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1. Pauli matrices.

(a) Show that any 2 × 2 matrix M can be written as M = αI + βX + γY + δZ for
some coefficients α, β, γ, δ ∈ C.

Answer: We have

αI + βX + γY + δZ =

(
α + δ β − iγ
β + iγ α− δ

)
.

For any matrix

M =

(
w x
y z

)
,

we can set α = (w+ z)/2, β = (x+ y)/2, γ = i(x− y)/2, δ = (w− z)/2 to achieve
the required equality.

(b) For s ∈ {I,X, Y, Z}n, let σs denote the matrix which is a tensor product of the
corresponding Pauli matrices, σs = s1 ⊗ s2 ⊗ · · · ⊗ sn. Using part (a), show that
any 2n × 2n matrix M can be written as

M =
∑

s∈{I,X,Y,Z}n
αsσs

for some coefficients αs ∈ C.

Answer: We can write M =
∑

x,y∈{0,1}n αxy|x〉〈y|. Each term |x〉〈y| is a tensor

product of the form |x1〉〈y1| ⊗ · · · ⊗ |xn〉〈yn|. So M can be expressed as claimed
by writing each |xi〉〈yi| as a weighted sum of Pauli matrices by part (a), and
expanding.

(c) Show that if M is Hermitian, we can assume that αs ∈ R. [Hint: consider
1
2
(M +M †).]

Answer: From the previous part, M =
∑

s∈{I,X,Y,Z}n αsσs and hence M † =∑
s∈{I,X,Y,Z}n α

∗
sσs. If M is Hermitian, M = M †. So M = 1

2
(M + M †) =∑

s∈{I,X,Y,Z}n
1
2
(αs + α∗s)σs =

∑
s∈{I,X,Y,Z}n Re(αs)σs.
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2. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with ‖A‖ ≤ δ, ‖B‖ ≤ δ for some δ ≤ 1.
Show that

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(δ3)

(this is the so-called Strang splitting). Use this to give a more efficient quantum
algorithm for simulating k-local Hamiltonians than the algorithm discussed in the
lecture, and calculate its complexity.

Answer:

e−iA/2e−iBe−iA/2

=
(
I − iA/2− A2/8 +O(δ3)

) (
I − iB −B2/2 +O(δ3)

) (
I − iA/2− A2/8 +O(δ3)

)
= I − iA− iB − A2/2− AB/2−BA/2−B2/2 +O(δ3)

= I − iA− iB − (A+B)2/2 +O(δ3)

= e−i(A+B) +O(δ3).

Plugging this in to the argument of the lecture notes, for operators H1, H2, . . . , Hm

such that ‖Hi‖ ≤ δ we obtain

e−iH1/2e−iH2/2 . . . e−iHme−iHm−1/2 . . . e−iH1/2 = e−i(H1+···+Hm) +O(m4δ3).

So, for some universal constant C, if p ≥ Cm2(tδ)3/2/ε1/2,∥∥∥(e−iH1t/(2p)e−iH2t/(2p) . . . e−iHmt/pe−iHm−1t/(2p) . . . e−iH1t/(2p)
)p − e−i(H1+···+Hm)t

∥∥∥ ≤ ε.

Thus a k-local Hamiltonian which is a sum of m terms H1, . . . , Hm, where ‖Hi‖ ≤
1, can be simulated for time t in O(m3t3/2/ε1/2) steps.

(b) Let H be a Hamiltonian on n qubits which can be written as H = UDU †, where
U is a unitary matrix that can be implemented by a quantum circuit running in
time poly(n), and D =

∑
x d(x)|x〉〈x| is a diagonal matrix such that the map

|x〉 7→ e−id(x)t|x〉 can be implemented in time poly(n) for all x. Show that e−iHt

can be implemented in time poly(n).

Answer: By linearity, the unitary operator which performs the map |x〉 7→
e−id(x)t|x〉 is equal to the matrix e−iDt. And by the identity

U †e−iDtU = e−iU
†DUt = e−iHt,

performing U , then e−iDt, then U †, suffices to implement e−iHt. Each of these
steps can be carried out in time poly(n).
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3. The amplitude damping channel. The amplitude damping channel EAD has Kraus
operators (with respect to the standard basis)

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0
√
γ

0 0

)
for some γ.

(a) What is the result of applying the amplitude damping channel to the pure state
1√
2
(|0〉+ |1〉)?

Answer: Using the Kraus operators, we can calculate directly that the answer
is the mixed state

1

2

(
1 + γ

√
1− γ√

1− γ 1− γ

)
.

(b) Show that, when applied to the Pauli matrices X, Y , Z, EAD rescales each one by
a factor depending on γ, and determine what these factors are.

Answer: Using the Kraus operators again, we get

EAD(X) =
√

1− γX, EAD(Y ) =
√

1− γY, EAD(Z) = (1− γ)Z

by direct calculation.

(c) Hence determine the representation of the amplitude-damping channel as an affine
map v 7→ Av + b on the Bloch sphere.

Answer: We can calculate

EAD

(
I

2

)
= E0

I

2
E†0 + E1

I

2
E†1 =

1

2

(
1 + γ 0

0 1− γ

)
=

1

2
(I + γZ),

which tells us that b = (0, 0, γ). We can then use the previous question to deter-
mine A by writing down the columns of A, with respect to the standard basis, in
terms of the coefficients obtained there.

A =

√1− γ 0 0
0

√
1− γ 0

0 0 1− γ

 .

(d) What does this channel “look like” geometrically in terms of its effect on the
Bloch sphere?

Answer: The channel shrinks the X and Y directions, and squeezes and shifts
the Z direction. A vector of the form (x, y, z) is mapped to (

√
1− γx,

√
1− γy, γ+

(1 − γ)z). So the amplitude-damping channel squeezes the Bloch sphere into an
ellipsoid which is no longer centred on I/2.
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4. General quantum channels.

(a) Given two channels E1, E2, with Kraus operators {E(1)
k }, {E

(2)
k }, what is the Kraus

representation of the composite channel E2 ◦ E1 which is formed by first applying
E1, then applying E2?
Answer: The output of the composite channel applied to ρ is

(E2 ◦ E1)(ρ) = E2

(∑
j

E
(1)
j ρ(E

(1)
j )†

)
=
∑
k

E
(2)
k

(∑
j

E
(1)
j ρ(E

(1)
j )†

)
(E

(2)
k )†

=
∑
j,k

E
(2)
k E

(1)
j ρ(E

(1)
j )†(E

(2)
k )†,

so the Kraus operators are all products of the Kraus operators of E1 and E2, i.e.
{E(2)

k E
(1)
j }.

(b) Determine a Kraus representation for the channel Tr which maps ρ 7→ tr ρ for a
mixed quantum state ρ in d dimensions.

Answer: The channel has d Kraus operators, Ek = 〈k|:

Tr(ρ) =
∑
k

〈k|ρ|k〉 = tr ρ.

(c) Let E and F be quantum channels with d Kraus operators each, Ek and Fk

(respectively), such that for all j, Fj =
∑d

k=1 UjkEk for some unitary matrix U .
Show that E and F are actually the same quantum channel.

Answer: We have

F(ρ) =
∑
j

FjρF
†
j =

∑
j

(∑
k

UjkEk

)
ρ

(∑
`

U∗j`E
†
`

)
=

∑
k,`

EkρE
†
`

∑
j

UjkU
∗
j` =

∑
k

EkρE
†
k = E(ρ),

where we use unitarity of U .
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