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Introduction

I Imagine we would like to build a web cache application. We would like
to store URLs in some space-efficient way such that we can check
membership in the cache very efficiently.

I Ideally, we would like to use O(n) space to store n keys (i.e. URLs)
picked from a universe of size U, where U is much bigger than n, and
would like to be able to check membership in the cache in time O(1).

I These are all the operations we care about: that is, instead of
supporting Insert, Delete, Find and Successor operations, we will just
want to support Insert and Member.

I The data structure maintains a subset S ⊆ U of keys. The operation
Member(k ) should just return whether or not the supplied key k is
contained within S.
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Introduction
Bloom filters are a randomised data structure which achieve this goal.
However, they have some important caveats:

I Bloom filters do not support deletion; they only support Insert and
Member.

I They are not deterministic but have some risk of false positives.
I That is, when we query the Bloom filter with some key k , if k /∈ S there

is some small chance (say 1%) that the answer is “yes” when it should
be “no”. On the other hand, if k ∈ S the answer is always “yes” .

This is reasonable for applications like a web cache:

I If we incorrectly think that a page is in the cache, this is not a disaster:
we check the cache first, find it is not there, and download it directly.

I However, if we incorrectly decide that a page is not in the cache, this
is undesirable because we download the page unnecessarily.
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Example

The following sequence of operations illustrates what can happen using a
Bloom filter.

Operation Returns
Insert(www.bbc.co.uk)

The last “Yes” is an example of a false positive.
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A naïve approach

I The simplest thing we could do to implement the web cache is to
maintain a string B of U bits in an array, where bit B[k ] is set to 0 or 1
depending on whether k ∈ S.

I For example, if the universe is the integers between 1 and 10, after
inserting 3, 6 and 8 we have:

0 0 1 0 0 1 0 1 0 0

I If we would like the storage space used not to depend on U, we will
need to compress this string somehow.
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Hashing

I One way to do this is by hashing. We maintain an m-bit string B in our
structure, for some m to be determined. Assume we have access to a
hash function h which maps each key k to an integer h(k) between 1
and m.

I Our structure will set bit number h(k) of B to 1 when key k is inserted.

I Then, to determine whether k ∈ S, we just check whether the bit of B
at position h(k) is equal to 1.
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Example

Imagine m = 3 and we have h(www.bbc.co.uk) = 2,
h(facebook.com) = 3, h(cs.bristol.ac.uk) = 3.

0 0 0Start

0 1 0Insert(www.bbc.co.uk)

0 1 1Insert(facebook.com)

0 1 1Member(cs.bristol.ac.uk)
returns Yes
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Hashing

I A problem with this idea: if m < U, there will be some keys that hash
to the same positions (collisions).

I If we call Member(k ) for some k /∈ S, if h(k) = h(k ′) for some k ′ ∈ S,
we will incorrectly output “yes”.

I To make the probability of collisions low for the worst-case input, we
pick our hash function h(k) at random.

I For each key k , the value of h(k) is uniformly random: that is, the
probability that h(k) = j is equal to 1/m for all j between 1 and m.
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Hashing

What is the probability of a collision?

I Assume we have already inserted n keys into the structure and we
would like to check whether some other key k /∈ S is contained in S
(so the output should be “no”).

I The bit-string B contains at most n 1’s, and the value h(k) is uniformly
random; so the probability that B[h(k)] = 1 is at most n/m.

I So the probability that we incorrectly output “yes” for this key is at
most n/m, and we never incorrectly output “no” for any key.

I So it suffices (for example) to take m = 100n to achieve a failure
probability of at most 1%. Note that m does not depend on the
universe size U.
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Can we do better?

We can achieve superior performance by using multiple hash functions.

I A Bloom filter consists of a string B of m bits, and a set of r hash
functions h1, . . . ,hr .

I Each hash function maps a key k to an integer between 1 and m.

I For each i , we assume as before that hi (k) is uniformly random: that
is, for each key k , the probability that hi (k) = j is equal to 1/m for all j
between 1 and m.

I We will choose the parameters m and r later.
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Inserting into a Bloom filter
To insert into a Bloom filter, we use the following simple procedure.

Insert(k )

1. for i ← 1 to r
2. B[hi (k)]← 1

To check membership, we just check the bits of B that should be set to 1.

Member(k )

1. for i ← 1 to r
2. if B[hi (k)] = 0
3. return false
4. return true
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Example
Imagine m = 4, r = 2, and we randomly pick the following hash functions:

I h1(www.bbc.co.uk) = 2, h1(facebook.com) = 3,
h1(cs.bristol.ac.uk) = 3.

I h2(www.bbc.co.uk) = 1, h2(facebook.com) = 2,
h2(cs.bristol.ac.uk) = 4.

