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Introduction

I In this lecture we will start by discussing a data structure used for
maintaining disjoint subsets of some bigger set.

I This has a number of applications, including to maintaining connected
components of a graph, and to finding minimum spanning trees in
undirected graphs.

I We will then discuss two algorithms for finding minimum spanning
trees: an algorithm by Kruskal based on disjoint-set structures, and an
algorithm by Prim which is similar to Dijkstra’s algorithm.

I In both cases, we will see that efficient implementations of data
structures give us efficient algorithms.
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Disjoint-set data structure

A disjoint-set data structure maintains a collection S = {S1, . . . ,Sk} of
disjoint subsets of some larger “universe” U.

The data structure supports the following operations:

1. MakeSet(x): create a new set whose only member is x . As the sets
are disjoint, we require that x is not contained in any of the other sets.

2. Union(x , y ): combine the sets containing x and y (call these Sx , Sy ) to
replace them with a new set Sx ∪ Sy .

3. FindSet(x): returns the identity of the unique set containing x .

The identity of a set is just some unique identifier for that set – for example,
the identity of one of the elements in the set.
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Example

Operation Returns S
(start) (empty)

MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}

MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}

FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}

Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}

FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}

FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}

MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Example

Operation Returns S
(start) (empty)
MakeSet(a) {a}
MakeSet(b) {a}, {b}
FindSet(b) b {a}, {b}
Union(a,b) {a,b}
FindSet(b) a {a,b}
FindSet(a) a {a,b}
MakeSet(c) {a,b}, {c}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 4/48



Implementation

I A simple way to implement a disjoint-set data structure is as an array
of linked lists.

I We have a linked list for each disjoint set. Each element elem in the
list stores a pointer elem.next to the next element in the list, and the
set element itself, elem.data.

I We also have an array A corresponding to the universe, with each
entry in the array containing a pointer to the linked list corresponding
to the set in which it occurs.

Then to implement:

I MakeSet(x), we create a new list and set x ’s pointer to that list.
I FindSet(x), we return the first element in the list to which x points.
I Union(x , y ), we append y ’s list to x ’s list and update the pointers of

everything in y ’s list to point to to x ’s list.
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Implementation
In more detail:

MakeSet(x)

1. A[x ]← new linked list
2. elem← new list element
3. elem.data← x
4. A[x ].head ← elem
5. A[x ].tail ← elem

FindSet(x)

1. return A[x ].head .data
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Implementation

Union(x , y)

1. A[x ].tail .next ← A[y ].head
2. A[x ].tail ← A[y ].tail

3. elem← A[y ].head
4. while elem 6= nil
5. A[elem.data]← A[x ]

6. elem← elem.next
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Example

Imagine we have a universe U = {a,b, c,d}. The initial configuration of
the array A (corresponding to S = ∅) is

a
b
c
d

Then the following sequence of updates occurs:

a
b
c
d

MakeSet(a)
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Example

a
b
c
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a
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Improvement: the weighted-union heuristic
I MakeSet and FindSet take time O(1) but Union might take time Θ(n)

for a universe of size n.

I Union(x , y ) needs to update tail pointers in lists (constant time) but
also the information of every element in y ’s list.

I So the Union operation is slow when y ’s list is long and x ’s is short.

I Heuristic: always append the shorter list to the longer list.

I Might still take time Θ(n) in the worst case (if both lists have the same
size), but we have the following amortised analysis:

Claim
Using the linked-list representation and the above heuristic, a sequence of
m MakeSet, FindSet and Union operations, n of which are MakeSet
operations, uses time O(m + n log n).
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Improvement: the weighted-union heuristic
Claim
Using the linked-list representation and the above heuristic, a sequence of
m MakeSet, FindSet and Union operations, n of which are MakeSet
operations, uses time O(m + n log n).

Proof

I MakeSet and FindSet take time O(1) each, and there can be at most
n − 1 non-trivial Union operations.

I At each Union operation, an element’s information is only updated
when it was in the smaller set of the two sets.

I So, the first time it is updated, the resulting set must have size at least
2. The second time, size at least 4. The k ’th time, size at least 2k .

