COMS11700

Turing machines

Ashley Montanaro
ashley@cs.bris.ac.uk
Department of Computer Science, University of Bristol Bristol, UK

21 March 2014

Introduction

We have seen two models of computation: finite automata and pushdown automata. We now discuss a model which is much more powerful: the Turing machine.

Introduction

We have seen two models of computation: finite automata and pushdown automata. We now discuss a model which is much more powerful: the Turing machine.

A Turing machine is like a finite automaton, with three major differences:

- It can write to its tape;
- It can move both left and right;
- The tape is infinite in one direction.

Initially, the input is provided on the left-hand end of the tape, and followed by an infinite sequence of blank spaces ("‘").

Example

Alan Turing (1912-1954)

- 1936: Invented the Turing machine and the concept of computability.
- 1939-1945: Worked at Bletchley Park on cracking the Enigma cryptosystem and others.
- 1946-1954: Work on practical computers, AI, mathematical biology, ...
- 1952: Convicted of indecency. Died of cyanide poisoning in 1954.
- 2014: Received a royal pardon.

Pic: Wikipedia/Bletchley Park

Turing machines

- Turing machines have two special states: an accept state and a reject state.

Turing machines

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).

Turing machines

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).

Turing machines

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).
- The language $L(M)$ recognised by a Turing machine M is the set
$\{x \mid M$ halts in the accept state on input $x\}$

Turing machines

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).
- The language $L(M)$ recognised by a Turing machine M is the set
$\{x \mid M$ halts in the accept state on input $x\}$
- For some language \mathcal{L}, if there exists a Turing machine M such that $\mathcal{L}=L(M)$, we say that \mathcal{L} is Turing-recognisable. (These languages are also sometimes called recursively enumerable.)

Describing Turing machines

We can describe a Turing machine by its state diagram.

- As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

Describing Turing machines

We can describe a Turing machine by its state diagram.

- As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

- A label of the form

$$
\mathrm{a} \rightarrow \mathrm{~b}, R
$$

means that on reading tape symbol a, the machine writes b to the tape and then moves right.

Describing Turing machines

We can describe a Turing machine by its state diagram.

- As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

- A label of the form

$$
\mathrm{a} \rightarrow \mathrm{~b}, R
$$

means that on reading tape symbol a, the machine writes b to the tape and then moves right.

- Another example: a label

$$
a, b \rightarrow L
$$

means that on reading either tape symbol a or b, the machine doesn't write anything to the tape and then moves left.

Turing machines

Imagine we want to test membership in the language

$$
\mathcal{L}_{E Q}=\left\{w \# w \mid w \in\{0,1\}^{*}\right\} .
$$

$x \in \mathcal{L}_{E Q}$ if it is made up of two equal bit-strings, separated by a \# symbol.

Turing machines

Imagine we want to test membership in the language

$$
\mathcal{L}_{E Q}=\left\{w \# w \mid w \in\{0,1\}^{*}\right\} .
$$

$x \in \mathcal{L}_{E Q}$ if it is made up of two equal bit-strings, separated by a \# symbol.

Idea for recognising this language

1. Our algorithm will scan forwards and backwards, testing each corresponding pair of bits either side of the \# for equality in turn.
2. We can overwrite each bit with an x symbol after checking it so we don't check the same bits twice.

State diagram (Sipser, Figure 3.10)

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Example: testing whether $01 \# 01 \in \mathcal{L}_{E Q}$

Turing machines: formal definition

Definition

A Turing machine is described by a 7 -tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}$), where:

1. Q is the set of states,
2. Σ is the input alphabet (which must not contain \smile),
3. Γ is the tape alphabet, where ${ }_{5} \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function,
5. $q_{0} \in Q$ is the start state,
6. $q_{\text {accept }}$ is the accept state,
7. $q_{\text {reject }}$ is the reject state, where $q_{\text {reject }} \neq q_{\text {accept }}$.

