QUANTUM COMPUTATION

Practice questions

Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk

- 1. Quantum circuits. The SWAP gate performs the map $|x\rangle|y\rangle\mapsto|y\rangle|x\rangle$ for $x,y\in\{0,1\}$ and is denoted in a quantum circuit by x.
 - (a) Write down the matrix corresponding to SWAP with respect to the computational basis and hence, or otherwise, show that SWAP is unitary.
 - (b) Show that, for any quantum states of one qubit $|\psi\rangle$, $|\phi\rangle$, SWAP $|\psi\rangle|\phi\rangle = |\phi\rangle|\psi\rangle$.
 - (c) Consider the following quantum circuit, where $|\psi\rangle$, $|\phi\rangle$ are arbitrary states of one qubit.

What is the probability that the result of measuring the first qubit is 1 in each of these two cases?

i.
$$|\psi\rangle = |0\rangle$$
, $|\phi\rangle = |1\rangle$.

ii.
$$|\psi\rangle = |\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle).$$

- 2. Grover's algorithm.
 - (a) Imagine we would like to solve the unstructured search problem on a set of size N, where we know that there are M marked elements, for some M. Let S denote the set of marked elements and write $U_f = I 2\Pi_S$, where $\Pi_S = \sum_{x \in S} |x\rangle\langle x|$.
 - i. Show that $U_f^2 = I$ and hence that U_f is unitary.
 - ii. Show that, if M = N/4, the unstructured problem can be solved with one use of the oracle operator U_f .
 - (b) Imagine we apply standard Grover search for a unique marked element, but in fact every element is marked (M = N). Does the algorithm succeed? Why or why not?
- 3. The QFT and periodicity.
 - (a) Using the formula for a geometric series, or otherwise, write down an expression for Q_N^2 for any N.

(b) Run through the steps of the periodicity-determination algorithm for the periodic function $f: \mathbb{Z}_4 \to \mathbb{Z}_2$ where f(0) = 1, f(1) = 0, f(2) = 1, f(3) = 0, choosing an arbitrary measurement outcome in step 3. What is the distribution on measurement outcomes? What is the probability that the algorithm succeeds?

4. Shor's algorithm.

- (a) Assume that we would like to factorise N=33 and pick a=10. Determine the order of $a \mod N$ and hence factorise N.
- (b) Write down the continued fraction expansion of 17/32 and the corresponding sequence of convergents.
- (c) Describe all the ways that Shor's algorithm can fail to factorise an integer N.

5. Phase estimation and Hamiltonian simulation.

- (a) Write down the full quantum circuit for phase estimation with n=3, including decomposing the quantum Fourier transform.
- (b) What is the minimal k such that the Hamiltonian $H = 2X \otimes X \otimes I 3Z \otimes I \otimes Z$ is k-local? What is the minimal k such that H^2 is k-local?
- (c) Let H be a Hamiltonian on n qubits, and imagine we can produce a state $|\psi\rangle$ such that $|\psi\rangle$ is an eigenvector of H with eigenvalue λ . Describe how phase estimation can be combined with Hamiltonian simulation to approximately determine λ .

6. Noise, quantum channels and error-correction.

(a) The phase-damping channel \mathcal{E}_P is described by Kraus operators

$$E_0 = \sqrt{1-p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad E_1 = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{p} \end{pmatrix}$$

for some p such that $0 \le p \le 1$.

i. What is the result of applying \mathcal{E}_P to a mixed state ρ of the form

$$\rho = \begin{pmatrix} \alpha & \beta \\ \beta^* & \gamma \end{pmatrix}$$

in the computational basis?

- ii. Determine the representation of \mathcal{E}_P as an affine map $v \mapsto Av + b$ on the Bloch sphere.
- (b) Imagine we encode the state $\alpha|0\rangle + \beta|1\rangle$ using the bit-flip code (i.e. $|0\rangle \mapsto |000\rangle$ and $|1\rangle \mapsto |111\rangle$) and a Y error occurs on the second qubit. What is the decoded state?