I So each element’s information is only updated at most O(log n) times.
I So O(n log n) updates are made in total. All other operations use time

O(1), so the total runtime is O(m + n log n). �
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Improvements

I Another way to implement a disjoint-set structure is via a disjoint-set
forest (CLRS §21.3). This structure is based on replacing the linked
lists with trees.

I One can show that using a disjoint-set forest, along with some
optimisations, a sequence of m operations with n MakeSet operations
runs in time O(mα(n)), where α(n) is an extremely slowly growing
function which satisfies α(n) ≤ 4 for any n ≤ 1080.

I Disjoint-set forests were introduced in 1964 by Galler and Fischer but
this bound was not proven until 1975 by Tarjan.

I Amazingly, it is known that this runtime bound cannot be replaced with
a bound O(m).
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Application: computing connected components

A simple application of the disjoint-set data structure is computing
connected components of an undirected graph.

For example:

A B

CD

E

F

G
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Application: computing connected components
ConnectedComponents(G)

1. for each vertex v ∈ G: MakeSet(v )
2. for each edge u ↔ v in arbitrary order
3. if FindSet(u) 6= FindSet(v )
4. Union(u, v )

I Time complexity: O(E + V log V ) if implemented using linked lists,
O(E α(V )) if implemented using an optimised disjoint-set forest.

I After ConnectedComponents completes, FindSet can be used to
determine whether two vertices are in the same component, in time
O(1).

I This task could also be achieved using breadth-first search, but using
disjoint sets allows searching and adding vertices to be carried out more
efficiently in future.
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Minimum spanning trees
Given a connected, undirected weighted graph G, a subgraph T is a
spanning tree if:

I T is a tree (i.e. does not contain any cycles)
I Every vertex in G appears in T .

T is a minimum spanning tree (MST) if the sum of the weights of edges of
T is minimal among all spanning trees of G.
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A spanning tree and a minimum spanning tree of the same graph.
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MSTs: applications

I Telecommunications and utilities
I Cluster analysis
I Taxonomy

I Handwriting recognition
I Maze generation
I . . .

Pics: nationalgrid.com, connecticutvalleybiological.com, Wikipedia
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A generic approach to MSTs
The two algorithms we will discuss for finding MSTs are both based on the
following basic idea:

1. Maintain a forest (i.e. a collection of trees) F which is a subset of
some minimum spanning tree.

2. At each step, add a new edge to F , maintaining the above property.
3. Repeat until F is a minimum spanning tree.

This approach of making a “locally optimal” choice of an edge at each step
makes them greedy algorithms.

We will discuss:

I Kruskal’s algorithm, which is based on a disjoint-set data structure.
I Prim’s algorithm, which is based on a priority queue.

The algorithms make different choices for which new edge to add at each
step.
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How to choose new edges?
Cut property

Let X be a subset of some MST T . Let S be a subset of the vertices of G
such that X does not contain any edges with exactly one endpoint in S. Let
e be a lightest edge in G that has exactly one endpoint in S.
Then X ∪ {e} is a subset of an MST.

For example:
1 2 2

1

11
3

2 3

2

Proof

I If e ∈ T , the claim is obviously true, so assume e /∈ T .
I As T is a spanning tree, there must exist a path p in T between the

endpoints of e, where p contains an edge e′ with one endpoint in S.. . .
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How to choose new edges?
Cut property

Let X be a subset of some MST T . Let S be a subset of the vertices of G
such that X does not contain any edges with exactly one endpoint in S. Let
e be a lightest edge in G that has exactly one endpoint in S.
Then X ∪ {e} is a subset of an MST.

Proof

I Exercise: For any edge e′ on the path p, if we replace e′ with e in T ,
the resulting set T ′ is still a spanning tree.

I Further, the total weight of T ′ is

weight(T ′) = weight(T ) + w(e)− w(e′).

I As e is the lightest edge with one endpoint in S, w(e) ≤ w(e′).
I Hence weight(T ′) ≤ weight(T ), so T ′ is also an MST. �
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Kruskal’s algorithm
I The algorithm has a similar flow to the algorithm for computing

connected components.
I It maintains a forest F , initially consisting of unconnected individual

vertices, and a disjoint-set data structure.