Example

The Turing machine we just saw is described by
$\left(\left\{q_{1}, \ldots, q_{8}, q_{\text {accept }}, q_{\text {reject }}\right\},\{0,1, \#\},\left\{0,1, \#, \mathrm{x},{ }_{\iota}\right\}, \delta, q_{1}, q_{\text {accept }}, q_{\text {reject }}\right)$ where the transition function δ is defined by the table

	0	1	$\#$	x	u
q_{1}	q_{2}, x, R	q_{3}, x, R	q_{8}, R		
q_{2}	q_{2}, R	q_{2}, R	q_{4}, R		
q_{3}	q_{3}, R	q_{3}, R	q_{5}, R		
q_{4}	q_{6}, x, L			q_{4}, R	
q_{5}		q_{6}, x, L		q_{5}, R	
q_{6}	q_{6}, L	q_{6}, L	q_{7}, L	q_{6}, L	
q_{7}	q_{7}, L	q_{7}, L		q_{1}, R	
q_{8}				q_{8}, R	$q_{\text {accept },}, R$

Blank entries in the table correspond to transitions where the machine rejects.

Turing machines: formal definition (2)

- The full description of what a Turing machine M is doing at any point in time is called its configuration.
- We write uqv for the configuration where:
- the tape to the left of the current position contains u;
- the tape to the right of the current position (and including the current position) contains v (followed by an infinite number of ${ }_{\lrcorner}$'s);
- the machine is in state q.

Turing machines: formal definition (2)

- The full description of what a Turing machine M is doing at any point in time is called its configuration.
- We write uqv for the configuration where:
- the tape to the left of the current position contains u;
- the tape to the right of the current position (and including the current position) contains v (followed by an infinite number of ${ }_{\nu}$'s);
- the machine is in state q.
- For example, $01 q_{3} 110$ describes the following situation:

Turing machines: formal definition (3)

- Configuration C_{1} yields C_{2} if M can go from C_{1} to C_{2} in one step. So:
- $u a_{j} b v$ yields $u q_{k} a c v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, L\right)$;
- $u a_{j} q^{b v}$ yields $u a c q_{k} v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, R\right)$.

Turing machines: formal definition (3)

- Configuration C_{1} yields C_{2} if M can go from C_{1} to C_{2} in one step. So:
- $u q_{j} b v$ yields $u q_{k} a c v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, L\right)$;
- $u a q_{j} b v$ yields $u a c q_{k} v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, R\right)$.
- If M is at the left-hand end of the tape, it cannot move any further to the left; but M can move arbitrarily far to the right (the tape is one-way infinite).

Turing machines: formal definition (3)

- Configuration C_{1} yields C_{2} if M can go from C_{1} to C_{2} in one step. So:
- $u q_{j}{ }_{j} b v$ yields $u q_{k} a c v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, L\right)$;
- $u q_{j} q^{b} v$ yields $u a c q_{k} v$ if $\delta\left(q_{j}, b\right)=\left(q_{k}, c, R\right)$.
- If M is at the left-hand end of the tape, it cannot move any further to the left; but M can move arbitrarily far to the right (the tape is one-way infinite).
- M accepts input x if there is a sequence of configurations C_{1}, \ldots, C_{k} such that:

1. C_{1} is the start configuration of M on input x;
2. For all $1 \leq i \leq k-1, C_{i}$ yields C_{i+1};
3. C_{k} is an accepting configuration (M is in state $q_{\text {accept }}$).

Real-world implementations

As well as being a mathematical tool, a Turing machine is a real machine that we can build. . .

- http://aturingmachine.com/index.php
- http://www.legoturingmachine.org

Summary and further reading

- A Turing machine is a generalisation of a finite automaton which has access to an infinite tape which it can read from and write to.
- Turing machines can perform complicated computations (although writing these down formally can be a painful process).
- Further reading: Sipser §3.1.

