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1. Pauli matrices.

(a)

Show that any 2 x 2 matrix M can be written as M = al + X +~vY + 07 for
some coefficients «, 3,,d € C.

Answer: We have
ﬁ + Z)/ a—90
v (w ZE) ’
y =z

we can set o = (w+2)/2, 8= (z+vy)/2, vy =1i(x—y)/2, 6 = (w— z)/2 to achieve
the required equality.

al +BX +7Y +67 = ((”5 B_”).

For any matrix

For s € {I,X,Y,Z}", let o4 denote the matrix which is a tensor product of the
corresponding Pauli matrices, 0, = s ® $5 ® - - ® s,,. Using part (a), show that
any 2" x 2" matrix M can be written as

M = Z Q0

se{l,X,)Y,Z}n

for some coefficients o, € C.

Answer:  We can write M = 3 130 Qyl2)(y|. Each term [z)(y| is a tensor
product of the form |z1){(y1| ® -+ ® |x,)(yn|. So M can be expressed as claimed
by writing each |z;)(y;| as a weighted sum of Pauli matrices by part (a), and
expanding.

Show that if M is Hermitian, we can assume that o, € R. [Hint: consider
3 (M + M)

Answer: From the previous part, M = Zse{l X,v.zyn ¥s0s and hence MT =
> se(rxy zym Q0s.  1f M is Hermitian, M = Mt So M = (M + M) =

ZsE{I,X,Y,Z}n %(as +aj)os = Zse{I,X,Y,Z}n Re(as)os.



2. More efficient quantum simulation.

(a)

Let A and B be Hermitian operators with ||A|| < 4, ||B]| < § for some § < 1.

Show that
eI 2emiB A2 — =i ARB) L (%)

(this is the so-called Strang splitting). Use this to give a more efficient quantum
algorithm for simulating k-local Hamiltonians than the algorithm discussed in the
lecture, and calculate its complexity.

Answer:
64A/2677;364A/2
(I —iA/2— A*/8+O(8°)) (I —iB — B*/2+ O(8°)) (I —iA/2 — A?/8 + O(8°))
I —iA—iB— A*/2— AB/2 — BA/2 — B?/2+ O(8°)
= I —iA—iB— (A+ B)?/2+0(5)
e—i(A-i—B) —|—O(63)

Plugging this in to the argument of the lecture notes, for operators Hy, Ho, ..., H,,
such that || H;|| < we obtain

et 2pmil2/2 | pmitlm gmiHm—1/2 | omiH /2 — pmi(Hhe ) O(m4(53).

So, for some universal constant C, if p > Cm?(t0)%/2/€'/?,

< €.

H (e—iH1t/(2p)6—iH2t/(2p)  pmiHmt/py—iHm-1t/(2p) .e—iHlt/(Qp))p _ (it Hat

Thus a k-local Hamiltonian which is a sum of m terms Hy, ..., H,,, where ||H;|| <
1, can be simulated for time ¢ in O(m>*t*/2/¢'/2) steps.

Let H be a Hamiltonian on n qubits which can be written as H = UDUT, where
U is a unitary matrix that can be implemented by a quantum circuit running in
time poly(n), and D = > _d(z)|z)(z| is a diagonal matrix such that the map
|z) > 7@ x) can be implemented in time poly(n) for all x. Show that e~
can be implemented in time poly(n).
Answer: By linearity, the unitary operator which performs the map |z) —
e~®)t 1) is equal to the matrix e~*P*. And by the identity

Ute™ Dt — efz‘UTDUt _ efz'Ht7

performing U, then e~*P*, then UT, suffices to implement e~**. Each of these
steps can be carried out in time poly(n).



3. The amplitude damping channel. The amplitude damping channel £sp has Kraus
operators (with respect to the standard basis)

oo ) 8- 0)

for some 7.

(a)

What is the result of applying the amplitude damping channel to the pure state
5 (0) + 1))
Answer: Using the Kraus operators, we can calculate directly that the answer

is the mixed state
Lil+y V1—7v
2\WVI-7 1-v)°

Show that, when applied to the Pauli matrices X, Y, Z, Eop rescales each one by
a factor depending on ~, and determine what these factors are.

Answer: Using the Kraus operators again, we get

gAD(X>: \/1—’}/X, EAD<Y) = \/1—’)/Y, EAD(Z):(l—’}/)Z

by direct calculation.

Hence determine the representation of the amplitude-damping channel as an affine
map v — Av + b on the Bloch sphere.

Answer: We can calculate

I I I 1(14+v 0 1
Enl=)=E E +E-E == — ([+~Z
AD (2) 03 o+ 1551 2( 0 1—7) 2( +72),

which tells us that b = (0,0,v). We can then use the previous question to deter-
mine A by writing down the columns of A, with respect to the standard basis, in
terms of the coefficients obtained there.

Vv1—r 0 0
A= 0 vi—-v 0
0 0 1—7v

What does this channel “look like” geometrically in terms of its effect on the
Bloch sphere?

Answer: The channel shrinks the X and Y directions, and squeezes and shifts
the Z direction. A vector of the form (z,y, z) is mapped to (/1 — vz, /T — vy, v+
(1 —+)z). So the amplitude-damping channel squeezes the Bloch sphere into an
ellipsoid which is no longer centred on /2.




4. General quantum channels.

(a)

Given two channels &, &, with Kraus operators {E,gl)}, {E,(f)}, what is the Kraus
representation of the composite channel & o & which is formed by first applying
&1, then applying &7

Answer: The output of the composite channel applied to p is

(&o&)p) = & (Z E](l)p(E](1)>T> _ ZEIE:Q) (Z E](-l)p(E](-l))T) (E](CQ))T
J k J
= Y BB BB,
4.k

so the Kraus operators are all products of the Kraus operators of £ and &, i.e.
E7E"}
7t

Determine a Kraus representation for the channel Tr which maps p — trp for a
mixed quantum state p in d dimensions.

Answer: The channel has d Kraus operators, Ej, = (k|:

Te(p) = Y (klplk) = trp.

k

Let £ and F be quantum channels with d Kraus operators each, Ej and F}
(respectively), such that for all j, F; = 32¢_, U;xE}, for some unitary matrix U.
Show that & and F are actually the same quantum channel.

Answer: We have

Flp) = ZFJ‘PFJ‘T = Z (Z UjkEk> P (Z U}keEzT)

J

= ZEkag ZUijjg = ZEkaT = E(p),
k¢ j k

where we use unitarity of U.