Kruskal(G)

1. for each vertex v ∈ G: MakeSet(v )
2. sort the edges of G into non-decreasing order by weight
3. for each edge u ↔ v in order
4. if FindSet(u) 6= FindSet(v )
5. F ← F ∪ {u ↔ v}
6. Union(u, v )

Informally: “add the lightest edge between two components of F ”.
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Example

We use Kruskal’s algorithm to find an MST in the following graph.
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Example

First an arbitrary edge with weight 1 is picked:
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Example

Then any other edge with weight 1:
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Example

The final edge with weight 1 cannot be picked because A and B are in the
same component, so one of the edges with weight 2 is chosen:
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Example

Finally, one of the other edges with weight 2 is chosen and the MST is
complete.
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Proof of correctness
Kruskal(G)

1. for each vertex v ∈ G: MakeSet(v )
2. sort the edges of G into non-decreasing order by weight
3. for each edge u ↔ v in order
4. if FindSet(u) 6= FindSet(v )
5. F ← F ∪ {u ↔ v}
6. Union(u, v )

Proof of correctness

I Whenever FindSet(u) 6= FindSet(v ), the edge u ↔ v connects two
trees T1, T2. Set S = T1 in the cut property.

I This edge is a lightest edge with one endpoint in S.
I So, by the cut property, F ∪ {u ↔ v} is a subset of an MST. �
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Complexity analysis of Kruskal’s algorithm
Kruskal(G)

1. for each vertex v ∈ G: MakeSet(v )
2. sort the edges of G into non-decreasing order by weight
3. for each edge u ↔ v in order
4. if FindSet(u) 6= FindSet(v )
5. F ← F ∪ {u ↔ v}
6. Union(u, v )

I V MakeSet operations
I Time O(E log E) to sort edges
I O(E) FindSet and Union operations

I So, using a disjoint-set structure implemented using an array of linked
lists, we get an overall runtime of O(E log E).

I If the edges are already sorted, and we use an optimised disjoint-set
forest, we can achieve O(E α(V )).
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Prim’s algorithm

I Kruskal’s algorithm maintains a forest F and uses the rule: “add the
lightest edge between two components of F ” at each step.

I A different approach is used by Prim’s algorithm: “maintain a
connected tree T and extend T with the lightest possible edge”.

I Prim’s algorithm is based on the use of a priority queue Q.

I The flow of the algorithm is almost exactly the same as Dijkstra’s
algorithm; the only difference is the choice of key for the queue.

I For each vertex v , v .key is the weight of the lightest edge connecting
v to T .
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Prim’s algorithm
Prim(G)

1. for each vertex v ∈ G: v .key ←∞, v .π ← nil

2. choose an arbitrary vertex r
3. r .key ← 0
4. add every vertex in G to Q
5. while Q not empty
6. u ← ExtractMin(Q)
7. for each vertex v such that u ↔ v
8. if v ∈ Q and w(u, v) < v .key
9. v .π ← u

10. DecreaseKey(v ,w(u, v))

The algorithm can be seen as maintaining a growing tree, defined by the
predecessor information v .π, to which each vertex extracted from the
queue is added.
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Example

We use Prim’s algorithm to find an MST in the following graph.

A

B

C

D

E

F

1

1
2

2

31
2

3

12
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Example
The state at the start of the algorithm:

A

∞, nil

B

∞, nil

C

∞, nil

D

∞, nil

E

∞, nil

F

∞, nil
1

1
2

2

31
2

3

12

I In the above diagram, the red text is the key values of the vertices (i.e.
v .key ) and the green text is the predecessor vertex (i.e. v .π).
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Example
First the algorithm picks an arbitrary starting vertex r and updates its key
value to 0.

