain a cycle.

Proof

If a path p contains a cycle $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{0}$ such that the sum of the weights of the edges is non-negative, deleting this cycle from p cannot increase p's total weight.

Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:

- $p=s \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v$ is a shortest path from s to v;
- s. d is initially set to 0 and $u . d$ is initially set to ∞ for all $u \neq s$;
- the edges in p are relaxed in the order they appear in p (possibly with other edges relaxed in between).
Then, at the end of this process, $v . d=\delta(s, v)$.

Proof: exercise

Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices $a, b, c, \delta(a, c) \leq \delta(a, b)+\delta(b, c)$.

Proof

Given a shortest path from a to b and a shortest path from b to c, combining these two paths gives a path from a to c with total weight $\delta(a, b)+\delta(b, c)$.

Note that this holds even if some edge weights are negative.

Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v . d=\delta(s, v)$ for all vertices v.

Proof

- Write $v_{0}=s, v_{m}=v$. If v is reachable from s, there must exist a shortest path $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{m}$.
- A shortest path cannot contain a cycle, so $m \leq V-1$.
- In the i 'th iteration of the for loop, the edge $v_{i-1} \rightarrow v_{i}$ is relaxed (among others).
- By the path-relaxation property, after $V-1$ iterations, $v . d=\delta(s, v)$.
- So $V-1$ iterations suffice to set $v . d$ correctly for all v.

Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.

Proof

- By the triangle inequality, for all edges $u \rightarrow v$, $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
- By the claim on the previous slide, $v . d=\delta(s, v)$ for all vertices v.
- So, for all edges $u \rightarrow v, v . d \leq u . d+w(u, v)$.
- So the check in step (7) of the algorithm never fails.

ashley@cs.bris.ac.uk

Slide $25 / 3$

Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- Summing this inequality over i between 1 and k,

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k} v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& <\sum_{i=1}^{k} v_{i-1} \cdot d=\sum_{i=0}^{k-1} v_{i} \cdot d .
\end{aligned}
$$

- Subtracting $\sum_{i=1}^{k-1} v_{i} \cdot d$ from both sides, we get $v_{k} \cdot d<v_{0} . d$.
- But $v_{0}=v_{k}$, so we have a contradiction.

Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- We will assume that G contains a negative-weight cycle reachable from s, and that BellmanFord does not exit with an error, and prove that this implies a contradiction.
- Let v_{0}, \ldots, v_{k} be a negative-weight cycle, where $v_{k}=v_{0}$.
- Then by definition $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$.
- As BellmanFord does not exit with an error, for all $1 \leq i \leq k$,

$$
v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)
$$

Application 1: difference constraints

- A system of difference constraints is a set of inequalities of the form $x_{i}-x_{j} \leq b_{i j}$, where x_{i} and x_{j} are variables and $b_{i j}$ is a real number.
- For example

$$
x_{1}-x_{2} \leq 5, \quad x_{2}-x_{3} \leq-2, \quad x_{1}-x_{4} \leq 0 .
$$

- Given a system of m difference constraints in n variables, we would like to find an assignment of real numbers to the variables such that the constraints are all satisfied, if such an assignment exists.
- For example, the above system is satisfied by $x_{1}=0, x_{2}=-1, x_{3}=1$ $x_{4}=7$ (among other solutions).
- We will show that this problem can be solved using Bellman-Ford in time $O\left(n m+n^{2}\right)$.

Graph representation of difference constraints

Given m difference constraints in n variables, we create a graph on $n+1$ vertices v_{0}, \ldots, v_{n} with $m+n$ edges where:

- for each constraint $x_{i}-x_{j} \leq b_{i j}$, we add an edge $v_{j} \rightarrow v_{i}$ with weight $b_{i j}$
- for all $1 \leq i \leq n$ there is an additional edge $v_{0} \rightarrow v_{i}$ with weight 0 .

For example:

$$
x_{1}-x_{2} \leq 5, \quad x_{2}-x_{3} \leq-2, \quad x_{1}-x_{4} \leq 0
$$

corresponds to

Slide 29/39

Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
- Let $c=v_{1}, \ldots, v_{k}, v_{1}$ be an arbitrary cycle on vertices v_{1}, \ldots, v_{k} (without loss of generality). This corresponds to the inequalities

$$
x_{2}-x_{1} \leq b_{12}, \quad x_{3}-x_{2} \leq b_{23}, \quad \ldots \quad, \quad x_{1}-x_{k} \leq b_{k 1} .
$$

- If there is a valid solution x_{i}, then all the inequalities are satisfied.
- Summing the inequalities we get 0 for the left-hand side, and the weight of c for the right-hand side.
- So chas weight at least 0 , and is not a negative-weight cycle.

Claim

Let G be the graph corresponding to a system of difference constraints. If G does not contain a negative-weight cycle, the assignment $x_{i}=\delta\left(v_{0}, v_{i}\right)$, for all $1 \leq i \leq n$, is a valid solution to the system of constraints.

