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1. Quantum circuits. The SWAP gate performs the map |x〉|y〉 7→ |y〉|x〉 for x, y ∈
{0, 1} and is denoted in a quantum circuit by ×

× .

(a) Write down the matrix corresponding to SWAP with respect to the computational
basis and hence, or otherwise, show that SWAP is unitary.

Answer sketch: The matrix is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Multiplying this matrix by its conjugate transpose gives the identity, so SWAP is
unitary.

(b) Show that, for any quantum states of one qubit |ψ〉, |φ〉, SWAP|ψ〉|φ〉 = |φ〉|ψ〉.
Answer sketch: Expand |ψ〉 = α|0〉+ β|1〉, |φ〉 = γ|0〉+ δ|1〉, so

|ψ〉|φ〉 = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉,

and use linearity of the SWAP gate.

(c) Consider the following quantum circuit, where |ψ〉, |φ〉 are arbitrary states of one
qubit.

|0〉 H • H

|ψ〉 ×
|φ〉 ×

What is the probability that the result of measuring the first qubit is 1 in each of
these two cases?

i. |ψ〉 = |0〉, |φ〉 = |1〉. Answer sketch: The quantum circuit performs the
following sequence of operations:

|0〉|ψ〉|φ〉 7→ 1√
2

(|0〉+ |1〉)|ψ〉|φ〉 7→ 1√
2

(|0〉|ψ〉|φ〉+ |1〉|φ〉|ψ〉)

7→ 1

2
(|0〉(|ψ〉|φ〉+ |φ〉|ψ〉) + |1〉(|ψ〉|φ〉 − |φ〉|ψ〉)) .
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Inserting |ψ〉 = |0〉, |φ〉 = |1〉, we get that the final state before the measure-
ment is

1

2
(|0〉(|01〉+ |10〉) + |1〉(|01〉 − |10〉)) ,

so the probability that we see an outcome of 1 when we measure the first
qubit is 1/2.

ii. |ψ〉 = |φ〉 = 1√
2
(|0〉 + |1〉). Answer sketch: By a similar calculation, the

probability that we see an outcome of 1 is 0 (because |ψ〉|φ〉 − |φ〉|ψ〉 = 0).

2. Grover’s algorithm.

(a) Imagine we would like to solve the unstructured search problem on a set of size
N , where we know that there are M marked elements, for some M . Let S denote
the set of marked elements and write Uf = I − 2ΠS, where ΠS =

∑
x∈S |x〉〈x|.

i. Show that U2
f = I and hence that Uf is unitary. Answer sketch: U2

f =
(I − 2ΠS)(I − 2ΠS) = I − 4ΠS + 4(ΠS)2 = I − 4ΠS + 4ΠS = I.

ii. Show that, if M = N/4, the unstructured problem can be solved with one use
of the oracle operator Uf . Answer sketch: After 1 iteration, the overlap of
the state of the algorithm with the uniform superposition |S〉 over elements
of S is sin2(3 arcsin 1/2) = 1. (This uses the argument from Secs 3-3.1 of the
lecture notes, but could also be shown via direct calculation.)

(b) Imagine we apply standard Grover search for a unique marked element, but in
fact every element is marked (M = N). Does the algorithm succeed? Why or
why not? Answer sketch: Setting Uf = −I in Grover’s algorithm, and noting
that D|+〉 = |+〉, the final state in the algorithm is ±|+〉. Measuring this state
gives a uniformly random outcome, so the algorithm succeeds in that it returns a
marked element.

3. The QFT and periodicity.

(a) Using the formula for a geometric series, or otherwise, write down an expression
for Q2

N for any N . Answer sketch:

〈x|Q2
N |y〉 =

1

N

∑
z

ω
(x+y)z
N =

{
1 if x = −y
0 otherwise

.
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(b) Run through the steps of the periodicity-determination algorithm for the pe-
riodic function f : Z4 → Z2 where f(0) = 1, f(1) = 0, f(2) = 1, f(3) =
0, choosing an arbitrary measurement outcome in step 3. What is the dis-
tribution on measurement outcomes? What is the probability that the algo-
rithm succeeds? Answer sketch: The state after step 2 of the algorithm
is 1

2
(|0〉|1〉+ |1〉|0〉+ |2〉|1〉+ |3〉|0〉). Imagine we get measurement outcome 0.

