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1. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with ‖A‖ ≤ δ, ‖B‖ ≤ δ for some δ ≤ 1.
Show that

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(δ3)

(this is the so-called Strang splitting). Use this to give a more efficient quantum
algorithm for simulating k-local Hamiltonians than the algorithm discussed in the
lecture, and calculate its complexity.

Answer:

e−iA/2e−iBe−iA/2

=
(
I − iA/2− A2/8 +O(δ3)

) (
I − iB −B2/2 +O(δ3)

) (
I − iA/2− A2/8 +O(δ3)

)
= I − iA− iB − A2/2− AB/2−BA/2−B2/2 +O(δ3)

= I − iA− iB − (A+B)2/2 +O(δ3)

= e−i(A+B) +O(δ3).

Plugging this in to the argument of the lecture notes, for operators H1, H2, . . . , Hm

such that ‖Hi‖ ≤ δ we obtain

e−iH1/2e−iH2/2 . . . e−iHme−iHm−1/2 . . . e−iH1/2 = e−i(H1+···+Hm) +O(m4δ3).

So, for some universal constant C, if p ≥ Cm2(tδ)3/2/ε1/2,∥∥∥(e−iH1t/(2p)e−iH2t/(2p) . . . e−iHmt/pe−iHm−1t/(2p) . . . e−iH1t/(2p)
)p − e−i(H1+···+Hm)t

∥∥∥ ≤ ε.

Thus a k-local Hamiltonian which is a sum of m terms H1, . . . , Hm, where ‖Hi‖ ≤
1, can be simulated for time t in O(m3t3/2/ε1/2) steps.

(b) Let H be a Hamiltonian on n qubits which can be written as H = UDU †, where
U is a unitary matrix that can be implemented by a quantum circuit running in
time poly(n), and D =

∑
x d(x)|x〉〈x| is a diagonal matrix such that the map

|x〉 7→ e−id(x)t|x〉 can be implemented in time poly(n) for all x. Show that e−iHt

can be implemented in time poly(n).
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Answer: By linearity, the unitary operator which performs the map |x〉 7→
e−id(x)t|x〉 is equal to the matrix e−iDt. And by the identity

U †e−iDtU = e−iU
†DUt = e−iHt,

performing U , then e−iDt, then U †, suffices to implement e−iHt. Each of these
steps can be carried out in time poly(n).

2. The amplitude damping channel. The amplitude damping channel EAD has Kraus
operators (with respect to the standard basis)

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0
√
γ

0 0

)
for some γ.

(a) What is the result of applying the amplitude damping channel to the pure state
1√
2
(|0〉+ |1〉)?

Answer: Using the Kraus operators, we can calculate directly that the answer
is the mixed state

1

2

(
1 + γ

√
1− γ√

1− γ 1− γ

)
.

(b) Show that, when applied to the Pauli matrices X, Y , Z, EAD rescales each one by
a factor depending on γ, and determine what these factors are.

Answer: Using the Kraus operators again, we get

EAD(X) =
√

1− γX, EAD(Y ) =
√

1− γY, EAD(Z) = (1− γ)Z

by direct calculation.

(c) Hence determine the representation of the amplitude-damping channel as an affine
map v 7→ Av + b on the Bloch sphere.

Answer: We can calculate

EAD

(
I

2

)
= E0

I

2
E†0 + E1

I

2
E†1 =

1

2

(
1 + γ 0

0 1− γ

)
=

1

2
(I + γZ),

which tells us that b = (0, 0, γ). We can then use the previous question to deter-
mine A by writing down the columns of A, with respect to the standard basis, in
terms of the coefficients obtained there.

A =

√1− γ 0 0
0

√
1− γ 0

0 0 1− γ

 .
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(d) What does this channel “look like” geometrically in terms of its effect on the
Bloch sphere? Answer: The channel shrinks the X and Y directions, but
leaves the Z direction unchanged. A vector of the form (x, y, z) is mapped to
(
√

1− γx,
√

1− γy, z). So the amplitude-damping channel squeezes the Bloch
sphere into an ellipsoid which is no longer centred on I/2.

3. General quantum channels.

(a) Given two channels E1, E2, with Kraus operators {E(1)
k }, {E

(2)
k }, what is the Kraus

representation of the composite channel E2 ◦ E1 which is formed by first applying
E1, then applying E2?
Answer: The output of the composite channel applied to ρ is

(E2 ◦ E1)(ρ) = E2

(∑
j

E
(1)
j ρ(E

(1)
j )†

)
=
∑
k

E
(2)
k

(∑
j

E
(1)
j ρ(E

(1)
j )†

)
(E

(2)
k )†

=
∑
j,k

E
(2)
k E

(1)
j ρ(E

(1)
j )†(E

(2)
k )†,

so the Kraus operators are all products of the Kraus operators of E1 and E2, i.e.
{E(2)

k E
(1)
j }.

(b) Determine a Kraus representation for the channel Tr which maps ρ 7→ tr ρ for a
mixed quantum state ρ in d dimensions.

Answer: The channel has d Kraus operators, Ek = 〈k|:

Tr(ρ) =
∑
k

〈k|ρ|k〉 = tr ρ.

(c) Let E and F be quantum channels with d Kraus operators each, Ek and Fk

(respectively), such that for all j, Fj =
∑d

k=1 UjkEk for some unitary matrix U .
Show that E and F are actually the same quantum channel.

Answer: We have

F(ρ) =
∑
j

FjρF
†
j =

∑
j

(∑
k

UjkEk

)
ρ

(∑
`

U∗j`E
†
`

)
=

∑
k,`

EkρE
†
`

∑
k

UjkU
∗
j` =

∑
k

EkρE
†
k = E(ρ),

where we use unitarity of U .
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