

Ashley Montanaro

ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol Bristol, UK

21 March 2014

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Slide 1/15

Introduction

We have seen two models of computation: finite automata and pushdown automata. We now discuss a model which is much more powerful: the Turing machine.

Slide 2/15

Introduction

We have seen two models of computation: finite automata and pushdown automata. We now discuss a model which is much more powerful: the Turing machine.

A Turing machine is like a finite automaton, with three major differences:

- It can write to its tape;
- It can move both left and right;
- The tape is infinite in one direction.

Initially, the input is provided on the left-hand end of the tape, and followed by an infinite sequence of blank spaces ("_").

Ashley Montanaro					
COMS11700: Turing machines					

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Alan Turing (1912-1954)

- 1936: Invented the Turing machine and the concept of computability.
- 1939-1945: Worked at Bletchley Park on cracking the Enigma cryptosystem and others.
- ▶ 1946-1954: Work on practical computers, AI, mathematical biology, ...
- ▶ 1952: Convicted of indecency. Died of cyanide poisoning in 1954.
- ▶ 2014: Received a royal pardon.

Pic: Wikipedia/Bletchley Park

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Turing machines have two special states: an accept state and a reject state.

Slide 5/15

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).
- The language L(M) recognised by a Turing machine M is the set

 $\{x \mid M \text{ halts in the accept state on input } x\}$

- Turing machines have two special states: an accept state and a reject state.
- If the machine enters the accept or reject state, it halts (stops).
- If it doesn't ever enter either of these states, it never halts (i.e. it runs forever).
- The language L(M) recognised by a Turing machine M is the set

 $\{x \mid M \text{ halts in the accept state on input } x\}$

► For some language \mathcal{L} , if there exists a Turing machine M such that $\mathcal{L} = L(M)$, we say that \mathcal{L} is Turing-recognisable. (These languages are also sometimes called recursively enumerable.)

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Slide 5/15

Describing Turing machines

We can describe a Turing machine by its state diagram.

As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

$$\rightarrow q_1 \xrightarrow{a \to b, R} q_2$$

Describing Turing machines

We can describe a Turing machine by its state diagram.

As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

$$\rightarrow q_1 \xrightarrow{a \to b, R} q_2$$

A label of the form

 $a \rightarrow b, \boldsymbol{R}$

means that on reading tape symbol $\mathtt{a},$ the machine writes \mathtt{b} to the tape and then moves right.

Describing Turing machines

We can describe a Turing machine by its state diagram.

As with DFAs and PDAs, we have a graph whose vertices are labelled by states of the machine, and whose edges are labelled by possible transitions.

$$\rightarrow q_1 \xrightarrow{a \to b, R} q_2$$

A label of the form

$$\mathtt{a} \rightarrow \mathtt{b}, \boldsymbol{R}$$

means that on reading tape symbol $\mathtt{a},$ the machine writes \mathtt{b} to the tape and then moves right.

Another example: a label

$$\mathtt{a},\mathtt{b}
ightarrow L$$

means that on reading either tape symbol a or b, the machine doesn't write anything to the tape and then moves left.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Imagine we want to test membership in the language

$$\mathcal{L}_{EQ} = \{ w \# w \mid w \in \{0, 1\}^* \}.$$

 $x \in \mathcal{L}_{EQ}$ if it is made up of two equal bit-strings, separated by a # symbol.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Slide 7/15

Imagine we want to test membership in the language

$$\mathcal{L}_{EQ} = \{ w \# w \mid w \in \{0, 1\}^* \}.$$

 $x \in \mathcal{L}_{EQ}$ if it is made up of two equal bit-strings, separated by a # symbol.

