
COMS11700

PDAs and CFGs

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

14 March 2014

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 1/20

PDAs and CFGs

One of the main reasons for studying PDAs is that there is a close
connection between them and context-free grammars (CFGs).

Theorem
For any language L, there exists a PDA which recognises L if and only if L
is context-free.

The proof of the theorem is split into two parts:

1. If L is context-free, then there exists a PDA which recognises it.
2. If a PDA recognises L, then there is a CFG which generates L.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 2/20

PDAs and CFGs

One of the main reasons for studying PDAs is that there is a close
connection between them and context-free grammars (CFGs).

Theorem
For any language L, there exists a PDA which recognises L if and only if L
is context-free.

The proof of the theorem is split into two parts:

1. If L is context-free, then there exists a PDA which recognises it.
2. If a PDA recognises L, then there is a CFG which generates L.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 2/20

CFLs: a recap

Recall that a context-free grammar (CFG) is a set of rules like

S → aSa | bTb
T → Ta | ε

generating strings like

S → aSa→ abTba→ abTaba→ ababa

Variables are denoted by capital letters, terminals (input characters) by
lower-case letters.

L is a context-free language (CFL) if all its strings can be produced by the
application of a sequence of rules from some CFG.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 3/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.
2. Repeatedly guess substitutions that replace variables on the stack

with new variables.
3. We eventually end up with a string of terminal characters.
4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.

2. Repeatedly guess substitutions that replace variables on the stack
with new variables.

3. We eventually end up with a string of terminal characters.
4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.
2. Repeatedly guess substitutions that replace variables on the stack

with new variables.

3. We eventually end up with a string of terminal characters.
4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.
2. Repeatedly guess substitutions that replace variables on the stack

with new variables.
3. We eventually end up with a string of terminal characters.

4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.
2. Repeatedly guess substitutions that replace variables on the stack

with new variables.
3. We eventually end up with a string of terminal characters.
4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs
We want to show that, given a language which is generated by a CFG, it
can be recognised by a PDA.

Our proof will take full advantage of the nondeterminism of PDAs.

Rough idea

1. Start out by pushing the start variable onto the stack.
2. Repeatedly guess substitutions that replace variables on the stack

with new variables.
3. We eventually end up with a string of terminal characters.
4. Accept if this string matches the input string.

A problem with this idea: it seems that we need to replace variables
midway down the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 4/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.

2. Repeat the following test forever. If the top of the stack is. . .
I . . . a variable A, pop A off the stack and substitute it with the right-hand

side of one of the rules for A.
I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

We can deal with this issue by first popping any terminal symbols off the
stack before replacing any variables.

Recognising a CFL on a PDA

1. Push $, followed by the start variable, onto the stack.
2. Repeat the following test forever. If the top of the stack is. . .

I . . . a variable A, pop A off the stack and substitute it with the right-hand
side of one of the rules for A.

I . . . a terminal symbol a, read the next input symbol and compare it with
a. If they do not match, reject.

I . . . the symbol $, and the input has all been read, accept.

This algorithm can be described by a PDA with only three states!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 5/20

Recognising CFLs

This is described by the diagram

qstart qloop qend
ε, ε→ S$

ε,A→ B
a, a→ ε

ε,$→ ε

for each rule A→ B
for each terminal a

I Here S is the start variable.

I The stack alphabet is given by the union of the set of terminal
symbols, the set of variable symbols, and {$}.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 6/20

Example
Consider the language described by the following CFG:

S → (S) | SS | ε

Using this construction, we get the following (generalised) PDA:

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

We can then modify the PDA as before to replace the transitions which
push multiple symbols onto the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 7/20

Example
Consider the language described by the following CFG:

S → (S) | SS | ε

Using this construction, we get the following (generalised) PDA:

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

We can then modify the PDA as before to replace the transitions which
push multiple symbols onto the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 7/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qstart

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

S
$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

(

S
)

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

S
)

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

(

S
)

)

$
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

S
)

)

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

)

)

