QUANTUM COMPUTATION
Exercise sheet 5
Ashley Montanaro, University of Bristol
ashley.montanaro@bristol.ac.uk

1. More efficient quantum simulation (if you did not already answer this question on the last exercise sheet).
(a) Let A and B be Hermitian operators with $\|A\| \leq \delta,\|B\| \leq \delta$ for some $\delta \leq 1$. Show that

$$
e^{-i A / 2} e^{-i B} e^{-i A / 2}=e^{-i(A+B)}+O\left(\delta^{3}\right)
$$

(this is the so-called Strang splitting). Use this to give a more efficient quantum algorithm for simulating k-local Hamiltonians than the algorithm discussed in the lecture, and calculate its complexity.
(b) Let H be a Hamiltonian which can be written as $H=U D U^{\dagger}$, where U is a unitary matrix that can be implemented by a quantum circuit running in time poly (n), and $D=\sum_{x} d(x)|x\rangle\langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-i d(x) t}|x\rangle$ can be implemented in time $\operatorname{poly}(n)$ for all x. Show that $e^{-i H t}$ can be implemented in time poly (n).
2. The amplitude damping channel. The amplitude damping channel $\mathcal{E}_{\mathrm{AD}}$ has Kraus operators (with respect to the standard basis)

$$
E_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), \quad E_{1}=\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right)
$$

for some γ.
(a) What is the result of applying the amplitude damping channel to the pure state $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) ?$
(b) Show that, when applied to the Pauli matrices $X, Y, Z, \mathcal{E}_{\mathrm{AD}}$ rescales each one by a factor depending on γ, and determine what these factors are.
(c) Hence determine the representation of the amplitude-damping channel as an affine map $v \mapsto A v+b$ on the Bloch sphere.
(d) What does this channel "look like" geometrically in terms of its effect on the Bloch sphere?

3. General quantum channels.

(a) Given two channels $\mathcal{E}_{1}, \mathcal{E}_{2}$, with Kraus operators $\left\{E_{k}^{(1)}\right\},\left\{E_{k}^{(2)}\right\}$, what is the Kraus representation of the composite channel $\mathcal{E}_{2} \circ \mathcal{E}_{1}$ which is formed by first applying \mathcal{E}_{1}, then applying \mathcal{E}_{2} ?
(b) Determine a Kraus representation for the channel Tr which maps $\rho \mapsto \operatorname{tr} \rho$ for a mixed quantum state ρ in d dimensions.
(c) Let \mathcal{E} and \mathcal{F} be quantum channels with d Kraus operators each, E_{k} and F_{k} (respectively), such that for all $j, F_{j}=\sum_{k=1}^{d} U_{j k} E_{k}$ for some unitary matrix U. Show that \mathcal{E} and \mathcal{F} are actually the same quantum channel.