Idea for recognising this language

- 1. Our algorithm will scan forwards and backwards, testing each corresponding pair of bits either side of the # for equality in turn.
- 2. We can overwrite each bit with an ${\rm x}$ symbol after checking it so we don't check the same bits twice.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

State diagram (Sipser, Figure 3.10)

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing m<u>achines</u>

Slide 8/15

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Turing machines: formal definition

Definition

A Turing machine is described by a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}$), where:

- 1. Q is the set of states,
- 2. Σ is the input alphabet (which must not contain _),
- 3. Γ is the tape alphabet, where $_ \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{Q} \times \mathbf{\Gamma} \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. q_{accept} is the accept state,
- 7. q_{reject} is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

The Turing machine we just saw is described by

 $(\{q_1, \dots, q_8, q_{\text{accept}}, q_{\text{reject}}\}, \{0, 1, \#\}, \{0, 1, \#, x, _\}, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$

where the transition function δ is defined by the table

	0	1	#	х	ц
q_1	q_2, x, R	q_3, x, R	q_8, R		
q_2	q_2, R	q_2, R	q_4, R		
q_3	q_3, R	q_3, R	q_5, R		
q_4	<i>q</i> ₆ , x, <i>L</i>			q_4, R	
q_5		<i>q</i> ₆ , x, <i>L</i>		q_5, R	
q_6	q ₆ , L	q_6, L	q_{7}, L	q_{6}, L	
q 7	q_{7}, L	q_7, L		q_1, R	
q_8				q ₈ , R	$q_{\rm accept}, R$

Blank entries in the table correspond to transitions where the machine rejects.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Slide 11/15

Turing machines: formal definition (2)

- ► The full description of what a Turing machine *M* is doing at any point in time is called its configuration.
- We write *uqv* for the configuration where:
 - the tape to the left of the current position contains u;
 - the tape to the right of the current position (and including the current position) contains v (followed by an infinite number of _,'s);
 - the machine is in state q.

Turing machines: formal definition (2)

- ► The full description of what a Turing machine *M* is doing at any point in time is called its configuration.
- We write *uqv* for the configuration where:
 - the tape to the left of the current position contains u;
 - the tape to the right of the current position (and including the current position) contains v (followed by an infinite number of _,'s);
 - the machine is in state q.
- For example, $01q_{3}110$ describes the following situation:

Slide 12/15

Turing machines: formal definition (3)

- Configuration C_1 yields C_2 if M can go from C_1 to C_2 in one step. So:
 - uaq_jbv yields uq_kacv if $\delta(q_j, b) = (q_k, c, L);$
 - $uaq_j bv$ yields $uacq_k v$ if $\delta(q_j, b) = (q_k, c, R)$.

Turing machines: formal definition (3)

- Configuration C_1 yields C_2 if M can go from C_1 to C_2 in one step. So:
 - $uaq_j bv$ yields $uq_k acv$ if $\delta(q_j, b) = (q_k, c, L);$
 - $uaq_j bv$ yields $uacq_k v$ if $\delta(q_j, b) = (q_k, c, R)$.
- If *M* is at the left-hand end of the tape, it cannot move any further to the left; but *M* can move arbitrarily far to the right (the tape is one-way infinite).

Turing machines: formal definition (3)

- Configuration C_1 yields C_2 if M can go from C_1 to C_2 in one step. So:
 - $uaq_j bv$ yields $uq_k acv$ if $\delta(q_j, b) = (q_k, c, L);$
 - $uaq_j bv$ yields $uacq_k v$ if $\delta(q_j, b) = (q_k, c, R)$.
- If M is at the left-hand end of the tape, it cannot move any further to the left; but M can move arbitrarily far to the right (the tape is one-way infinite).
- ► *M* accepts input *x* if there is a sequence of configurations *C*₁,..., *C*_k such that:
 - 1. C_1 is the start configuration of *M* on input *x*;
 - 2. For all $1 \leq i \leq k 1$, C_i yields C_{i+1} ;
 - 3. C_k is an accepting configuration (*M* is in state q_{accept}).

Real-world implementations

As well as being a mathematical tool, a Turing machine is a real machine that we can build...

- http://aturingmachine.com/index.php
- http://www.legoturingmachine.org

Slide 14/15

Summary and further reading

A Turing machine is a generalisation of a finite automaton which has access to an infinite tape which it can read from and write to.

 Turing machines can perform complicated computations (although writing these down formally can be a painful process).

Further reading: Sipser §3.1.

Ashley Montanaro ashley@cs.bris.ac.uk COMS11700: Turing machines

Slide 15/15