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

)

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qloop

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

We track one path of this PDA’s execution, demonstrating that it accepts
the string (()) ∈ L.

qstart qloop qend
ε, ε→ S$

ε,S → (S)
ε,S → SS
ε,S → ε
(,(→ ε
),)→ ε

ε,$→ ε

(())

qend

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 8/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;
2. We make it have an empty stack when it accepts;
3. Each transition either pushes a symbol onto the stack, or pops a symbol

off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;
2. We make it have an empty stack when it accepts;
3. Each transition either pushes a symbol onto the stack, or pops a symbol

off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;

2. We make it have an empty stack when it accepts;
3. Each transition either pushes a symbol onto the stack, or pops a symbol

off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;
2. We make it have an empty stack when it accepts;

3. Each transition either pushes a symbol onto the stack, or pops a symbol
off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;
2. We make it have an empty stack when it accepts;
3. Each transition either pushes a symbol onto the stack, or pops a symbol

off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

The other direction: PDAs to CFGs

I We now need to show that, given a PDA which recognises some
language L, there exists a context-free grammar for L.

I In other words: given a PDA P, we need to make a CFG G that
generates all the strings that P accepts.

I We first simplify P in several ways:
1. We make it have only one accept state, qaccept;
2. We make it have an empty stack when it accepts;
3. Each transition either pushes a symbol onto the stack, or pops a symbol

off, but not both.

I For (1), we add a new state with ε, ε→ ε transitions from all the
accepting states.

I For (2): exercise!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 9/20

Push or pop, but not both

We can replace each transition that both pushes and pops as follows:

q0 q1
α, β → γ

7→ q0 r0 q1
α, β → ε ε, ε→ γ

We can replace each transition that neither pushes nor pops as follows:

q0 q1
α, ε→ ε

7→ q0 r0 q1
α, ε→ γ ε, γ → ε

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 10/20

Push or pop, but not both

We can replace each transition that both pushes and pops as follows:

q0 q1
α, β → γ

7→ q0 r0 q1
α, β → ε ε, ε→ γ

We can replace each transition that neither pushes nor pops as follows:

q0 q1
α, ε→ ε

7→ q0 r0 q1
α, ε→ γ ε, γ → ε

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 10/20

The basic idea

We construct a CFG G from P as follows:

I For every pair of states q and r in P, we have a variable Aqr .

I We will define the rules of G so that Aqr generates all the strings
which can transform P from state q (with an empty stack) to state r
(with an empty stack).

I Then, if qstart is the start state and qaccept is the end state, we have
Aqstartqaccept as the start variable in G.

I Then a string x is derivable from G if and only if P accepts x .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 11/20

The rules of G

Any sequence of transitions from q to r such that the stack is empty at the
start and at the end must begin with a push and end with a pop.

I Either the first symbol pushed onto the stack is popped off the stack at
the end, or popped off the stack somewhere in the middle. If the
former, the stack isn’t empty until the end; if the latter, the stack is
empty when the first symbol is popped.

I The first case corresponds to the rule Aqr → aAstb, where a is the
input symbol read in state q, s is the state following q, t is the state
preceding r , and b is the symbol read in state t .

I The second case corresponds to the rule Aqr → AquAur , where u is
the state where the stack becomes empty.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 12/20

The rules of G

Any sequence of transitions from q to r such that the stack is empty at the
start and at the end must begin with a push and end with a pop.

I Either the first symbol pushed onto the stack is popped off the stack at
the end, or popped off the stack somewhere in the middle. If the
former, the stack isn’t empty until the end; if the latter, the stack is
empty when the first symbol is popped.

I The first case corresponds to the rule Aqr → aAstb, where a is the
input symbol read in state q, s is the state following q, t is the state
preceding r , and b is the symbol read in state t .

I The second case corresponds to the rule Aqr → AquAur , where u is
the state where the stack becomes empty.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 12/20

More formally

Assume we have a PDA P = (Q,Σ, Γ, δ,q0, {qaccept}).

