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Introduction
We have seen two models of computation: finite automata and pushdown
automata. We now discuss a model which is much more powerful: the
Turing machine.

A Turing machine is like a finite automaton, with three major differences:
I It can write to its tape;
I It can move both left and right;
I The tape is infinite in one direction.

a b b a a . . .

Control

Initially, the input is provided on the left-hand end of the tape, and followed
by an infinite sequence of blank spaces (“ ”).
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Example

a b b a a . . .

q0
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Example

c b b a a . . .
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Example
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Alan Turing (1912-1954)
I 1936: Invented the Turing machine and the concept of computability.
I 1939-1945: Worked at Bletchley Park on cracking the Enigma

cryptosystem and others.
I 1946-1954: Work on practical computers, AI, mathematical biology, ...
I 1952: Convicted of indecency. Died of cyanide poisoning in 1954.
I 2014: Received a royal pardon.

Pic: Wikipedia/Bletchley Park
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Turing machines

I Turing machines have two special states: an accept state and a reject
state.

I If the machine enters the accept or reject state, it halts (stops).

I If it doesn’t ever enter either of these states, it never halts (i.e. it runs
forever).

I The language L(M) recognised by a Turing machine M is the set

{x | M halts in the accept state on input x}

I For some language L, if there exists a Turing machine M such that
L = L(M), we say that L is Turing-recognisable. (These languages
are also sometimes called recursively enumerable.)
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Describing Turing machines
We can describe a Turing machine by its state diagram.

I As with DFAs and PDAs, we have a graph whose vertices are labelled
by states of the machine, and whose edges are labelled by possible
transitions.

q1 q2
a→ b,R

I A label of the form
a→ b,R

means that on reading tape symbol a, the machine writes b to the
tape and then moves right.

I Another example: a label
a,b→ L

means that on reading either tape symbol a or b, the machine doesn’t
write anything to the tape and then moves left.
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Turing machines

Imagine we want to test membership in the language

LEQ = {w#w | w ∈ {0,1}∗}.

x ∈ LEQ if it is made up of two equal bit-strings, separated by a # symbol.

Idea for recognising this language

1. Our algorithm will scan forwards and backwards, testing each
corresponding pair of bits either side of the # for equality in turn.

2. We can overwrite each bit with an x symbol after checking it so we
don’t check the same bits twice.
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State diagram (Sipser, Figure 3.10)
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Example: testing whether 01#01 ∈ LEQ
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q4

q6 q7
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0 1 # 0 1 . . .

q1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # 0 1 . . .

q2

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # 0 1 . . .

q2

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # 0 1 . . .

q4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # x 1 . . .

q6

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # x 1 . . .

q7

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # x 1 . . .

q7

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x 1 # x 1 . . .

q1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x 1 . . .

q3

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x 1 . . .

q5

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x 1 . . .

q5

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q6

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q6

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q7

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q8

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q8

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

q8

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Example: testing whether 01#01 ∈ LEQ

q1

q3

q8

q2

q5

qaccept

q4

q6 q7

0
→
x,

R

# → R

1→
x,R

# → R

0,1 → R

→ R

x → R

# → R

0,1 → R

0→
x, L

x → R

1
→
x,

Lx → R

# → L

0,1,x → L 0,1 → L

x → R

x x # x x . . .

qaccept

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Turing machines Slide 9/15



Turing machines: formal definition

Definition
A Turing machine is described by a 7-tuple (Q,Σ, Γ, δ,q0,qaccept,qreject),
where:

1. Q is the set of states,
2. Σ is the input alphabet (which must not contain ),
3. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,
4. δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5. q0 ∈ Q is the start state,
6. qaccept is the accept state,
7. qreject is the reject state, where qreject 6= qaccept.
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Example
The Turing machine we just saw is described by

({q1, . . . ,q8,qaccept,qreject}, {0,1,#}, {0,1,#,x, }, δ, q1, qaccept, qreject)

where the transition function δ is defined by the table

0 1 # x
q1 q2,x,R q3,x,R q8,R
q2 q2,R q2,R q4,R
q3 q3,R q3,R q5,R
q4 q6,x,L q4,R
q5 q6,x,L q5,R
q6 q6,L q6,L q7,L q6,L
q7 q7,L q7,L q1,R
q8 q8,R qaccept,R

Blank entries in the table correspond to transitions where the machine
rejects.
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Turing machines: formal definition (2)

I The full description of what a Turing machine M is doing at any point
in time is called its configuration.

I We write uqv for the configuration where:
I the tape to the left of the current position contains u;
I the tape to the right of the current position (and including the current

position) contains v (followed by an infinite number of ’s);
I the machine is in state q.

I For example, 01q3110 describes the following situation:

0 1 1 1 0 . . .

q3
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Turing machines: formal definition (3)

I Configuration C1 yields C2 if M can go from C1 to C2 in one step. So:
I uaqjbv yields uqk acv if δ(qj , b) = (qk , c, L);
I uaqjbv yields uacqk v if δ(qj , b) = (qk , c,R).

I If M is at the left-hand end of the tape, it cannot move any further to
the left; but M can move arbitrarily far to the right (the tape is one-way
infinite).

I M accepts input x if there is a sequence of configurations C1, . . . ,Ck
such that:

1. C1 is the start configuration of M on input x ;
2. For all 1 ≤ i ≤ k − 1, Ci yields Ci+1;
3. Ck is an accepting configuration (M is in state qaccept).
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1. C1 is the start configuration of M on input x ;
2. For all 1 ≤ i ≤ k − 1, Ci yields Ci+1;
3. Ck is an accepting configuration (M is in state qaccept).
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Turing machines: formal definition (3)

I Configuration C1 yields C2 if M can go from C1 to C2 in one step. So:
I uaqjbv yields uqk acv if δ(qj , b) = (qk , c, L);
I uaqjbv yields uacqk v if δ(qj , b) = (qk , c,R).

I If M is at the left-hand end of the tape, it cannot move any further to
the left; but M can move arbitrarily far to the right (the tape is one-way
infinite).

I M accepts input x if there is a sequence of configurations C1, . . . ,Ck
such that:

1. C1 is the start configuration of M on input x ;
2. For all 1 ≤ i ≤ k − 1, Ci yields Ci+1;
3. Ck is an accepting configuration (M is in state qaccept).
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Real-world implementations

As well as being a mathematical tool, a Turing machine is a real machine
that we can build. . .

I http://aturingmachine.com/index.php

I http://www.legoturingmachine.org
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Summary and further reading

I A Turing machine is a generalisation of a finite automaton which has
access to an infinite tape which it can read from and write to.

I Turing machines can perform complicated computations (although
writing these down formally can be a painful process).

I Further reading: Sipser §3.1.
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