QUANTUM COMPUTATION
 Exercise sheet 5
 Ashley Montanaro, University of Bristol
 ashley.montanaro@bristol.ac.uk

1. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with $\|A\| \leq \delta,\|B\| \leq \delta$ for some $\delta \leq 1$. Show that

$$
e^{-i A / 2} e^{-i B} e^{-i A / 2}=e^{-i(A+B)}+O\left(\delta^{3}\right)
$$

(this is the so-called Strang splitting). Use this to give a more efficient quantum algorithm for simulating k-local Hamiltonians than the algorithm discussed in the lecture, and calculate its complexity.

Answer:

$$
\begin{aligned}
& e^{-i A / 2} e^{-i B} e^{-i A / 2} \\
& =\left(I-i A / 2-A^{2} / 8+O\left(\delta^{3}\right)\right)\left(I-i B-B^{2} / 2+O\left(\delta^{3}\right)\right)\left(I-i A / 2-A^{2} / 8+O\left(\delta^{3}\right)\right) \\
& =I-i A-i B-A^{2} / 2-A B / 2-B A / 2-B^{2} / 2+O\left(\delta^{3}\right) \\
& =I-i A-i B-(A+B)^{2} / 2+O\left(\delta^{3}\right) \\
& =e^{-i(A+B)}+O\left(\delta^{3}\right) .
\end{aligned}
$$

Plugging this in to the argument of the lecture notes, for operators $H_{1}, H_{2}, \ldots, H_{m}$ such that $\left\|H_{i}\right\| \leq \delta$ we obtain

$$
e^{-i H_{1} / 2} e^{-i H_{2} / 2} \ldots e^{-i H_{m}} e^{-i H_{m-1} / 2} \ldots e^{-i H_{1} / 2}=e^{-i\left(H_{1}+\cdots+H_{m}\right)}+O\left(m^{4} \delta^{3}\right) .
$$

So, for some universal constant C, if $p \geq C m^{2}(t \delta)^{3 / 2} / \epsilon^{1 / 2}$,

$$
\left\|\left(e^{-i H_{1} t /(2 p)} e^{-i H_{2} t /(2 p)} \ldots e^{-i H_{m} t / p} e^{-i H_{m-1} t /(2 p)} \ldots e^{-i H_{1} t /(2 p)}\right)^{p}-e^{-i\left(H_{1}+\cdots+H_{m}\right) t}\right\| \leq \epsilon
$$

Thus a k-local Hamiltonian which is a sum of m terms H_{1}, \ldots, H_{m}, where $\left\|H_{i}\right\| \leq$ 1 , can be simulated for time t in $O\left(m^{3} t^{3 / 2} / \epsilon^{1 / 2}\right)$ steps.
(b) Let H be a Hamiltonian on n qubits which can be written as $H=U D U^{\dagger}$, where U is a unitary matrix that can be implemented by a quantum circuit running in time $\operatorname{poly}(n)$, and $D=\sum_{x} d(x)|x\rangle\langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-i d(x) t}|x\rangle$ can be implemented in time $\operatorname{poly}(n)$ for all x. Show that $e^{-i H t}$ can be implemented in time poly (n).

Answer: By linearity, the unitary operator which performs the map $|x\rangle \mapsto$ $e^{-i d(x) t}|x\rangle$ is equal to the matrix $e^{-i D t}$. And by the identity

$$
U^{\dagger} e^{-i D t} U=e^{-i U^{\dagger} D U t}=e^{-i H t}
$$

performing U, then $e^{-i D t}$, then U^{\dagger}, suffices to implement $e^{-i H t}$. Each of these steps can be carried out in time poly (n).
2. The amplitude damping channel. The amplitude damping channel $\mathcal{E}_{\mathrm{AD}}$ has Kraus operators (with respect to the standard basis)

$$
E_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), \quad E_{1}=\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right)
$$

for some γ.
(a) What is the result of applying the amplitude damping channel to the pure state $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$?
Answer: Using the Kraus operators, we can calculate directly that the answer is the mixed state

$$
\frac{1}{2}\left(\begin{array}{cc}
1+\gamma & \sqrt{1-\gamma} \\
\sqrt{1-\gamma} & 1-\gamma
\end{array}\right)
$$