The CFG G corresponding to P

I The variables are {Aqr | q, r ∈ Q}
I The start variable is Aq0qaccept

I The rules are:
I For each p, q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε:

if (r ,t) ∈ δ(p,a, ε) and (q, ε) ∈ δ(s,b,t), Apq → aArsb
I For each p, q, r ∈ Q: Apq → Apr Arq
I For each p ∈ Q: App → ε

More informally, the first case is where there is a transition from p to r
which pushes t and a transition from s to q which pops t.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 13/20

More formally

Assume we have a PDA P = (Q,Σ, Γ, δ,q0, {qaccept}).

The CFG G corresponding to P

I The variables are {Aqr | q, r ∈ Q}
I The start variable is Aq0qaccept

I The rules are:
I For each p, q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε:

if (r ,t) ∈ δ(p,a, ε) and (q, ε) ∈ δ(s,b,t), Apq → aArsb
I For each p, q, r ∈ Q: Apq → Apr Arq
I For each p ∈ Q: App → ε

More informally, the first case is where there is a transition from p to r
which pushes t and a transition from s to q which pops t.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 13/20

Example
We convert the following PDA into a CFG:

p q r
ε, ε→ $

(, ε→ (

),(→ ε

ε, $→ ε

1. We have 9 variables: App, Apq , Apr , Aqp, Aqq , Aqr , Arp, Arq , Arr .
2. The start variable is Apr .
3. We have the following rules:

Apr → εAqqε

Aqq → (Aqq)

4. We also have the rule Aac → AabAbc for every triple of states (a,b, c).
5. Finally, we have the rules App → ε, Aqq → ε, Arr → ε.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 14/20

Proof of correctness
We will show that, for any states q and r , Aqr generates x if and only if x
can take P from state q (with empty stack) to state r (with empty stack).

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
We use induction on the number of steps in the derivation of x from Aqr .

I Base case: The only derivations with one step are of the form
App → ε, for which this claim clearly holds.

I Inductive step: We assume the claim holds for derivations of length k ,
for some k ≥ 1, and prove for derivations of length k + 1.

I So assume we have a derivation Aqr
∗⇒ x of length k + 1.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 15/20

Proof of correctness
We will show that, for any states q and r , Aqr generates x if and only if x
can take P from state q (with empty stack) to state r (with empty stack).

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
We use induction on the number of steps in the derivation of x from Aqr .

I Base case: The only derivations with one step are of the form
App → ε, for which this claim clearly holds.

I Inductive step: We assume the claim holds for derivations of length k ,
for some k ≥ 1, and prove for derivations of length k + 1.

I So assume we have a derivation Aqr
∗⇒ x of length k + 1.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 15/20

Proof of correctness
We will show that, for any states q and r , Aqr generates x if and only if x
can take P from state q (with empty stack) to state r (with empty stack).

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
We use induction on the number of steps in the derivation of x from Aqr .

I Base case: The only derivations with one step are of the form
App → ε, for which this claim clearly holds.

I Inductive step: We assume the claim holds for derivations of length k ,
for some k ≥ 1, and prove for derivations of length k + 1.

I So assume we have a derivation Aqr
∗⇒ x of length k + 1.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 15/20

Proof of correctness
We will show that, for any states q and r , Aqr generates x if and only if x
can take P from state q (with empty stack) to state r (with empty stack).

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
We use induction on the number of steps in the derivation of x from Aqr .

I Base case: The only derivations with one step are of the form
App → ε, for which this claim clearly holds.

I Inductive step: We assume the claim holds for derivations of length k ,
for some k ≥ 1, and prove for derivations of length k + 1.

I So assume we have a derivation Aqr
∗⇒ x of length k + 1.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 15/20

Proof of correctness
We will show that, for any states q and r , Aqr generates x if and only if x
can take P from state q (with empty stack) to state r (with empty stack).

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
We use induction on the number of steps in the derivation of x from Aqr .

I Base case: The only derivations with one step are of the form
App → ε, for which this claim clearly holds.

