QUANTUM COMPUTATION
 Practice questions
 Ashley Montanaro, University of Bristol
 ashley.montanaro@bristol.ac.uk

1. Quantum circuits. The SWAP gate performs the map $|x\rangle|y\rangle \mapsto|y\rangle|x\rangle$ for $x, y \in$ $\{0,1\}$ and is denoted in a quantum circuit by \qquad
(a) Write down the matrix corresponding to SWAP with respect to the computational basis and hence, or otherwise, show that SWAP is unitary.
Answer sketch: The matrix is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Multiplying this matrix by its conjugate transpose gives the identity, so SWAP is unitary.
(b) Show that, for any quantum states of one qubit $|\psi\rangle,|\phi\rangle$, SWAP $|\psi\rangle|\phi\rangle=|\phi\rangle|\psi\rangle$.

Answer sketch: Expand $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle,|\phi\rangle=\gamma|0\rangle+\delta|1\rangle$, so

$$
|\psi\rangle|\phi\rangle=\alpha \gamma|00\rangle+\alpha \delta|01\rangle+\beta \gamma|10\rangle+\beta \delta|11\rangle,
$$

and use linearity of the SWAP gate.
(c) Consider the following quantum circuit, where $|\psi\rangle,|\phi\rangle$ are arbitrary states of one qubit.

What is the probability that the result of measuring the first qubit is 1 in each of these two cases?
i. $|\psi\rangle=|0\rangle,|\phi\rangle=|1\rangle$. Answer sketch: The quantum circuit performs the following sequence of operations:

$$
\begin{aligned}
|0\rangle|\psi\rangle|\phi\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle|\phi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle|\psi\rangle|\phi\rangle+|1\rangle|\phi\rangle|\psi\rangle) \\
& \mapsto \frac{1}{2}(|0\rangle(|\psi\rangle|\phi\rangle+|\phi\rangle|\psi\rangle)+|1\rangle(|\psi\rangle|\phi\rangle-|\phi\rangle|\psi\rangle))
\end{aligned}
$$

Inserting $|\psi\rangle=|0\rangle,|\phi\rangle=|1\rangle$, we get that the final state before the measurement is

$$
\frac{1}{2}(|0\rangle(|01\rangle+|10\rangle)+|1\rangle(|01\rangle-|10\rangle))
$$

so the probability that we see an outcome of 1 when we measure the first qubit is $1 / 2$.
ii. $|\psi\rangle=|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Answer sketch: By a similar calculation, the probability that we see an outcome of 1 is 0 (because $|\psi\rangle|\phi\rangle-|\phi\rangle|\psi\rangle=0$).

2. Grover's algorithm.

(a) Imagine we would like to solve the unstructured search problem on a set of size N, where we know that there are M marked elements, for some M. Let S denote the set of marked elements and write $U_{f}=I-2 \Pi_{S}$, where $\Pi_{S}=\sum_{x \in S}|x\rangle\langle x|$.
i. Show that $U_{f}^{2}=I$ and hence that U_{f} is unitary. Answer sketch: $U_{f}^{2}=$ $\left(I-2 \Pi_{S}\right)\left(I-2 \Pi_{S}\right)=I-4 \Pi_{S}+4\left(\Pi_{S}\right)^{2}=I-4 \Pi_{S}+4 \Pi_{S}=I$.
ii. Show that, if $M=N / 4$, the unstructured problem can be solved with one use of the oracle operator U_{f}. Answer sketch: After 1 iteration, the overlap of the state of the algorithm with the uniform superposition $|S\rangle$ over elements of S is $\sin ^{2}(3 \arcsin 1 / 2)=1$. (This uses the argument from Secs $3-3.1$ of the lecture notes, but could also be shown via direct calculation.)
(b) Imagine we apply standard Grover search for a unique marked element, but in fact every element is marked $(M=N)$. Does the algorithm succeed? Why or why not? Answer sketch: Setting $U_{f}=-I$ in Grover's algorithm, and noting that $D|+\rangle=|+\rangle$, the final state in the algorithm is $\pm|+\rangle$. Measuring this state gives a uniformly random outcome, so the algorithm succeeds in that it returns a marked element.

3. The QFT and periodicity.

(a) Using the formula for a geometric series, or otherwise, write down an expression for Q_{N}^{2} for any N. Answer sketch:

$$
\langle x| Q_{N}^{2}|y\rangle=\frac{1}{N} \sum_{z} \omega_{N}^{(x+y) z}=\left\{\begin{array}{ll}
1 & \text { if } x=-y \\
0 & \text { otherwise }
\end{array} .\right.
$$

(b) Run through the steps of the periodicity-determination algorithm for the periodic function $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}$ where $f(0)=1, f(1)=0, f(2)=1, f(3)=$ 0 , choosing an arbitrary measurement outcome in step 3 . What is the distribution on measurement outcomes? What is the probability that the algorithm succeeds? Answer sketch: The state after step 2 of the algorithm is $\frac{1}{2}(|0\rangle|1\rangle+|1\rangle|0\rangle+|2\rangle|1\rangle+|3\rangle|0\rangle)$. Imagine we get measurement outcome 0 . Then the state collapses to $\frac{1}{\sqrt{2}}(|1\rangle|0\rangle+|3\rangle|0\rangle)$. After applying the QFT, the resulting state of the first register is $\frac{1}{\sqrt{2}}(|0\rangle-|2\rangle)$, so the distribution on measurement outcomes is uniform on outcomes 0 and 2. In the second case, we cancel down the fraction $2 / 4$ to $1 / 2$ and output a period of 2 ; in the first case, the algorithm fails. So it succeeds with probability $1 / 2$.

