QUANTUM COMPUTATION
 Exercise sheet 4
 Ashley Montanaro, University of Bristol
 ashley.montanaro@bristol.ac.uk

1. Shor's algorithm. In this question you will work through the final steps of the integer factorisation algorithm. You might like to use a calculator or computer for some of the parts. Suppose we would like to factorise $N=33$.
(a) What value do we choose for M ?

Answer: M is the smallest power of 2 larger than $N^{2}=1089$, so $M=2048$.
(b) Now suppose we randomly choose $a=2$. What is the order r of $a \bmod N$?

Answer: By explicit multiplication, the order is 10 .
(c) Now suppose we get measurement outcome $y=614$. Is this a "good" outcome of the form $\lfloor\ell M / r\rceil$ for some integer ℓ ?
Answer: Yes: $3 \times 2048 / 10=614.4$, and the outcome is the closest integer to this.
(d) Write $z=y / M$ as a continued fraction.

Answer: To start, we have $z=307 / 1024$. So

$$
\begin{aligned}
z & =\frac{1}{\frac{1024}{307}}=\frac{1}{3+\frac{103}{307}}=\frac{1}{3+\frac{1}{\frac{307}{103}}}=\frac{1}{3+\frac{1}{2+\frac{107}{103}}}=\frac{1}{3+\frac{1}{2+\frac{1}{103}}}=\frac{1}{3+\frac{1}{2+\frac{1}{1+\frac{2}{101}}}} \\
& =\frac{1}{3+\frac{1}{2+\frac{1}{1+\frac{1}{101}}}}=\frac{1}{3+\frac{1}{2+\frac{1}{1+\frac{1}{50+\frac{1}{2}}}}} .
\end{aligned}
$$

(e) Write down the convergents of this continued fraction and hence show that the algorithm correctly outputs the order of $a \bmod N$.
Answer: The convergents are obtained by truncating this expansion, i.e.

$$
\frac{1}{3}, \quad \frac{1}{3+\frac{1}{2}}=\frac{2}{7}, \quad \frac{1}{3+\frac{1}{2+\frac{1}{1}}}=\frac{3}{10}, \quad \frac{1}{3+\frac{1}{2+\frac{1}{1+\frac{1}{50}}}}=\frac{152}{507} .
$$

We want to find a convergent that is within $1 /\left(2 N^{2}\right)=1 / 2178$ of $z=307 / 1024$ and has denominator at most $N=33$. Doing the calculations shows that $1 / 3$ and
$2 / 7$ are not within $1 / 2178$ of z, while $152 / 507$ is ruled out because of its large denominator. So the only option is $3 / 10$, which is indeed close enough. Therefore we output the denominator 10 , which is indeed the order of $a \bmod N$.
Note that $a^{r / 2}-1=31$ and N are coprime, so the final step of the algorithm fails!
2. A simple case of phase estimation. Consider the phase estimation procedure with $n=1$, applied to a unitary U and an eigenstate $|\psi\rangle$ such that $U|\psi\rangle=e^{i \theta}|\psi\rangle$.
(a) Write down a full circuit for the quantum phase estimation algorithm in this case.

Answer:

(b) By tracking the input state through the circuit, write down the final state at the end of the algorithm. What is the probability that the outcome 1 is returned when the first register is measured?
Answer: We have
$|0\rangle|\psi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \theta}|1\rangle\right)|\psi\rangle \mapsto \frac{1}{2}\left(\left(1+e^{i \theta}\right)|0\rangle+\left(1-e^{i \theta}\right)|1\rangle\right)|\psi\rangle$
so the probability that 1 is returned is $\frac{1}{4}\left|1-e^{-i \theta}\right|^{2}=\sin ^{2}(\theta / 2)$.
(c) Imagine we are promised that either $U|\psi\rangle=|\psi\rangle$, or $U|\psi\rangle=-|\psi\rangle$, but we have no other information about U and $|\psi\rangle$. Argue that the above circuit can be used to determine which of these is the case with certainty.
Answer: In the first case, we have $\theta=0$, so the measurement returns 0 with certainty. In the second case, $\theta=\pi$, so the measurement returns 1 with certainty. Thus we can distinguish between the two cases as required.
3. Factoring via phase estimation (optional but interesting). Fix two coprime positive integers x and N such that $x<N$, and let U_{x} be the unitary operator defined by $U_{x}|y\rangle=|x y(\bmod N)\rangle$. Let r be the order of $x \bmod N($ the minimal t such that $x^{t} \equiv 1$). For $0 \leq s \leq r-1$, define the states