I Inductive step: We assume the claim holds for derivations of length k ,
for some k ≥ 1, and prove for derivations of length k + 1.

I So assume we have a derivation Aqr
∗⇒ x of length k + 1.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 15/20

Proof of correctness

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
Consider the two possible forms of the start of this derivation of x :

1. Aqr ⇒ aAstb.

Then x is of the form x =ayb. By the inductive
hypothesis, P can go from s to t with an empty stack.

Because
Aqr → aAstb is a rule in G, there must be a transition of P from q to s
which pushes some symbol u on reading a, and also a transition from
t to r which pops u on reading b.

2. Aqr ⇒ AqsAsr .

Then x = yz for strings y and z generated by Aqs and
Asr . The claim follows from the inductive hypothesis.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 16/20

Proof of correctness

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
Consider the two possible forms of the start of this derivation of x :

1. Aqr ⇒ aAstb. Then x is of the form x =ayb. By the inductive
hypothesis, P can go from s to t with an empty stack.

Because
Aqr → aAstb is a rule in G, there must be a transition of P from q to s
which pushes some symbol u on reading a, and also a transition from
t to r which pops u on reading b.

2. Aqr ⇒ AqsAsr .

Then x = yz for strings y and z generated by Aqs and
Asr . The claim follows from the inductive hypothesis.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 16/20

Proof of correctness

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
Consider the two possible forms of the start of this derivation of x :

1. Aqr ⇒ aAstb. Then x is of the form x =ayb. By the inductive
hypothesis, P can go from s to t with an empty stack. Because
Aqr → aAstb is a rule in G, there must be a transition of P from q to s
which pushes some symbol u on reading a, and also a transition from
t to r which pops u on reading b.

2. Aqr ⇒ AqsAsr .

Then x = yz for strings y and z generated by Aqs and
Asr . The claim follows from the inductive hypothesis.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 16/20

Proof of correctness

Claim (first direction)

If Aqr generates x , x can take P from state q (with an empty stack) to state
r (with an empty stack).

Proof sketch
Consider the two possible forms of the start of this derivation of x :

1. Aqr ⇒ aAstb. Then x is of the form x =ayb. By the inductive
hypothesis, P can go from s to t with an empty stack. Because
Aqr → aAstb is a rule in G, there must be a transition of P from q to s
which pushes some symbol u on reading a, and also a transition from
t to r which pops u on reading b.

2. Aqr ⇒ AqsAsr . Then x = yz for strings y and z generated by Aqs and
Asr . The claim follows from the inductive hypothesis.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 16/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Again the proof is by induction, this time on the number of steps in the
computation. The proof is a formalisation of the description of the definition
of G.

Proof sketch

I Base case:

The computation has 0 steps, starting and ending at some
state p. We must have x = ε, and we have the rule App → ε.

I Inductive step:

We split into two cases: Either the stack is empty only
at the beginning and end of the computation, or it becomes empty in
the middle.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 17/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Again the proof is by induction, this time on the number of steps in the
computation. The proof is a formalisation of the description of the definition
of G.

Proof sketch

I Base case:

The computation has 0 steps, starting and ending at some
state p. We must have x = ε, and we have the rule App → ε.

I Inductive step:

We split into two cases: Either the stack is empty only
at the beginning and end of the computation, or it becomes empty in
the middle.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 17/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Again the proof is by induction, this time on the number of steps in the
computation. The proof is a formalisation of the description of the definition
of G.

Proof sketch

I Base case: The computation has 0 steps, starting and ending at some
state p. We must have x = ε, and we have the rule App → ε.

I Inductive step:

We split into two cases: Either the stack is empty only
at the beginning and end of the computation, or it becomes empty in
the middle.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 17/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Again the proof is by induction, this time on the number of steps in the
computation. The proof is a formalisation of the description of the definition
of G.

Proof sketch

I Base case: The computation has 0 steps, starting and ending at some
state p. We must have x = ε, and we have the rule App → ε.