4. Shor's algorithm.

(a) Assume that we would like to factorise $N=33$ and pick $a=10$. Determine the order of $a \bmod N$ and hence factorise N. Answer sketch: $10^{2}=100 \equiv 1 \bmod$ 33, so the order r of $a \bmod N$ is 2 . Following the integer factorisation algorithm, we compute $\operatorname{gcd}\left(a^{r / 2}-1, N\right)=\operatorname{gcd}(9,33)=3$. We output 3 as a factor of 33 .
(b) Write down the continued fraction expansion of $17 / 32$ and the corresponding sequence of convergents. Answer sketch:

$$
\frac{17}{32}=\frac{1}{\frac{32}{17}}=\frac{1}{1+\frac{15}{17}}=\frac{1}{1+\frac{1}{\frac{17}{15}}}=\frac{1}{1+\frac{1}{1+\frac{2}{15}}}=\frac{1}{1+\frac{1}{1+\frac{1}{\frac{15}{2}}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}}
$$

The sequence of convergents is thus

$$
\frac{1}{1}=1, \frac{1}{1+\frac{1}{1}}=\frac{1}{2}, \frac{1}{1+\frac{1}{1+\frac{1}{3}}}=\frac{4}{7}
$$

(c) Describe all the ways that Shor's algorithm can fail to factorise an integer N. Answer sketch: Shor's algorithm fails if: the order r of the randomly chosen value of $a \bmod N$ is odd; or $a^{r / 2}-1$ and N are coprime; or the measurement result at the end of the quantum algorithm is not "good", i.e. the closest integer to M / r, where M is the smallest power of 2 larger than N^{2}.

5. Phase estimation and Hamiltonian simulation.

(a) Write down the full quantum circuit for phase estimation with $n=3$. Answer

sketch:

(b) What is the minimal k such that the Hamiltonian $H=2 X \otimes X \otimes I-3 Z \otimes I \otimes Z$ is k-local? What is the minimal k such that H^{2} is k-local? Answer sketch: H is 2-local but not 1-local. $H^{2}=13 I \otimes I \otimes I$, which is 0 -local.
(c) Let H be a Hamiltonian on n qubits, and imagine we can produce a state $|\psi\rangle$ such that $|\psi\rangle$ is an eigenvector of H with eigenvalue λ. Describe how phase estimation can be combined with Hamiltonian simulation to approximately determine λ. Answer sketch: Hamiltonian simulation allows us to approximately implement the unitary operator $U(t)=e^{-i H t}$, for any t. Then $|\psi\rangle$ is an eigenvector of $U(t)$ with eigenvalue $e^{-i \lambda t}$. Applying phase estimation to $U(t)$ allows us to approximately determine λt, and hence λ. To be more precise, this only allows us to determine $\lambda t \bmod 2 \pi$ (why?). It is sufficient to choose $t=O\left(1 / \lambda_{\max }\right)$, where $\lambda_{\max }$ is an upper bound on $|\lambda|$, for this to imply a reasonable estimate of λ.

6. Noise, quantum channels and error-correction.

(a) The phase-damping channel \mathcal{E}_{P} is described by Kraus operators

$$
E_{0}=\sqrt{1-p}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad E_{1}=\left(\begin{array}{cc}
\sqrt{p} & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{p}
\end{array}\right)
$$

for some p such that $0 \leq p \leq 1$.
i. What is the result of applying \mathcal{E}_{P} to a mixed state ρ of the form

$$
\rho=\left(\begin{array}{cc}
\alpha & \beta \\
\beta^{*} & \gamma
\end{array}\right)
$$

in the computational basis? Answer sketch:

$$
\rho=\left(\begin{array}{cc}
\alpha & (1-p) \beta \\
(1-p) \beta^{*} & \gamma
\end{array}\right)
$$

ii. Determine the representation of \mathcal{E}_{P} as an affine map $v \mapsto A v+b$ on the Bloch sphere. Answer sketch: We compute the effect of \mathcal{E}_{P} on $I / 2$ and Pauli matrices,

$$
\mathcal{E}_{P}(I / 2)=I / 2, \quad \mathcal{E}_{P}(X)=(1-p) X, \quad \mathcal{E}_{P}(Y)=(1-p) Y, \quad \mathcal{E}_{P}(Z)=Z
$$

So $b=(0,0,0)^{T}$ and

$$
A=\left(\begin{array}{ccc}
1-p & 0 & 0 \\
0 & 1-p & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) Imagine we encode the state $\alpha|0\rangle+\beta|1\rangle$ using the bit-flip code (i.e. $|0\rangle \mapsto|000\rangle$ and $|1\rangle \mapsto|111\rangle)$ and a Y error occurs on the second qubit. What is the decoded state? Answer sketch: We can compute explicitly that the effect of the error on the encoded state $\alpha|000\rangle+\beta|111\rangle$ is to produce the state $\alpha i|010\rangle-\beta i|101\rangle$. The errorcorrection procedure flips the incorrect second bit to produce $\alpha i|000\rangle-\beta i|111\rangle$. So the final decoded state is $\alpha i|0\rangle-i \beta|1\rangle$. (Note that the overall phase of i is irrelevant.)