Proof

- We need to prove that

$$
\delta\left(v_{0}, v_{i}\right)-\delta\left(v_{0}, v_{j}\right) \leq b_{i j}
$$

for all i, j in the list of constraints.

- This follows from the triangle inequality

$$
\delta\left(v_{0}, v_{i}\right) \leq \delta\left(v_{0}, v_{j}\right)+\delta\left(v_{j}, v_{i}\right) \leq \delta\left(v_{0}, v_{j}\right)+w\left(v_{j}, v_{i}\right)=\delta\left(v_{0}, v_{j}\right)+b_{i j}
$$

and rearranging.

Example

The set of inequalities

$$
x_{1}-x_{2} \leq 5, \quad x_{2}-x_{3} \leq-2, \quad x_{1}-x_{4} \leq 0
$$

corresponds to the graph

with shortest paths

$$
\delta\left(v_{0}, v_{1}\right)=0, \quad \delta\left(v_{0}, v_{2}\right)=-2, \quad \delta\left(v_{0}, v_{3}\right)=0, \quad \delta\left(v_{0}, v_{4}\right)=0 .
$$

So

$$
x_{1}=0, \quad x_{2}=-2, \quad x_{3}=0, \quad x_{4}=0
$$

is a solution to the constraints.

Solving difference constraints

- We can run Bellman-Ford with v_{0} as the source.
- If there is a negative-weight cycle, the algorithm detects it (and we output "no solution"); otherwise, we output $x_{i}=\delta\left(v_{0}, v_{i}\right)$ as the solution.
- For a solution to a system of m difference constraints on n variables, the graph produced has $n+1$ vertices and $m+n$ edges.
- The running time of Bellman-Ford is thus $O(V E)=O\left(m n+n^{2}\right)$.
- This can be improved to $O(m n)$ time (CLRS exercise 24.4-5).
Ashley Montanaro
ash1eyecs. bris. ac. uk
coms21103: Finding the shortest path

Application: Currency exchange

We produce a weighted graph G from the currency table, where the weight of edge $i \rightarrow j$ is $-\log _{2} T_{i j}$. For example:

- Then the weight of a cycle $c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{k}$ (with $c_{k}=c_{0}$) is

$$
-\sum_{j=1}^{k} \log _{2} T_{c_{j} c_{j-1}}=-\log _{2} \prod_{j=1}^{k} T_{c_{j} c_{j-1}} .
$$

- This will be negative if and only if $\prod_{j} T_{c_{j} c_{j-1}}>1$, i.e. the sequence of transactions corresponds to an arbitrage opportunity.
- So G has a negative-weight cycle if and only if arbitrage is possible.

Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (i, j)'th entry $T_{i j}$ represents the exchange rate we get when converting currency i to currency j. For example:

	$£$	$\$$	$€$
$£$	1	1.61	1.18
$\$$	0.62	1	0.74
$€$	0.85	1.35	1

- If we convert currency $i \rightarrow j \rightarrow k$, the rate we get is the product of the individual rates.
- If we convert $i \rightarrow j \rightarrow \cdots \rightarrow i$, and the product of the rates is greater than 1 , we have made money by exploiting the exchange rates! This is called arbitrage.
- We can use Bellman-Ford to determine whether arbitrage is possible.
Ashley Montanaro
ashleyecs. bris. ac. uk
coms21103: Finding the shortest path
Slide $34 / \mathrm{s}$
解 University of

Summary

- The Bellman-Ford algorithm solves the single-source shortest paths problem in time $O(V E)$.
- It works if the input graph has negative-weight edges, and can detect negative-weight cycles.
- Although the proof of correctness is a bit technical, the algorithm is easy to implement and doesn't use any complicated data structures.
- It can be used to solve a system of difference constraints and to determine whether arbitrage is possible.

Further Reading

- Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.

MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

- Chapter 24 - Single-Source Shortest Paths
- Algorithms
S. Dasgupta, C.H. Papadimitriou and U.V. Vazirani
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
- Chapter 4, Section 4.6 - Shortest paths in the presence of negative edges
- Algorithms lecture notes, University of Illinois

Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

- Lecture 19 - Single-source shortest paths

Ashley Montanaro
ashleyecs. .ris.

COMS21103: Finding the shortest path

COMS21103: Finding the shortest path

Biographical notes

Richard E. Bellman (1920-1984)

- American mathematician who worked at Princeton, Stanford, the RAND Corporation and the University of Southern California.
- Author of at least 621 papers and 41 books, including 100 papers after the removal of a brain tumour left him severely disabled.
- Winner of the IEEE Medal of Honor in 1979 for his invention of dynamic programming.

Biographical notes

Lester Ford, Jr. (1927-)

- Another American mathematician whose other contributions include the Ford-Fulkerson algorithm for maximum flow problems.
- His father was also a mathematician and, at one point, President of the Mathematical Association of America.