(b) Show that, when applied to the Pauli matrices $X, Y, Z, \mathcal{E}_{\mathrm{AD}}$ rescales each one by a factor depending on γ, and determine what these factors are.
Answer: Using the Kraus operators again, we get

$$
\mathcal{E}_{\mathrm{AD}}(X)=\sqrt{1-\gamma} X, \quad \mathcal{E}_{\mathrm{AD}}(Y)=\sqrt{1-\gamma} Y, \quad \mathcal{E}_{\mathrm{AD}}(Z)=(1-\gamma) Z
$$

by direct calculation.
(c) Hence determine the representation of the amplitude-damping channel as an affine map $v \mapsto A v+b$ on the Bloch sphere.
Answer: We can calculate

$$
\mathcal{E}_{\mathrm{AD}}\left(\frac{I}{2}\right)=E_{0} \frac{I}{2} E_{0}^{\dagger}+E_{1} \frac{I}{2} E_{1}^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}
1+\gamma & 0 \\
0 & 1-\gamma
\end{array}\right)=\frac{1}{2}(I+\gamma Z),
$$

which tells us that $b=(0,0, \gamma)$. We can then use the previous question to determine A by writing down the columns of A, with respect to the standard basis, in terms of the coefficients obtained there.

$$
A=\left(\begin{array}{ccc}
\sqrt{1-\gamma} & 0 & 0 \\
0 & \sqrt{1-\gamma} & 0 \\
0 & 0 & 1-\gamma
\end{array}\right)
$$

(d) What does this channel "look like" geometrically in terms of its effect on the Bloch sphere?
Answer: The channel shrinks the X and Y directions, and squeezes and shifts the Z direction. A vector of the form (x, y, z) is mapped to $(\sqrt{1-\gamma} x, \sqrt{1-\gamma} y, \gamma+$ $(1-\gamma) z)$. So the amplitude-damping channel squeezes the Bloch sphere into an ellipsoid which is no longer centred on $I / 2$.

3. General quantum channels.

(a) Given two channels $\mathcal{E}_{1}, \mathcal{E}_{2}$, with Kraus operators $\left\{E_{k}^{(1)}\right\}$, $\left\{E_{k}^{(2)}\right\}$, what is the Kraus representation of the composite channel $\mathcal{E}_{2} \circ \mathcal{E}_{1}$ which is formed by first applying \mathcal{E}_{1}, then applying \mathcal{E}_{2} ?
Answer: The output of the composite channel applied to ρ is

$$
\begin{aligned}
\left(\mathcal{E}_{2} \circ \mathcal{E}_{1}\right)(\rho) & =\mathcal{E}_{2}\left(\sum_{j} E_{j}^{(1)} \rho\left(E_{j}^{(1)}\right)^{\dagger}\right)=\sum_{k} E_{k}^{(2)}\left(\sum_{j} E_{j}^{(1)} \rho\left(E_{j}^{(1)}\right)^{\dagger}\right)\left(E_{k}^{(2)}\right)^{\dagger} \\
& =\sum_{j, k} E_{k}^{(2)} E_{j}^{(1)} \rho\left(E_{j}^{(1)}\right)^{\dagger}\left(E_{k}^{(2)}\right)^{\dagger}
\end{aligned}
$$

so the Kraus operators are all products of the Kraus operators of \mathcal{E}_{1} and \mathcal{E}_{2}, i.e. $\left\{E_{k}^{(2)} E_{j}^{(1)}\right\}$.
(b) Determine a Kraus representation for the channel Tr which maps $\rho \mapsto \operatorname{tr} \rho$ for a mixed quantum state ρ in d dimensions.
Answer: The channel has d Kraus operators, $E_{k}=\langle k|$:

$$
\operatorname{Tr}(\rho)=\sum_{k}\langle k| \rho|k\rangle=\operatorname{tr} \rho .
$$

(c) Let \mathcal{E} and \mathcal{F} be quantum channels with d Kraus operators each, E_{k} and F_{k} (respectively), such that for all $j, F_{j}=\sum_{k=1}^{d} U_{j k} E_{k}$ for some unitary matrix U. Show that \mathcal{E} and \mathcal{F} are actually the same quantum channel.
Answer: We have

$$
\begin{aligned}
\mathcal{F}(\rho) & =\sum_{j} F_{j} \rho F_{j}^{\dagger}=\sum_{j}\left(\sum_{k} U_{j k} E_{k}\right) \rho\left(\sum_{\ell} U_{j \ell}^{*} E_{\ell}^{\dagger}\right) \\
& =\sum_{k, \ell} E_{k} \rho E_{\ell}^{\dagger} \sum_{j} U_{j k} U_{j \ell}^{*}=\sum_{k} E_{k} \rho E_{k}^{\dagger}=\mathcal{E}(\rho),
\end{aligned}
$$

where we use unitarity of U.