$$
\left|\psi_{s}\right\rangle:=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i s k / r}\left|x^{k}(\bmod N)\right\rangle
$$

(a) Verify that U_{x} is indeed unitary.

Answer: For U_{x} to be a permutation of basis states, we require $x y \equiv$ $x z(\bmod N) \Leftrightarrow y=z$, i.e. taking $w=y-z$, we need that $x w \equiv 0 \Leftrightarrow w=0$. But this holds because x is coprime to N.
(b) Show that each state $\left|\psi_{s}\right\rangle$ is an eigenvector of U_{x} with eigenvalue $e^{2 \pi i s / r}$.

Answer: By direct calculation,

$$
\begin{aligned}
U_{x}\left|\psi_{s}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i s k / r} U_{x}\left|x^{k}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i s k / r}\left|x^{k+1}\right\rangle \\
& =\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i s(k-1) / r}\left|x^{k}\right\rangle=e^{2 \pi i s / r}\left|\psi_{s}\right\rangle
\end{aligned}
$$

(c) Show that

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|\psi_{s}\right\rangle=|1\rangle .
$$

Answer:

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|\psi_{s}\right\rangle=\frac{1}{r} \sum_{k=0}^{r-1}\left(\sum_{s=0}^{r-1} e^{-2 \pi i s k / r}\right)\left|x^{k}\right\rangle=|1\rangle .
$$

(d) Thus show that, if the phase estimation algorithm with n qubits is applied to U_{x} using $|1\rangle$ as an "eigenvector", the algorithm outputs an estimate of s / r accurate up to n bits, for $s \in\{0, \ldots, r-1\}$ picked uniformly at random, with probability lower bounded by a constant.
Answer: If $\left|\psi_{s}\right\rangle$ were input to the algorithm, we would get an estimate of s / r accurate up to n bits with probability lower-bounded by a constant. As we are using a uniform superposition over the states $\left|\psi_{s}\right\rangle$, we get each possible choice of s / r with equal probability.
(e) Show that, for arbitrary integer $n \geq 0, U_{x}^{2^{n}}$ can be implemented in time polynomial in n and $\log N$ (not polynomial in $2^{n}!$).
Answer: The operator $U_{x}^{2^{n}}$ simply performs the map $|y\rangle \mapsto\left|x^{2^{n}} y(\bmod N)\right\rangle$, i.e. multiplies y by $x^{2^{n}}$. To perform this multiplication, we can use repeated squaring:

$$
x^{2^{n}}=\left(x^{2^{n-1}}\right)^{2}=\left(\left(x^{2^{n-2}}\right)^{2}\right)^{2}=\cdots=\left(\left(x^{2}\right)^{2} \ldots\right)^{2}
$$

where x is squared n times. Each squaring step takes time at most poly (n).
(f) Argue that this implies that the phase estimation algorithm can be used to factorise an integer N in poly $(\log N)$ time.
Answer: As we recall from Shor's algorithm, it suffices to compute the period r of a randomly chosen integer $1<a<N$ to factorise N. Applying the phase estimation algorithm with $n=O(\log N)$ qubits to the operator U_{a}, we obtain an integer c such that $\left|c / 2^{n}-s / r\right|<1 / 2^{n+1}$, for randomly chosen s, in time poly $(\log N)$ time. Using the theory of continued fractions, we can go from this to determining s / r and hence r.