I Inductive step: We split into two cases: Either the stack is empty only
at the beginning and end of the computation, or it becomes empty in
the middle.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 17/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb.

Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack. By the inductive hypothesis, Ast

∗⇒ y , so Aqr
∗⇒ x .

I Case 2: Let s be the state where the stack becomes empty, and split
x = yz for the parts read before and after reaching s. By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z. As Aqr → AqsAsr is in G, Aqr

∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb. Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack.

By the inductive hypothesis, Ast
∗⇒ y , so Aqr

∗⇒ x .
I Case 2: Let s be the state where the stack becomes empty, and split

x = yz for the parts read before and after reaching s. By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z. As Aqr → AqsAsr is in G, Aqr

∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb. Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack. By the inductive hypothesis, Ast

∗⇒ y , so Aqr
∗⇒ x .

I Case 2: Let s be the state where the stack becomes empty, and split
x = yz for the parts read before and after reaching s. By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z. As Aqr → AqsAsr is in G, Aqr

∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb. Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack. By the inductive hypothesis, Ast

∗⇒ y , so Aqr
∗⇒ x .

I Case 2: Let s be the state where the stack becomes empty, and split
x = yz for the parts read before and after reaching s.

By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z. As Aqr → AqsAsr is in G, Aqr

∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb. Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack. By the inductive hypothesis, Ast

∗⇒ y , so Aqr
∗⇒ x .

I Case 2: Let s be the state where the stack becomes empty, and split
x = yz for the parts read before and after reaching s. By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z.

As Aqr → AqsAsr is in G, Aqr
∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

Proof of correctness

Claim (second direction)

If x can take P from state q (with an empty stack) to state r (with an empty
stack), Aqr generates x .

Proof sketch

I Case 1: Let the state of P after the first move be s, and the state
before the last move be t . By the definition of G, it must contain a rule
of the form Aqr → aAstb. Write x = ayb. P must push some symbol u
onto the stack at the start, and pop u at the end. By ignoring this
symbol, on input y , P can bring s with an empty stack to t with an
empty stack. By the inductive hypothesis, Ast

∗⇒ y , so Aqr
∗⇒ x .

I Case 2: Let s be the state where the stack becomes empty, and split
x = yz for the parts read before and after reaching s. By inductive
hypothesis, Aqs

∗⇒ y , Asr
∗⇒ z. As Aqr → AqsAsr is in G, Aqr

∗⇒ x . �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 18/20

The final result
Putting these results together, we have shown:

Theorem
For any language L, there exists a PDA which recognises L if and only if L
is context-free.

Corollary

The set of regular languages is strictly contained within the set of
context-free languages.

(You had already seen the “strictness” part that there exist context-free
languages which are not regular.)

Context-free

Regular

{anbn | n ≥ 0}

{a7bn | n ≥ 0}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 19/20

The final result
Putting these results together, we have shown:

Theorem
For any language L, there exists a PDA which recognises L if and only if L
is context-free.

Corollary

The set of regular languages is strictly contained within the set of
context-free languages.

(You had already seen the “strictness” part that there exist context-free
languages which are not regular.)

Context-free

Regular

{anbn | n ≥ 0}

{a7bn | n ≥ 0}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 19/20

The final result
Putting these results together, we have shown:

Theorem
For any language L, there exists a PDA which recognises L if and only if L
is context-free.

Corollary

The set of regular languages is strictly contained within the set of
context-free languages.

(You had already seen the “strictness” part that there exist context-free
languages which are not regular.)

Context-free

Regular

{anbn | n ≥ 0}

{a7bn | n ≥ 0}

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 19/20

Summary and further reading

I Given a language L, there exists a PDA recognising L if and only if L
is context-free.

I Given a CFG, we can write down a PDA recognising the
corresponding language; given a PDA, we can write down a CFG
generating the language that P recognises.

I The former direction is noticeably easier than the latter!

I Further reading: Sipser §2.2.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: PDAs and CFGs Slide 20/20