0 0 0 0Start

1 1 0 0Insert(www.bbc.co.uk)

1 1 1 0Insert(facebook.com)

1 1 1 0Member(cs.bristol.ac.uk)
returns No
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Does the Bloom filter work?

I Imagine |S| = n and we query the filter with a key k /∈ S.

I This is equivalent to checking r random indices h1(k), . . . ,hr (k) and
returning Yes if all of the bits are set to 1. We now upper-bound the
probability of this happening.

I If a p fraction of the bits of B are set to 1, the probability that all of the
bits checked are set to 1 is precisely pr .

I At most nr bits of B can be set to 1 (each key inserted sets at most r
bits to 1).

I So the fraction of bits set to 1 is at most nr/m.

I So the probability that we incorrectly output 1 is at most (nr/m)r .
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Does the Bloom filter work?
We now choose r to optimise this bound.

I By taking the derivative, we find that the minimum of (nr/m)r is
achieved when r = m/(ne), where e = 2.7818 . . . .

I With this value of r , we get that the failure probability is at most
e−m/(ne) ≈ 0.69m/n.

I So, to achieve failure probability p, we can choose any m such that
e−m/(ne) ≤ p, which is equivalent to

m ≥ −en ln p.

I For small p, this is much better than using one hash function. For
example, to achieve p = 0.01 (i.e. a 1% failure probability), we can
take m ≈ 12.52n.

So the number of bits m used by the Bloom filter is only a (small) multiple
of n, and does not depend on U.
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Can we do as well deterministically?

Claim
Any data structure that stores a subset S of n elements of a universe of
size U, in such a way that membership in S can be tested with certainty,
must use Ω(n log U) bits of storage.

Proof

I By testing membership in S of each element of the universe in turn,
we can determine S completely, so the structure must contain enough
information to identify S.

I Claim: there are at least bU/ncn subsets of U of size n.
I Proof: divide U into n blocks of (nearly) equal size, and consider only

subsets with one item in each block. There are bU/ncn such subsets.
. . .
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Lower bounds on storage space
Claim
Any data structure that stores a subset S of n elements of a universe of
size U, in such a way that membership in S can be tested with certainty,
must use Ω(n log U) bits of storage.

Proof

I A data structure that uses b bits of storage can store at most 2b

different bit-strings.

I Thus, unless 2b ≥ bU/ncn, there must exist two subsets that
correspond to the same bit-string.

I If the structure gives the right answer for all subsets, we must have

b ≥ log2(bU/ncn) = n(log2bU/nc) = Ω(n log U).

�
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Practical considerations

I We made the unrealistic assumption that each hash function hi maps
a key k to a uniformly random integer between 1 and m.

I In practice, we would pick each hash function hi randomly from a fixed
set of hash functions. One way of doing this for integer keys k (see
CLRS §11.3.3) is to do the following for each i :

1. Pick a prime number p > U.
2. Pick random integers a ∈ {1, . . . , p − 1}, b ∈ {0, . . . , p − 1}.
3. Let hi be defined by hi(k) = 1 + ((ak + b) mod p) mod m.

I Some number theory can be used to prove that this set of hash
functions is “pseudorandom” in some sense; however, technically they
are not “random enough” for our analysis above to go through.

I Nevertheless, in practice hash functions like this are very effective.
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Summary

I Bloom filters provide a way of checking membership in a set which is
very efficient in both space and time.

I By improving the analysis, one can show that they need only about
1.44 log2(1/ε) bits per element of storage space to achieve failure
probability ε.

I Bloom filters have a number of applications: web caches, databases
(e.g. Google BigTable, Apache Cassandra), spell checkers, Bitcoin (!),
the Linux kernel, . . .

I They are very efficient in theory and even more efficient in practice.

I There are modifications to Bloom filters to allow deletions (“counting
Bloom filter”), storage of key values (“Bloomier filter”), dynamic
scaling, . . .
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Further reading

I Probability and Computing
Michael Mitzenmacher and Eli Upfal
Cambridge University Press

I Section 5.5.3 – Bloom Filters

I Network Applications of Bloom Filters: A Survey
Andrei Broder and Michael Mitzenmacher
http://www.eecs.harvard.edu/~michaelm/postscripts/
im2005b.pdf

I This year’s lecture slides for COMS31900: Advanced Algorithms, for
additional / more advanced material.

I Lecture 5 – Bloom filters
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Historical notes

I The Bloom filter was invented by Burton Howard Bloom in 1970, in a
paper which now has over 4000 citations.

I His analysis of the structure turned out to have a bug which was only
fixed in a paper published in 2008!

I Bloom is sadly lacking a Wikipedia page and online photo.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Bloom filters Slide 20/20