A

0, nil

B

∞, nil

C

∞, nil

D

∞, nil

E

∞, nil

F

∞, nil
1

1
2

2

31
2

3

12

I Here we arbitrarily choose A as our starting vertex.
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Example
Then A is extracted from the queue, and the keys of its neighbours are
updated:

A

0, nil

B

1, A

C

1, A

D

∞, nil

E

∞, nil

F

∞, nil
1

1
2

2

31
2

3

12

I Vertex colours: Blue: current vertex, green: vertices added to tree.
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Example
Then either B or C is extracted from the queue (here, we pick C):

A

0, nil

B

1, A

C

1, A

D

2, C

E

2, C

F

∞, nil
1

1
2

2

31
2

3

12

I The red line shows the growing tree.
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Example

Then B is extracted from the queue:

A

0, nil

B

1, A

C

1, A

D

2, C

E

2, C

F

∞, nil
1

1
2

2

31
2

3

12
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Example

Then either D or E is extracted from the queue (here, we pick E):

A

0, nil

B

1, A

C

1, A

D

2, C

E

2, C

F

3, E
1

1
2

2

31
2

3

12

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Disjoint sets and MSTs Slide 41/48



Example

Then D is extracted from the queue:

A

0, nil

B

1, A

C

1, A

D

2, C

E

2, C

F

1, D
1

1
2

2

31
2

3

12
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Example

Finally F is extracted from the queue and the algorithm is complete:

A

0, nil

B

1, A

C

1, A

D

2, C

E

2, C

F

1, D
1

1
2

2

31
2

3

12
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Correctness and complexity

Proof of correctness

I Prim’s algorithm maintains a single, growing tree T starting with r , and
to which each vertex removed from Q is appended.

I Each vertex added to T is a vertex connected to T by a lightest edge.
I The cut property is therefore satisfied (taking S = T ), so when the

algorithm completes, T is an MST.
I The predecessor information v .π can be used to output T . �

Complexity analysis:

I The complexity is asymptotically the same as Dijkstra’s algorithm.
I If the priority queue is implemented using a binary heap, we get an

overall bound of O(E log V ); if it is implemented using a Fibonacci
heap, we get O(E + V log V ).
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Comparison of MST algorithms
To summarise the two MST algorithms discussed:

Algorithm Underlying structure Runtime

Kruskal Disjoint-set
O(E log E) (linked lists)
O(E α(V )) (disjoint-set forest,
edges already sorted)

Prim Priority queue O(E log V ) (binary heap)
O(E +V log V ) (Fibonacci heap)

So which algorithm to use?

I If the edges are not already sorted, and cannot be sorted in linear
time, the most efficient algorithm in theory is Prim with a Fibonacci
heap (but in practice, either Kruskal with a disjoint-set forest or Prim
with a binary heap is likely to be quicker).

I If the edges are already sorted, or can be sorted in time O(E), then
Kruskal with an optimised disjoint-set forest is quickest.
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Summary

I A disjoint-set structure provides an efficient way to store a collection of
disjoint subsets of some universe, and can be implemented using an
array of linked lists.

I Disjoint-set structures can be used to maintain a set of connected
components of a graph, and also to find minimum spanning trees
using Kruskal’s algorithm.

I An alternative way of finding minimum spanning trees is Prim’s
algorithm, which is based on the use of a priority queue and is similar
to Dijkstra’s algorithm.

I Both algorithms are greedy algorithms which rely on the optimal
substructure property of minimum spanning trees.
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Further Reading

I Introduction to Algorithms
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

I Chapter 21 – Data Structures for Disjoint Sets
(NB: presented slightly differently to lecture)

I Chapter 23 – Minimum Spanning Trees

I Algorithms
S. Dasgupta, C. H. Papadimitriou and U. V. Vazirani
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/

I Chapter 5 – Greedy algorithms

I Algorithms lecture notes, University of Illinois
Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

I Lecture 18 – Minimum spanning trees
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Biographical notes

Joseph B. Kruskal, Jr. (1928–2010)

I Kruskal was an American mathematician and
computer scientist who did important work in
statistics and combinatorics, as well as
computer science.

I His algorithm was discovered in 1956 while at
Princeton University; he spent most of his later
career at Bell Labs.

I His two brothers William and Martin were also
famous mathematicians.

Pic: ams.org
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Biographical notes

Robert C. Prim III (1921–)

I Prim is an American mathematician and
computer scientist, who developed his
algorithm while working at Bell Labs in 1957,
where he was later director of mathematics
research.

I Prim’s algorithm was originally and
independently discovered in 1930 by Jarník. It
was later rediscovered again by Edsger
Dijkstra in 1959. Pic: ams.org
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