Then the state collapses to 1√
2

(|1〉|0〉+ |3〉|0〉). After applying the QFT, the

resulting state of the first register is 1√
2

(|0〉 − |2〉), so the distribution on mea-
surement outcomes is uniform on outcomes 0 and 2. In the second case, we cancel
down the fraction 2/4 to 1/2 and output a period of 2; in the first case, the algo-
rithm fails. So it succeeds with probability 1/2.

4. Shor’s algorithm.

(a) Assume that we would like to factorise N = 33 and pick a = 10. Determine the
order of a mod N and hence factorise N . Answer sketch: 102 = 100 ≡ 1 mod
33, so the order r of a mod N is 2. Following the integer factorisation algorithm,
we compute gcd(ar/2 − 1, N) = gcd(9, 33) = 3. We output 3 as a factor of 33.

(b) Write down the continued fraction expansion of 17/32 and the corresponding
sequence of convergents. Answer sketch:

17

32
=

1
32
17

=
1

1 + 15
17

=
1

1 + 1
17
15

=
1

1 + 1
1+ 2

15

=
1

1 + 1
1+ 1

15
2

=
1

1 + 1
1+ 1

7+1
2

.

The sequence of convergents is thus

1

1
= 1,

1

1 + 1
1

=
1

2
,

1

1 + 1
1+ 1

7

=
8

15
.

(c) Describe all the ways that Shor’s algorithm can fail to factorise an integer N .
Answer sketch: Shor’s algorithm fails if: the order r of the randomly chosen
value of a mod N is odd; or ar/2 − 1 and N are coprime; or the measurement
result at the end of the quantum algorithm is not “good”, i.e. the closest integer
to M/r, where M is the smallest power of 2 larger than N2.

5. Phase estimation and Hamiltonian simulation.

(a) Write down the full quantum circuit for phase estimation with n = 3 (but not
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decomposing the inverse quantum Fourier transform). Answer sketch:

|0〉 H •

Q−1|0〉 H •

|0〉 H •

|ψ〉 U1 U2 U4

(b) What is the minimal k such that the Hamiltonian H = 2X ⊗X ⊗ I − 3Z ⊗ I ⊗Z
is k-local? What is the minimal k such that H2 is k-local? Answer sketch: H
is 2-local but not 1-local. H2 = 13 I ⊗ I ⊗ I, which is 0-local.

(c) Let H be a Hamiltonian on n qubits, and imagine we can produce a state |ψ〉 such
that |ψ〉 is an eigenvector of H with eigenvalue λ. Describe how phase estima-
tion can be combined with Hamiltonian simulation to approximately determine
λ. Answer sketch: Hamiltonian simulation allows us to approximately imple-
ment the unitary operator U(t) = e−iHt, for any t. Then |ψ〉 is an eigenvector
of U(t) with eigenvalue e−iλt. Applying phase estimation to U(t) allows us to
approximately determine λt, and hence λ. To be more precise, this only allows us
to determine λt mod 2π (why?). It is sufficient to choose t = O(1/λmax), where
λmax is an upper bound on |λ|, for this to imply a reasonable estimate of λ.

6. Noise, quantum channels and error-correction.

(a) The phase-damping channel EP is described by Kraus operators

E0 =
√

1− p
(

1 0
0 1

)
, E1 =

(√
p 0

0 0

)
, E2 =

(
0 0
0
√
p

)
for some p such that 0 ≤ p ≤ 1.

i. What is the result of applying EP to a mixed state ρ of the form

ρ =

(
α β
β∗ γ

)
in the computational basis? Answer sketch:

ρ =

(
α (1− p)β

(1− p)β∗ γ

)
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ii. Determine the representation of EP as an affine map v 7→ Av+b on the Bloch
sphere. Answer sketch: We compute the effect of EP on I/2 and Pauli
matrices,

EP (I/2) = I/2, EP (X) = (1− p)X, EP (Y ) = (1− p)Y, EP (Z) = Z.

So b = (0, 0, 0)T and

A =

1− p 0 0
0 1− p 0
0 0 1

 .

(b) Imagine we encode the state α|0〉+β|1〉 using the bit-flip code (i.e. |0〉 7→ |000〉 and
|1〉 7→ |111〉) and a Y error occurs on the second qubit. What is the decoded state?
Answer sketch: We can compute explicitly that the effect of the error on the
encoded state α|000〉+β|111〉 is to produce the state αi|010〉−βi|101〉. The error-
correction procedure flips the incorrect second bit to produce αi|000〉 − βi|111〉.
So the final decoded state is αi|0〉 − iβ|1〉. (Note that the overall phase of i is
irrelevant.)

5


