QUANTUM COMPUTATION

Exercise sheet 3

Ashley Montanaro, University of Bristol
ashley.montanaro@bristol.ac.uk

1. The QFT and periodicity.

(a) Multiply out the matrices corresponding to the gates in the circuit for the quantum Fourier transform Q_{4}, in the computational basis, and check that the result is what you expect.
(b) Write the state $Q_{8}|3\rangle$ as a tensor product of three single-qubit states, each of the form $\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i z}|1\rangle\right)$ for some binary fraction z (i.e. something of the form $\left.\left(. x_{j-1} \ldots x_{0}\right)\right)$. Expand out the resulting state and check that the answer is what you expect.
(c) Let $f: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{4}$ be the periodic function such that $f(0)=2, f(1)=1, f(2)=3$, $f(3)=0$, and $f(x)=f(x-4)$ for all x (so $f(4)=2$, etc.).
i. Work through all the steps of the periodicity determination algorithm, writing down the state at each stage, and assuming that the measurement outcome in step 3 is 1 , and the measurement outcome in step 5 is 12 . Does the algorithm succeed?
ii. Now assume that the measurement outcome in step 5 is 8 . Does the algorithm succeed?

2. Shor's algorithm.

(a) Suppose we would like to factorise $N=85$ and we choose $a=3$, which is coprime to N. Follow steps $3-5$ of the integer factorisation algorithm to factorise 85 using this value of a (calculating the order of a classically!). You might like to use a computer.
(b) Imagine we want to factorise $N=21$ and we choose $a=4$. Does the integer factorisation algorithm work or not?
3. Approximate implementation of the QFT (optional). This part proves a claim made at the end of Section 4 of the lecture notes. Define the distance $D(U, V)$ between unitary operators U and V as the maximum over all states $|\psi\rangle$ of $\| U|\psi\rangle-V|\psi\rangle \|$.
(a) Show that $D(\cdot, \cdot)$ is subadditive: $D\left(U_{1} U_{2}, V_{1} V_{2}\right) \leq D\left(U_{1}, V_{1}\right)+D\left(U_{2}, V_{2}\right)$.
(b) Show that $D\left(R_{d}, I\right)=O\left(2^{-d}\right)$ and argue that the same holds for controlled- R_{d}.
(c) Describe how to produce a quantum circuit for an operator $\widetilde{Q}_{2^{n}}$ on n qubits such that $\widetilde{Q}_{2^{n}}$ uses $O(n \log n)$ gates and $D\left(\widetilde{Q}_{2^{n}}, Q_{2^{n}}\right)=O(1 / n)$.

