

## Beyond context-free languages

#### Ashley Montanaro

ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

21 March 2014



#### Introduction

It turns out that not all languages are context-free.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Beyond CFLs



Slide 2/5

## Introduction

It turns out that not all languages are context-free.

To prove that a language is **not** context-free, a tool which can be used is the pumping lemma for context-free languages.

#### Lemma

If  $\mathcal{L}$  is a CFL, there exists an integer p (the pumping length) such that any string  $s \in \mathcal{L}$  such that  $|s| \ge p$  can be written as

s = uvxyz

where:

- 1. For all  $i \ge 0$ ,  $uv^i xy^i z \in \mathcal{L}$ ,
- **2**. |vy| > 0,
- 3.  $|vxy| \le p$ .



# **Pumping lemmas**

Any string  $s \in \mathcal{L}$  such that  $|s| \ge p$  can be written as...

#### If $\mathcal{L}$ is context-free

- s = uvxyz, where:
  - 1. For all  $i \ge 0$ ,  $uv^i xy^i z \in \mathcal{L}$ ,
  - **2**. |vy| > 0,
  - **3**.  $|vxy| \le p$ .

#### If ${\mathcal L}$ is regular

- s = xyz, where:
  - 1. For all  $i \ge 0$ ,  $xy^i z \in \mathcal{L}$ ,
  - **2**. |y| > 0,
  - **3**.  $|xy| \le p$ .



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Beyond CFLs



Slide 4/5

We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

• Towards a contradiction, assume that  $\mathcal{L}$  is context-free.



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

Towards a contradiction, assume that *L* is context-free. Let *p* be the pumping length and consider *s* = a<sup>*p*</sup>b<sup>*p*</sup>c<sup>*p*</sup> ∈ *L*.



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

- Towards a contradiction, assume that *L* is context-free. Let *p* be the pumping length and consider *s* = a<sup>*p*</sup>b<sup>*p*</sup>c<sup>*p*</sup> ∈ *L*.
- We can write s = uvxyz, and for all  $i \ge 0$ ,  $uv^ixy^iz \in \mathcal{L}$ .



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

- Towards a contradiction, assume that *L* is context-free. Let *p* be the pumping length and consider *s* = a<sup>*p*</sup>b<sup>*p*</sup>c<sup>*p*</sup> ∈ *L*.
- We can write s = uvxyz, and for all  $i \ge 0$ ,  $uv^ixy^iz \in \mathcal{L}$ .
- We split into two cases:
  - If each of v and y contains only one kind of symbol, uv<sup>2</sup>xy<sup>2</sup>z cannot have equal numbers of a's, b's and c's; contradiction.



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

- Towards a contradiction, assume that *L* is context-free. Let *p* be the pumping length and consider *s* = a<sup>*p*</sup>b<sup>*p*</sup>c<sup>*p*</sup> ∈ *L*.
- We can write s = uvxyz, and for all  $i \ge 0$ ,  $uv^ixy^iz \in \mathcal{L}$ .
- We split into two cases:
  - If each of v and y contains only one kind of symbol, uv<sup>2</sup>xy<sup>2</sup>z cannot have equal numbers of a's, b's and c's; contradiction.
  - If one of v and y contains two types of symbol, uv<sup>2</sup>xy<sup>2</sup>z must have some symbols in the wrong order; contradiction.



We show that  $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$  is not context-free.

- Towards a contradiction, assume that *L* is context-free. Let *p* be the pumping length and consider *s* = a<sup>*p*</sup>b<sup>*p*</sup>c<sup>*p*</sup> ∈ *L*.
- We can write s = uvxyz, and for all  $i \ge 0$ ,  $uv^ixy^iz \in \mathcal{L}$ .
- We split into two cases:
  - If each of v and y contains only one kind of symbol, uv<sup>2</sup>xy<sup>2</sup>z cannot have equal numbers of a's, b's and c's; contradiction.
  - If one of v and y contains two types of symbol, uv<sup>2</sup>xy<sup>2</sup>z must have some symbols in the wrong order; contradiction.

Another natural example of a non-context-free language is

$$\mathcal{L} = \{ w \# w \mid w \in \{0, 1\}^* \}.$$



# Summary and further reading

The pumping lemma for context-free languages can be used to show that a language is not context-free.

Just as with the pumping lemma for regular languages, applying the lemma can require some ingenuity...

Further reading: Sipser §2.3.

